Appendix E

Noise and Vibration Calculations

May 2024

Reference Emission

Jacumba Fire Stataion Construction Noise

				Mererence Emission	
	Distance to Nearest	Combined Predicted		Noise Levels (L _{max}) at 50	Usage
Location	Receptor in feet	Noise Level (L _{eq} dBA)	Equipment	feet ¹	Factor ¹
County of SD threshold	575	60.0	Backhoe	78	0.4
Noise level at 50 feet	50	81.2	Front End Loader	79	0.4
Residence	255	67.1	Excavator	81	0.4
_		-	Paver	77	0.5

Ground Type	hard
Source Height	8
Receiver Height	5
Ground Factor ²	0.00

Predicted Noise Level ³	L _{eq} dBA at 50 feet ³
Backhoe	74.0
Front End Loader	75.0
Excavator	77.0
Paver	74.0

Combined Predicted Noise Level (L_{eq} dBA at 50 feet)

81.2

Sources:

Where: E.L. = Emission Level;

U.F.= Usage Factor;

G = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and

D = Distance from source to receiver.

 $^{^{1}}$ Obtained from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

 $^{^2\,\}textsc{Based}$ on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

 $^{^3}$ Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3). $L_{eq}(\text{equip}) = \text{E.L.} + 10 \text{log (U.F.)} - 20 \text{log (D/50)} - 10 \text{s}^{-6} \text{log (D/50)}$

Jacumba Fire Stataion Construction Noise

Location	Distance to Nearest Receptor in feet	Combined Predicted Noise Level (L _{ea} dBA)	Equipment	Reference Emission Noise Levels (L_{max}) at 50 feet ¹	Usage Factor ¹
County of SD threshold	892	60.0	Backhoe	78	1
Noise level at 50 feet	50	85.0	Front End Loader	78 79	1
Residence	1000	59.0	Excavator	79 81	1
Residence	1000	39.0	Paver	81 77	1
			Ground Type	hard	
			Source Height	8	
			Receiver Height	5	
			Ground Factor ²	0.00	
			Predicted Noise Level ³	L _{eq} dBA at 50 feet ³	
			Backhoe	78.0	
			Front End Loader	79.0	
			Excavator	81.0	
			Paver	77.0	

Combined Predicted Noise Level (Lmax dBA at 50 feet)

85.0

Sources

Where: E.L. = Emission Level;

U.F.= Usage Factor

G = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and

D = Distance from source to receiver.

¹Obtained from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

 $^{^{\}rm 2}$ Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

 $^{^3}$ Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3). L_{eq} (equip) = E.L.+10*log (U.F.) - 20*log (D/50) - 10*G*log (D/50)

Equipment Description	Acoustical Usage Factor (%)	Spec 721.560 Lmax @ 50ft (dBA slow)	Actual Measured Lmax @ 50ft (dBA slow)	No. of Actual Data Samples (count)	Spec 721.560 LmaxCalc	Spec 721.560 Leq	Distance	Actual Measured LmaxCalc	Actual Measured Leq
Auger Drill Rig	20	85	84	36	79.0	72.0	100	78.0	71.0
Backhoe	40	80	78	372	74.0	70.0	100	72.0	68.0
Bar Bender	20	80	na	0	74.0	67.0	100		
Blasting	na	94	na	0	88.0		100		
Boring Jack Power Unit	50	80	83	1	74.0	71.0	100	77.0	74.0
Chain Saw	20 20	85 93	84 87	46 4	79.0 87.0	72.0 80.0	100 100	78.0 81.0	71.0 74.0
Clam Shovel (dropping) Compactor (ground)	20	93 80	87 83	4 57	74.0	67.0	100	77.0	74.0
Compressor (air)	40	80	78	18	74.0	70.0	100	77.0	68.0
Concrete Batch Plant	15	83	na	0	77.0	68.7	100	72.0	00.0
Concrete Mixer Truck	40	85	79	40	79.0	75.0	100	73.0	69.0
Concrete Pump Truck	20	82	81	30	76.0	69.0	100	75.0	68.0
Concrete Saw	20	90	90	55	84.0	77.0	100	84.0	77.0
Crane	16	85	81	405	79.0	71.0	100	75.0	67.0
Dozer	40	85	82	55	79.0	75.0	100	76.0	72.0
Drill Rig Truck	20	84	79	22	78.0	71.0	100	73.0	66.0
Drum Mixer	50	80	80	1	74.0	71.0	100	74.0	71.0
Dump Truck Excavator	40 40	84 85	76 81	31 170	78.0 79.0	74.0 75.0	100 100	70.0 75.0	66.0 71.0
Flat Bed Truck	40	84	74	4	78.0	74.0	100	68.0	64.0
Front End Loader	40	80	79	96	74.0	70.0	100	73.0	69.0
Generator	50	82	81	19	76.0	73.0	100	75.0	72.0
Generator (<25KVA, VMS signs)	50	70	73	74	64.0	61.0	100	67.0	64.0
Gradall	40	85	83	70	79.0	75.0	100	77.0	73.0
Grader	40	85	na	0	79.0	75.0	100		
Grapple (on Backhoe)	40	85	87	1	79.0	75.0	100	81.0	77.0
Horizontal Boring Hydr. Jack	25	80	82	6	74.0	68.0	100	76.0	70.0
Hydra Break Ram	10	90	na	0	84.0	74.0	100		
Impact Pile Driver Jackhammer	20 20	95 85	101 89	11 133	89.0 79.0	82.0 72.0	100 100	95.0 83.0	88.0 76.0
Man Lift	20	85	75	23	79.0	72.0	100	69.0	62.0
Mounted Impact Hammer (hoe ram)	20	90	90	212	84.0	77.0	100	84.0	77.0
Pavement Scarafier	20	85	90	2	79.0	72.0	100	84.0	77.0
Paver	50	85	77	9	79.0	76.0	100	71.0	68.0
Pickup Truck	40	55	75	1	49.0	45.0	100	69.0	65.0
Pneumatic Tools	50	85	85	90	79.0	76.0	100	79.0	76.0
Pumps	50	77	81	17	71.0	68.0	100	75.0	72.0
Refrigerator Unit	100	82	73	3	76.0	76.0	100	67.0	67.0
Rivit Buster/chipping gun	20	85	79	19 3	79.0	72.0	100	73.0	66.0
Rock Drill Roller	20 20	85 85	81 80	3 16	79.0 79.0	72.0 72.0	100 100	75.0 74.0	68.0 67.0
Sand Blasting (Single Nozzle)	20	85	96	9	79.0	72.0	100	90.0	83.0
Scraper	40	85	84	12	79.0	75.0	100	78.0	74.0
Shears (on backhoe)	40	85	96	5	79.0	75.0	100	90.0	86.0
Slurry Plant	100	78	78	1	72.0	72.0	100	72.0	72.0
Slurry Trenching Machine	50	82	80	75	76.0	73.0	100	74.0	71.0
Soil Mix Drill Rig	50	80	na	0	74.0	71.0	100		
Tractor	40	84	na	0	78.0	74.0	100		
Vacuum Excavator (Vac-truck)	40	85	85	149	79.0	75.0	100	79.0	75.0
Vacuum Street Sweeper	10	80	82	19	74.0	64.0	100	76.0	66.0
Ventilation Fan	100	85	79	13	79.0	79.0	100	73.0	73.0
Vibrating Hopper Vibratory Concrete Mixer	50 20	85 80	87 80	1 1	79.0 74.0	76.0 67.0	100 100	81.0 74.0	78.0 67.0
Vibratory Concrete Mixer Vibratory Pile Driver	20	80 95	80 101	44	74.0 89.0	82.0	100	95.0	88.0
Warning Horn	5	95 85	83	12	79.0	66.0	100	77.0	64.0
Welder / Torch	40	73	74	5	67.0	63.0	100	68.0	64.0
chipper	-	75		-					

Source:

FHWA Roadway Construction Noise Model, January 2006. Table 9.1

U.S. Department of Transportation

CA/T Construction Spec. 721.560

Long-Term Noise Measurement Summary

KEY: Orange cells are for input.

Grey cells are intermediate calculations performed by the model.

Green cells are data to present in a written analysis (output).

Measurement Site: Jacumba Fire Station

Measurement Date: 6/22/2023

Project Name: Jacumba Fire Station

Computation of CNEL

Hour of Day (military	Sound Level Leq	Sound Power =10*Log(dBA	Period of 24-Hour Day (1=included, 0=not)			Sound Power Breakdown by Period of Day		
time)	(dBA)	/10)	Day	Evening	Night	Day	Evening	Night
0:00	0.0	1	0	0	1	0	0	1
1:00	0.0	1	0	0	1	0	0	1
2:00	0.0	1	0	0	1	0	0	1
3:00	0.0	1	0	0	1	0	0	1
4:00	0.0	1	0	0	1	0	0	1
5:00	0.0	1	0	0	1	0	0	1
6:00	0.0	1	0	0	1	0	0	1
7:00	81.2	131,825,674	1	0	0	131,825,674	0	0
8:00	81.2	131,825,674	1	0	0	131,825,674	0	0
9:00	81.2	131,825,674	1	0	0	131,825,674	0	0
10:00	81.2	131,825,674	1	0	0	131,825,674	0	0
11:00	81.2	131,825,674	1	0	0	131,825,674	0	0
12:00	81.2	131,825,674	1	0	0	131,825,674	0	0
13:00	81.2	131,825,674	1	0	0	131,825,674	0	0
14:00	81.2	131,825,674	1	0	0	131,825,674	0	0
15:00	81.2	131,825,674	1	0	0	131,825,674	0	0
16:00	81.2	131,825,674	1	0	0	131,825,674	0	0
17:00	81.2	131,825,674	1	0	0	131,825,674	0	0
18:00	81.2	131,825,674	1	0	0	131,825,674	0	0
19:00	81.2	131,825,674	0	1	0	0	131,825,674	0
20:00	0.0	1	0	1	0	0	1	0
21:00	0.0	1	0	1	0	0	1	0
22:00	0.0	1	0	0	1	0	0	1
23:00	0.0	1	0	0	1	0	0	1
	Sun	of Sound Powe	er during	Period wo	/penalty	1,581,908,086	131,825,676	9
		Log Factor for C	NEL Pen	alty (i.e., 1	0*log(x))	1	3	10
		Sound Powe	r during	Period with	penalty	1,581,908,086	395,477,028	90

Total Daily Sound Power, with penalties
Hours per Day
Average Hourly Sound Power, with penalties
CNEL
1,977,385,204
24
24
279.2

Computation of Ldn

Ldn computation on next page.

	Period o	f 24-Hour		
	Day (1=	included,	Sound Power	Breakdown by
	0=	not)	Period	l of Day
	Day	Night	Day	Night
	0	1	0	1
	0	1	0	1
	0	1	0	1
	0	1	0	1
	0	1	0	1
	0	1	0	1
	0	1	0	1
	1	0	131,825,674	0
	1	0	131,825,674	0
	1	0	131,825,674	0
	1	0	131,825,674	0
	1	0	131,825,674	0
	1	0	131,825,674	0
	1	0	131,825,674	0
	1	0	131,825,674	0
	1	0	131,825,674	0
	1	0	131,825,674	0
	1	0	131,825,674	0
	1	0	131,825,674	0
	1	0	131,825,674	0
	1	0	1	0
	1	0	1	0
	0	1	0	1
	0	1	0	1
Sum of Sound Power during			1,713,733,762	9
Log Factor for Pena	alty (i.e., :	10*log(x))	1	10
Sound Power during P	eriod wit	h penalty	1,713,733,762	90
Total	Daily Sou	ınd Power,	, with penalties	1,713,733,852
			Hours per Day	24
Average H	ourly Sou	ınd Power,	, with penalties	71,405,577
			Ldn	78.5

Notes:

Computation of the CNEL based on 1-hour Leq measurements for each hour of a day are based on equation 2-27 on pg. 2-57 of Caltrans 2009.

Computation of the Ldn based on 1-hour Leq measurements for each hour of a day are based on equation 2-26 on pg. 2-56 of Caltrans 2009.

Log factors for the Ldn and CNEL penalties are provided in Table 2-12 on pg. 2-52 of Caltrans 2009.

Source:

California Deaprtment of Transportation (Caltrans), Divisiong of Environmental Analysis. 2009 (November). 2009 Technical Noise Supplement. Sacramento, CA. Available: http://www.dot.ca.gov/hq/env/noise/>. Accessed September 24, 2010.

KEY: Orange cells are for input.

Grey cells are intermediate calculations performed by the model.

Green cells are data to present in a written analysis (output).

STEP 1: Identify the noise source and enter the reference noise level (dBA and distance).

STEP 2: Select the ground type (hard or soft), and enter the source and receiver heights.

STEP 3: Select the distance to the receiver.

Noise Source/ID	Referenc	e Noi	se Level	А	ttenuation C	haracteristics		Attenuated Nois	se Lev	el at Receptor
	noise level		distance	Ground Type	Source	Receiver	Ground	noise lev	el	distance
	(dBA)	@	(ft)	(soft/hard)	Height (ft)	Height (ft)	Factor	(dBA)	@	(ft)
HVAC	70.0	@	50	hard	8	5	0.00	55.8	@	255
Fire truck sirens	100.0	@	100	hard	8	5	0.00	91.9	@	255
Emergency generator	82.0	@	50	hard	8	5	0.00	67.8	@	255
Construction noise	79.2	@	50	hard	8	5	0.00	65.0	@	255
Construction noise	79.2	@	50	hard	8	5	0.00	60.0	@	455
							0.66 0.66 0.66			

Notes:

Estimates of attenuated noise levels do not account for reductions from intervening barriers, including walls, trees, vegetation, or structures of any type.

Computation of the attenuated noise level is based on the equation presented on pg. 176 and 177 of FTA 2018.

Computation of the ground factor is based on the equation presentd in Table 4-26 on pg. 86 of FTA 2018, where the distance of the reference noise leve can be adjusted and the usage factor is not applied (i.e., the usage factor is equal to 1).

Sources:

Federal Transit Association (FTA). 2018 (September). Transit Noise and Vibration Impact Assessment. Washington, D.C. Available: Accessed: March 5, 2020.

Long-Term Noise Measurement Summary: HVAC Equipment

KEY: Orange cells are for input.

Grey cells are intermediate calculations performed by the model. Green cells are data to present in a written analysis (output).

Measurement Site: N/A
Measurement Date: N/A

Project Name: Jacumba Fire Station

Computation of CNEL

Hour of Day (military	Sound Level Leq	Sound Power =10*Log(dBA	Period of 24-Hour Day (1=included, 0=not)		P	ower Breakd eriod of Day	,	
time)	(dBA)	/10)	Day	Evening	Night	Day	Evening	Night
0:00	55.8	380,189	0	0	1	0	0	380,189
1:00	55.8	380,189	0	0	1	0	0	380,189
2:00	55.8	380,189	0	0	1	0	0	380,189
3:00	55.8	380,189	0	0	1	0	0	380,189
4:00	55.8	380,189	0	0	1	0	0	380,189
5:00	55.8	380,189	0	0	1	0	0	380,189
6:00	55.8	380,189	0	0	1	0	0	380,189
7:00	55.8	380,189	1	0	0	380,189	0	0
8:00	55.8	380,189	1	0	0	380,189	0	0
9:00	55.8	380,189	1	0	0	380,189	0	0
10:00	55.8	380,189	1	0	0	380,189	0	0
11:00	55.8	380,189	1	0	0	380,189	0	0
12:00	55.8	380,189	1	0	0	380,189	0	0
13:00	55.8	380,189	1	0	0	380,189	0	0
14:00	55.8	380,189	1	0	0	380,189	0	0
15:00	55.8	380,189	1	0	0	380,189	0	0
16:00	55.8	380,189	1	0	0	380,189	0	0
17:00	55.8	380,189	1	0	0	380,189	0	0
18:00	55.8	380,189	1	0	0	380,189	0	0
19:00	55.8	380,189	0	1	0	0	380,189	0
20:00	55.8	380,189	0	1	0	0	380,189	0
21:00	55.8	380,189	0	1	0	0	380,189	0
22:00	55.8	380,189	0	0	1	0	0	380,189
23:00	55.8	380,189	0	0	1	0	0	380,189
	Sur	n of Sound Powe	er during	Period wo	/penalty	4,562,273	1,140,568	3,421,705
		Log Factor for C	NEL Pen	alty (i.e., 10	O*log(x))	1	3	10
	Sound Power during Period with penalty						3,421,705	34,217,046

Total Daily Sound Power, with penalties 42,201,023 Hours per Day 24

Average Hourly Sound Power, with penalties 1,758,376

CNEL

62.5

Ldn computation on next page.

	Day (1:	of 24-Hour =included, =not)	Sound Breakdo Period	own by
	Day	Night	Day	Night
	0	1	0	380,189
	0	1	0	380,189
	0	1	0	380,189
	0	1	0	380,189
	0	1	0	380,189
	0	1	0	380,189
	0	1	0	380,189
	1	0	380,189	0
	1	0	380,189	0
	1	0	380,189	0
	1	0	380,189	0
	1	0	380,189	0
	1	0	380,189	0
	1	0	380,189	0
	1	0	380,189	0
	1	0	380,189	0
	1	0	380,189	0
	1	0	380,189	0
	1	0	380,189	0
	1	0	380,189	0
	1	0	380,189	0
	1	0	380,189	0
	0	1	0	380,189
	0	1	0	380,189
Sum of Sound Power during	Period v	vo/penalty	5,702,841	3,421,705
Log Factor for Pena	alty (i.e.,	10*log(x))	1	10
Sound Power during F	Period w	ith penalty	5,702,841	34,217,046
Total Dai	ily Sound	d Power, wit	h penalties	39,919,887
		Но	urs per Day	24
Average Hour	ly Sound	d Power, wit	h penalties	1,663,329
			Ldn	62.2
			-WII	02.2

Notes:

Computation of the CNEL based on 1-hour Leq measurements for each hour of a day are based on equation 2-27 on pg. 2-57 of Caltrans 2009.

Computation of the Ldn based on 1-hour Leq measurements for each hour of a day are based on equation 2-26 on pg. 2-56 of Caltrans 2009.

Log factors for the Ldn and CNEL penalties are provided in Table 2-12 on pg. 2-52 of Caltrans 2009.

Source:

California Deaprtment of Transportation (Caltrans), Divisiong of Environmental Analysis. 2009 (November). 2009 *Technical Noise Supplement*. Sacramento, CA. Available: http://www.dot.ca.gov/hq/env/noise/. Accessed September 24, 2010.

Long-Term Noise Measurement Summary: Generator

KEY: Orange cells are for input.

Grey cells are intermediate calculations performed by the model.

Green cells are data to present in a written analysis (output).

Measurement Site: N/A **Measurement Date:** N/A

Project Name: Jacumba Fire Station

Com	putat	ion of	CN	EL

Hour of Day (military	Sound Level Leq	Sound Power =10*Log(dBA		Period of 24-Hour Day (1=included, 0=not)			ower Breakd eriod of Day	-
time)	(dBA)	/10)	Day	Evening	Night	Day	Evening	Night
0:00	56.0	398,107	0	0	1	0	0	398,107
1:00	56.0	398,107	0	0	1	0	0	398,107
2:00	56.0	398,107	0	0	1	0	0	398,107
3:00	56.0	398,107	0	0	1	0	0	398,107
4:00	56.0	398,107	0	0	1	0	0	398,107
5:00	56.0	398,107	0	0	1	0	0	398,107
6:00	56.0	398,107	0	0	1	0	0	398,107
7:00	56.0	398,107	1	0	0	398,107	0	0
8:00	56.0	398,107	1	0	0	398,107	0	0
9:00	56.0	398,107	1	0	0	398,107	0	0
10:00	56.0	398,107	1	0	0	398,107	0	0
11:00	56.0	398,107	1	0	0	398,107	0	0
12:00	56.0	398,107	1	0	0	398,107	0	0
13:00	56.0	398,107	1	0	0	398,107	0	0
14:00	56.0	398,107	1	0	0	398,107	0	0
15:00	56.0	398,107	1	0	0	398,107	0	0
16:00	56.0	398,107	1	0	0	398,107	0	0
17:00	56.0	398,107	1	0	0	398,107	0	0
18:00	56.0	398,107	1	0	0	398,107	0	0
19:00	56.0	398,107	0	1	0	0	398,107	0
20:00	56.0	398,107	0	1	0	0	398,107	0
21:00	56.0	398,107	0	1	0	0	398,107	0
22:00	56.0	398,107	0	0	1	0	0	398,107
23:00	56.0	398,107	0	0	1	0	0	398,107
				S. J. J.		4 777 200	4 404 222	2 502 065
	Sur	n of Sound Pow	_			4,777,286	1,194,322	3,582,965
	Log Factor for CNEL Penalty (i.e., 10*log(x))					1	3	10

Sound Power during Period with penalty 4,777,286 3,582,965 35,829,645

Total Daily Sound Power, with penalties 44,189,896

Hours per Day 24 **Average Hourly Sound Power, with penalties** 1,841,246

> **CNEL** 62.7

Ldn computation on next page.

	Period of 24-Hour		Sound Power		
	Day (1=included, 0=not)		Breakdown by Period of Day		
	Day	Night	Day	Night	
	0	1	0	398,107	
	0	1	0	398,107	
	0	1	0	398,107	
	0	1	0	398,107	
	0	1	0	398,107	
	0	1	0	398,107	
	0	1	0	398,107	
	1	0	398,107	0	
	1	0	398,107	0	
	1	0	398,107	0	
	1	0	398,107	0	
	1	0	398,107	0	
	1	0	398,107	0	
	1	0	398,107	0	
	1	0	398,107	0	
	1	0	398,107	0	
	1	0	398,107	0	
	1	0	398,107	0	
	1	0	398,107	0	
	1	0	398,107	0	
	1	0	398,107	0	
	1	0	398,107	0	
	0	1	0	398,107	
	0	1	0	398,107	
Sum of Sound Power during		• •	5,971,608	3,582,965	
Log Factor for Pena	alty (i.e.,	10*log(x))	1	10	
Sound Power during P	eriod wi	th penalty	5,971,608	35,829,645	
Total Dai	ily Sound	Power, wit	th penalties	41,801,253	
			urs per Day	24	
Average Hour	ly Sound	Power, wit	th penalties	1,741,719	
			Ldn	62.4	

Notes:

Computation of the CNEL based on 1-hour Leq measurements for each hour of a day are based on equation 2-27 on pg. 2-57 of Caltrans 2009.

Computation of the Ldn based on 1-hour Leq measurements for each hour of a day are based on equation 2-26 on pg. 2-56 of Caltrans 2009.

Log factors for the Ldn and CNEL penalties are provided in Table 2-12 on pg. 2-52 of Caltrans 2009.

Source:

California Deaprtment of Transportation (Caltrans), Divisiong of Environmental Analysis. 2009 (November). 2009 *Technical Noise Supplement*. Sacramento, CA. Available: http://www.dot.ca.gov/hq/env/noise/. Accessed September 24, 2010.

Distance Propagation Calculations for Stationary Sources of Ground Vibration

KEY: Orange cells are for input.

Grey cells are intermediate calculations performed by the model.

Green cells are data to present in a written analysis (output).

STEP 1: Determine units in which to perform calculation.

- If vibration decibels (VdB), then use Table A and proceed to Steps 2A and 3A.
- If peak particle velocity (PPV), then use Table B and proceed to Steps 2B and 3B.

STEP 2A: Identify the vibration source and enter the reference vibration level (VdB) and distance.

Table A. Propagation of vibration decibels (VdB) with distance

Reference Noise Level			
vibration level	vibration level		
(VdB)	@	(ft)	
94	@	25	
94	@	25	
	vibration level (VdB) 94	vibration level (VdB) @ 94 @	

STEP 3A: Select the distance to the receiver.

Attenuated Noise Level at Receptor				
vibration level	bration level distance			
(VdB)	@	(ft)		
45.9	@	1000		
80.0	@	73		

The Lv metric (VdB) is used to assess the likelihood for vibration to result in human annoyance.

STEP 2B: Identify the vibration source and enter the reference peak particle velocity (PPV) and distance.

Table B. Propagation of peak particle velocity (PPV) with distance

Noise Source/ID	Reference Noise Level		
	vibration level		distance
	(PPV)	@	(ft)
Roller	0.210	@	25
Roller	0.210	@	25

STEP 3B: Select the distance to the receiver.

Attenuated Noise Level at Receptor			
vibration level		distance	
(PPV)	@	(ft)	
0.001	@	1000	
0.198	@	26	

The PPV metric (in/sec) is used for assessing the likelihood for the potential of structural damage.

Notes:

Computation of propagated vibration levels is based on the equations presented on pg. 185 of FTA 2018. Estimates of attenuated vibration levels do not account for reductions from intervening underground barriers or other underground structures of any type, or changes in soil type.

Federal Transit Association (FTA). 2018 (September). Transit Noise and Vibration Impact Assessment Manual. FTA Report No. 0123. Washington, D.C. Accessed: December 20, 2020. Page Available:

https://www.transit.dot.gov/sites/fta.dot.gov/files/docs/research-innovation/118131/transit-noise-and-vibration-impact-assessment-manual-fta-report-no-0123 0.pdf