Appendix F

Preliminary Geotechnical Investigation

April 2024

1441 Montiel Road, Suite 115 Escondido, CA 92026 p. 760.746.4955 | oneues.com

PRELIMINARY GEOTECHNICAL INVESTIGATION PROPOSED JACUMBA FIRE STATION #43 APN: 660-150-18-00 JACUMBA HOT SPRINGS, CALIFORNIA

Prepared for:

COUNTY OF SAN DIEGO ATTENTION: MR. JIHAD SLEIMAN 5500 OVERLAND AVENUE SAN DIEGO, CALIFORNIA 92123

Prepared by:

UNIVERSAL ENGINEERING SCIENCES 1441 MONTIEL ROAD, SUITE 115 ESCONDIDO, CALIFORNIA 92026

UES JOB NO.: 4830.2400003 April 5, 2024

TABLE OF CONTENTS

1.0 INTRODUCTION AND SCOPE OF SERVICES	1
1.1 Introduction	1
1.2 Scope of Services	1
2.0 SITE DESCRIPTION	
3.0 FIELD INVESTIGATION AND LABORATORY TESTING	2
3.1 Field Investigation	2
3.2 Laboratory Testing	3
4.0 GEOLOGY	
4.1 General Setting	
4.2 Geologic Conditions	3
4.2.1 Topsoil	
4.2.2 Quaternary Alluvium	
4.2.3 Bedrock	
4.3 Groundwater Conditions	
4.4 Temporary Water Well	
4.5 Percolation Testing	5
4.5.1 Percolation Test Methods	
4.5.2 Calculated Infiltrated Rate	6
4.6 Geologic Hazards	8
4.6.1 Surface Fault Rupture	8
4.6.2 Local and Regional Faulting	9
4.6.3 Liquefaction and Seismic Settlement Evaluation	10
4.6.4 Landsliding	13
4.6.5 Compressible and Expansive Soils	13
4.6.6 Corrosive Soils	13
5.0 CONCLUSIONS AND RECOMMENDATIONS	
5.1 General	14
5.2 Site Preparation	14
5.3 Site Excavation	15
5.4 Fill Placement and Compaction	16
5.5 Fill Materials	16
5.6 Temporary Construction Slopes	17
5.7 Foundations and Slab Recommendations	17
5.7.1 Foundations	18
5.7.2 Foundation Settlement	19
5.7.3 Foundation Setback	19
5.7.4 Interior Concrete Slabs	19
5.8 Seismic Design Criteria	20
5.9 Vehicular Pavement	21
5.10 Drainage	23
5.11 Plan Review	23
5.12 Construction Observation	24
6 O LIMITATIONS OF INVESTIGATION	24

FIGURES

FIGURE 1 SITE LOCATION MAP

FIGURE 2 GEOTECHNICAL EXPLORATION LOCATION MAP

FIGURE 3 GEOLOGIC MAP

FIGURE 4 REGIONAL FAULT AND SEISMICITY MAP

APPENDICES

APPENDIX A REFERENCES

APPENDIX B FIELD EXPLORATION METHODS LOGS
APPENDIX C LABORATORY METHODS AND RESULTS
APPENDIX D STANDARD GRADING SPECIFICATIONS

APPENDIX E PERCOLATION FIELD DATA AND CALCULATED RATES

APPENDIX F LIMITED ENVIRONMENTAL SITE ASSESMENT

APPENDIX G LIQUEFACTION ANALYSIS

APPENDIX H WATER WELL SAMPLING AND DESIGN

1.0 INTRODUCTION AND SCOPE OF SERVICES

1.1 Introduction

This report presents the results of the geotechnical investigation performed by Universal Engineering Sciences (UES) and provides preliminary conclusions and recommendations for the proposed Jacumba Fire Station #43 located in Jacumba Hot Springs, California. The investigation was performed in general accordance with the terms of UES proposal 4830.0124.00001 dated January 10, 2024.

UES understands that proposed site improvements are to consist of an approximately 9,600-square-foot (footprint), fire station building, with a septic field, water well, and other associated improvements. Preliminary recommendations for excavations, fill placement, and foundation design for the proposed improvements are presented in this report. Reviewed references are provided in Appendix A.

1.2 Scope of Services

The scope of services provided included:

- Review of readily available geologic and geotechnical reports.
- Coordination of USA and private utility mark-out and location.
- Obtaining a boring permit from the San Diego County Department of Environmental Health (DEH).
- Exploration of subsurface conditions utilizing a truck-mounted drill rig.
- Installation of a temporary water well for testing and design.
- Conducting a Limited Environmental Site Assessment.
- Laboratory testing of selected soil samples.
- Description of site geology and evaluation of potential geologic hazards.
- Engineering and geologic analysis.
- Preparation of this geotechnical investigation report.

2.0 SITE DESCRIPTION

The project site is located at APN 660-150-18-00 in Jacumba Hot Springs, California (Figure 1). The vacant

field site is currently bounded by residences to the west and Old Highway 80 to the south. The vacant field

continues to the north and east beyond the subject site. The improvement area is relatively flat with

approximate elevations ranging from 2,797 feet above mean sea level (msl) to 2,799 feet above msl. The

proposed improvement area was formerly used for agriculture. The approximate area of the proposed

improvements is shown on the attached Figure 2.

3.0 FIELD INVESTIGATION AND LABORATORY TESTING

3.1 Field Investigation

UES conducted a field investigation from February 19 to 23, 2024, which included visual reconnaissance and

the excavation of seven exploratory geotechnical borings (B-1 to B-7), twelve infiltration test locations (P-1

to P-12), and one temporary water well (TW-1) within the proposed improvement area. The geotechnical

borings were advanced to depths ranging from 11.5 feet to 50.5 feet below ground surface (bgs). Infiltration

test locations were advanced to 1.0 feet and 3.0 feet bgs. The temporary water well evaluation boring was

advanced to 100.0 feet bgs. In addition to the on-site field investigation, UES conducted a limited

environmental site assessment that can be found in the attached Appendix F.

The borings were advanced with a CME-95 truck-mounted drill rig equipped with eight-inch-diameter,

hollow-stem augers. Bulk samples were collected from the cuttings, and relatively undisturbed samples

were collected by driving Standard Penetration Test (SPT) and Modified California (CAL) samplers. The

approximate locations of the of the excavations are presented on the attached Figure 2.

/// UES.

The soils were logged in the field by a UES Geologist and were visually classified in general accordance with the Unified Soil Classification System. The field descriptions have been modified, where appropriate, to reflect laboratory test results. The boring logs, including descriptions of the soils encountered, are included

in Appendix B.

3.2 Laboratory Testing

Laboratory tests were conducted on selected soil samples for classification purposes, and to evaluate

physical properties and engineering characteristics. Laboratory tests included: In-Place Moisture and

Density, Resistance "R-Value", Modified Proctor, Expansion Index, Gradation, Direct Shear, and Chemical

Characteristics. Test descriptions and laboratory results for the selected soils are included in Appendix C.

4.0 GEOLOGY

4.1 General Setting

The site is located in the town of Jacumba Hot Springs, San Diego County, which is located in the Peninsular

Ranges geomorphic province, an area characterized by northwest-trending mountain ranges, intervening

valleys, and predominantly northwest-trending regional faults. The project site is located within the western

portion of the Jacumba Mountains Wilderness of the Peninsular Ranges Batholith, generally containing

younger Quaternary colluvium and alluvium deposits underlain by Cretaceous bedrock.

4.2 Geologic Conditions

The regional geologic map prepared by Dibblee Jr. T.W. (2008) shows the regional geologic near surface unit

to be Quaternary Alluvium (Figure 3). Based on the site reconnaissance and subsurface explorations,

investigated site areas were observed to consist of topsoil overlying the Quaternary Alluvium at the site.

Descriptions of the encountered geologic units are presented below.

// UES.

4.2.1 Topsoil

Topsoil with moderate vegetation was observed at the surface throughout the site. The topsoil was

found to be approximately one foot in thickness across the site. Where observed, this material

generally consists of loose, slightly moist, brown, fine- to medium-grained clayey sand with roots

and burrows. Isolated areas with deeper topsoils may be encountered during grading and

excavations.

4.2.2 Quaternary Alluvium

Quaternary Alluvium (alluvium) was observed at all excavation locations beneath the topsoil.

Alluvium was observed to a depth of approximately 77.0 feet bgs at TW-1. Alluvium materials were

found to consist of interbedded, very loose to medium dense, dry, brown, fine-grained silty and

clayey sand to a depth of approximately 53.0 feet bgs, where groundwater was encountered. At

depths greater than 53.0 feet bgs, within the underlying groundwater zone, alluvium materials were

observed to alternate between well sorted coarse sand, and dark gray, fine-grained silty sand

deposits.

4.2.3 Bedrock

The nearby mountains are mapped as Tertiary and older Jacumba Volcanics and Table Mountain

Formation. Bedrock was encountered at location TW-1 at a depth of approximately 77.0 feet bgs.

Where observed, the very dense bedrock unit was found to excavate as slightly moist, light reddish

brown, fine-grained silty sand.

Page 5

4.3 Groundwater Conditions

As indicated, groundwater was encountered at boring location TW-1 at a depth of approximately 53.0 feet

bgs. Groundwater conditions are anticipated to vary, especially following periods of sustained precipitation

or irrigation. Based on the noted conditions, groundwater is generally not expected to impact shallow

construction activities.

4.4 Temporary Water Well

A temporary water well was constructed at location TW-1 to a depth of 100.0 feet bgs. Water and soil

samples were collected at various depths below groundwater depth ranging from 53.0 feet bgs to 100.0 feet

bgs. Samples were analyzed in order to provide recommendations and design information for a permanent

water well at the site. The results of sampling and proposed well design information is included in Appendix

Η.

4.5 Percolation Testing

UES understands that a septic system and leech field are proposed for the northwest portion of the site.

Twelve percolation tests were performed to depths ranging from approximately 1.0 to 3.0 feet bgs as

requested by the project civil engineer. The attached Figure 2 shows the approximate percolation test

locations. The evaluation was performed in general accordance with information provided in the County of

San Diego Department of Environmental Health (Land and Water Quality Division) and methods approved by

the San Diego Region BMP Design Manual with a presoak period of approximately 18 to 19 hours.

Percolation test results are presented below in Table 4.5.2. Septic design, based on the percolation test data

and site conditions, is being performed and will be submitted under separate cover.

4.5.1 Percolation Test Methods

As stated above, the evaluation was performed in general accordance with information provided in the County of San Diego Department of Environmental Health (Land and Water Quality Division) and methods approved by the San Diego Region BMP Design Manual with a presoak period of approximately 18 to 19 hours. Field data and percolation to infiltration calculations are included in Appendix E.

4.5.2 Calculated Infiltrated Rate

As per the County of San Diego Department of Environmental Health (Land and Water Quality Division), infiltration rates are to be evaluated using the Porchet Method. The County of San Diego Department of Environmental Health (Land and Water Quality Division) BMP design documents utilized the Porchet Method through guidance of the County of Riverside (2011). The intent of calculating the infiltration rate is to take into account bias inherent in percolation test borehole sidewall infiltration that would not occur at a basin bottom where such sidewalls are not present.

The infiltration rate (I_t) is derived by the equation:

$$\begin{array}{lll} I_t = & \underline{\Delta H \; \pi r 2 \; 60} & = & \underline{\Delta H \; 60 \; r} \\ \Delta t (\pi r 2 \; + 2 \pi r H_{avg}) & \Delta t (r + 2 H_{avg}) \end{array}$$

Where:

I_t = tested infiltration rate, inches/hour

 ΔH = change in head over the time interval, inches

Δt = time interval, minutes
* r = effective radius of test hole

H_{avg} = average head over the time interval, inches

TABLE 4.5.2 RESULTS OF PERCOLATION TESTING AND CALCULATED INFILTRATION RATES				
Test Location	Test Depth (inches)	Method (Borehole)	Soil Type* USCS Classification	Percolation Rate (minutes per inch)
P-1	13.0	Non-Sandy	SM/SC	13.714
P-2	36.0	Sandy	SM	4.211
P-3	19.5	Non-Sandy	SM/SC	11.163
P-4	36.0	Sandy	SM	4.571
P-5	12.0	Non-Sandy	SM/SC	18.461
P-6	36.0	Sandy	SM	3.333
P-7	18.5	Non-Sandy	SM/SC	11.707
P-8	38.0	Sandy	SM	2.623
P-9	13.0	Non-Sandy	SM/SC	8.421
P-10	36.5	Sandy	SM	2.857
P-11	18.5	Non-Sandy	SM/SC	6.667
P-12	36.0	Sandy	SM	2.807

Based on information from County of San Diego Department of Environmental Health (Land and Water Quality Division), the percolation rates range between 6.667 and 18.461 minutes per inch for the shallow percolation test holes (less than 19.5"); however, the percolation rates range between 2.623 and 4.571 minutes per inch for percolation tests on the order of 36-inches below grade. Therefore, based on UES's percolation test results, the rates for all tests were below 120 minutes per inch, demonstrating permeable soils.

Page 8

NOTES: Water level was measured from a fixed point at the top of the hole.

Weather was sunny during percolation testing.

The test holes were six inches in diameter.

4.6 Geologic Hazards

Geologic hazards that were considered to have potential impacts to site development were evaluated based

on field observations, literature review, and laboratory test results. It appears that geologic hazards at the

site are primarily limited to those caused by shaking from earthquake-generated ground motions. The

following paragraphs discuss the geologic hazards considered and their potential risk to the site.

4.6.1 Surface Fault Rupture

In accordance with the Alquist-Priolo Earthquake Fault Zoning Act, (ACT), the State of California

established Earthquake Fault Zones around known active faults. The purpose of the ACT is to

regulate the development of structures intended for human occupancy near active fault traces in

order to mitigate hazards associated with surface fault rupture. According to the California

Geological Survey (Special Publication 42, Revised 2018), a fault that has had surface displacement

within the last 11,700 years is defined as a Holocene-active fault and is either already zoned or is

pending zonation in accordance with the ACT. There are several other definitions of fault activity

that are used to regulate dams, power plants, and other critical facilities, and some agencies

designate faults that are documented as older than Holocene (last 11,700 years) and younger than

late Quaternary (1.6 million years) as potentially active faults that are subject to local jurisdictional

regulations.

Based on reconnaissance and review of referenced literature, the site is not located within a State designated Earthquake Fault Zone, no known active fault traces underlie or project toward the site, and no known potentially active fault traces project toward the site.

4.6.2 Local and Regional Faulting

The United States Geological Survey (USGS), with support of State Geological Surveys, and reviewed published work by various researchers, have developed a Quaternary Fault and Fold Database of faults and associated folds that are believed to be sources of earthquakes with magnitudes greater than 6.0 that have occurred during the Quaternary (the past 1.6 million years). The faults and folds within the database have been categorized into four Classes (Class A-D) based on the level of evidence confirming that a Quaternary fault is of tectonic origin and whether the structure is exposed for mapping or inferred from fault related deformational features. Class A faults have been mapped and categorized based on age of documented activity ranging from Historical faults (activity within last 150 years), Latest Quaternary faults (activity within last 15,000 years), Late Quaternary (activity within last 130,000 years), to Middle to late Quaternary (activity within last 1.6 million years). Class A faults are considered to have the highest potential to generate earthquakes and/or surface rupture, and the earthquake and surface rupture potential generally increases from oldest to youngest. The evidence for Quaternary deformation and/or tectonic activity progressively decreases for Class B and Class C faults. When geologic evidence indicates that a fault is not of tectonic origin it is considered to be a Class D structure. Such evidence includes features such as joints, fractures, landslides, or erosional and fluvial scarps that resemble fault scarps, but demonstrate a non-tectonic origin.

Page 10

The nearest known Class A fault is the Davies Valley Fault, which is approximately 11.3 miles east of

the site. The attached Figure 4 shows regional faults and seismicity with respect to the site.

4.6.3 Liquefaction and Seismic Settlement Evaluation

Liquefaction occurs when saturated fine-grained sands or silts lose their physical strength during

earthquake-induced shaking and behave like a liquid. This is due to loss of point-to-point grain

contact and transfer of normal stress to the pore water. Liquefaction potential varies with water

level, soil type, material gradation, relative density, and probable intensity and duration of ground

shaking. Seismic settlement can occur with or without liquefaction; it results from densification of

loose soils.

According to the County of San Diego Hazard Mitigation Planning Map, the site is within a mapped

zone of potential liquefaction susceptibility. A quantitative evaluation of liquefaction and seismic

settlement was performed as summarized herein.

Input parameters for the liquefaction evaluation were based on the Maximum Considered

Earthquake (MCE, 2% probability of exceedance with a 50-year period). A code-based acceleration

value (PGA_M) was obtained in accordance with ASCE 7-16 Equation 11.8-1. In order to quantify site

liquefaction susceptibility, the computer program Geologismiki LiqSVs 2.3.1.5 was utilized. The

following data were also utilized used for the analysis:

1441 Montiel Road, Suite 115, Escondido, CA 92026 p. 760.746.4955 | TeamUES.com

- Based on direct measurement during the recent subsurface exploration, groundwater was encountered at a depth of 53 feet bgs in the proposed improvement area. Given the available information and regional conditions, a conservative high groundwater depth of 40 feet bgs was modeled for the liquefaction analysis as indicated in Appendix G.
- As indicated, the PGA_M value (0.55g) obtained using ASCE 7-16 Section 11.8.3 was used for the liquefaction evaluation.
- Based on the area tectonic framework, a modal contributing magnitude of 7.2 was used for the analysis.

In addition to inputting the above-mentioned parameters into Geologismiki LiqSVs 2.3.1.5, the fine-grained soils were evaluated for their liquefaction potential in accordance with Bray and Sancio (2006) methodology. Previously accepted practice for liquefaction susceptibility confirmation of fine-grained soils was based on the Chinese criteria and procedures delineated in DMG Special Publication 117. These commonly used evaluation procedures assumed that soils with a clay content (particle size <0.005 mm) greater than 15% were considered to be non-liquefiable. More recent research, summarized by Bray and Sancio (2006), indicates that silty and clayey soils containing more than 15% clay-size particles may also be susceptible to liquefaction. Therefore, plasticity indices and water content/liquid limit ratios are considered to be more suitable as liquefaction susceptibility criteria and were used for the analysis. Specifically, soils with a plasticity index greater than 12 are generally less susceptible to liquefaction and soils with a water content/liquid limit ratio less than 0.8 are not likely to liquefy. Accordingly, site soils were evaluated based on plasticity and moisture content characteristics.

Page 12

Liquefaction evaluation was performed for deep boring B-5 based on the PGA_m, magnitude, and

groundwater levels previously provided in addition to the susceptibility criteria noted above. A

summary of the criteria is provided below.

The results of the liquefaction evaluation indicate that total potential dynamic settlement at the site

is anticipated to be up to approximately three inches based on SPT investigation methods. Based on

regional uniformity, differential dynamic settlement is anticipated to be up to half of the total

estimated value.

Surface effects associated with liquefaction-related settlement can consist of sand boils, soil

strength loss, and associated phenomena. In general, the potential for surface manifestations is

related to the continuity and thickness of liquefiable layers compared to depth of overlying non-

liquefiable material (Ishihara, 1985). Based on the depth and distribution of the potential

liquefiable layers, surface effects are generally not anticipated. Given the regional conditions and

lack of free faces adjacent to the site, the potential hazard associated with lateral spreading is

anticipated to be low.

It is understood that structural design will be performed to accommodate the settlement potential

and that mitigation of the regional liquefaction and/or seismic settlement potential is generally not

anticipated to be warranted or required. The liquefaction evaluation and results are provided in

Appendix G.

1441 Montiel Road, Suite 115, Escondido, CA 92026 p. 760.746.4955 | TeamUES.com 4.6.4 Landsliding

According to geologic mapping and the County of San Diego Hazard Mitigation Plan (2023) no

landslides are mapped in the project area, and landslides were not encountered during the recent

field exploration at the relatively flat project site. Based on the investigation findings and relatively

flat site conditions, landsliding is not considered to be a geologic hazard at the subject site.

4.6.5 Compressible and Expansive Soils

The Topsoil and Alluvium materials are not considered to be compressible soils. Based on

laboratory results and the granular nature of the subgrade materials, near surface soils at the site

are anticipated to exhibit low expansion potential (Expansion Index of 50 or less). The expansion

potential of representative exposed soils should be further evaluated during grading and

construction to verify that conditions are as anticipated.

4.6.6 Corrosive Soils

Testing of representative site soils was performed to evaluate the potential corrosive effects of site

soil on concrete foundations and buried metallic utilities. Soil environments detrimental to

concrete generally have elevated levels of soluble sulfates and/or pH levels less than 5.5. According

to the American Concrete Institute (ACI) Table 318 4.3.1, specific guidelines have been provided for

concrete where concentrations of soluble sulfate (SO₄) in soil exceed 0.10 percent by weight. These

guidelines include low water: cement ratios, increased compressive strength, and specific cement

type requirements. A minimum resistivity value less than approximately 5,000 ohm-cm and/or

soluble chloride levels in excess of 200 ppm generally indicate a corrosive environment for buried

metallic utilities and untreated conduits.

Based on laboratory test results, shown in Appendix C, near-surface soils at the site generally present a negligible corrosion potential for Portland cement concrete. It is also interpreted that the site soils will have a moderate to severe corrosive potential to buried metallic improvements. Therefore, it would likely be prudent for buried utilities to utilize plastic piping and/or conduits, where feasible. However, UES does not practice corrosion engineering. Therefore, if corrosion of improvements is of more significant concern, a qualified corrosion engineer could be consulted.

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 General

UES concludes that the proposed improvements at the site are feasible from a geotechnical standpoint, provided the recommendations in this report are incorporated into the design and construction of the project. As indicated, site improvements are to consist of approximately 9,600-square-foot (footprint), fire station building and other associated improvements. Geotechnical design parameters and excavation recommendations for the proposed improvements are provided herein. Preliminary recommendations for the proposed earthwork and improvements are included in the following sections and Appendix D. However, recommendations in the text of this report supersede those presented in Appendix D should variations exist. These recommendations should either be evaluated as appropriate and/or updated based on conditions exposed during excavation and grading at the site.

5.2 Site Preparation

Prior to grading or excavation, the improvement area should be cleared of any existing building materials or improvements that are not to remain, as well as debris and deleterious materials. Objectionable materials, such as debris and vegetation, not suitable for structural backfill should be properly disposed of offsite. For the proposed structures, existing soils should be overexcavated to a minimum depth of five feet below

Page 15

existing or proposed subgrade elevations, three feet below the bottom of proposed footings, or to the depth

of competent native materials, whichever is greater. Remedial overexcavation should extend at least five

feet laterally beyond the limits of the proposed improvements. Suitability of the bottom of the

overexcavations should be verified by the geotechnical representative during site grading. Exposed surfaces

should be observed and proof rolled for compliance. Areas of excessive yielding should be further excavated

to the depth of competent material or stabilized as recommended based on the exposed conditions.

Following the recommended overexcavations and verification of suitable conditions, exposed subgrades

should be scarified, moisture conditioned, and properly compacted as recommended herein prior to

placement of compacted fill.

Non-building improvement areas such as pavements and flatwork should be overexcavated and

recompacted to a depth of at least 24 inches below existing or proposed subgrade elevations, whichever is

deeper. Overexcavation should extend at least two feet laterally beyond the limits of these proposed

improvements.

5.3 Site Excavation

Generally, shallow excavation of site materials may be accomplished with heavy-duty construction

equipment under normal conditions. However, excavations within the alluvium and other unconsolidated

soils could encounter zones that are sensitive to caving and/or erosion and may not effectively remain

standing vertical or near-vertical, even at shallow or minor heights and for short periods of time.

1441 Montiel Road, Suite 115, Escondido, CA 92026 p. 760.746.4955 | TeamUES.com // UES.

5.4 Fill Placement and Compaction

Following required overexcavations and recommended removals of loose or disturbed soils, areas to receive

fills should be scarified a minimum of nine inches, moisture conditioned and properly compacted. Fill and

backfill should be compacted to a minimum relative compaction of 90 percent (95 percent for upper 12" of

subgrade beneath pavements and aggregate base) at a minimum two percent above optimum moisture

(three percent above for clayey soils) as evaluated by ASTM D 1557. The optimum lift thickness for fill soil

will depend on the type of compaction equipment used. Generally, backfill should be placed in uniform,

horizontal lifts not exceeding eight inches in loose thickness. Fill placement and compaction should be

conducted in conformance with local ordinances.

5.5 Fill Materials

Properly moisture-conditioned very low to low expansion potential soils derived from the on-site

excavations are considered suitable for reuse on the site as compacted fill. If used, these materials should

be screened of organics and materials generally greater than three inches in maximum dimension.

Irreducible materials greater than three inches in maximum dimension should generally not be used in

shallow fills (within three feet of proposed grades). In utility trenches, adequate bedding should surround

pipes.

Imported fill beneath flatwork and pavements should have an Expansion Index of 20 or less (ASTM D 4829).

Proposed imported fill soils for use in structural or slope areas should be evaluated by the geotechnical

engineer before being transported to the site.

UES.

Although this geotechnical report is not intended to address environmental conditions at the subject site, it is anticipated that imported soils will be screened, sampled, and tested in accordance with the Department of Toxic Substances Control's suggested guidelines for clean imported fill soils. A limited evaluation of

regional conditions and analyses of groundwater were performed, with summary and results presented in

Appendices F and H.

5.6 Temporary Construction Slopes

Temporary construction slope recommendations have been provided below for trenches or other open excavations that may be excavated during site construction. The following recommended slopes should be relatively stable against deep-seated failure but may experience localized sloughing. Undisturbed native site

soils are considered Type C soils with recommended slope ratio of 1.5:1 (or flatter) to a maximum height of

5 feet.

Actual field conditions and soil type designations must be verified by a "competent person" while

excavations exist, according to Cal-OSHA regulations. In addition, the above sloping recommendations do

not allow for seepage, or surcharge loading at the top of slopes by vehicular traffic, equipment or materials.

Appropriate surcharge setbacks must be maintained from the top of all unshored slopes.

5.7 Foundations and Slab Recommendations

The following recommendations are for preliminary design purposes only. These foundation

recommendations should be re-evaluated after review of the project grading and foundation plans, and

after completion of rough grading of the building pad areas. Upon completion of rough pad grading,

Expansion Index of near surface soils should be verified, and these recommendations should be updated, if

necessary.

UES.

5.7.1 Foundations

Following the recommended preparatory grading, continuous and isolated spread footings are

anticipated to be suitable for use at this site. Foundation dimensions and reinforcement should be

based on allowable bearing values of 2,500 pounds per square foot (psf) for footings embedded a

minimum of 24-inches below lowest adjacent subgrade elevation (if uplift due to wind forces are

anticipated, footings should be deepened per the structural engineer). Isolated footings should be

at least 24 inches in minimum dimension. The provided bearing value may be increased by 250 psf

for each additional six inches of embedment up to a maximum static value of 3,000 psf. The

allowable bearing value may be increased by one-third for short-duration loading, which includes

the effects of wind or seismic forces. Based on the recommended preparatory grading, it is

anticipated that all footings will be founded entirely in properly compacted fill materials. Footings

should not span cut to fill interfaces.

Minimum reinforcement for continuous footings should consist of four No. 5 reinforcing bars; two

placed near the top and two placed near the bottom, or as per the project structural engineer. The

structural engineer should design isolated footing reinforcement. An uncorrected subgrade

modulus of 120 pounds per cubic inch is considered suitable for elastic foundation design.

The structural engineer should provide recommendations for reinforcement of spread footings and

footings with pipe penetrations. Footing excavations should generally be maintained above

optimum moisture content until concrete placement. Exposed soils and potential expansion

characteristics should be evaluated at the time of grading to verify that conditions are as anticipated

by the preliminary findings.

UES.

5.7.2 Foundation Settlement

The maximum total static settlement is expected to be on the order of one inch and the maximum

differential static settlement is expected to be on the order of 0.5 inch over a distance of 40 feet.

Potential dynamic settlements provided in section 4.4.3 should also be incorporated into the design

as appropriate.

5.7.3 Foundation Setback

Footings for structures should be designed such that the horizontal distance from the face of

adjacent slopes to the outer edge of the footing is at least 10 feet. In addition, footings should bear

beneath a 1:1 plane extended up from the nearest bottom edge of adjacent trenches and/or

excavations. Deepening of affected footings may be a suitable means of attaining the prescribed

setbacks.

5.7.4 Interior Concrete Slabs

Lightly loaded concrete slabs for non-traffic areas should be a minimum of 5.0 inches thick.

Minimum slab reinforcement should consist of #4 reinforcing bars placed on maximum 18-inch

centers, each way, at or above mid-slab height, but with proper cover. Where vehicular or heavy

static loading is proposed for slab areas, additional recommendations should be obtained from the

structural engineer, as applicable.

In moisture-sensitive floor areas, a suitable vapor retarder of at least 15-mil thickness (with all laps

or penetrations sealed or taped) overlying a four-inch layer of consolidated aggregate base or gravel

(with SE of 30 or more) should be installed. An optional maximum two-inch layer of similar material

may be placed above the vapor retarder to help protect the membrane during steel and concrete

placement. This recommended protection is generally considered typical in the industry. If proposed floor areas or coverings are considered especially sensitive to moisture emissions, additional recommendations from a specialty consultant could be obtained. UES is not an expert at preventing moisture penetration through slabs. A qualified architect or other experienced professional should be contacted if moisture penetration is a more significant concern.

As indicated, slabs subjected to heavier loads may require thicker sections and/or increased reinforcement. A 110-pci subgrade modulus is considered suitable for elastic design of minimally embedded improvements such as slabs-on-grade. Subgrade materials should be maintained at a minimum of two percent or greater above optimum moisture content until slab underlayment and concrete are placed.

5.8 Seismic Design Criteria

The seismic ground motion values listed in the table below were derived in accordance with the ASCE 7-16 Standard that is incorporated into the 2022 California Building Code. This was accomplished by establishing the Site Class based on the soil properties at the site and calculating site coefficients and parameters using the using the SEAOC-OSHPD U.S. Seismic Design Maps application. Seismic ground motion values are based on the approximate site coordinates of 32.6181° latitude and –116.1817° longitude and the understanding that the fundamental period of proposed structure is no greater than 0.5 seconds. These values are intended for the design of structures to resist the effects of earthquake ground motions. It is anticipated that the project will meet the requirements provided in ASCE 7, 11.4.8, Exception 2, which permits the use of code-based ground motion values if the seismic response coefficient Cs is calculated as specified and T< 1.5 T_s.

TABLE 5.8 SEISMIC GROUND MOTION VALUES (CODE-BASED) 2022CBC AND ASCE 7-16			
PARAMETER	VALUE	2022 CBC/ASCE 7-16 REFERENCE	
Site Class	D	ASCE 16, Chapter 20	
Mapped Spectral Response Acceleration Parameter, S _S	1.233	Figure 1613.2.1 (1)	
Mapped Spectral Response Acceleration Parameter, S ₁	0.394	Figure 1613.2.1 (2)	
Seismic Coefficient, Fa	1.007	Table 1613.2.3 (1)	
Seismic Coefficient, F _v	Null – See Section 11.4.8	Table 1613.2.3 (2)	
MCE Spectral Response Acceleration Parameter, S _{MS}	1.242	Section 1613.2.3	
MCE Spectral Response Acceleration Parameter, S _{M1}	Null – See Section 11.4.8	Section 1613.2.3	
Design Spectral Response Acceleration, Parameter S _{DS}	0.828	Section 1613.2.5(1)	
Design Spectral Response Acceleration, Parameter S _{D1}	Null – See Section 11.4.8	Section 1613.2.5 (2)	
Peak Ground Acceleration PGA _M	0.55	ASCE 16, Section 11.8.3	

5.9 Vehicular Pavement

The proposed improvements include paved vehicle drive and parking areas. Presented in Table 5.11 are preliminary pavement sections utilizing laboratory determined Resistance "R" Value. Actual traffic area slab sections to be provided by the structural designer. Beneath proposed pavement areas, the upper 12 inches of subgrade and all base materials should be compacted to 95% relative compaction in accordance with ASTM D1557, and at a minimum of two percent above optimum moisture content.

TABLE 5.9 RECOMMENDED PAVEMENT THICKNESS					
Traffic Area	Assumed Traffic Index	Preliminary Subgrade "R"-Value	Asphalt P AC Thickness (inches)	avements Class II* Aggregate Base Thickness (inches)	Portland Cement Concrete Pavements** on Subgrade Soils (inches)
Frequent Heavy Fire Engine & Emergency Vehicle Access	8.0	20+	5.0	14.0	8.0
Moderate Fire Engine & Emergency Vehicle Access	7.0	20+	4.0	12.0	7.5
Light Auto Drive & Parking Areas	5.0	20+	3.0	8.0	7.0

^{*} Caltrans Class 2 aggregate base

Following rough site grading, laboratory testing of representative subgrade soils for as-graded "R"-Value should be performed to verify suitability of pavement sections. Asphalt paved areas should be designed, constructed, and maintained in accordance with the recommendations of the Asphalt Institute, or other widely recognized authority. Concrete paved areas should be designed and constructed in accordance with the recommendations of the American Concrete Institute or other widely recognized authority, particularly with regard to thickened edges, joints, and drainage. The Standard Specifications for Public Works construction ("Greenbook") or Caltrans Standard Specifications may be referenced for pavement materials specifications.

^{**} Concrete should have a modulus of rupture of at least 600 psi

Page 23

5.10 Drainage

Surface runoff should be collected and directed away from improvements by means of appropriate erosion-

reducing devices, and positive drainage should be established around proposed improvements. Positive

drainage should be directed away from improvements and slope areas at a minimum gradient of two

percent for a distance of at least five feet. In order to minimize moisture accumulation within subgrade

areas, irrigation should be limited to the minimum necessary to maintain landscaping. However, the project

civil engineer should evaluate the on-site drainage and make necessary provisions to keep surface water

from affecting the site.

Generally, UES recommends against allowing water to infiltrate building pads or adjacent to slopes and

improvements. However, it is understood that some agencies are encouraging the use of storm-water

cleansing devices. Therefore, if storm water cleansing devices must be used, it is generally recommended

that they be underlain by an impervious barrier and that the infiltrate be collected via subsurface piping and

discharged off site. If infiltration must occur, water should infiltrate as far away from structural

improvements as feasible. Additionally, any reconstructed slopes descending from infiltration basins should

be equipped with subdrains to collect and discharge accumulated subsurface water.

5.11 Plan Review

UES should be authorized to review the project grading and foundation plans, prior to commencement of

earthwork to identify potential conflicts with the intent of the geotechnical recommendations.

1441 Montiel Road, Suite 115, Escondido, CA 92026 p. 760.746.4955 | TeamUES.com 5.12 Construction Observation

The recommendations provided in this report are based on preliminary design information for the proposed

construction and the subsurface conditions observed in the explorations performed. The interpolated

subsurface conditions should be checked in the field during construction to verify that conditions are as

anticipated. Foundation recommendations may be revised upon completion of grading and as-built

laboratory test results.

Recommendations provided in this report are based on the understanding and assumption that UES will

provide the observation and testing services for the project. All earthwork should be observed and tested to

verify that grading activities have been performed according to the recommendations contained within this

report. UES should evaluate all foundation excavations before reinforcing steel placement.

6.0 LIMITATIONS OF INVESTIGATION

The field evaluation, laboratory testing, and geotechnical analysis presented in this report have been

conducted according to current engineering practice and the standard of care exercised by reputable

geotechnical consultants performing similar tasks in this area. No other warranty, expressed or implied, is

made regarding the conclusions, recommendations and opinions expressed in this report. Variations may

exist and conditions not observed or described in this report may be encountered during construction. The

recommendations presented herein have been developed in order to reduce the potential adverse effects of

soil settlement. However, even with the design and construction precautions provided, some post-

construction movement and associated distress may occur.

The findings of this report are valid as of the present date. However, changes in the conditions of a property can occur with the passage of time, whether they are due to natural processes or the works of man on this or adjacent properties. In addition, changes in applicable or appropriate standards may occur, whether they result from legislation or the broadening of knowledge. Accordingly, the findings of this report may be invalidated wholly or partially by changes outside our control. Therefore, this report is subject to review and should not be relied upon after a period of three years.

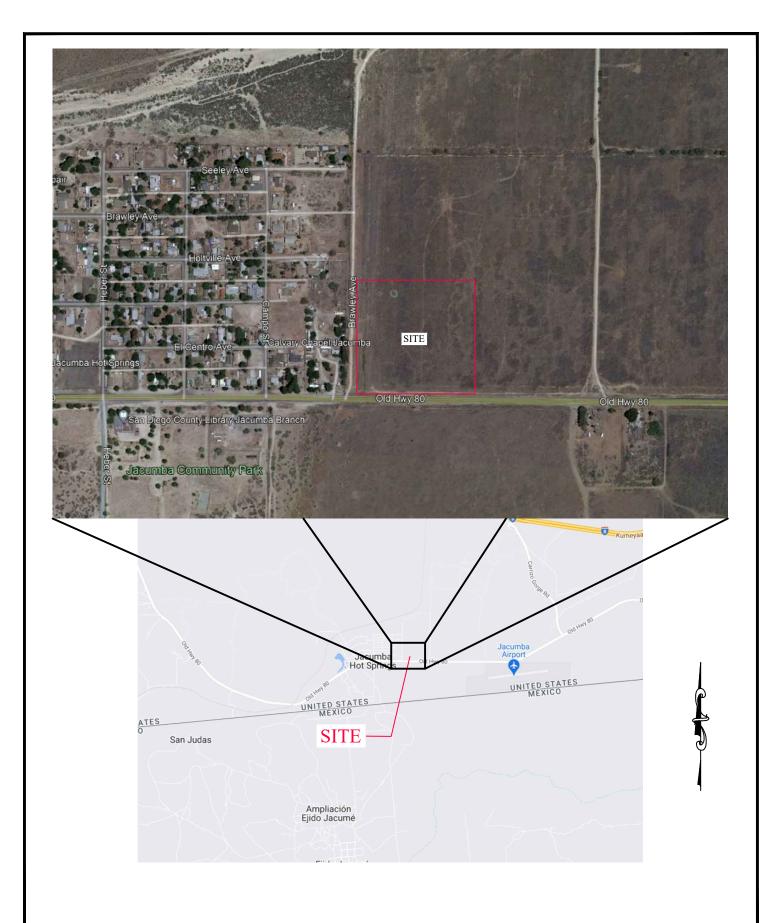
UES's conclusions and recommendations are based on an analysis of the observed conditions. If conditions different from those described in this report are encountered, this office should be notified and additional recommendations, if required, will be provided.

The opportunity to be of service on this project is appreciated. If you have any questions regarding this report, please do not hesitate to contact the undersigned.

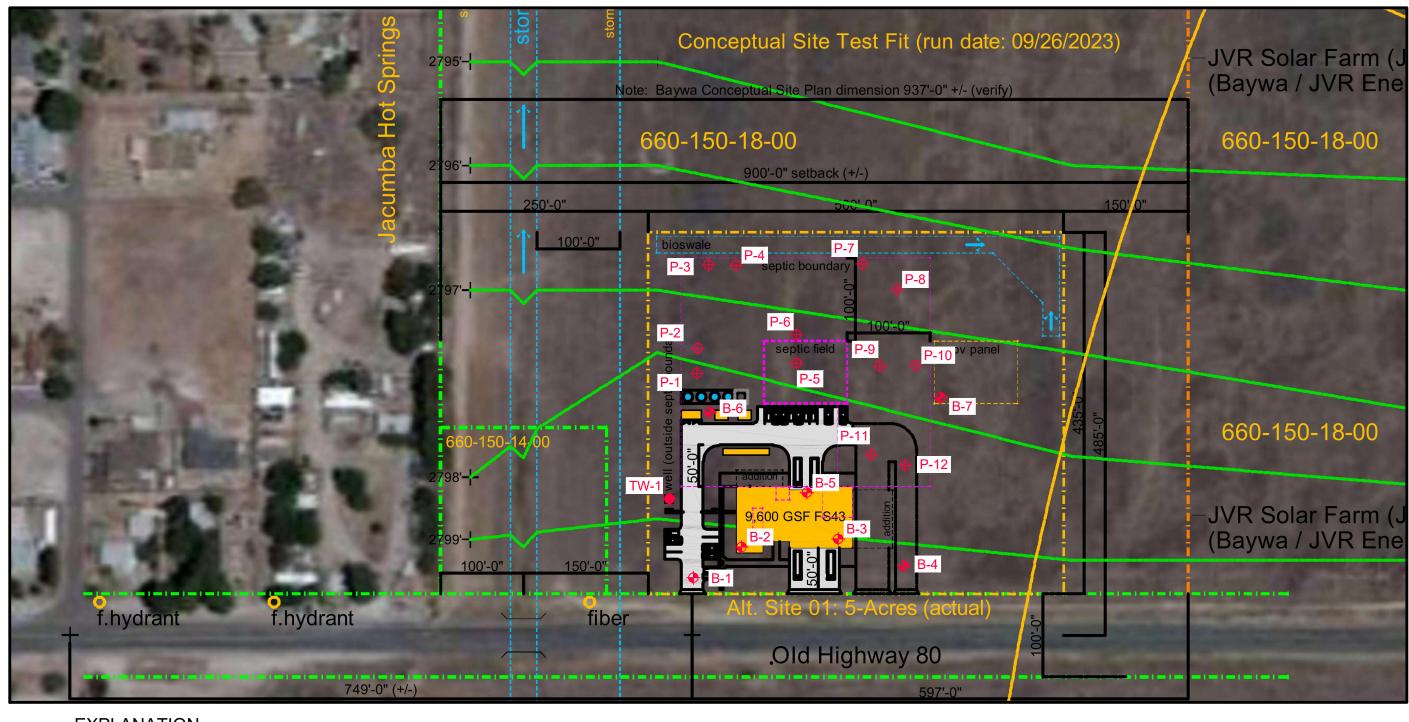
Respectfully,

UNIVERSAL ENGINEERING SCIENCES (UES)

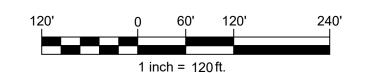
Dan T. Math, GE #2665 Principal Engineer


Jay Lynch, CEG# 1890 Principal Engineering Geologist

Dennis A. Kilian, CEG # 2672 Senior Geologist

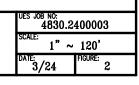

DAK/JFL/DTM:ach

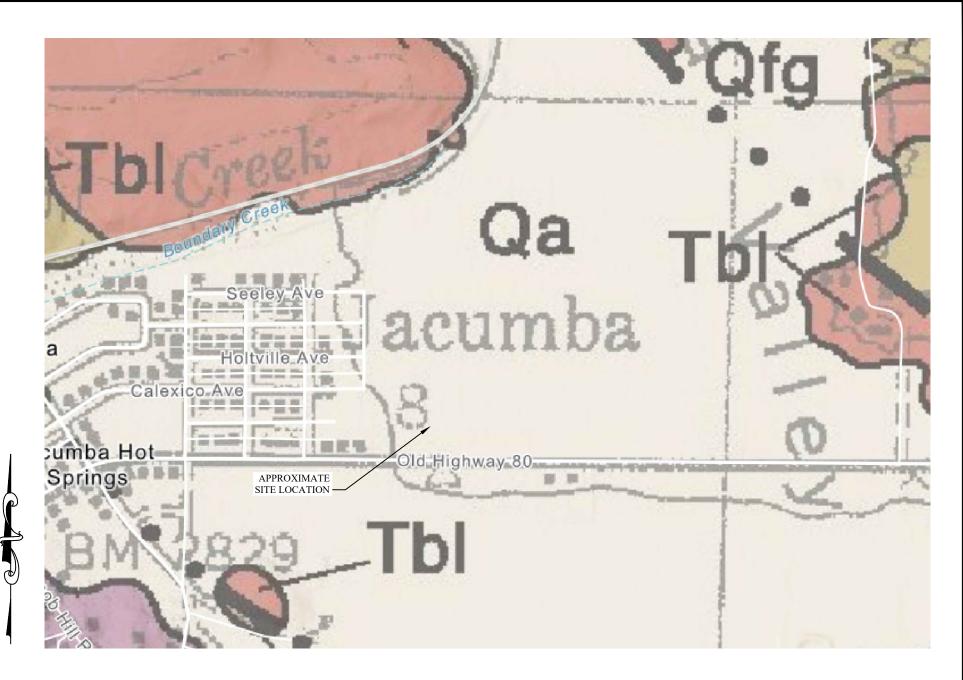
SCALE: AS SHOWN	DATE: 2/24
AS SHOWN	N/ NT
UES JOB NO.:	FIGURE:
4830.2400003	1

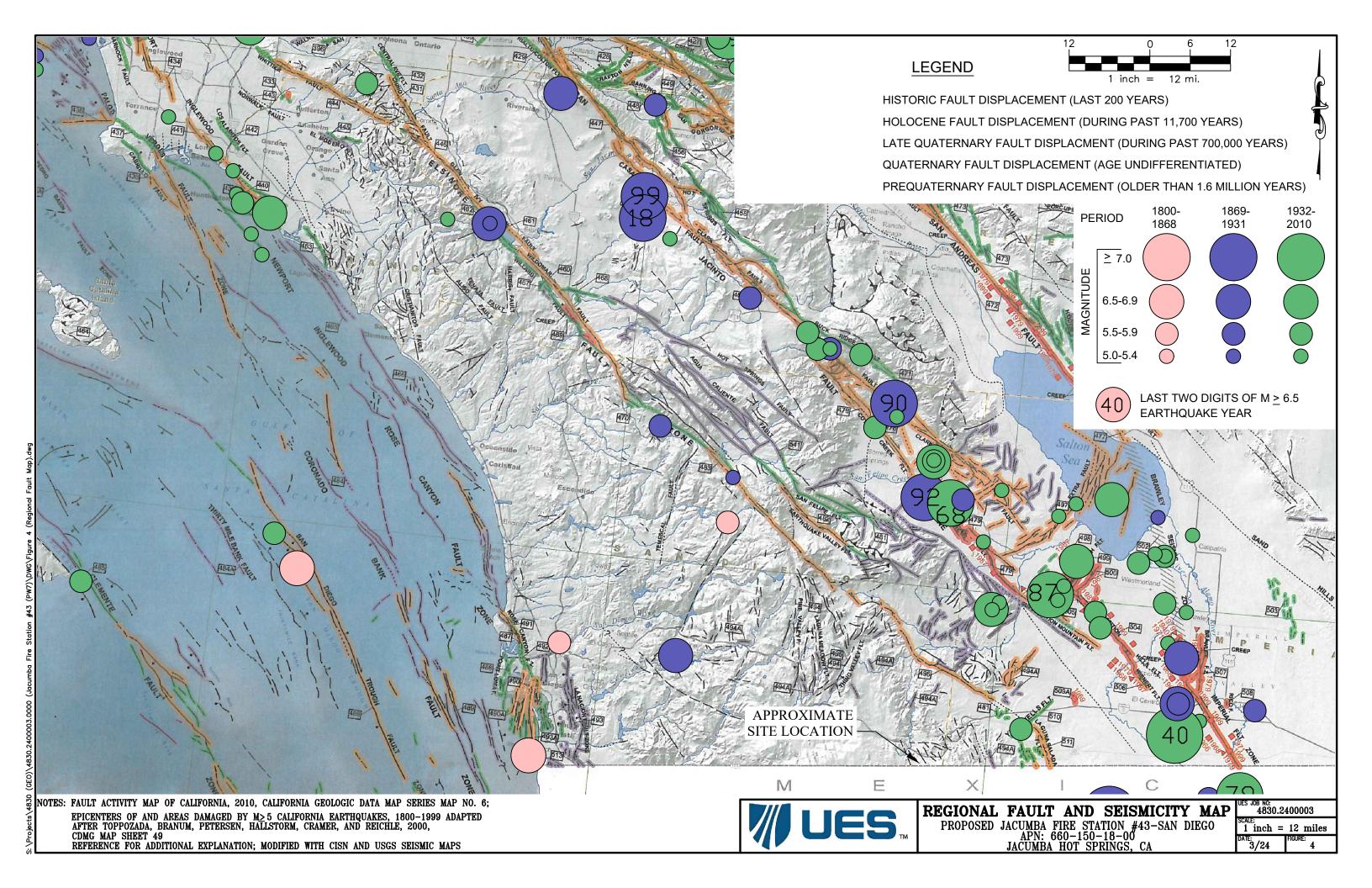

EXPLANATION

B-7 ♦ APPROXIMATE EXPLORATORY BORING LOCATION

P-12


APPROXIMATE PERCOLATION TEST LOCATION


TW-1 APPROXIMATE TEMPORARY WELL LOCATION



GEOLOGIC MAP

PROPOSED JACUMBA FIRE STATION #43-SAN DIEGO APN: 660-150-18-00 JACUMBA HOT SPRINGS, CALIFORNIA CTE JOB NO: 4830.2400003

No Scale

te: figure: 3/24 3

APPENDIX A

REFERENCES

REFERENCES

- 1. American Society for Civil Engineers, 2019, "Minimum Design Loads for Buildings and Other Structures," ASCE/SEI 7-16.
- ASTM, 2002, "Test Method for Laboratory Compaction Characteristics of Soil Using Modified Effort," Volume 04.08
- 3. Bray, Jonathan D., and Sancio, Rudolfo B., 2006, Assessment of the Liquefaction Susceptibility of Fine-Grained Soils, Journal of Geotechnical and Environmental Engineering, Volume 132, Issue 9.
- 4. California Building Code, 2022, "California Code of Regulations, Title 24, Part 2, Volume 2 of 2," California Building Standards Commission, published by ICBO, June.
- 5. California Division of Mines and Geology, CD 2000-003 "Digital Images of Official Maps of Alquist-Priolo Earthquake Fault Zones of California, Southern Region," compiled by Martin and Ross.
- 6. California Geologic Survey, 2024, "California Seismic Hazard Zones Landslide Inventory" Jacumba Quadrangle.
- 7. County of San Diego, 2023, Multi-Jurisdictional Hazard Mitigation Plan
- 8. County of San Diego, 2020, BMP Design Manual Appendix D
- 9. County of Riverside, 2011, Design Handbook for Low Impact Development Best Management Practices, Prepared by Riverside County Flood Control Water Conservation District, Dated September 2011.
- 10. Dibblee Jr, T.W., Minch, J.A., 2008, Geologic Map of the Jacumba 15 Minute Quadrangle, San Diego and Imperial Counties
- 11. Frankel, A.D., Petersen, M.D., Mueller, C.S., Haller, K.M., Wheeler, R.L., Leyendecker, E.V., Wesson, R. L., Harmsen, S.C., Cramer, C.H., Perkins, D.M., Rukstales, K.S., 2002, Documentation for the 2002 update of the National Seismic Hazard Maps: U.S. Geological Survey Open-File Report 2002-420, 39p
- 12. Hart, Earl W., Revised 2018, "Fault-Rupture Hazard Zones in California, Alquist Priolo, Special Studies Zones Act of 1972," California Division of Mines and Geology, Special Publication 42.
- 13. Ishihara, K., 1985. Stability of natural deposits during earthquakes. In: Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering. San Francisco, CA, USA, 1, 321–376.
- 14. Jennings, Charles W., 1994, "Fault Activity Map of California and Adjacent Areas" with Locations and Ages of Recent Volcanic Eruptions.
- 15. SEAOC, Blue Book-Seismic Design Recommendations, "Seismically Induced Lateral Earth Pressures on Retaining Structures and Basement Walls," Article 09.10.010, October 2013.
- 16. Wood, J.H. 1973, Earthquake-Induced Soil Pressures on Structures, Report EERL 73-05. Pasadena: California Institute of Technology.

APPENDIX B

FIELD EXPLORATION METHODS LOGS

1441 Montiel Road, Suite 115 Escondido, CA 92026 p. 760.746.4955 | TeamUES.com

		D	EFINITION OF	TERMS
PF	RIMARY DIVISIONS		SYMBOLS	SECONDARY DIVISIONS
OILS OF THAN	GRAVELS MORE THAN HALF OF	CLEAN GRAVELS < 5% FINES	GP GP	WELL GRADED GRAVELS, GRAVEL-SAND MIXTURES LITTLE OR NO FINES POORLY GRADED GRAVELS OR GRAVEL SAND MIXTURES, LITTLE OF NO FINES
GRAINED SOIL.S FHAN HALF OF IS LARGER THA 00 SIEVE SIZE	COARSE FRACTION IS LARGER THAN NO. 4 SIEVE	GRAVELS WITH FINES	GM GC	SILTY GRAVELS, GRAVEL-SAND-SILT MIXTURES, NON-PLASTIC FINES CLAYEY GRAVELS, GRAVEL-SAND-CLAY MIXTURES, PLASTIC FINES
COARSE GRAINED SOII MORE THAN HALF OF MATERIAL IS LARGER TF NO. 200 SIEVE SIZE	SANDS MORE THAN HALF OF COARSE	CLEAN SANDS < 5% FINES	SW SP	WELL GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES POORLY GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
CO N MA7	FRACTION IS SMALLER THAN NO. 4 SIEVE	SANDS WITH FINES	SM SC	SILTY SANDS, SAND-SILT MIXTURES, NON-PLASTIC FINES CLAYEY SANDS, SAND-CLAY MIXTURES, PLASTIC FINES
RAINED SOILS THAN HALF OF JAL IS SMALLER O. 200 SIEVE SIZE	SILTS AND C LIQUID LIM LESS THAN	IT IS	ML CL OL	INORGANIC SILTS, VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS, SLIGHTLY PLASTIC CLAYEY SILTS INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY, SANDY, SILTS OR LEAN CLAYS ORGANIC SILTS AND ORGANIC CLAYS OF LOW PLASTICITY
FINE GRAINED MORE THAN HA MATERIAL IS SN THAN NO. 200 SIE	SILTS AND C LIQUID LIM GREATER TH	IT IS	CH OH	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SANDY OR SILTY SOILS, ELASTIC SILTS INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTY CLAYS
HIGH	ILY ORGANIC SOILS		PT	PEAT AND OTHER HIGHLY ORGANIC SOILS

GRAIN SIZES

BOULDERS	CODDIES	GR	AVEL		SAND	CH TC AND CLAVC	
BOOLDERS	COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILTS AND CLAYS
12'	3"	3/4"	4	10	40	200	
	CLEAR SQUARE SIEV	'E OPENING		U.S. STAND	ARD SIEVE S	IZE	

ADDITIONAL TESTS

(OTHER THAN TEST PIT AND BORING LOG COLUMN HEADINGS)

MAX- Maximum Dry Density	PM- Permeability	PP- Pocket Penetrometer
GS- Grain Size Distribution	SG- Specific Gravity	WA- Wash Analysis
SE- Sand Equivalent	HA- Hydrometer Analysis	DS- Direct Shear
EI- Expansion Index	AL- Atterberg Limits	UC- Unconfined Compression
CHM- Sulfate and Chloride	RV- R-Value	MD- Moisture/Density
Content , pH, Resistivity	CN- Consolidation	M- Moisture
COR - Corrosivity	CP- Collapse Potential	SC- Swell Compression
SD- Sample Disturbed	HC- Hydrocollapse	OI- Organic Impurities
	REM- Remolded	

1441 Montiel Road, Suite 115 Escondido, CA 92026 p. 760.746.4955 | TeamUES.com

PROJECT:	DRILLER: SHEE		
UES JOB NO:		LING DATE:	
LOGGED BY:	SAMPLE METHOD: ELEV	VATION:	_
Depth (Feet) Bulk Sample Driven Type Blows/Foot Dry Density (pcf) Moisture (%) U.S.C.S. Symbol Graphic Log	BORING LEGEND	Laboratory Tests	
	DESCRIPTION		
0			
	- Block or Chunk Sample		
	·		
├ <u>┤ </u>			
├ -M	- Bulk Sample		
<u> </u>	bulk Sample		
-5-			
 MT 	Chandrad Danisharting Test		
ŢĬШ ⋖┼┼┼┼	- Standard Penetration Test		
⊦ - VI * 	 Modified Split-Barrel Drive Sampler (Cal Sampler) 		
L - M			
▎▕█▝┤	- Thin Walled Army Corp. of Engineers Sample		
F 7			
-15-			
├╶┤││	- Groundwater Table		
<u>-</u>			
├			
	— Soil Type or Classification Change		
-20-			
<u> </u>	· · · · · · · · · · · · · · · · · · ·	_	
	Formation Change [(Approximate boundaries queried (?))1	
[]	11. 11. 11. 11. 11. 11. 11. 11. 11. 11.		
F			
	Quotes are placed around classifications where the soils		
-25-	exist in situ as bedrock		
		FIGURE: BL2	_

1441 Montiel Road, Suite 115 Escondido, CA 92026

PROJ	ECT						3	DRILLER:	BAJA EXPLORATION	SHEET:	1	of 4
UES J				4830.240	00003			DRILL METHOD:	CME-95: 8" AUGER	DRILLING	DATE:	2/20/2024
LOGG	GED	BY:		DD				SAMPLE METHOD:	RING, SPT and BULK	ELEVATIO	N:	~ 2798 ft msl
Depth (Feet)	Bulk Sample	Driven Type	Blows/6"	Dry Density (pcf)	Moisture (%)	U.S.C.S. Symbol	Graphic Log		IG: TW-1		Labor	atory Tests
-0-		П										
-0- 						SC SC SC		Vegetation at surface. TOPSOIL: Loose, dry, gray-brown SAND with burrows and roots. QUATERNARY YOUNG ALLUVIU Medium dense, dry, brown, fine SAND. Becomes loose to medium dense SAND.	M (Qya): -grained Clayey SAND. e, dry, brown, fine-grained	Silty		
<u> </u>								clays.	-grained Clayey SAND With	iiici easeu		
-25												
												TW-1

1441 Montiel Road, Suite 115 Escondido, CA 92026

PROJECT:		Jacumba	Fire St	ation #43	3	DRILLER:		BAJA EXPLORATION	SHEET:	2	
UES JOB NO:		4830.240	00003			DRILL METH		CME-95: 8" AUGER	DRILLING		2/20/2024
LOGGED BY:		DD				SAMPLE ME	THOD:	RING, SPT and BULK	ELEVATION	ON:	~ 2798 ft msl
Depth (Feet) Bulk Sample Driven Type	Blows/6"	Dry Density (pcf)	Moisture (%)	U.S.C.S. Symbol	Graphic Log	В		G: TW-1		Labo	ratory Tests
-25	7										
-25	7 20 21			SM		Medium dense, dry, bro	own, fine-	grained Silty SAND w	rith gravels.		DS, MD
]											
┞┤╽╽											
-50-											
						-					TW-1

1441 Montiel Road, Suite 115 Escondido, CA 92026 p. 760.746.4955 | TeamUES.com

PROJECT:	Jacumba Fire St	ation #43	DRILLER: BAJA EXPLORATION SHEET:	3 of 4
UES JOB NO:	4830.2400003			G DATE: 2/20/2024
LOGGED BY:	DD	1	SAMPLE METHOD: RING, SPT and BULK ELEVAT	ON: ~ 2798 ft msl
Depth (Feet) Bulk Sample Driven Type Blows/6"	Dry Density (pcf) Moisture (%)	U.S.C.S. Symbol Graphic Log	BORING: TW-1 DESCRIPTION	Laboratory Tests
-50				
 		sw 👤	Medium dense, wet, gray-brown, fine- to coarse-grained SAND. Well graded Groundwater encountered at 53 feet bgs.	
-55- 3 3 5 8		sc	Loose, wet, dark gray-brown, fine-grained Clayey SAND.	GS
2 3 5		ML	Stiff, moist, dark gray, fine-grained Clayey SILT.	GS
4 4 5 5		SM	Medium dense, wet, dark gray, fine- to medium-grained Silty SAND.	GS
8 9 12		SW	Medium dense, wet, gray, fine- to coarse-grained SAND. Well graded.	GS
3 4 9		 SM		GS
-70- 5 10		SIVI	Medium dense, wet, dark gray, fine- to coarse-grained Silty SAND.	GS
5 6 9				GS
<u> </u>		<u> </u>		TW-1

1441 Montiel Road, Suite 115 Escondido, CA 92026

UES JO LOGGE	B N		4830.24 DD		tation #4s	3	DRILLEM: BAJA EXPLORATION SHEET: DRILL METHOD: CME-95: 8" AUGER DRILLIN SAMPLE METHOD: RING, SPT and BULK ELEVAT	G DATE:	2/20/2024 ~ 2798 ft msl
Depth (Feet)	Bulk Sample	Blows/6"	Dry Density (pcf)	Moisture (%)	U.S.C.S. Symbol	Graphic Log	BORING: TW-1 DESCRIPTION	Labo	oratory Tests
75									
-7 5		50/6"			SM		BEDROCK: Excavates as very dense, slightly moist, light reddish-brown, fine-grained Silty SAND.		
ΓΊ] ,			
 100-							Total Depth = 100.0 feet bgs. Groundwater encountered at 53 feet bgs. Temporary Well Constructed.		
									TW-1

1441 Montiel Road, Suite 115 Escondido, CA 92026

PROJECT: UES JOB NO: LOGGED BY:	Jacumba Fire Station #43 4830.2400003 DD	DRILLER: BAJA EXPLORATION SHEET: DRILL METHOD: CME-95: 8" AUGER DRILLING SAMPLE METHOD: RING, SPT and BULK ELEVATION	
Depth (Feet) Bulk Sample Driven Type Blows/6"	Dry Density (pcf) Moisture (%) U.S.C.S. Symbol Graphic Log	BORING: B-1	Laboratory Tests
		DESCRIPTION	
-0 -5 -	SC SC	Vegetation at surface. TOPSOIL: Loose, dry, gray-brown, fine- to medium-grained clayey SAND with burrows and roots. QUATERNARY YOUNG ALLUVIUM (Qya): Medium dense, dry, brown, fine-grained Clayey SAND.	EI
3 3 5			
-15 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Becomes more clayey.	
-20 5 2 5		Total Depth: 20.0ft bgs. No Groundwater Encountered Backfilled 2/19/24	B-1

1441 Montiel Road, Suite 115 Escondido, CA 92026

BORING: B-2 Laboratory Tests BORING: B-2 Laboratory Tests DESCRIPTION Vegetation at surface. TOPSQIL: Loose, dry, gray-brown, fine-to medium-grained clayey SAND. GS OATERNARY YOUNG ALLUVIUM (Qva): Medium dense, dry, brown, fine-grained Clayey SAND. GS Total Depth = 16.5 feet bgs No groundwater encountered Backfilled 2/19/24	PROJECT:	Jacumba Fire St	tation #43	DRILLER: BAJA EXPLORATION SHEET:	1 of 1
BORING: B-2 Laboratory Tests BORING: B-2 Laboratory Tests Personal Boring: B-2 Laboratory Tests BORING: B-2 Laboratory Tests DESCRIPTION Vegetation at surface. TOPSQIL: loose, dry, gray-brown, fine- to medium-grained clayey SAND with burrows and roots. QUATERNARY YOUNG ALLUVIUM (Qva): Medium dense, dry, brown, fine-grained Clayey SAND. GS Total Depth = 16.5 feet bgs No groundwater encountered Backfilled 2/19/24		4830.2400003		DRILL METHOD: CME-95: 8" AUGER DRILLING	
DESCRIPTION Vegetation at surface. TOPSOIL: Loose, dry, gray-brown, fine- to medium-grained clayey SAND with burrows and roots. QUATERNARY YOUNG ALLUVIUM (Qva): Medium dense, dry, brown, fine-grained Clayey SAND. SM Loose, dry, brown, fine-grained Silty SAND. SG Total Depth = 16.5 feet bgs No groundwater encountered Backfilled 2/19/24	LOGGED BY:	DD		SAMPLE METHOD: RING, SPT and BULK ELEVATI	ON: ~2799 ft msl
Vegetation at surface. SC SC SAND with burrows and roots. QUATERNARY YOUNG ALLUVIUM (Qva): Medium dense, dry, brown, fine-grained Clayey SAND. SM Loose, dry, brown, fine-grained Silty SAND. SC Loose, dry, brown, fine-grained Clayey SAND. SC Loose, dry, brown, fine-grained Clayey SAND. Total Depth = 16.5 feet bgs No groundwater encountered Backfilled 2/19/24	Depth (Feet) Bulk Sample Driven Type Blows/6"	Dry Density (pcf) Moisture (%)	U.S.C.S. Symbol Graphic Log		Laboratory Tests
TOPSOIL: Loose, dry, gray-brown, fine- to medium-grained clayey SAND with burrows and roots. QUATERNARY YOUNG ALLUVIUM (Qva): Medium dense, dry, brown, fine-grained Clayey SAND. SM Loose, dry, brown, fine-grained Silty SAND. SC Loose, dry, brown, fine-grained Clayey SAND. Total Depth = 16.5 feet bgs No groundwater encountered Backfilled 2/19/24	-0				
SM Loose, dry, brown, fine-grained Silty SAND. SC Loose, dry, brown, fine-grained Clayey SAND. SC Loose, dry, brown, fine-grained Clayey SAND. Total Depth = 16.5 feet bgs No groundwater encountered Backfilled 2/19/24	 		SC SC	TOPSOIL: Loose, dry, gray-brown, fine- to medium-grained clayey SAND with burrows and roots. QUATERNARY YOUNG ALLUVIUM (Qya):	
SC Loose, dry, brown, fine-grained Clayey SAND. Total Depth = 16.5 feet bgs No groundwater encountered Backfilled 2/19/24	8				GS
Total Depth = 16.5 feet bgs No groundwater encountered Backfilled 2/19/24	2		SM	Loose, dry, brown, fine-grained Silty SAND.	
No groundwater encountered Backfilled 2/19/24	4		sc	Loose, dry, brown, fine-grained Clayey SAND.	
	 			No groundwater encountered	B-2

1441 Montiel Road, Suite 115 Escondido, CA 92026

UES J	ROJECT: Jacumba Fire Station #43 IES JOB NO: 4830.2400003 OGGED BY: DD						3		DRILL METHOD: CME-95: 8" AUGER DRILLING DATE: 2/19		
Depth (Feet)	Bulk Sample	Driven Type	Blows/6"	Dry Density (pcf)	Moisture (%)	U.S.C.S. Symbol	Graphic Log	BORING: B-3	Labo	oratory Tests	
	Щ	\dashv						DESCRIPTION	<u> </u>		
-0 - - 5 - 			4 7 8			SC SC		Vegetation at surface. TOPSOIL: Loose, dry, gray-brown, fine- to medium-grained clayey SAND with burrows and roots. QUATERNARY YOUNG ALLUVIUM (Qya): Medium dense, dry, brown, fine-grained Clayey SAND. Loose, dry, brown, fine-grained Silty SAND.			
-10 - 		Щ	2 3 5					T. 10. 11. 44.55 11.			
								Total Depth = 11.5 feet bgs No groundwater encountered Backfilled 2/19/24			
-2 5									\vdash	B-3	

1441 Montiel Road, Suite 115 Escondido, CA 92026 p. 760.746.4955 | TeamUES.com

PROJECT: DRILLER: **BAJA EXPLORATION** SHEET: Jacumba Fire Station #43 UES JOB NO: 4830.2400003 DRILL METHOD: CME-95: 8" AUGER DRILLING DATE: 2/19/2024 LOGGED BY: DD SAMPLE METHOD: RING, SPT and BULK ELEVATION: ~2799 ft msl Dry Density (pcf) Sample U.S.C.S. Symbol Depth (Feet) Moisture (%) **BORING: B-4** Graphic Log **Laboratory Tests** Blows/6" Bulk **DESCRIPTION** Vegetation at surface. SC TOPSOIL: Loose, dry, gray-brown, fine- to medium-grained clayey SAND with burrows and roots. EI, RV **QUATERNARY YOUNG ALLUVIUM (Qya):** Medium dense, dry, brown, fine-grained Clayey SAND. 6 Becomes loose. 3 SM Medium dense, dry, brown, fine-grained Silty SAND. Total Depth = 20.0 feet bgs No groundwater encountered Backfilled 2/19/24 B-4

1441 Montiel Road, Suite 115 Escondido, CA 92026

PROJECT: UES JOB NO: LOGGED BY:	Jacumba Fire S 4830.2400003 DD	tation #43	DRILLER: BAJA EXPLORATION SHEET:	1 of 3 G DATE: 2/19/2024 ION: ~2799 ft msl
Depth (Feet) Bulk Sample Driven Type	Blows/6" Dry Density (pcf) Moisture (%)	U.S.C.S. Symbol	BORING: B-5	Laboratory Tests
			DESCRIPTION	
L _	5 6 10	SC SC	Vegetation at surface. TOPSOIL: Loose, dry, gray-brown, fine- to medium-grained clayey SAND with burrows and roots. QUATERNARY YOUNG ALLUVIUM (Qya): Medium dense, dry, light-brown, fine-grained Clayey SAND.	СНМ
	3 3 6	SM	Medium dense, dry, brown, fine-grained Silty SAND.	
L J 1/I	3 4 5 7 8 12	sc sc	Medium dense, dry, brown, fine-grained Clayey SAND.	DS, MD
				B-5

1441 Montiel Road, Suite 115 Escondido, CA 92026

PROJECT: UES JOB N LOGGED B			ımba Fii 0.24000		ation #43	3	DRILLER: BAJA EXPLORATION SHEET: DRILL METHOD: CME-95: 8" AUGER DRILLING SAMPLE METHOD: RING, SPT and BULK ELEVATION	G DATE:	2 of 3 2/19/2024 ~ 2798 ft msl
Depth (Feet) Bulk Sample	Driven Type Blows/6"		Dry Density (pcr)	Moisture (%)	U.S.C.S. Symbol	Graphic Log	BORING: B-5	Labo	oratory Tests
25							DESCRIPTION		
	2 2 2 2				CL		Soft to medium stiff, slightly moist, brown, fine grained Sandy CLAY.		GS
 - 35- 	∏ 1:	ı		•	SM		Dense, dry, brown, fine-grained Silty SAND with gravels.		
L - 45- 	50/	3"							
-50-									
									B-5

1441 Montiel Road, Suite 115 Escondido, CA 92026

PROJECT: UES JOB NO		4830.24		tation #43	3	DRILLER: DRILL METHOD:	BAJA EXPLORATION CME-95: 8" AUGER	SHEET: DRILLING	DATE:	3 of 3 2/20/2024
LOGGED BY	Y:	DD	1			SAMPLE METHOD:	RING, SPT and BULK	ELEVATIO	ON:	~ 2798 ft msl
Depth (Feet) Bulk Sample	Driven Type Blows/6"	Dry Density (pcf)	Moisture (%)	U.S.C.S. Symbol	Graphic Log		NG: B-5		Labo	oratory Tests
-50	50/									
▍░┞┼	50/4	<u>'" </u>	+							
						Total Depth = 50.5 feet bgs No groundwater encountered Backfilled 2/19/24				
-7 5-									<u> </u>	B-5

1441 Montiel Road, Suite 115 Escondido, CA 92026

SAMPLE METHOD: RING, SPT and BULK BORING: B-6 Part P		~2799 ft msl aboratory Tests
DESCRIPTION Vegetation at surface. TOPSOIL: Loose, dry, gray-brown, fine- to medium-grained clay SAND with burrows and roots. QUATERNARY YOUNG ALLUVIUM (Qya): Medium dense, dry, brown, fine-grained Clayey SAND.		aboratory Tests
Vegetation at surface. TOPSOIL: Loose, dry, gray-brown, fine- to medium-grained clay SAND with burrows and roots. QUATERNARY YOUNG ALLUVIUM (Qya): Medium dense, dry, brown, fine-grained Clayey SAND.	yey	
Vegetation at surface. TOPSOIL: Loose, dry, gray-brown, fine- to medium-grained clay SAND with burrows and roots. QUATERNARY YOUNG ALLUVIUM (Qya): Medium dense, dry, brown, fine-grained Clayey SAND.	yey	
/ 10		MAX
		CN
Medium dense, dry, light-brown, fine-grained Silty SAND. SM Medium dense, dry, light-brown, fine-grained Silty SAND. Becomes loose. SC Loose, dry, brown, fine-grained Clayey SAND.		GS

1441 Montiel Road, Suite 115 Escondido, CA 92026

SAMPLE METHOD: RING, SPT and BULK ELEVATION: ~ 2.798 ft mal BORING: B-6 BORING: B-6 Laboratory Tests BORING: B-6 Laboratory Tests Medium dense, dry, brown, fine-grained Silty SAND. Total Depth = 31.5 feet bgs. No groundwater encountered. Backfilled 2/19/24	PROJECT:	Jacumba Fire St	tation #43	DRILLER: BAJA EXPLORATION SHEET:	2 of 2
BORING: B-6 Laboratory Tests BORING: B-6 Laboratory Tests BORING: B-6 Laboratory Tests Medium dense, dry, brown, fine-grained Silty SAND. Total Depth = 31.5 feet bgs. No groundwater encountered. Backfilled 2/19/24	UES JOB NO:				
DESCRIPTION	LOGGED BY: DD			SAMPLE METHOD: RING, SPT and BULK ELEVAT	ON: ~ 2798 ft msl
Medium dense, dry, brown, fine-grained Silty SAND. Total Depth = 31.5 feet bgs. No groundwater encountered. Backfilled 2/19/24	Depth (Feet) Bulk Sample Driven Type Blows/6"	Dry Density (pcf) Moisture (%)	U.S.C.S. Symbol Graphic Log		Laboratory Tests
SM Medium dense, dry, brown, fine-grained Silty SAND. SM Total Depth = 31.5 feet bgs. No groundwater encountered. Backfilled 2/19/24	25	 			
No groundwater encountered. Backfilled 2/19/24	J 5 		SM	Medium dense, dry, brown, fine-grained Silty SAND.	
				No groundwater encountered.	
B-6					B-6

1441 Montiel Road, Suite 115 Escondido, CA 92026

PROJECT: UES JOB NO: LOGGED BY:	Jacumba Fire Station #43 4830.2400003 DD	DRILLER: BAJA EXPLORATION SHEET: DRILL METHOD: CME-95: 8" AUGER DRILLING SAMPLE METHOD: RING, SPT and BULK ELEVATION	
Depth (Feet) Bulk Sample Driven Type Blows/6"	Dry Density (pcf) Moisture (%) U.S.C.S. Symbol Graphic Log	BORING: B-7 DESCRIPTION	Laboratory Tests
-0 - 7 9 12 10 - 2 2 3 4	SC SC	Vegetation at surface. TOPSOIL: Loose, dry, gray-brown, fine- to medium-grained clayey SAND with burrows and roots. QUATERNARY YOUNG ALLUVIUM (Qya): Medium dense, dry, brown, fine-grained Clayey SAND. Becomes loose. Medium dense, dry, brown, fine-grained Silty SAND. Total Depth = 20.0 feet bgs. No groundwater encountered. Backfilled 2/19/24	
			B-7

APPENDIX C

LABORATORY METHODS AND RESULTS

LABORATORY TEST METHODS

In-situ Moisture Content and Dry Density Tests (ASTM D2216 and D2937)

The in-situ moisture content and dry density of selected samples obtained during the subsurface investigations were evaluated in general accordance with the latest versions of the ASTM D2216 and D2937 test methods. The methods involve obtaining the moist weight of the sample and then drying the sample to obtain its dry weight. The moisture content is calculated by taking the difference between the wet and dry weights, dividing it by the dry weight of the sample and expressing the result as a percentage. The dry weight and the measured volume of the tested sample are then used to calculate the samples dry density. The results of the in-situ moisture content and dry density tests are presented in the following section of this appendix and on the logs of the exploratory excavations presented in Appendix B.

Classification (ASTM D2487)

Earth materials encountered were visually and texturally classified in accordance with the Unified Soil Classification System (USCS/ASTM D2487) and ASTM D2488. Material classifications are indicated on the logs of the exploratory borings presented in Appendix B.

Particle-size Distribution Tests (ASTM D6913)

Particle-size distribution (gradation) testing was performed on selected samples of the materials encountered in general accordance with the latest version of the ASTM D6913 test method. The test results were utilized in evaluating the soil classifications in accordance with the Unified Soil Classification System and to evaluate the geotechnical engineering characteristics of the tested material. The test results are plotted on grain-size distribution graphs and are presented in the following section of this appendix.

Expansion Index Test (ASTM D4829)

Expansion index testing was performed on selected samples of the earth materials encountered in general accordance with the ASTM D4829 test method. The test determines the expansion potential of the materials encountered. The test results are presented in the following section of this appendix.

Laboratory Compaction Characteristics Test (ASTM D1557)

Laboratory compaction characteristics testing was performed on selected samples of the earth materials encountered in general accordance with the ASTM D1557 test method. The test establishes the laboratory maximum dry density and optimum moisture content of the tested materials and are also used to aid in evaluating the strength characteristics of the materials.

Resistance "R" Value Test (CTM 301/ ASTM D2844)

R-Value testing was performed on selected samples of the earth materials encountered in general accordance with the California Test Method 301/ ASTM D2844. The test results are presented in the following section of this appendix.

Direct Shear Test (ASTM D3080)

Direct Shear testing was performed in general accordance with the ASTM D3080 test method to aid in evaluating the soil strength characteristics of the on-site earth materials encountered. Testing is performed on undisturbed specimens obtained from drive-samples and/or on specimens remolded in the laboratory to a specific moisture content and density. The test consists of placing the specimen in a direct shearing device, applying a specified normal stress, and then shearing the sample at a constant rate under drained conditions. This is repeated under a series of specified normal stresses. The shearing resistance and horizontal displacements are measured and recorded as the soil specimen is sheared. The shearing is continued well beyond the point of maximum resistance (peak strength) to determine a constant or residual value (ultimate strength). The test results are presented in the following section of this appendix.

Soil Corrosivity Tests

The water-soluble sulfate and chloride content, the resistivity, and pH of selected samples were performed by a third-party laboratory in general accordance with California Test Methods. The tests results are useful in the assessment of the degree of corrosivity of the earth materials encountered with regard to concrete and normal grade steel.

Consolidation

To assess their compressibility and volume change behavior when loaded and wetted, relatively undisturbed samples of representative samples from the investigation were subject to consolidation tests in accordance with ASTM D 2435.

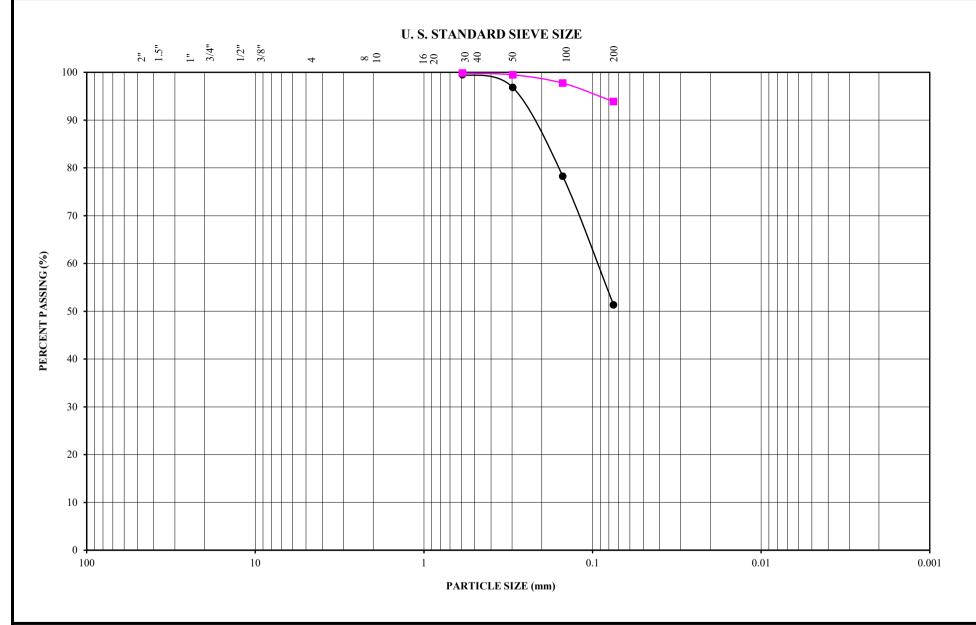
IN SITU DRY DENSITY & MOISTURE CONTENT (ASTM D2937 and D2216)

Sample Location / Depth (feet)	Moisture Content (percent)	Dry Density (pounds per cubic foot)		
B-5 @ 20	13.0	102.6		
B-6 @ 5	3.1	97.8		
TW-1 @ 25	28	95		

(ASTM D4829)

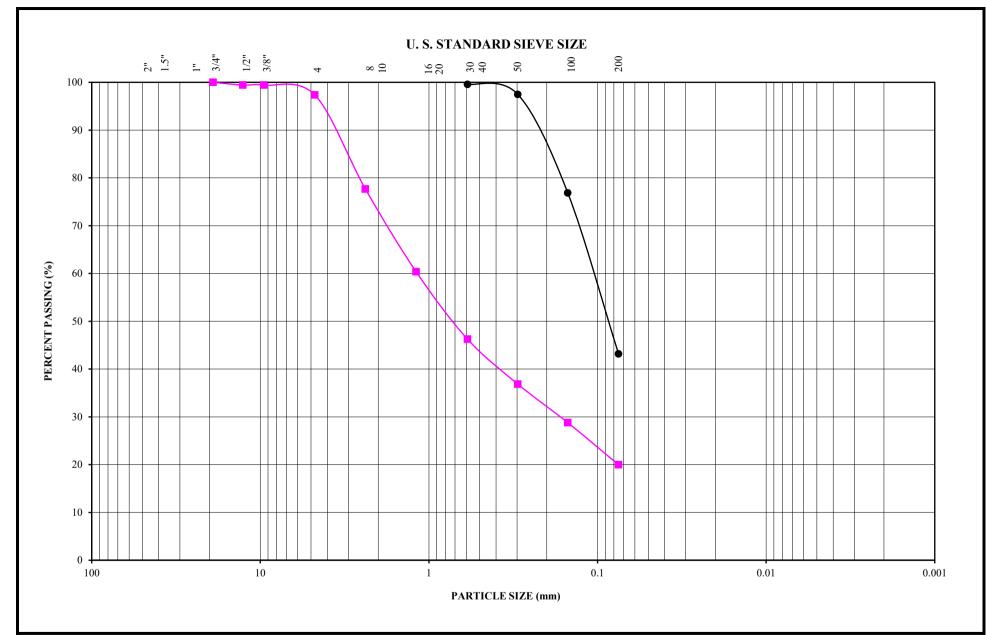
Sample Location / Depth (feet)	Expansion Index	Expansion Potential		
B-1 @ 10	9	VERY LOW		
B-4 @ 0 – 5	1	VERY LOW		

LABORATORY COMPACTION CHARACTERISTICS (ASTM D1557)

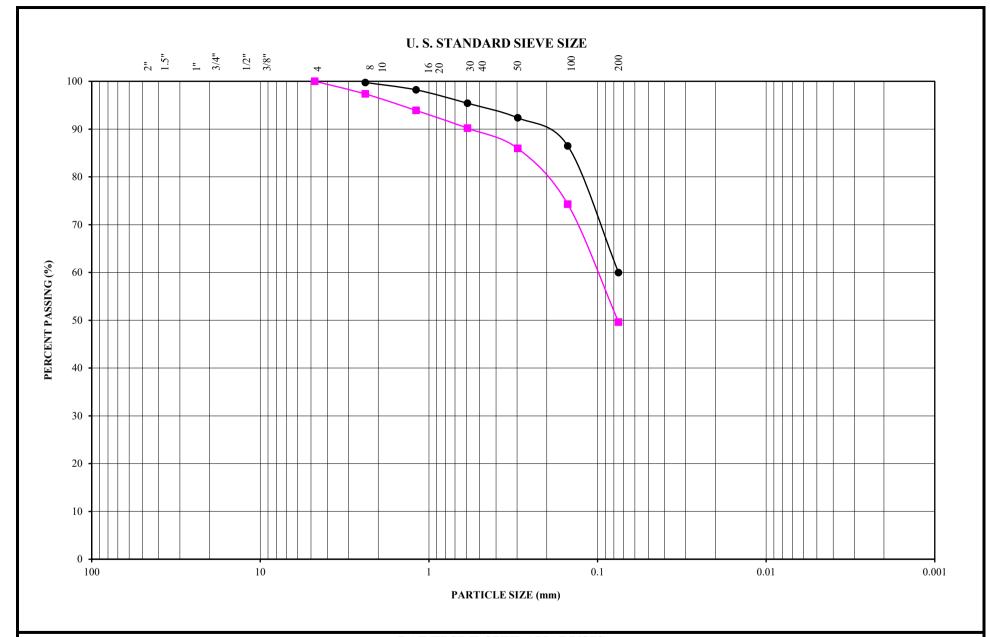

Sample Location / Depth (feet)	Maximum Dry Density (pounds per cubic foot)	Optimum Moisture (percent)
B-6 @ 0 – 5	115.5	13.2

R-VALUE (CTM 301/ASTM D2844)

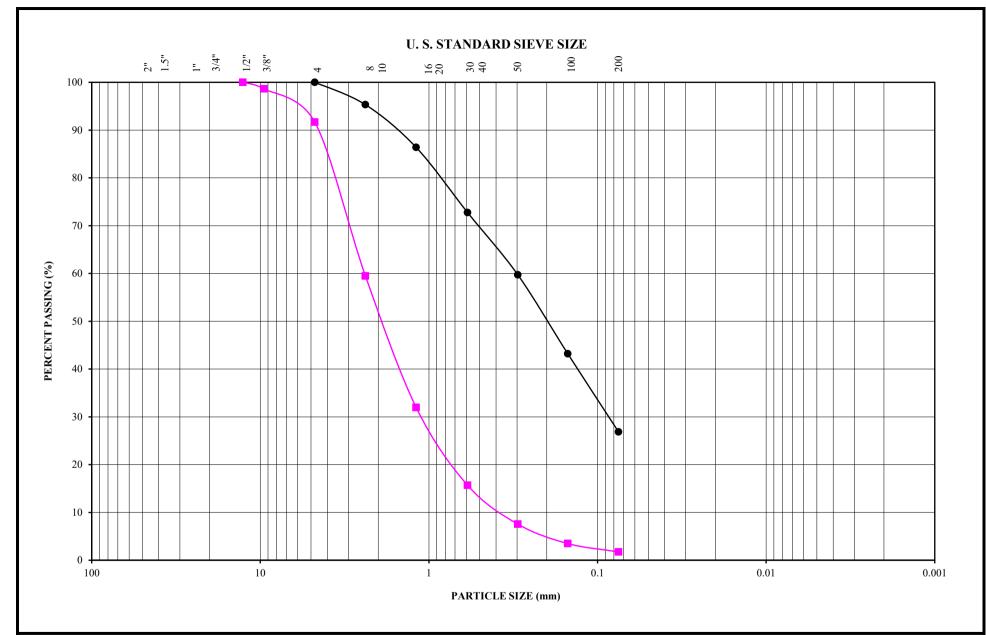
Sample Location / Depth (feet)	Material Type (USCS)	R-Value
B-4 @ 0 – 5	Clayey Sand	49


CORROSIVITY (CTM 417, CTM 422 and CTM 643)

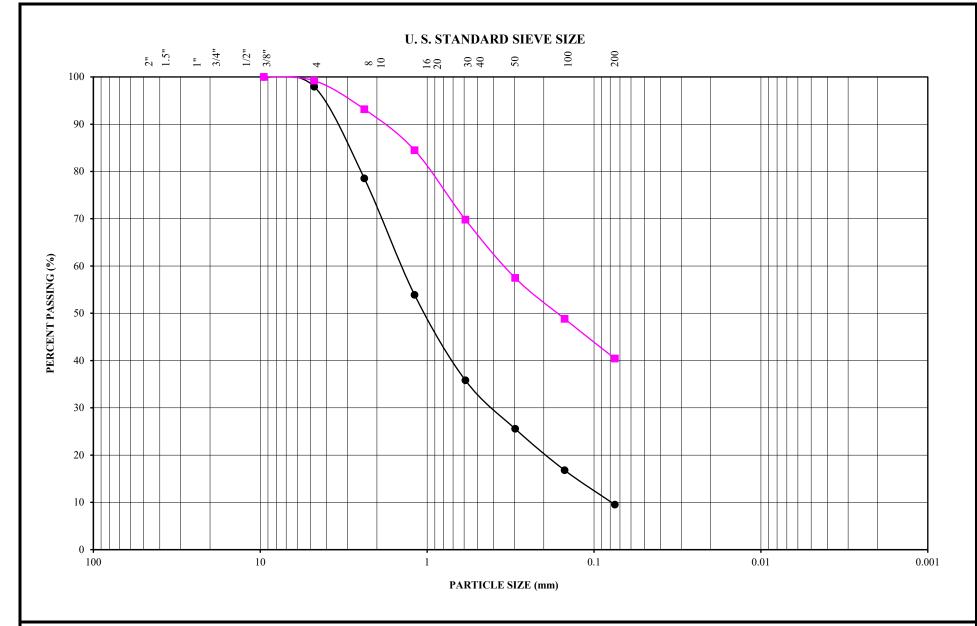
Sample Location / Depth	Material Type (USCS)	рН	Minimum Resistivity (Ohm-cm)	Water Soluble Sulfates (ppm)	Water Soluble Chlorides (ppm)
B-5 @ 5	Silty Sand (SM)	8.10	1840	445.5	93.7



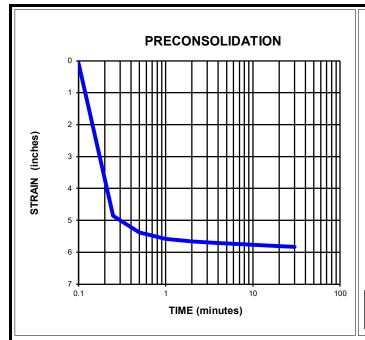
Sample Designation	Sample Depth (feet)	Symbol	Liquid Limit (%)	Plasticity Index	Classification
B-2	5	•	-		SC/CL
B-5	30				CL
UES JOI	B NUMBER:	4830	0.2400003	FIGURE:	C-1

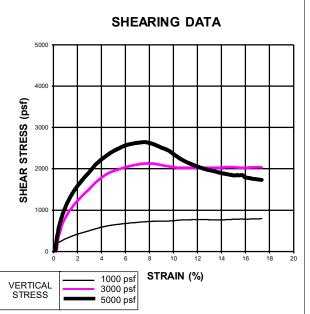


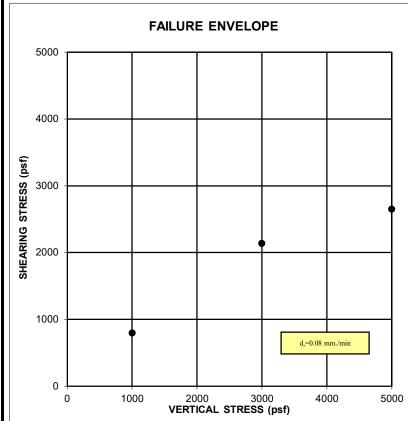
Sample Designation	Sample Depth (feet)	Symbol	Liquid Limit (%)	Plasticity Index	Classification
B-6	15	•	-		SC
TW-1	55				SM
UES JOI	B NUMBER:	4830	0.2400003	FIGURE:	C-2



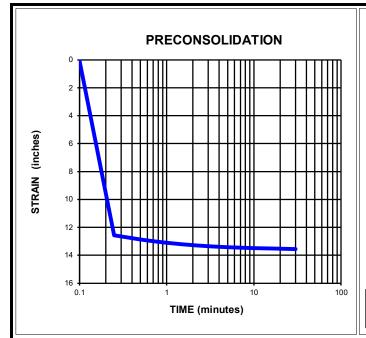
Sample Designation	Sample Depth (feet)	Symbol	Liquid Limit (%)	Plasticity Index	Classification
TW-1	58	•	-		CL
TW-1	61				SC/CL
UES JOB NUMBER:		4830	0.2400003	FIGURE:	C-3

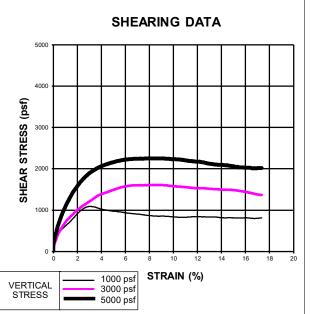


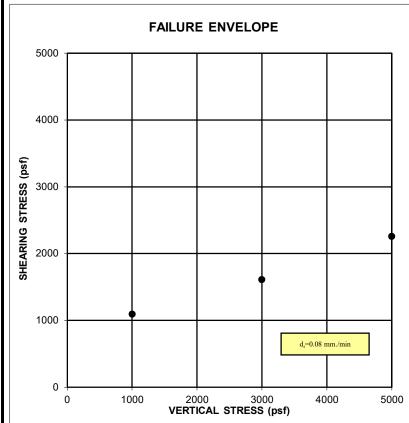

Sample Designation	Sample Depth (feet)	Symbol	Liquid Limit (%)	Plasticity Index	Classification
TW-1	64	•	-		SM
TW-1	67				SW
UES JOB NUMBER:		4830	0.2400003	FIGURE:	C-4



	Sample Designation	Sample Depth (feet)	Symbol	Liquid Limit (%)	Plasticity Index	Classification
	TW-1	70	•			SM
ĺ	TW-1	73				SM
	UES JOB NUMBER:		4830	0.2400003	FIGURE:	C-5

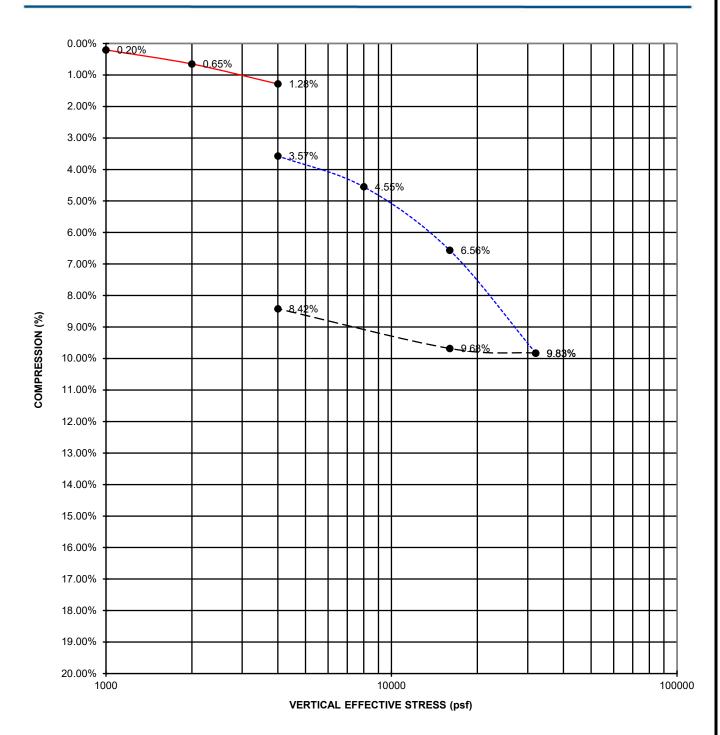






SHEAR STRENGTH TEST - ASTM D3080

Job Name:	Jacumba Fire Station #43		Initial Dry Density (pcf):	102.6
Project Number:	4830.2400003.0000	Sample Date: 2/20/2024	Initial Moisture (%):	13.0
Lab Number:	35558	Test Date: 3/29/2024	Final Moisture (%):	33.9
Sample Location:	B-5 @ 20'	Tested By: L.N.	Cohesion:	470 psf
Sample Description:	Brown (CL)		Angle Of Friction:	24.9



SHEAR STRENGTH TEST - ASTM D3080

Job Name:	Jacumba Fire Station #43		Initial Dry Density (pcf):	95.0
Project Number:	4830.2400003.0000	Sample Date: 2/20/2024	Initial Moisture (%):	28.0
Lab Number:	35558	Test Date: 4/1/2024	Final Moisture (%):	31.7
Sample Location:	TW-1 @ 25'	Tested By: L.N.	Cohesion:	770 psf
Sample Description:	Brown (CL)		Angle Of Friction:	16.2

1441 Montiel Road, Suite 115 Escondido, CA 92026 p. 760.746.4955 | TeamUES.com LEA NO. 008

 FIELD MOISTURE
 SAMPLE SATURATED
 REBOUND

Consolidation Test ASTM D2435

Project Name:	Jacumba Fire Station #43
Project Number: 4830.240000	Sample Date: 2/20/2024
Lab Number: 35558	Test Date: 3/29/2024
Sample Location: B-6 @ 5')	Tested By: L.N.
Sample Description: Brown (SC)	

Initial Moisture (%):	3.1
Final Moisture (%):	10.0
Initial Dry Density (PCF):	97.8
Final Dry Density (PCF):	N.A

APPENDIX D

STANDARD SPECIFICATIONS FOR GRADING

Section 1 - General

Construction Testing & Engineering, Inc. presents the following standard recommendations for grading and other associated operations on construction projects. These guidelines should be considered a portion of the project specifications. Recommendations contained in the body of the previously presented soils report shall supersede the recommendations and or requirements as specified herein. The project geotechnical consultant shall interpret disputes arising out of interpretation of the recommendations contained in the soils report or specifications contained herein.

<u>Section 2 - Responsibilities of Project Personnel</u>

The <u>geotechnical consultant</u> should provide observation and testing services sufficient to general conformance with project specifications and standard grading practices. The geotechnical consultant should report any deviations to the client or his authorized representative.

The <u>Client</u> should be chiefly responsible for all aspects of the project. He or his authorized representative has the responsibility of reviewing the findings and recommendations of the geotechnical consultant. He shall authorize or cause to have authorized the Contractor and/or other consultants to perform work and/or provide services. During grading the Client or his authorized representative should remain on-site or should remain reasonably accessible to all concerned parties in order to make decisions necessary to maintain the flow of the project.

The Contractor is responsible for the safety of the project and satisfactory completion of all grading and other associated operations on construction projects, including, but not limited to, earth work in accordance with the project plans, specifications and controlling agency requirements.

Section 3 - Preconstruction Meeting

A preconstruction site meeting should be arranged by the owner and/or client and should include the grading contractor, design engineer, geotechnical consultant, owner's representative and representatives of the appropriate governing authorities.

Section 4 - Site Preparation

The client or contractor should obtain the required approvals from the controlling authorities for the project prior, during and/or after demolition, site preparation and removals, etc. The appropriate approvals should be obtained prior to proceeding with grading operations.

Clearing and grubbing should consist of the removal of vegetation such as brush, grass, woods, stumps, trees, root of trees and otherwise deleterious natural materials from the areas to be graded. Clearing and grubbing should extend to the outside of all proposed excavation and fill areas.

Demolition should include removal of buildings, structures, foundations, reservoirs, utilities (including underground pipelines, septic tanks, leach fields, seepage pits, cisterns, mining shafts, tunnels, etc.) and other man-made surface and subsurface improvements from the areas to be graded. Demolition of utilities should include proper capping and/or rerouting pipelines at the project perimeter and cutoff and capping of wells in accordance with the requirements of the governing authorities and the recommendations of the geotechnical consultant at the time of demolition.

Trees, plants or man-made improvements not planned to be removed or demolished should be protected by the contractor from damage or injury.

Debris generated during clearing, grubbing and/or demolition operations should be wasted from areas to be graded and disposed off-site. Clearing, grubbing and demolition operations should be performed under the observation of the geotechnical consultant.

Section 5 - Site Protection

Protection of the site during the period of grading should be the responsibility of the contractor. Unless other provisions are made in writing and agreed upon among the concerned parties, completion of a portion of the project should not be considered to preclude that portion or adjacent areas from the requirements for site protection until such time as the entire project is complete as identified by the geotechnical consultant, the client and the regulating agencies.

Precautions should be taken during the performance of site clearing, excavations and grading to protect the work site from flooding, ponding or inundation by poor or improper surface drainage. Temporary provisions should be made during the rainy season to adequately direct surface drainage away from and off the work site. Where low areas cannot be avoided, pumps should be kept on hand to continually remove water during periods of rainfall.

Rain related damage should be considered to include, but may not be limited to, erosion, silting, saturation, swelling, structural distress and other adverse conditions as determined by the geotechnical consultant. Soil adversely affected should be classified as unsuitable materials and should be subject to overexcavation and replacement with compacted fill or other remedial grading as recommended by the geotechnical consultant.

The contractor should be responsible for the stability of all temporary excavations. Recommendations by the geotechnical consultant pertaining to temporary excavations (e.g., backcuts) are made in consideration of stability of the completed project and, therefore, should not be considered to preclude the responsibilities of the contractor. Recommendations by the geotechnical consultant should not be considered to preclude requirements that are more restrictive by the regulating agencies. The contractor should provide during periods of extensive rainfall plastic sheeting to prevent unprotected slopes from becoming saturated and unstable. When deemed appropriate by the geotechnical consultant or governing agencies the contractor shall install checkdams, desilting basins, sand bags or other drainage control measures.

In relatively level areas and/or slope areas, where saturated soil and/or erosion gullies exist to depths of greater than 1.0 foot; they should be overexcavated and replaced as compacted fill in accordance with the applicable specifications. Where affected materials exist to depths of 1.0 foot or less below proposed finished grade, remedial grading by moisture conditioning in-place, followed by thorough recompaction in accordance with the applicable grading guidelines herein may be attempted. If the desired results are not achieved, all affected materials should be overexcavated and replaced as compacted fill in accordance with the slope repair recommendations herein. If field conditions dictate, the geotechnical consultant may recommend other slope repair procedures.

Section 6 - Excavations

6.1 Unsuitable Materials

Materials that are unsuitable should be excavated under observation and recommendations of the geotechnical consultant. Unsuitable materials include, but may not be limited to, dry, loose, soft, wet, organic compressible natural soils and fractured, weathered, soft bedrock and nonengineered or otherwise deleterious fill materials.

Material identified by the geotechnical consultant as unsatisfactory due to its moisture conditions should be overexcavated; moisture conditioned as needed, to a uniform at or above optimum moisture condition before placement as compacted fill.

If during the course of grading adverse geotechnical conditions are exposed which were not anticipated in the preliminary soil report as determined by the geotechnical consultant additional exploration, analysis, and treatment of these problems may be recommended.

6.2 Cut Slopes

Unless otherwise recommended by the geotechnical consultant and approved by the regulating agencies, permanent cut slopes should not be steeper than 2:1 (horizontal: vertical).

The geotechnical consultant should observe cut slope excavation and if these excavations expose loose cohesionless, significantly fractured or otherwise unsuitable material, the materials should be overexcavated and replaced with a compacted stabilization fill. If encountered specific cross section details should be obtained from the Geotechnical Consultant.

When extensive cut slopes are excavated or these cut slopes are made in the direction of the prevailing drainage, a non-erodible diversion swale (brow ditch) should be provided at the top of the slope.

6.3 Pad Areas

All lot pad areas, including side yard terrace containing both cut and fill materials, transitions, located less than 3 feet deep should be overexcavated to a depth of 3 feet and replaced with a uniform compacted fill blanket of 3 feet. Actual depth of overexcavation may vary and should be delineated by the geotechnical consultant during grading, especially where deep or drastic transitions are present.

For pad areas created above cut or natural slopes, positive drainage should be established away from the top-of-slope. This may be accomplished utilizing a berm drainage swale and/or an appropriate pad gradient. A gradient in soil areas away from the top-of-slopes of 2 percent or greater is recommended.

Section 7 - Compacted Fill

All fill materials should have fill quality, placement, conditioning and compaction as specified below or as approved by the geotechnical consultant.

7.1 Fill Material Quality

Excavated on-site or import materials which are acceptable to the geotechnical consultant may be utilized as compacted fill, provided trash, vegetation and other deleterious materials are removed prior to placement. All import materials anticipated for use on-site should be sampled tested and approved prior to and placement is in conformance with the requirements outlined.

Rocks 12 inches in maximum and smaller may be utilized within compacted fill provided sufficient fill material is placed and thoroughly compacted over and around all rock to effectively fill rock voids. The amount of rock should not exceed 40 percent by dry weight passing the 3/4-inch sieve. The geotechnical consultant may vary those requirements as field conditions dictate.

Where rocks greater than 12 inches but less than four feet of maximum dimension are generated during grading, or otherwise desired to be placed within an engineered fill, special handling in accordance with the recommendations below. Rocks greater than four feet should be broken down or disposed off-site.

7.2 Placement of Fill

Prior to placement of fill material, the geotechnical consultant should observe and approve the area to receive fill. After observation and approval, the exposed ground surface should be scarified to a depth of 6 to 8 inches. The scarified material should be conditioned (i.e. moisture added or air dried by continued discing) to achieve a moisture content at or slightly above optimum moisture conditions and compacted to a minimum of 90 percent of the maximum density or as otherwise recommended in the soils report or by appropriate government agencies.

Compacted fill should then be placed in thin horizontal lifts not exceeding eight inches in loose thickness prior to compaction. Each lift should be moisture conditioned as needed, thoroughly blended to achieve a consistent moisture content at or slightly above optimum and thoroughly compacted by mechanical methods to a minimum of 90 percent of laboratory maximum dry density. Each lift should be treated in a like manner until the desired finished grades are achieved.

The contractor should have suitable and sufficient mechanical compaction equipment and watering apparatus on the job site to handle the amount of fill being placed in consideration of moisture retention properties of the materials and weather conditions.

When placing fill in horizontal lifts adjacent to areas sloping steeper than 5:1 (horizontal: vertical), horizontal keys and vertical benches should be excavated into the adjacent slope area. Keying and benching should be sufficient to provide at least six-foot wide benches and a minimum of four feet of vertical bench height within the firm natural ground, firm bedrock or engineered compacted fill. No compacted fill should be placed in an area after keying and benching until the geotechnical consultant has reviewed the area. Material generated by the benching operation should be moved sufficiently away from

the bench area to allow for the recommended review of the horizontal bench prior to placement of fill.

Within a single fill area where grading procedures dictate two or more separate fills, temporary slopes (false slopes) may be created. When placing fill adjacent to a false slope, benching should be conducted in the same manner as above described. At least a 3-foot vertical bench should be established within the firm core of adjacent approved compacted fill prior to placement of additional fill. Benching should proceed in at least 3-foot vertical increments until the desired finished grades are achieved.

Prior to placement of additional compacted fill following an overnight or other grading delay, the exposed surface or previously compacted fill should be processed by scarification, moisture conditioning as needed to at or slightly above optimum moisture content, thoroughly blended and recompacted to a minimum of 90 percent of laboratory maximum dry density. Where unsuitable materials exist to depths of greater than one foot, the unsuitable materials should be over-excavated.

Following a period of flooding, rainfall or overwatering by other means, no additional fill should be placed until damage assessments have been made and remedial grading performed as described herein.

Rocks 12 inch in maximum dimension and smaller may be utilized in the compacted fill provided the fill is placed and thoroughly compacted over and around all rock. No oversize material should be used within 3 feet of finished pad grade and within 1 foot of other compacted fill areas. Rocks 12 inches up to four feet maximum dimension should be placed below the upper 10 feet of any fill and should not be closer than 15 feet to any slope face. These recommendations could vary as locations of improvements dictate. Where practical, oversized material should not be placed below areas where structures or deep utilities are proposed. Oversized material should be placed in windrows on a clean, overexcavated or unyielding compacted fill or firm natural ground surface. Select native or imported granular soil (S.E. 30 or higher) should be placed and thoroughly flooded over and around all windrowed rock, such that voids are filled. Windrows of oversized material should be staggered so those successive strata of oversized material are not in the same vertical plane.

It may be possible to dispose of individual larger rock as field conditions dictate and as recommended by the geotechnical consultant at the time of placement.

The contractor should assist the geotechnical consultant and/or his representative by digging test pits for removal determinations and/or for testing compacted fill. The contractor should provide this work at no additional cost to the owner or contractor's client.

Fill should be tested by the geotechnical consultant for compliance with the recommended relative compaction and moisture conditions. Field density testing should conform to ASTM Method of Test D 1556-00, D 2922-04. Tests should be conducted at a minimum of approximately two vertical feet or approximately 1,000 to 2,000 cubic yards of fill placed. Actual test intervals may vary as field conditions dictate. Fill found not to be in conformance with the grading recommendations should be removed or otherwise handled as recommended by the geotechnical consultant.

7.3 Fill Slopes

Unless otherwise recommended by the geotechnical consultant and approved by the regulating agencies, permanent fill slopes should not be steeper than 2:1 (horizontal: vertical).

Except as specifically recommended in these grading guidelines compacted fill slopes should be over-built two to five feet and cut back to grade, exposing the firm, compacted fill inner core. The actual amount of overbuilding may vary as field conditions dictate. If the desired results are not achieved, the existing slopes should be overexcavated and reconstructed under the guidelines of the geotechnical consultant. The degree of overbuilding shall be increased until the desired compacted slope surface condition is achieved. Care should be taken by the contractor to provide thorough mechanical compaction to the outer edge of the overbuilt slope surface.

At the discretion of the geotechnical consultant, slope face compaction may be attempted by conventional construction procedures including backrolling. The procedure must create a firmly compacted material throughout the entire depth of the slope face to the surface of the previously compacted firm fill intercore.

During grading operations, care should be taken to extend compactive effort to the outer edge of the slope. Each lift should extend horizontally to the desired finished slope surface or more as needed to ultimately established desired grades. Grade during construction should not be allowed to roll off at the edge of the slope. It may be helpful to elevate slightly the outer edge of the slope. Slough resulting from the placement of individual lifts should not be allowed to drift down over previous lifts. At intervals not

exceeding four feet in vertical slope height or the capability of available equipment, whichever is less, fill slopes should be thoroughly dozer trackrolled.

For pad areas above fill slopes, positive drainage should be established away from the top-of-slope. This may be accomplished using a berm and pad gradient of at least two percent.

Section 8 - Trench Backfill

Utility and/or other excavation of trench backfill should, unless otherwise recommended, be compacted by mechanical means. Unless otherwise recommended, the degree of compaction should be a minimum of 90 percent of the laboratory maximum density.

Within slab areas, but outside the influence of foundations, trenches up to one foot wide and two feet deep may be backfilled with sand and consolidated by jetting, flooding or by mechanical means. If on-site materials are utilized, they should be wheel-rolled, tamped or otherwise compacted to a firm condition. For minor interior trenches, density testing may be deleted or spot testing may be elected if deemed necessary, based on review of backfill operations during construction.

If utility contractors indicate that it is undesirable to use compaction equipment in close proximity to a buried conduit, the contractor may elect the utilization of light weight mechanical compaction equipment and/or shading of the conduit with clean, granular material, which should be thoroughly jetted in-place above the conduit, prior to initiating mechanical compaction procedures. Other methods of utility trench compaction may also be appropriate, upon review of the geotechnical consultant at the time of construction.

In cases where clean granular materials are proposed for use in lieu of native materials or where flooding or jetting is proposed, the procedures should be considered subject to review by the geotechnical consultant. Clean granular backfill and/or bedding are not recommended in slope areas.

Section 9 - Drainage

Where deemed appropriate by the geotechnical consultant, canyon subdrain systems should be installed in accordance with CTE's recommendations during grading.

Typical subdrains for compacted fill buttresses, slope stabilization or sidehill masses, should be installed in accordance with the specifications.

Roof, pad and slope drainage should be directed away from slopes and areas of structures to suitable disposal areas via non-erodible devices (i.e., gutters, downspouts, and concrete swales).

For drainage in extensively landscaped areas near structures, (i.e., within four feet) a minimum of 5 percent gradient away from the structure should be maintained. Pad drainage of at least 2 percent should be maintained over the remainder of the site.

Drainage patterns established at the time of fine grading should be maintained throughout the life of the project. Property owners should be made aware that altering drainage patterns could be detrimental to slope stability and foundation performance.

Section 10 - Slope Maintenance

10.1 - Landscape Plants

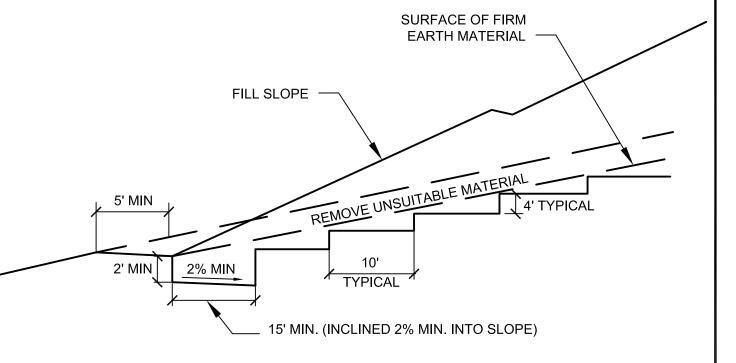
To enhance surficial slope stability, slope planting should be accomplished at the completion of grading. Slope planting should consist of deep-rooting vegetation requiring little watering. Plants native to the southern California area and plants relative to native plants are generally desirable. Plants native to other semi-arid and arid areas may also be appropriate. A Landscape Architect should be the best party to consult regarding actual types of plants and planting configuration.

10.2 - Irrigation

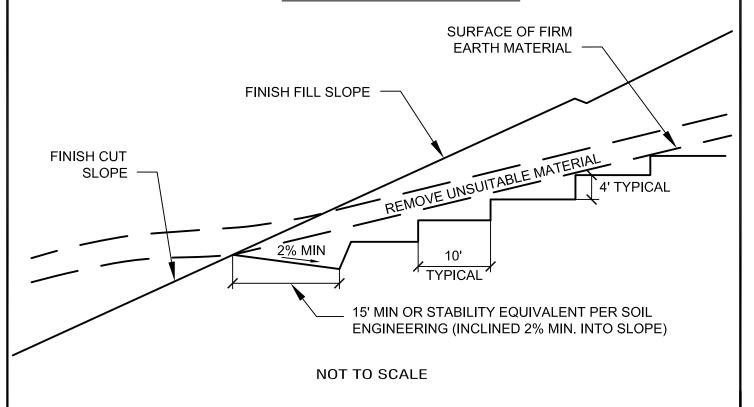
Irrigation pipes should be anchored to slope faces, not placed in trenches excavated into slope faces.

Slope irrigation should be minimized. If automatic timing devices are utilized on irrigation systems, provisions should be made for interrupting normal irrigation during periods of rainfall.

<u>10.3 - Repair</u>

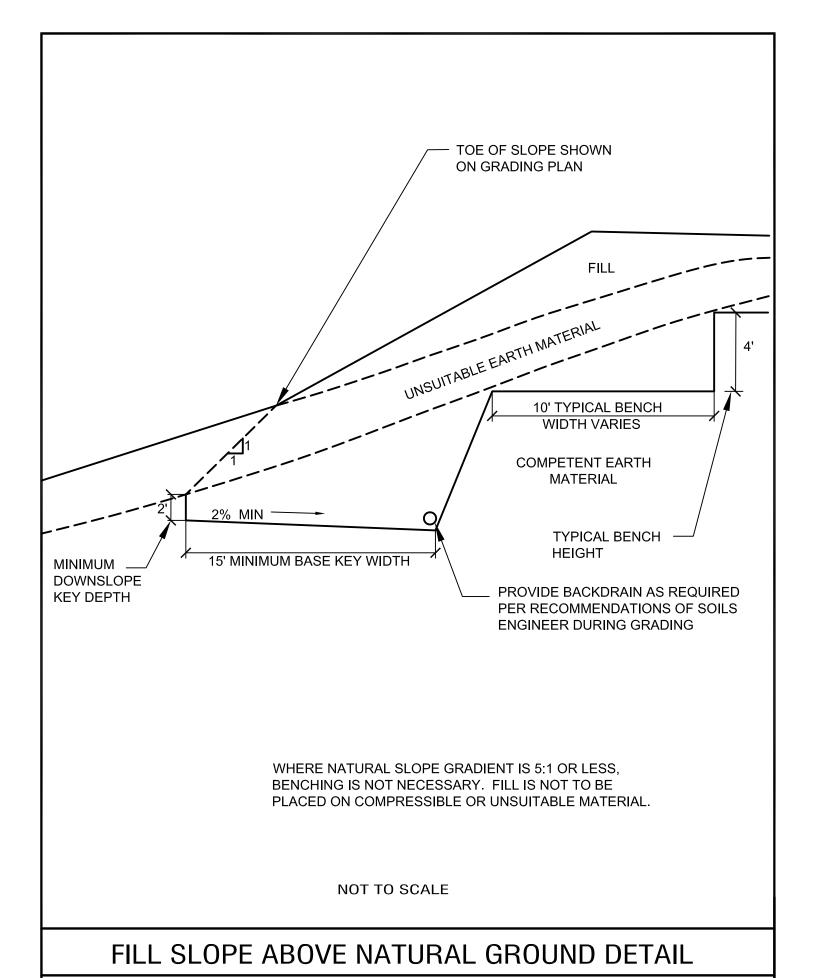

As a precautionary measure, plastic sheeting should be readily available, or kept on hand, to protect all slope areas from saturation by periods of heavy or prolonged rainfall. This measure is strongly recommended, beginning with the period prior to landscape planting.

If slope failures occur, the geotechnical consultant should be contacted for a field review of site conditions and development of recommendations for evaluation and repair.

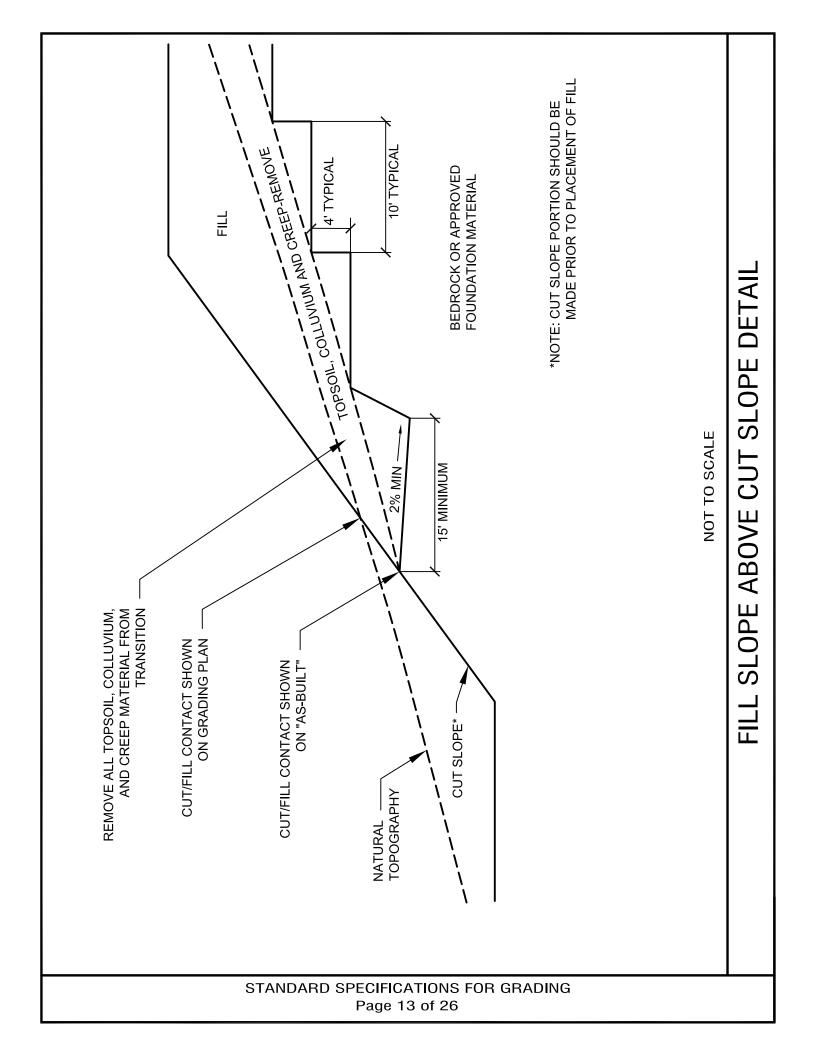

If slope failures occur as a result of exposure to period of heavy rainfall, the failure areas and currently unaffected areas should be covered with plastic sheeting to protect against additional saturation.

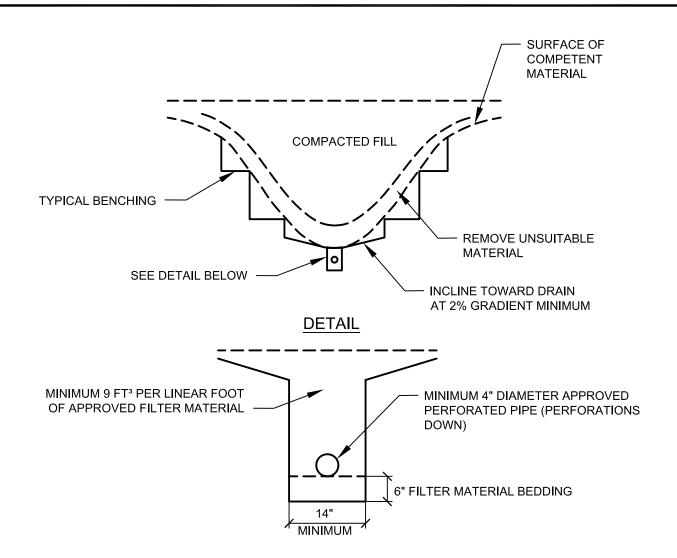
In the accompanying Standard Details, appropriate repair procedures are illustrated for superficial slope failures (i.e., occurring typically within the outer one foot to three feet of a slope face).

BENCHING FILL OVER NATURAL



BENCHING FILL OVER CUT



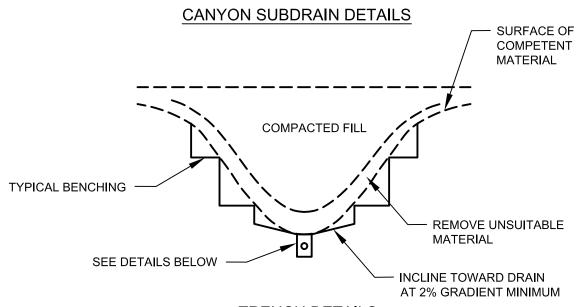

BENCHING FOR COMPACTED FILL DETAIL

STANDARD SPECIFICATIONS FOR GRADING
Page 11 of 26

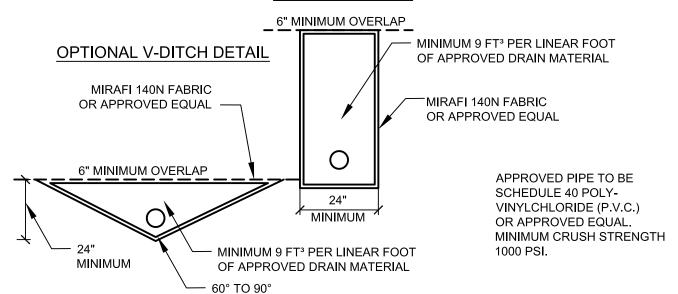
STANDARD SPECIFICATIONS FOR GRADING Page 12 of 26

CALTRANS CLASS 2 PERMEABLE MATERIAL FILTER MATERIAL TO MEET FOLLOWING SPECIFICATION OR APPROVED EQUAL:

SIEVE SIZE PERCENTAGE PASSING STRENGTH 1000 psi PIPE DIAMETER TO MEET THE 1" 100 FOLLOWING CRITERIA, SUBJECT TO FIELD REVIEW BASED ON ACTUAL 90-100 3/4" **GEOTECHNICAL CONDITIONS ENCOUNTERED DURING GRADING** 40-100 3/8" LENGTH OF RUN PIPE DIAMETER 25-40 NO. 4 INITIAL 500' 18-33 8 .ON 500' TO 1500' 5-15 NO. 30 8" > 1500' 0-7 NO. 50 0-3 **NOT TO SCALE** NO. 200


APPROVED PIPE TO BE SCHEDULE 40

APPROVED EQUAL. MINIMUM CRUSH


POLY-VINYL-CHLORIDE (P.V.C.) OR

TYPICAL CANYON SUBDRAIN DETAIL

STANDARD SPECIFICATIONS FOR GRADING Page 14 of 26

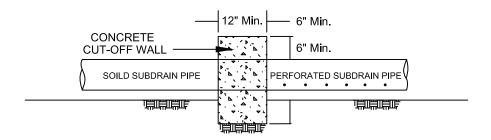
TRENCH DETAILS

PIPE DIAMETER TO MEET THE

FOLLOWING CRITERIA, SUBJECT TO FIELD REVIEW BASED ON ACTUAL

DRAIN MATERIAL TO MEET FOLLOWING SPECIFICATION OR APPROVED EQUAL:

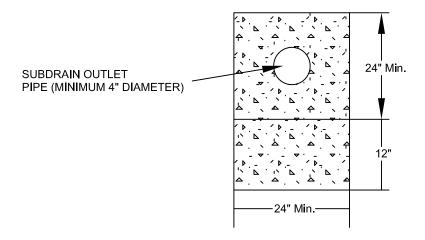
GEOTECHNICAL CONDITIONS SIEVE SIZE PERCENTAGE PASSING **ENCOUNTERED DURING GRADING** 1 1/2" 88-100 LENGTH OF RUN PIPE DIAMETER 1" 5-40 INITIAL 500' 3/4" 0-17 500' TO 1500' 6" 3/8" 0-7 > 1500' 8" NO. 200 0-3 **NOT TO SCALE**

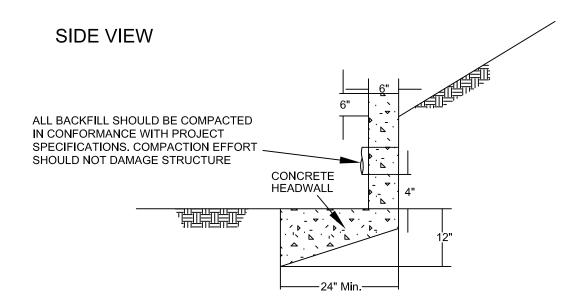

GEOFABRIC SUBDRAIN

STANDARD SPECIFICATIONS FOR GRADING Page 15 of 26

FRONT VIEW

SIDE VIEW



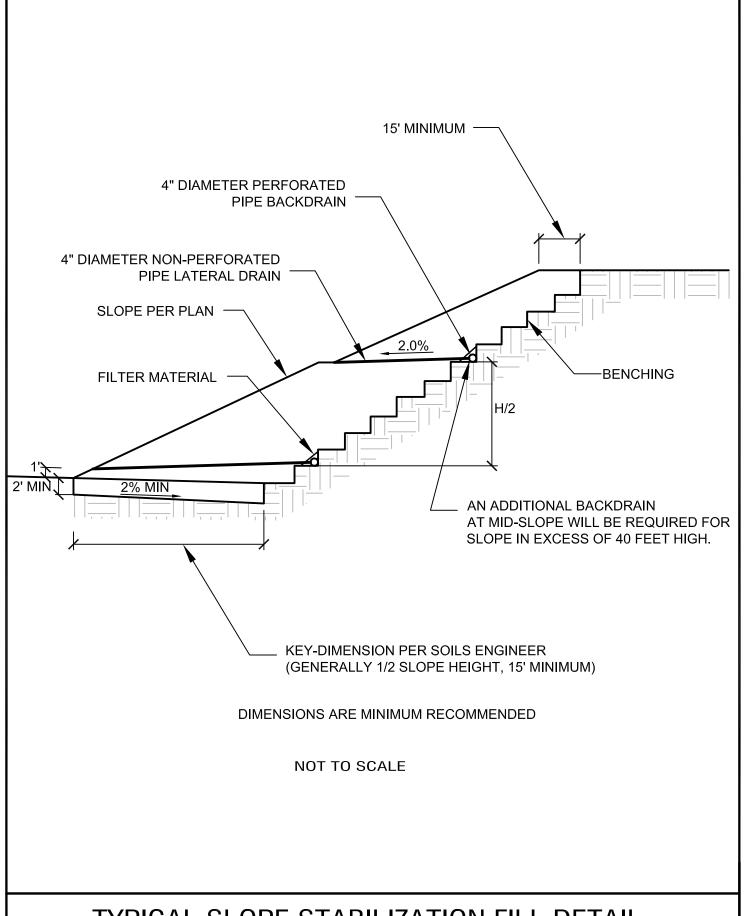

NOT TO SCALE

RECOMMENDED SUBDRAIN CUT-OFF WALL

STANDARD SPECIFICATIONS FOR GRADING Page 16 of 26

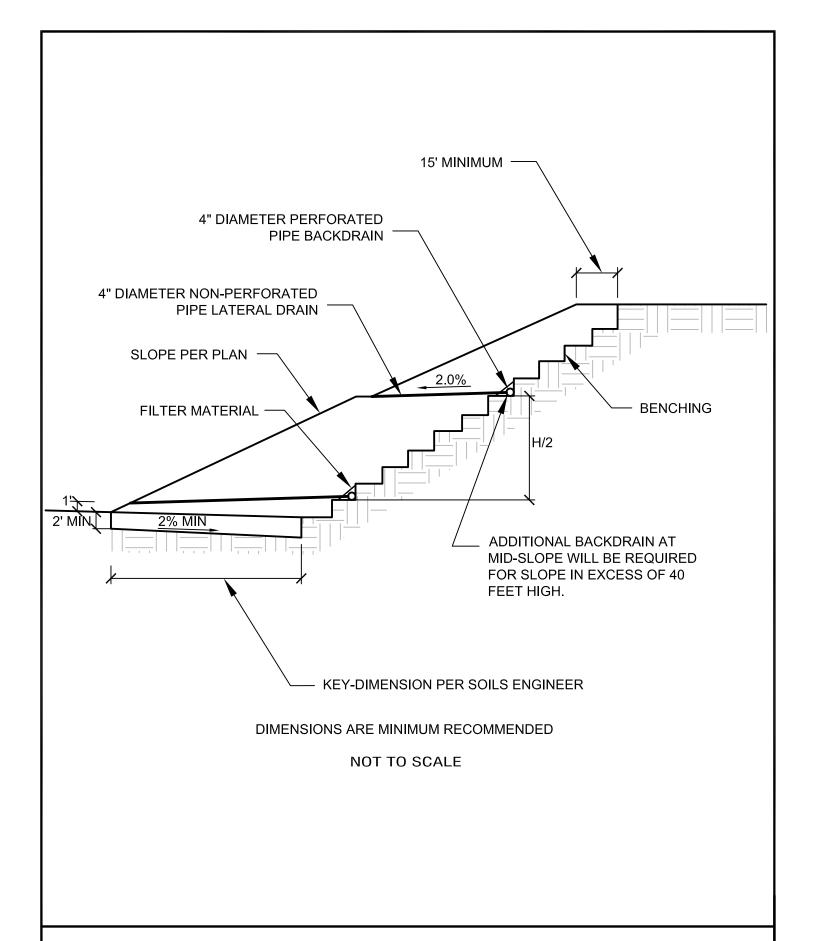
FRONT VIEW

NOTE: HEADWALL SHOULD OUTLET AT TOE OF SLOPE OR INTO CONTROLLED SURFACE DRAINAGE DEVICE

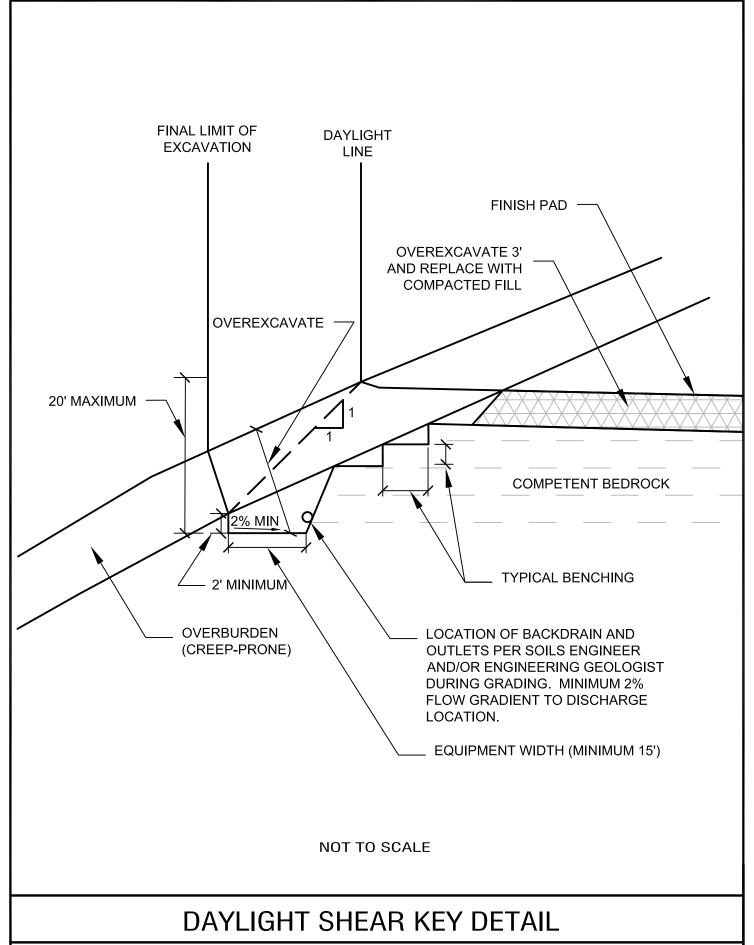

ALL DISCHARGE SHOULD BE CONTROLLED

THIS DETAIL IS A MINIMUM DESIGN AND MAY BE MODIFIED DEPENDING UPON ENCOUNTERED CONDITIONS AND LOCAL REQUIREMENTS

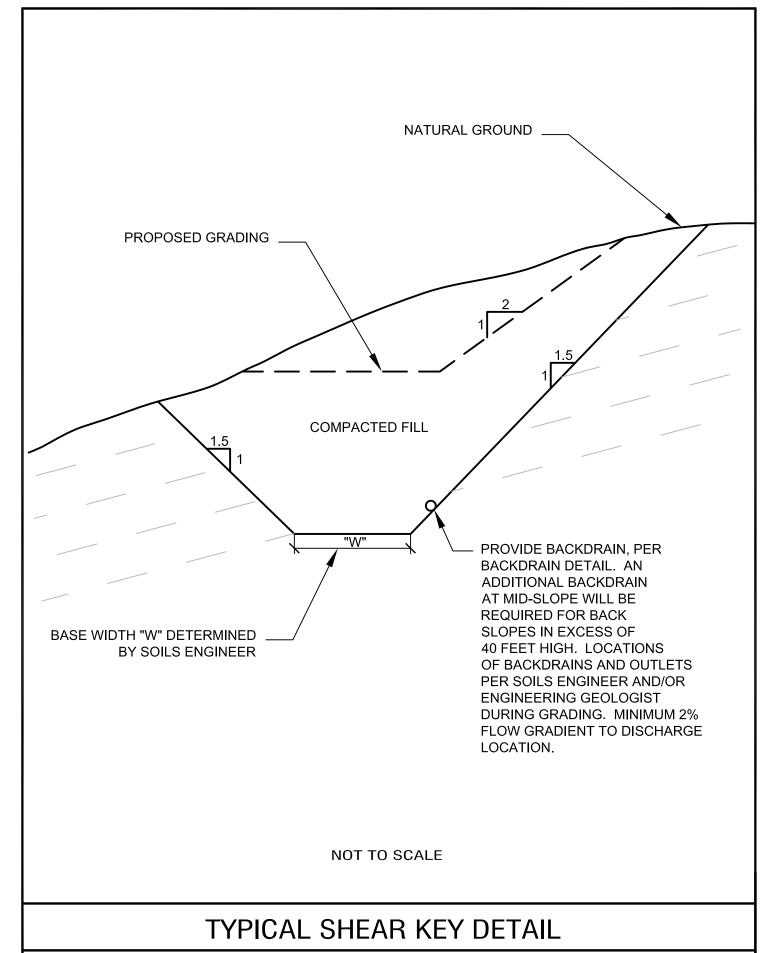
NOT TO SCALE


TYPICAL SUBDRAIN OUTLET HEADWALL DETAIL

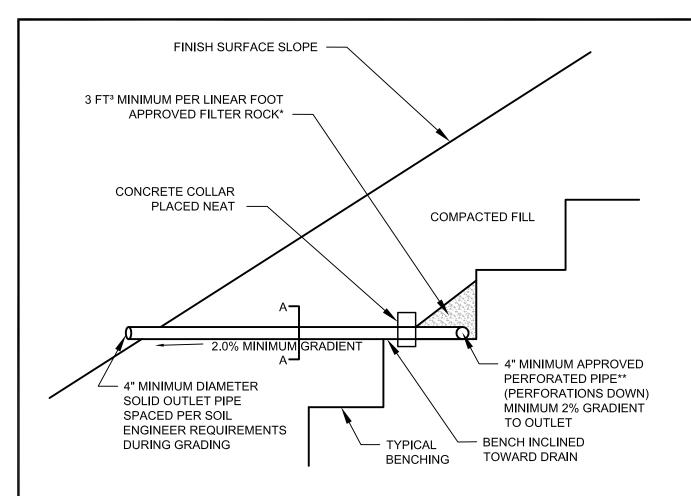
STANDARD SPECIFICATIONS FOR GRADING Page 17 of 26

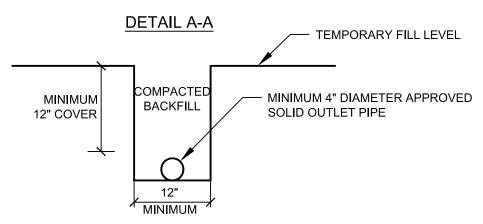

TYPICAL SLOPE STABILIZATION FILL DETAIL

STANDARD SPECIFICATIONS FOR GRADING Page 18 of 26



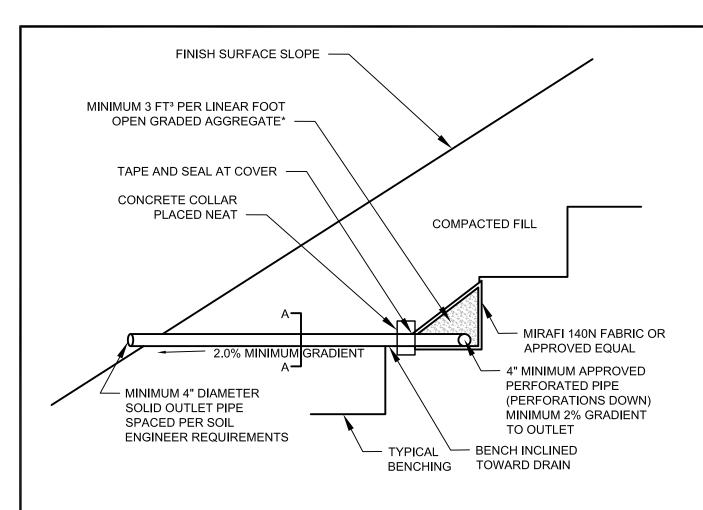
TYPICAL BUTTRESS FILL DETAIL

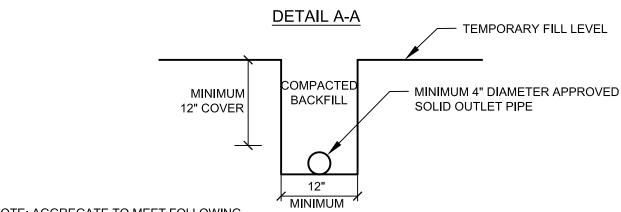

STANDARD SPECIFICATIONS FOR GRADING Page 19 of 26



STANDARD SPECIFICATIONS FOR GRADING Page 20 of 26

STANDARD SPECIFICATIONS FOR GRADING Page 21 of 26

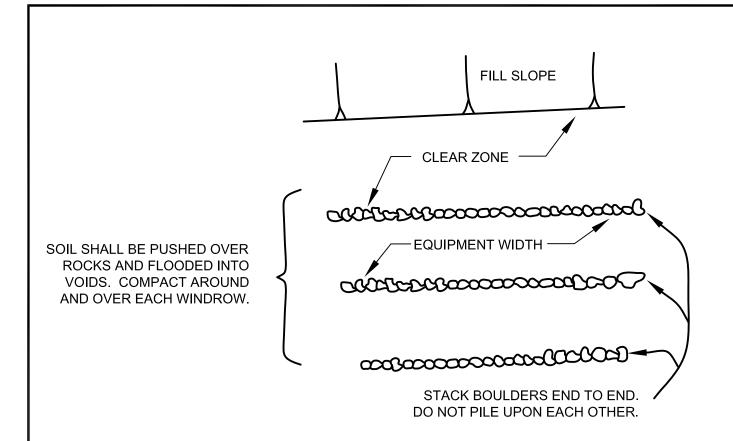

**APPROVED PIPE TYPE: SCHEDULE 40 POLYVINYL CHLORIDE (P.V.C.) OR APPROVED EQUAL. MINIMUM CRUSH STRENGTH 1000 PSI *FILTER ROCK TO MEET FOLLOWING SPECIFICATIONS OR APPROVED EQUAL:

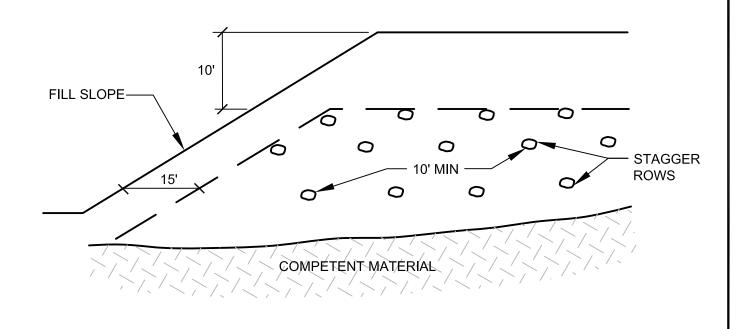

SIEVE SIZE	PERCENTAGE PASSING
1"	100
3/4"	90-100
3/ ₈ "	40-100
NO. 4	25-40
NO. 30	5-15
NO. 50	0-7
NO. 200	0-3

NOT TO SCALE

TYPICAL BACKDRAIN DETAIL

STANDARD SPECIFICATIONS FOR GRADING Page 22 of 26

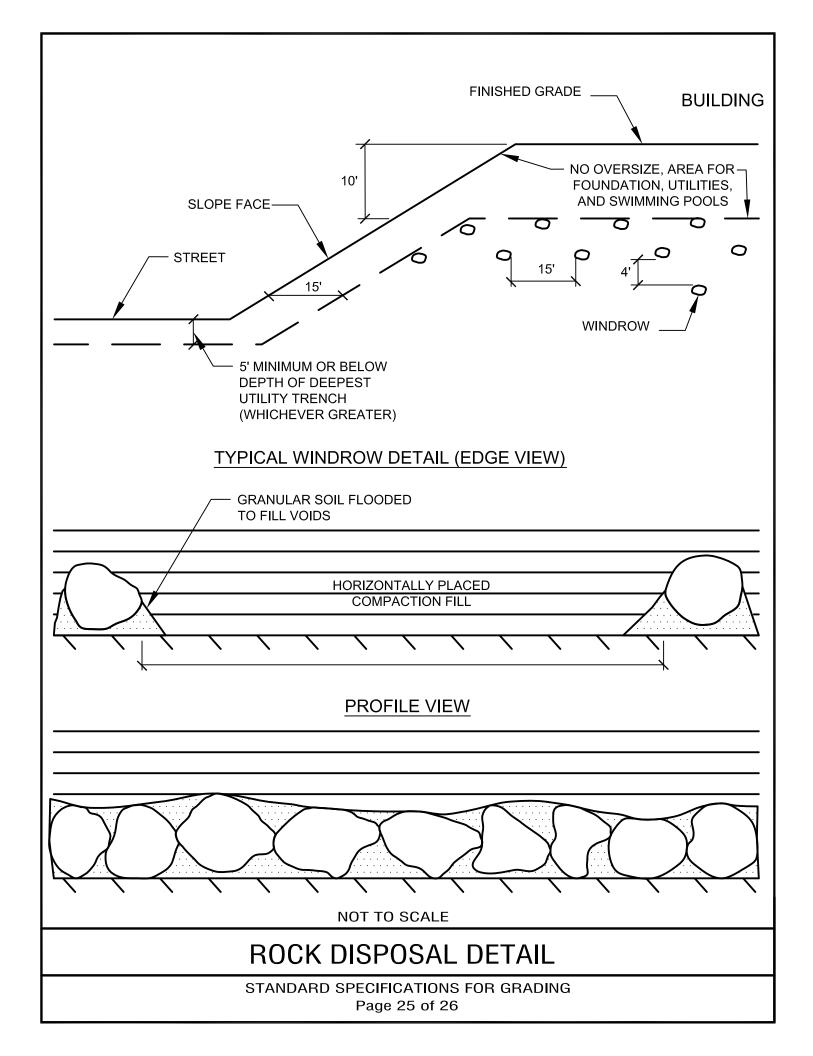


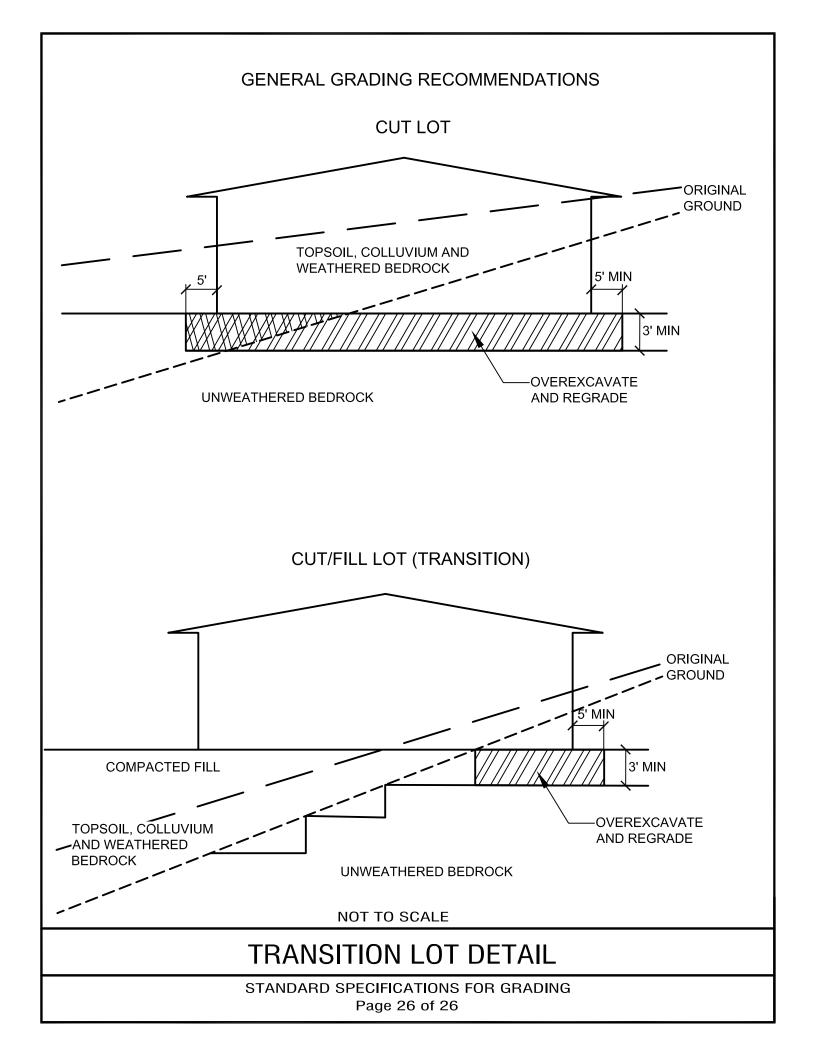

*NOTE: AGGREGATE TO MEET FOLLOWING SPECIFICATIONS OR APPROVED EQUAL:

	PERCENTAGE PASSING	SIEVE SIZE
	100	1 ½"
	5-40	1"
	0-17	3/4"
NOT TO SCALE	0-7	3/8"
NOT TO SCALE	0-3	NO. 200

BACKDRAIN DETAIL (GEOFRABIC)

STANDARD SPECIFICATIONS FOR GRADING Page 23 of 26





ROCK DISPOSAL DETAIL

NOT TO SCALE

STANDARD SPECIFICATIONS FOR GRADING Page 24 of 26

APPENDIX E

PERCOLATION FIELD DATA AND CALCULATED RATES

Project:		Jacumba F	ire Station #	‡43 - San Die	go, San Diego	o (PW7)	
Project N	lo.:	4830.2400	003.0000		Tab	les P-1 to P-	12
		Perco	lation Field	Data and Ca	lculated Rate	:S	
P-1					Total Depth:	13	inches
Time	Test Interval Time	Test Refill	Water Level Initial/Start	Water Level End/Final	Incremental Water Level Change	Percolation Rate	Percolation Rate
	(minutes)	Depth/Inches	Depth/Inches	Depth/Inches	(inches)	inches/minute	inches/hour
11:00:00	Initial	None	1.69	initial	-		
11:30:00	30	1.4375	1.69	4.44	2.75	0.092	5.500
12:00:00	30	2.0625	1.44	3.94	2.50	0.083	5.000
12:30:00	30	2.375	2.06	4.31	2.25	0.075	4.500
13:00:00	30	2.6875	2.38	4.63	2.25	0.075	4.500
13:30:00 14:00:00	30	2.6875	2.69	5.00	2.31	0.077	4.625
14:00:00	30 30	2.75 2.625	2.69	4.94 4.94	2.25	0.075	4.500
15:00:00	30	2.625	2.75 2.63	4.94 4.81	2.19 2.19	0.073 0.073	4.375 4.375
15:30:00	30	2.5125	2.03	4.81 4.56	2.19	0.075	4.575
16:00:00	30	2.625	2.69	4.88	2.19	0.073	4.375
16:30:00	30	2.3125	2.63	4.81	2.19	0.073	4.375
17:00:00	30	NO	2.31	4.50	2.19	0.073	4.375
P-2	30	110	2.31	4.50	Total Depth:		inches
					•		menes
Time	Test Interval Time	Test Refill	Water Level Initial/Start	Water Level End/Final	Incremental Water Level Change	Percolation Rate	Percolation Rate
	(minutes)	Depth /Inches	Depth /Inches	Depth /Inches	(inches)	inches/minute	inches/hour
8:55:00	Initial	None	14.69	initial	-	menesy minute	menes/nour
9:05:00	10	13	14.69	18.44	3.750	0.375	22.500
9:15:00	10	12.9375	13.00	15.81	2.813	0.281	16.875
9:25:00	10	13.5625	12.94	15.31	2.375	0.238	14.250
9:35:00	10	13.625	13.56	15.88	2.313	0.231	13.875
9:45:00	10	13.0625	13.63	16.00	2.375	0.238	14.250
9:55:00	10	NO	13.06	15.44	2.375	0.238	14.250
P-3					Total Depth:	19.5	inches
	Tost				Incremental		
Time	Test Interval Time	Test Refill	Water Level Initial/Start	Water Level End/Final	Incremental Water Level Change	Percolation Rate	Percolation Rate
	(minutes)	Depth /Inches	Depth /Inches	Depth /Inches	(inches)	inches/minute	inches/hour
11:05:00	Initial	None	3.00	initial	-		
11:35:00	30	2.75	3.00	5.25	2.25	0.075	4.500
12:05:00	30	2.125	2.75	5.44	2.69	0.090	5.375
12:35:00	30	2.4375	2.13	5.00	2.88	0.096	5.750
13:05:00	30	2.375	2.44	5.19	2.75	0.092	5.500
13:35:00	30	2.5	2.38	5.31	2.94	0.098	5.875
14:05:00	30	1.875	2.50	5.19	2.69	0.090	5.375
14:35:00	30	2.375	1.88	4.63	2.75	0.092	5.500
15:05:00	30	2.125	2.38	4.94	2.56	0.085	5.125
15:35:00	30	2.6875	2.13	4.81	2.69	0.090	5.375
16:05:00	30	2.9375	2.69	5.38	2.69	0.090	5.375
16:35:00	30	2.6875	2.94	5.63	2.69	0.090	5.375
17:05:00	30	NO	2.69	5.38	2.69	0.090	5.375
P-4					Total Depth:	36	inches
Time	Test Interval Time	Test Refill	Water Level Initial/Start	Water Level End/Final	Incremental Water Level Change	Percolation Rate	Percolation Rate
	(minutes)	Depth /Inches	Depth /Inches	Depth /Inches	(inches)	inches/minute	inches/hour
8:57:00	Initial	None	14.75	initial	-		
9:07:00	10	13.25	14.75	18.50	3.75	0.375	22.500
9:17:00	10	12.9375	13.25	15.44	2.19	0.219	13.125
9:27:00	10	13.375	12.94	15.25	2.31	0.231	13.875
9:37:00	10	13.3125	13.38	15.56	2.19	0.219	13.125
9:47:00	10	13.125	13.31	15.50 15.31	2.19	0.219	13.125
9:57:00	10	NO	13.13	15.31	2.19	0.219	13.125

P-5					Total Depth:	12	inches
Time	Test Interval Time	Test Refill	Water Level Initial/Start	Water Level End/Final	Incremental Water Level Change	Percolation Rate	Percolation Rate
	(minutes)	Depth /Inches	Depth /Inches	Depth /Inches	(inches)	inches/minute	inches/hour
11:10:00	Initial	None	1.00	initial	-		
11:40:00	30	1.625	1.00	3.00	2.00	0.067	4.000
12:10:00	30	1.875	1.63	3.38	1.75	0.058	3.500
12:40:00	30	1.8125	1.88	3.50	1.63	0.054	3.250
13:10:00	30	1.25	1.81	3.44	1.63	0.054	3.250
13:40:00	30	1.25	1.25	3.13	1.88	0.063	3.750
14:10:00	30	1.75	1.25	2.94	1.69	0.056	3.375
14:40:00	30	1.8125	1.75	3.38	1.63	0.054	3.250
15:10:00	30	1.625	1.81	3.44	1.63	0.054	3.250
15:40:00	30	1.8125	1.63	3.25	1.63	0.054	3.250
16:10:00	30	1.3125	1.81	3.44	1.63	0.054	3.250
16:40:00	30	1.4375	1.31	3.00	1.69	0.056	3.375
17:10:00	30	NO	1.44	3.06	1.63	0.054	3.250
P-6					Total Depth:	36	inches
	Test				Incremental		
Time	Interval	Test Refill	Water Level	Water Level	Water Level	Percolation	Percolation
Time	Time	rest iteliii	Initial/Start	End/Final	Change	Rate	Rate
	Time				Change		
	(minutes)	Depth /Inches	Depth /Inches	Depth /Inches	(inches)	inches/minute	inches/hour
9:00:00	Initial	None	14.25	initial	-		
9:10:00	10	13.6875	14.25	18.81	4.563	0.456	27.375
9:20:00	10	13.75	13.69	16.25	2.563	0.256	15.375
9:30:00	10	13.875	13.75	16.50	2.750	0.275	16.500
9:40:00	10	13.875	13.88	17.00	3.125	0.313	18.750
9:50:00	10	12.5	13.88	16.88	3.000	0.300	18.000
10:00:00	10	NO	12.50	15.50	3.000	0.300	18.000
P-7					Total Depth:	18.5	inches
Time	Test Interval Time	Test Refill	Water Level Initial/Start	Water Level End/Final	Incremental Water Level Change	Percolation Rate	Percolation Rate
	(minutes)	Depth /Inches	Depth /Inches	Depth /Inches	(inches)	inches/minute	inches/hour
11:15:00	Initial	None	2.69	initial	-		
11:45:00	30	2.25	2.69	5.50	2.81	0.094	5.625
12:15:00	30	2.375	2.25	5.13	2.88	0.096	5.750
12:45:00	30	2.75	2.38	7.13	4.75	0.158	9.500
13:15:00	30	2.375	2.75	5.19	2.44	0.081	4.875
13:45:00	30	2.5	2.38	5.25	2.88	0.096	5.750
14:15:00	30	2.25	2.50	5.06	2.56	0.085	5.125
14:45:00	30	2.75	2.25	4.88	2.63	0.088	5.250
15:15:00	30	2.3125	2.75	5.31	2.56	0.085	5.125
15:45:00	30	2.6875	2.31	4.88	2.56	0.085	5.125
16:15:00	30	2.3125	2.69	5.31	2.63	0.088	5.250
16:45:00	30	2.6875	2.31	4.88	2.56	0.085	5.125
17:15:00	30	NO	2.69	5.25	2.56	0.085	5.125

P-8					Total Depth:	38	inches
Time	Test Interval Time	Test Refill	Water Level Initial/Start	Water Level End/Final	Incremental Water Level Change	Percolation Rate	Percolation Rate
	(minutes)	Depth /Inches	Depth /Inches	Depth /Inches	(inches)	inches/minute	inches/hour
9:03:00	Initial	None	13.69	initial	-		
9:13:00	10	14	13.69	18.63	4.94	0.494	29.625
9:23:00	10	13.9375	14.00	17.69	3.69	0.369	22.125
9:33:00	10	13.6875	13.94	17.94	4.00	0.400	24.000
9:43:00	10	13.5625	13.69	17.44	3.75	0.375	22.500
9:53:00	10	13.875	13.56	17.38	3.81	0.381	22.875
10:03:00	10	NO	13.88	17.69	3.81	0.381	22.875
P-9					Total Depth:	13	inches
Time	Test Interval Time	Test Refill	Water Level Initial/Start	Water Level End/Final	Incremental Water Level Change	Percolation Rate	Percolation Rate
	(minutes)	Depth /Inches	Depth /Inches	Depth /Inches	(inches)	inches/minute	inches/hour
11:20:00	Initial	None	1.38	initial	-	-	
11:50:00	30	1.75	1.38	5.13	3.75	0.125	7.500
12:20:00	30	1.5625	1.75	5.31	3.56	0.119	7.125
12:50:00	30	1.5625	1.56	5.25	3.69	0.123	7.375
13:20:00	30	1.5625	1.56	5.13	3.56	0.119	7.125
13:50:00 14:20:00	30 30	1.625	1.56	5.38	3.81	0.127	7.625
14:20:00	30 30	1.3125 1.5625	1.63 1.31	5.19 5.00	3.56 3.69	0.119 0.123	7.125 7.375
15:20:00	30 30	1.875	1.56	5.00	3.63	0.123	7.373 7.250
15:50:00	30	1.3125	1.88	5.38	3.50	0.121	7.230
16:20:00	30	1.25	1.31	4.88	3.56	0.117	7.125
16:50:00	30	1.4375	1.25	4.81	3.56	0.119	7.125
17:20:00	30	NO	1.44	5.00	3.56	0.119	7.125
P-10					Total Depth:	36.5	inches
P-10	Tost				•	36.5	inches
	Test	Tost Rafill	Water Level	Water Level	Incremental	36.5 Percolation	Percolation
P-10 Time	Test Interval Time	Test Refill	Water Level Initial/Start	Water Level End/Final	•		
	Interval	Test Refill Depth /Inches			Incremental Water Level	Percolation	Percolation
	Interval Time		Initial/Start	End/Final	Incremental Water Level Change	Percolation Rate	Percolation Rate
Time	Interval Time (minutes)	Depth /Inches	Initial/Start Depth/Inches	End/Final Depth /Inches	Incremental Water Level Change	Percolation Rate	Percolation Rate
Time 9:05:00	Interval Time (minutes) Initial	Depth /Inches	Initial/Start Depth/Inches 14.81	End/Final Depth/Inches initial	Incremental Water Level Change (inches)	Percolation Rate inches/minute	Percolation Rate inches/hour
9:05:00 9:15:00	Interval Time (minutes) Initial 10	None	Depth /Inches 14.81 14.81	Depth /Inches initial 20.00	Incremental Water Level Change (inches) - 5.188	Percolation Rate inches/minute 0.519	Percolation Rate inches/hour
9:05:00 9:15:00 9:25:00	Interval Time (minutes) Initial 10 10	None 14.375 14.1875	Depth /Inches 14.81 14.81 14.38	Depth /Inches initial 20.00 18.25	Incremental Water Level Change (inches) - 5.188 3.875	Percolation Rate inches/minute 0.519 0.388	Percolation Rate inches/hour 31.125 23.250
9:05:00 9:15:00 9:25:00 9:35:00 9:45:00 9:55:00	Interval Time (minutes) Initial 10 10 10 10 10	None 14.375 14.1875 14.0625 14.125 13.75	Depth /Inches 14.81 14.81 14.38 14.19 14.06 14.13	Depth /Inches initial 20.00 18.25 17.50 17.56 17.63	Incremental Water Level Change (inches) - 5.188 3.875 3.313 3.500 3.500	Percolation Rate inches/minute 0.519 0.388 0.331 0.350 0.350	Percolation Rate inches/hour 31.125 23.250 19.875 21.000 21.000
9:05:00 9:15:00 9:25:00 9:35:00 9:45:00 9:55:00 10:05:00	Interval Time (minutes) Initial 10 10 10 10	None 14.375 14.1875 14.0625 14.125	Depth /Inches 14.81 14.81 14.38 14.19 14.06	Depth /Inches initial 20.00 18.25 17.50 17.56	Incremental Water Level Change (inches) - 5.188 3.875 3.313 3.500 3.500 3.500	Percolation Rate inches/minute 0.519 0.388 0.331 0.350 0.350 0.350	Percolation Rate inches/hour 31.125 23.250 19.875 21.000 21.000 21.000
9:05:00 9:15:00 9:25:00 9:35:00 9:45:00 9:55:00	Interval Time (minutes) Initial 10 10 10 10 10	None 14.375 14.1875 14.0625 14.125 13.75	Depth /Inches 14.81 14.81 14.38 14.19 14.06 14.13	Depth /Inches initial 20.00 18.25 17.50 17.56 17.63	Incremental Water Level Change (inches) - 5.188 3.875 3.313 3.500 3.500	Percolation Rate inches/minute 0.519 0.388 0.331 0.350 0.350 0.350	Percolation Rate inches/hour 31.125 23.250 19.875 21.000 21.000
9:05:00 9:15:00 9:25:00 9:35:00 9:45:00 9:55:00 10:05:00	Interval Time (minutes) Initial 10 10 10 10 10	None 14.375 14.1875 14.0625 14.125 13.75	Depth /Inches 14.81 14.81 14.38 14.19 14.06 14.13	Depth /Inches initial 20.00 18.25 17.50 17.56 17.63	Incremental Water Level Change (inches) - 5.188 3.875 3.313 3.500 3.500 3.500	Percolation Rate inches/minute 0.519 0.388 0.331 0.350 0.350 0.350	Percolation Rate inches/hour 31.125 23.250 19.875 21.000 21.000 21.000
9:05:00 9:15:00 9:25:00 9:35:00 9:45:00 9:55:00 10:05:00 P-11	Interval Time (minutes) Initial 10 10 10 10 10 Test Interval	None 14.375 14.1875 14.0625 14.125 13.75 NO	Depth /Inches 14.81 14.81 14.38 14.19 14.06 14.13 13.75 Water Level	End/Final Depth /Inches initial 20.00 18.25 17.50 17.56 17.63 17.25 Water Level	Incremental Water Level Change (inches) - 5.188 3.875 3.313 3.500 3.500 3.500 Total Depth: Incremental Water Level	Percolation Rate inches/minute 0.519 0.388 0.331 0.350 0.350 0.350 T8.5	Percolation Rate inches/hour 31.125 23.250 19.875 21.000 21.000 21.000 inches Percolation
9:05:00 9:15:00 9:25:00 9:35:00 9:45:00 9:55:00 10:05:00 P-11 Time	Interval Time (minutes) Initial 10 10 10 10 10 Test Interval Time (minutes) Initial	Depth /Inches None 14.375 14.1875 14.0625 14.125 13.75 NO Test Refill Depth /Inches None	Initial/Start Depth /Inches 14.81 14.81 14.38 14.19 14.06 14.13 13.75 Water Level Initial/Start Depth /Inches 2.50	End/Final Depth /Inches initial 20.00 18.25 17.50 17.56 17.63 17.25 Water Level End/Final Depth /Inches initial	Incremental Water Level Change (inches) - 5.188 3.875 3.313 3.500 3.500 3.500 Total Depth: Incremental Water Level Change (inches) -	Percolation Rate inches/minute 0.519 0.388 0.331 0.350 0.350 18.5 Percolation Rate inches/minute	Percolation Rate inches/hour 31.125 23.250 19.875 21.000 21.000 21.000 inches Percolation Rate inches/hour
9:05:00 9:15:00 9:25:00 9:35:00 9:45:00 9:55:00 10:05:00 P-11 Time 11:25:00 11:55:00	Interval Time (minutes) Initial 10 10 10 10 10 Test Interval Time (minutes) Initial 30	Depth /Inches None 14.375 14.1875 14.0625 14.125 13.75 NO Test Refill Depth /Inches None 2.875	Depth /Inches 14.81 14.81 14.38 14.19 14.06 14.13 13.75 Water Level Initial/Start Depth /Inches 2.50 2.50	End/Final Depth /Inches initial 20.00 18.25 17.50 17.56 17.63 17.25 Water Level End/Final Depth /Inches initial 7.31	Incremental Water Level Change (inches) - 5.188 3.875 3.313 3.500 3.500 3.500 Total Depth: Incremental Water Level Change (inches) - 4.81	Percolation Rate inches/minute 0.519 0.388 0.331 0.350 0.350 0.350 T8.5 Percolation Rate inches/minute	Percolation Rate inches/hour 31.125 23.250 19.875 21.000 21.000 21.000 inches Percolation Rate inches/hour 9.625
9:05:00 9:15:00 9:25:00 9:35:00 9:45:00 9:55:00 10:05:00 P-11 Time 11:25:00 11:55:00 12:25:00	Interval Time (minutes) Initial 10 10 10 10 10 Test Interval Time (minutes) Initial 30 30	Depth /Inches None 14.375 14.1875 14.0625 14.125 13.75 NO Test Refill Depth /Inches None 2.875 2.9375	Depth /Inches 14.81 14.81 14.38 14.19 14.06 14.13 13.75 Water Level Initial/Start Depth /Inches 2.50 2.50 2.88	End/Final Depth /Inches initial 20.00 18.25 17.50 17.56 17.63 17.25 Water Level End/Final Depth /Inches initial 7.31 7.25	Incremental Water Level Change (inches) - 5.188 3.875 3.313 3.500 3.500 3.500 Total Depth: Incremental Water Level Change (inches) - 4.81 4.38	Percolation Rate inches/minute 0.519 0.388 0.331 0.350 0.350 18.5 Percolation Rate inches/minute 0.160 0.146	Percolation Rate inches/hour 31.125 23.250 19.875 21.000 21.000 21.000 inches Percolation Rate inches/hour 9.625 8.750
9:05:00 9:15:00 9:25:00 9:35:00 9:45:00 9:55:00 10:05:00 P-11 Time 11:25:00 11:55:00 12:25:00 12:55:00	Interval Time (minutes) Initial 10 10 10 10 10 10 Test Interval Time (minutes) Initial 30 30 30	Depth /Inches None 14.375 14.1875 14.0625 14.125 13.75 NO Test Refill Depth /Inches None 2.875 2.9375 2.8125	Initial/Start Depth /Inches 14.81 14.81 14.38 14.19 14.06 14.13 13.75 Water Level Initial/Start Depth /Inches 2.50 2.50 2.88 2.94	End/Final Depth /Inches initial 20.00 18.25 17.50 17.56 17.63 17.25 Water Level End/Final Depth /Inches initial 7.31 7.25 7.75	Incremental Water Level Change (inches) - 5.188 3.875 3.313 3.500 3.500 3.500 Total Depth: Incremental Water Level Change (inches) - 4.81 4.38 4.81	Percolation Rate 0.519 0.388 0.331 0.350 0.350 0.350 18.5 Percolation Rate inches/minute 0.160 0.146 0.160	Percolation Rate inches/hour 31.125 23.250 19.875 21.000 21.000 21.000 inches Percolation Rate inches/hour 9.625 8.750 9.625
9:05:00 9:15:00 9:25:00 9:35:00 9:45:00 9:55:00 10:05:00 P-11 Time 11:25:00 11:55:00 12:25:00 13:25:00	Interval Time (minutes) Initial 10 10 10 10 10 10 Test Interval Time (minutes) Initial 30 30 30 30	Depth /Inches None 14.375 14.1875 14.0625 14.125 13.75 NO Test Refill Depth /Inches None 2.875 2.9375 2.8125 2.625	Depth /Inches 14.81 14.81 14.38 14.19 14.06 14.13 13.75 Water Level Initial/Start Depth /Inches 2.50 2.50 2.88 2.94 2.81	End/Final Depth /Inches initial 20.00 18.25 17.50 17.56 17.63 17.25 Water Level End/Final Depth /Inches initial 7.31 7.25 7.75 7.13	Incremental Water Level Change (inches) - 5.188 3.875 3.313 3.500 3.500 Total Depth: Incremental Water Level Change (inches) - 4.81 4.38 4.81 4.31	Percolation Rate inches/minute 0.519 0.388 0.331 0.350 0.350 18.5 Percolation Rate inches/minute 0.160 0.146 0.160 0.144	Percolation Rate inches/hour 31.125 23.250 19.875 21.000 21.000 21.000 inches Percolation Rate inches/hour 9.625 8.750 9.625 8.625
9:05:00 9:15:00 9:25:00 9:35:00 9:45:00 9:55:00 10:05:00 P-11 Time 11:25:00 11:55:00 12:25:00 13:25:00 13:55:00	Interval Time (minutes) Initial 10 10 10 10 10 10 Test Interval Time (minutes) Initial 30 30 30 30 30 30	Depth /Inches None 14.375 14.1875 14.0625 14.125 13.75 NO Test Refill Depth /Inches None 2.875 2.9375 2.8125 2.625 2.125	Depth /Inches 14.81 14.81 14.38 14.19 14.06 14.13 13.75 Water Level Initial/Start Depth /Inches 2.50 2.50 2.88 2.94 2.81 2.63	End/Final Depth /Inches initial 20.00 18.25 17.50 17.56 17.63 17.25 Water Level End/Final Depth /Inches initial 7.31 7.25 7.75 7.13 7.38	Incremental Water Level Change (inches) - 5.188 3.875 3.313 3.500 3.500 3.500 Total Depth: Incremental Water Level Change (inches) - 4.81 4.38 4.81 4.31 4.75	Percolation Rate inches/minute 0.519 0.388 0.331 0.350 0.350 18.5 Percolation Rate inches/minute 0.160 0.146 0.160 0.144 0.158	Percolation Rate inches/hour 31.125 23.250 19.875 21.000 21.000 21.000 inches Percolation Rate inches/hour 9.625 8.750 9.625 8.625 9.500
9:05:00 9:15:00 9:25:00 9:35:00 9:45:00 9:55:00 10:05:00 P-11 Time 11:25:00 11:55:00 12:25:00 12:55:00 13:55:00 14:25:00	Interval Time (minutes) Initial 10 10 10 10 10 10 Test Interval Time (minutes) Initial 30 30 30 30 30 30 30	Depth /Inches None 14.375 14.1875 14.0625 14.125 13.75 NO Test Refill Depth /Inches None 2.875 2.9375 2.8125 2.625 2.125 2.625	Depth /Inches 14.81 14.81 14.38 14.19 14.06 14.13 13.75 Water Level Initial/Start Depth /Inches 2.50 2.50 2.88 2.94 2.81 2.63 2.13	End/Final Depth /Inches initial 20.00 18.25 17.50 17.56 17.63 17.25 Water Level End/Final Depth /Inches initial 7.31 7.25 7.75 7.13 7.38 6.63	Incremental Water Level Change (inches) - 5.188 3.875 3.313 3.500 3.500 Total Depth: Incremental Water Level Change (inches) - 4.81 4.38 4.81 4.31 4.75 4.50	Percolation Rate inches/minute 0.519 0.388 0.331 0.350 0.350 0.350 18.5 Percolation Rate inches/minute 0.160 0.146 0.160 0.144 0.158 0.150	Percolation Rate inches/hour 31.125 23.250 19.875 21.000 21.000 21.000 inches Percolation Rate inches/hour 9.625 8.750 9.625 8.625 9.500 9.000
9:05:00 9:15:00 9:25:00 9:35:00 9:45:00 9:55:00 10:05:00 P-11 Time 11:25:00 11:55:00 12:25:00 12:25:00 13:25:00 14:25:00 14:55:00	Interval Time (minutes) Initial 10 10 10 10 10 10 Test Interval Time (minutes) Initial 30 30 30 30 30 30 30 30 30	Depth /Inches None 14.375 14.1875 14.0625 14.125 13.75 NO Test Refill Depth /Inches None 2.875 2.9375 2.8125 2.625 2.125 2.625 2.875	Depth /Inches 14.81 14.81 14.38 14.19 14.06 14.13 13.75 Water Level Initial/Start Depth /Inches 2.50 2.50 2.88 2.94 2.81 2.63 2.13 2.63	End/Final Depth /Inches initial 20.00 18.25 17.50 17.56 17.63 17.25 Water Level End/Final Depth /Inches initial 7.31 7.25 7.75 7.13 7.38 6.63 7.13	Incremental Water Level Change (inches) - 5.188 3.875 3.313 3.500 3.500 Total Depth: Incremental Water Level Change (inches) - 4.81 4.38 4.81 4.31 4.75 4.50 4.50	Percolation Rate inches/minute 0.519 0.388 0.331 0.350 0.350 18.5 Percolation Rate inches/minute 0.160 0.146 0.160 0.144 0.158 0.150 0.150	Percolation Rate inches/hour 31.125 23.250 19.875 21.000 21.000 21.000 inches Percolation Rate inches/hour 9.625 8.750 9.625 8.625 9.500 9.000 9.000
9:05:00 9:15:00 9:25:00 9:35:00 9:45:00 9:55:00 10:05:00 P-11 Time 11:25:00 11:55:00 12:25:00 12:25:00 13:25:00 14:25:00 14:55:00 15:25:00	Interval Time (minutes) Initial 10 10 10 10 10 10 Test Interval Time (minutes) Initial 30 30 30 30 30 30 30 30 30 30 30	Depth /Inches None 14.375 14.1875 14.0625 14.125 13.75 NO Test Refill Depth /Inches None 2.875 2.9375 2.8125 2.625 2.125 2.625 2.875 2.625	Depth /Inches 14.81 14.81 14.38 14.19 14.06 14.13 13.75 Water Level Initial/Start Depth /Inches 2.50 2.50 2.88 2.94 2.81 2.63 2.13 2.63 2.88	End/Final Depth /Inches initial 20.00 18.25 17.50 17.56 17.63 17.25 Water Level End/Final Depth /Inches initial 7.31 7.25 7.75 7.13 7.38 6.63 7.13 7.44	Incremental Water Level Change (inches) - 5.188 3.875 3.313 3.500 3.500 Total Depth: Incremental Water Level Change (inches) - 4.81 4.38 4.81 4.31 4.75 4.50 4.50 4.50 4.56	Percolation Rate inches/minute	Percolation Rate inches/hour 31.125 23.250 19.875 21.000 21.000 21.000 inches Percolation Rate inches/hour 9.625 8.750 9.625 8.625 9.500 9.000 9.000 9.000 9.125
9:05:00 9:15:00 9:25:00 9:35:00 9:45:00 9:55:00 10:05:00 P-11 Time 11:25:00 11:55:00 12:25:00 12:25:00 13:55:00 14:25:00 15:25:00 15:25:00	Interval Time (minutes) Initial 10 10 10 10 10 10 Test Interval Time (minutes) Initial 30 30 30 30 30 30 30 30 30 30 30 30 30	Depth /Inches None 14.375 14.1875 14.0625 14.125 13.75 NO Test Refill Depth /Inches None 2.875 2.9375 2.8125 2.625 2.125 2.625 2.125 2.625 2.875 2.625 2.9375	Depth /Inches 14.81 14.81 14.38 14.19 14.06 14.13 13.75 Water Level Initial/Start Depth /Inches 2.50 2.50 2.88 2.94 2.81 2.63 2.13 2.63 2.88 2.63	End/Final Depth /Inches initial 20.00 18.25 17.50 17.56 17.63 17.25 Water Level End/Final Depth /Inches initial 7.31 7.25 7.75 7.13 7.38 6.63 7.13 7.44 7.06	Incremental Water Level Change (inches) - 5.188 3.875 3.313 3.500 3.500 Total Depth: Incremental Water Level Change (inches) - 4.81 4.38 4.81 4.31 4.75 4.50 4.50 4.50 4.56 4.44	Percolation Rate 0.519 0.388 0.331 0.350 0.350 0.350 18.5 Percolation Rate inches/minute 0.160 0.146 0.160 0.144 0.158 0.150 0.150 0.152 0.148	Percolation Rate inches/hour 31.125 23.250 19.875 21.000 21.000 21.000 inches Percolation Rate inches/hour 9.625 8.750 9.625 8.625 9.500 9.000 9.000 9.000 9.125 8.875
9:05:00 9:15:00 9:25:00 9:35:00 9:45:00 9:55:00 10:05:00 P-11 Time 11:25:00 11:55:00 12:25:00 13:25:00 13:25:00 14:25:00 14:55:00 15:25:00 16:25:00	Interval Time (minutes) Initial 10 10 10 10 10 10 Test Interval Time (minutes) Initial 30 30 30 30 30 30 30 30 30 30 30 30 30	Depth /Inches None 14.375 14.1875 14.0625 14.125 13.75 NO Test Refill Depth /Inches None 2.875 2.9375 2.8125 2.625 2.125 2.625 2.875 2.625 2.9375 2.9375 2.125	Depth /Inches 14.81 14.81 14.38 14.19 14.06 14.13 13.75 Water Level Initial/Start Depth /Inches 2.50 2.50 2.88 2.94 2.81 2.63 2.13 2.63 2.88 2.63 2.94	End/Final Depth /Inches initial 20.00 18.25 17.50 17.56 17.63 17.25 Water Level End/Final Depth /Inches initial 7.31 7.25 7.75 7.13 7.38 6.63 7.13 7.44 7.06 7.44	Incremental Water Level Change (inches) - 5.188 3.875 3.313 3.500 3.500 3.500 Total Depth: Incremental Water Level Change (inches) - 4.81 4.38 4.81 4.31 4.75 4.50 4.50 4.50 4.56 4.44 4.50	Percolation Rate inches/minute 0.519 0.388 0.331 0.350 0.350 18.5 Percolation Rate inches/minute 0.160 0.146 0.160 0.144 0.158 0.150 0.150 0.152 0.148 0.150	Percolation Rate inches/hour 31.125 23.250 19.875 21.000 21.000 inches Percolation Rate inches/hour 9.625 8.750 9.625 8.625 9.500 9.000 9.000 9.000 9.125 8.875 9.000
9:05:00 9:15:00 9:25:00 9:35:00 9:45:00 9:55:00 10:05:00 P-11 Time 11:25:00 11:55:00 12:25:00 13:25:00 14:25:00 14:25:00 15:25:00 15:25:00	Interval Time (minutes) Initial 10 10 10 10 10 10 Test Interval Time (minutes) Initial 30 30 30 30 30 30 30 30 30 30 30 30 30	Depth /Inches None 14.375 14.1875 14.0625 14.125 13.75 NO Test Refill Depth /Inches None 2.875 2.9375 2.8125 2.625 2.125 2.625 2.125 2.625 2.875 2.625 2.9375	Depth /Inches 14.81 14.81 14.38 14.19 14.06 14.13 13.75 Water Level Initial/Start Depth /Inches 2.50 2.50 2.88 2.94 2.81 2.63 2.13 2.63 2.88 2.63	End/Final Depth /Inches initial 20.00 18.25 17.50 17.56 17.63 17.25 Water Level End/Final Depth /Inches initial 7.31 7.25 7.75 7.13 7.38 6.63 7.13 7.44 7.06	Incremental Water Level Change (inches) - 5.188 3.875 3.313 3.500 3.500 Total Depth: Incremental Water Level Change (inches) - 4.81 4.38 4.81 4.31 4.75 4.50 4.50 4.50 4.56 4.44	Percolation Rate 0.519 0.388 0.331 0.350 0.350 0.350 18.5 Percolation Rate inches/minute 0.160 0.146 0.160 0.144 0.158 0.150 0.150 0.152 0.148	Percolation Rate inches/hour 31.125 23.250 19.875 21.000 21.000 21.000 inches Percolation Rate inches/hour 9.625 8.750 9.625 8.625 9.500 9.000 9.000 9.000 9.125 8.875

P-12					Total Depth:	36	inches
Time	Test Interval Time	Test Refill	Water Level Initial/Start	Water Level End/Final	Incremental Water Level Change	Percolation Rate	Percolation Rate
	(minutes)	Depth /Inches	Depth /Inches	Depth /Inches	(inches)	inches/minute	inches/hour
9:07:00	Initial	None	14.75	initial	-		
9:17:00	10	14.9375	14.75	19.69	4.94	0.494	29.625
9:27:00	10	14.125	14.94	18.56	3.63	0.363	21.750
9:37:00	10	14.25	14.13	17.50	3.38	0.338	20.250
9:47:00	10	13.6875	14.25	17.75	3.50	0.350	21.000
9:57:00	10	14	13.69	17.25	3.56	0.356	21.375
10:07:00	10	NO	14.00	17.56	3.56	0.356	21.375

Percolation Rate Conversion P-1			Percolation Rate Conversion P-2		
		Inches			Inches
Time Interval,	Δt =	30	Time Interval,	∆t =	10
Final Depth of Water,	Df =	4.50	Final Depth of Water,	Df=	15.44
Test Hole Radius,	r =	3	Test Hole Radius,	r =	3
Initial Depth to Water,	Do =	2.31	Initial Depth to Water,	Do =	13.06
Total Depth of Test Hole,	Dτ =	13	Total Depth of Test Hole,	DT =	36
Ho = 10.6875 in			H₀ = 22.9375 in		
Hf = 8.5 in			Hf = 20.5625 in		
$\Delta H = \Delta D = 2.1875 \text{ in}$			$\Delta H = \Delta D = 2.375 \text{ in}$		
Havg = 9.59375 in			Havg = 21.75 in		
lt = 0.592 in/hr			lt = 0.919 in/hr		
Percolation Rate (Conversion P	- 3	Percolation Rate	Conversio	n P-4
		Inches			Inches
Time Interval,	Δt =	30	Time Interval,	∆t =	10
Final Depth of Water,	Df =	5.38	Final Depth of Water,	Df =	15.31
Test Hole Radius,	r =	3	Test Hole Radius,	r =	3
Initial Depth to Water,	Do =	2.69	Initial Depth to Water,	D ₀ =	13.13
Total Depth of Test Hole,	Dτ =	19.5	Total Depth of Test Hole,	Dτ =	36
Ho = 16.8125 in			H _o = 22.875 in		
Hf = 14.125 in			Hf = 20.6875 in		
$\Delta H = \Delta D = 2.6875 \text{ in}$			$\Delta H = \Delta D = 2.1875 \text{ in}$		
Havg = 15.46875 in			Havg = 21.78125 in		
It = 0.475 in/hr			It = 0.846 in/hr		

Percolation Rate Conversion P-5			Percolation Rate C	Conversion	P-6
		Inches			Inches
Time Interval,	∆t =	30	Time Interval,	∆t =	10
Final Depth of Water,	Df =	3.06	Final Depth of Water,	Df =	15.50
Test Hole Radius,	r =	3	Test Hole Radius,	r =	3
Initial Depth to Water,	Do =	1.44	Initial Depth to Water,	Do =	12.50
Total Depth of Test Hole,	Dτ =	12	Total Depth of Test Hole,	DT =	36
Ho = 10.5625 in			H₀ = 23.5 in		
Hf = 8.9375 in			Hf = 20.5 in		
$\Delta H = \Delta D = 1.625 \text{ in}$			$\Delta H = \Delta D = 3 \text{ in}$		
Havg = 9.75 in			Havg = 22 in		
It = 0.433 in/hr			It = 1.149 in/hr		
Percolation Rate Co	onversion P	-7	Percolation Rate C	Conversion	P-8
		Inches			Inches
Time Interval,	∆t =	30	Time Interval,	∆t =	10
Final Depth of Water,	Df =	5.25	Final Depth of Water,	Df =	17.69
Test Hole Radius,	r =	3	Test Hole Radius,	r =	3
Initial Depth to Water,	Do =	2.69	Initial Depth to Water,	D0 =	13.88
Total Depth of Test Hole,	DT =	18.5	Total Depth of Test Hole,	Dτ =	38
Ho = 15.8125 in			H _o = 24.125 in		
Hf = 13.25 in			Hf = 20.3125 in		
$\Delta H = \Delta D = 2.5625 \text{ in}$			$\Delta H = \Delta D = 3.8125 \text{ in}$		
Havg = 14.53125 in			Havg = 22.21875 in		
It = 0.480 in/hr			It = 1.447 in/hr		

Percolation Rate C	Conversion P	-9	Percolation Rate C	Conversion	P-10
		Inches			Inches
Time Interval,	∆t =	30	Time Interval,	∆t =	10
Final Depth of Water,	Df =	5.00	Final Depth of Water,	Df =	17.25
Test Hole Radius,	r =	3	Test Hole Radius,	r =	3
Initial Depth to Water,	Do =	1.44	Initial Depth to Water,	Do =	13.75
Total Depth of Test Hole,	DT =	13	Total Depth of Test Hole,	Dτ =	36.5
H _o = 11.5625 in			H _o = 22.75 in		
H _f = 8 in			Hf = 19.25 in		
$\Delta H = \Delta D = 3.5625 \text{ in}$			$\Delta H = \Delta D = 3.5 \text{ in}$		
Havg = 9.78125 in			Havg = 21 in		
It = 0.947 in/hr			lt = 1.400 in/hr		
Percolation Rate Co	onversion P-	-11	Percolation Rate C	Conversion	P-12
Percolation Rate Co	onversion P-		Percolation Rate C	Conversion	
	onversion P- Δt =	Inches		Conversion Δt =	Inches
Time Interval,		Inches 30	Time Interval,		
	Δt =	30 7.13		Δt =	Inches 10
Time Interval, Final Depth of Water,	Δt = Df =	30 7.13 3	Time Interval, Final Depth of Water,	Δt = Df =	Inches 10 17.56
Time Interval, Final Depth of Water, Test Hole Radius,	Δt = Df = r =	30 7.13 3 2.63	Time Interval, Final Depth of Water, Test Hole Radius,	Δt = Df = r =	10 17.56 3
Time Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water,	Δt = Df = r = D0 =	30 7.13 3 2.63	Time Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water,	Δt = Df = r = D0 =	10 17.56 3 14.00
Time Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water, Total Depth of Test Hole,	Δt = Df = r = D0 =	30 7.13 3 2.63	Time Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water, Total Depth of Test Hole,	Δt = Df = r = D0 =	10 17.56 3 14.00
Time Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water, Total Depth of Test Hole, Ho = 15.875 in	Δt = Df = r = D0 =	30 7.13 3 2.63	Time Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water, Total Depth of Test Hole, Ho = 22 in	Δt = Df = r = D0 =	10 17.56 3 14.00
Time Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water, Total Depth of Test Hole, Ho = 15.875 in Hf = 11.375 in	Δt = Df = r = D0 =	30 7.13 3 2.63	Time Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water, Total Depth of Test Hole, Ho = 22 in Hf = 18.4375 in	Δt = Df = r = D0 =	10 17.56 3 14.00
Time Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water, Total Depth of Test Hole, $H_0 = 15.875 \text{ in}$ $H_f = 11.375 \text{ in}$ $\Delta H = \Delta D = 4.5 \text{ in}$	Δt = Df = r = D0 =	30 7.13 3 2.63	Time Interval, Final Depth of Water, Test Hole Radius, Initial Depth to Water, Total Depth of Test Hole, $H_0 = 22 \text{ in}$ $H_f = 18.4375 \text{ in}$ $\Delta H = \Delta D = 3.5625 \text{ in}$	Δt = Df = r = D0 =	10 17.56 3 14.00

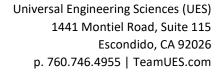
ir .								
	TABLE							
	RESULTS OF PERCOLATION TESTING WITH 2.0 FACTOR OF SAFETY APPLIED							
Test	Test Depth	Method	Soil Type*	Percolation Rate	Infiltration Rate	Infiltration Rate with FOS of 2 Applied		
Location	(inches)	Borehole	(USCS Classification)	(inches per hour)	(inches per hour)	(inches per hour)		
P-1	13.0	I	SM/SC (Qa)	4.375	0.592	0.296		
P-2	36.0	Sandy	SM (Qa)	14.250	0.919	0.460		
P-3	19.5	I	SM/SC (Qa)	5.375	0.475	0.238		
P-4	36.0	Sandy	SM (Qa)	13.125	0.846	0.423		
P-5	12.0	I	SM/SC (Qa)	3.250	0.433	0.217		
P-6	36.0	Sandy	SM (Qa)	18.000	1.149	0.574		
P-7	18.5	I	SM/SC (Qa)	5.125	0.480	0.240		
P-8	38.0	Sandy	SM (Qa)	22.875	1.447	0.723		
P-9	13.0	I	SM/SC (Qa)	7.125	0.947	0.474		
P-10	36.5	Sandy	SM (Qa)	21.000	1.400	0.700		
P-11	18.5	I	SM/SC (Qa)	9.000	0.893	0.446		

21.375

1.476

0.738

SM (Qa)


P-12

36.0

Sandy

APPENDIX F

LIMITED ENVIRONMENTAL SITE ASSESSMENT

APPENDIX F ENVIRONMENTAL RECORDS REVIEW

Regulatory Database Review

UES reviewed federal, state, and local environmental databases for information regarding documented and suspected releases of regulated materials at the subject property and vicinity. The databases reviewed includes Environmental Data Resources (EDR), a commercial environmental review resource, GeoTracker, a publicly available environmental database maintained by the State Water Resource Control Board (SWRCB), and the CalEPA Regulated Site Portal (nSITE). The following is a summary of the findings.

EDR Radius Report

The EDR Radius Report maps sites on regulatory databases within ASTM E1527-21-recommended distances to the subject property. The radius map report did not find any open cases within 0.5 miles of the subject property. The Radius Report is included as attachment G-1 for further review.

GeoTracker Database

GeoTracker is the California State Water Resources Control Boards' data management system for sites that impact, or have the potential to impact, water quality in California. GeoTracker includes soil-, soil vapor-, and groundwater-impacted properties. GeoTracker contains records for sites that require assessment and potential cleanup, such as Leaking Underground Storage Tank (LUST) Sites, Department of Defense Sites, and Cleanup Program Sites. No open cases were found for the subject property or the properties in the vicinity within 0.5 miles of the subject property.

CalEPA Regulated Site Portal (nSITE)

According to CalEPA, "The CalEPA Regulated Site Portal combines data about environmentally regulated facilities and sites throughout California into a single, searchable database and interactive map. Created to provide a more transparent, comprehensive view of regulated activities statewide, the portal includes data on hazardous waste and materials, state and federal cleanups, impacted ground and surface waters, and toxic releases." The subject property was not found on any regulatory databases. No open regulatory cases were found for the subject property or the properties in the vicinity within 0.5 miles of the subject property.

Jacumba Fire Station #43 Old High 80, Jacumba, CA 91934 Project No. 4830.2400004 Page 2

Historical Topographic Maps

Historical Topographic Maps were obtained by EDR for the years 2021, 2018, 2015, 2012, 1997, 1975, 1959, 1947, 1942, and 1939. General location of the subject property is shown on the topographic maps. The subject property appears at its current elevation of approximately 2800 feet above mean sea level (MSL) on maps dating to 1939. The topographic maps do not depict development of the subject property dating back to 1939. The historical topographic map report is included as attachment G-2 for further review.

City Directory Report

Environmental Data Resources, Inc.'s (EDR) City Directory Report is a screening tool designed to assist in evaluating potential environmental concerns on a target property resulting from past activities. EDR's City Directory Report includes a search and abstract of available city directory data. Business directories including city, cross reference, and telephone directories, were reviewed, if available, at approximately five-year intervals for the years spanning 1971 through current. The report compiles information gathered in the review by geocoding the latitude and longitude of properties identified and gathering information about properties within 660 feet of the target property. The EDR City Directory Report accesses a variety of business directory sources, including Cole Information and Haines Criss-Cross Directory. The City Directory Report did not find listings for the subject property. Listings for nearby properties were for residential properties. The City Directory Report is included as attachment G-3 for further review.

Aerial Photographs Review

Aerial photographs dated 2020, 2016, 2012, 2009, 2005, 2002, 1996, 1994, 1989, 1985, 1975, and 1953 were reviewed. The subject property and Old Highway 80 appear in their current configuration in aerial photographs dated back to 1953. The subject property appears to have contained agricultural activities intermittently in photographs back 1953. No roads or structures were observed on the subject property back to 1953. Residential development appears to the west of the subject property on the photograph dated 1953 with increasing housing density through 2020. Old Highway 80 is south of the subject property with vacant land further south. The US-Mexico International border is approximately 0.25 miles to the south. The adjacent property to the east and north appears to contain agricultural activities of which the subject property is a portion. The aerial photograph report is included as attachment G-4 for further review. The following table presents a summary of the reviewed information.

Jacumba Fire Station #43 Old High 80, Jacumba, CA 91934 Project No. 4830.2400004 Page 3

SUMMARY OBSERVATIONS OF AERIAL PHOTOGRAPHS					
Photo Dates	SUMMARY OBSERVATIONS				
	Subject Property	Subject Property Vicinity			
2020-1953	Subject property and Old Highway 80 appear similar to its current configuration as agricultural land.	Residential development to the west. Old Hwy 80 to the south with vacant land further south. US-Mexico border ~0.25 mile south. Agricultural land to the east and north.			

Sanborn Maps

A Certified Sanborn Map Report dated February 28, 2024, was provided by EDR. According to EDR, "the Sanborn Library is the largest, most complete collection of fire insurance maps. The collection includes maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow, and others." The subject property was not listed in the Sanborn library. The Certified Sanborn Map Report is included as attachment G-5 for further review.

ATTACHMENT F-1 EDR RADIUS REPORT

Jamucba Fire Station #43 Old Highway 80

Inquiry Number: 7580420.2s

February 28, 2024

Jacumba, CA 91934

The EDR Radius Map™ Report with GeoCheck®

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

TABLE OF CONTENTS

SECTION	PAGE
Executive Summary.	ES1
Overview Map.	2
Detail Map.	 3
Map Findings Summary	4
Map Findings.	
Orphan Summary.	
Government Records Searched/Data Currency Tracking	GR-1
GEOCHECK ADDENDUM	
Physical Setting Source Addendum	A-1
Physical Setting Source Summary	A-2
Physical Setting SSURGO Soil Map.	A-5
Physical Setting Source Map.	A-10
Physical Setting Source Map Findings.	A-12
Physical Setting Source Records Searched	PSGR-1

Thank you for your business.
Please contact EDR at 1-800-352-0050
with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, LLC. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. This Report is provided on an "AS IS", "AS AVAILABLE" basis. NO WARRANTY EXPRESS OR IMPLIED IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, LLC AND ITS SUBSIDIARIES, AFFILIATES AND THIRD PARTY SUPPLIERS DISCLAIM ALL WARRANTIES, OF ANY KIND OR NATURE, EXPRESS OR IMPLIED, ARISING OUT OF OR RELATED TO THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES REGARDING ACCURACY, QUALITY, CORRECTNESS, COMPLETENESS, COMPREHENSIVENESS, SUITABILITY, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, MISAPPROPRIATION, OR OTHERWISE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, LLC OR ITS SUBSIDIARIES, AFFILIATES OR THIRD PARTY SUPPLIERS BE LIABLE TO ANYONE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES OF ANY TYPE OR KIND (INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS, LOSS OF USE, OR LOSS OF DATA) INFORMATION PROVIDED IN THIS REPORT. Any analyses, estimates, ratings, environmental risk levels, or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only an assessment performed by a qualified environmental professional can provide findings, opinions or conclusions regarding the environmental risk or conditions in, on or at any property.

Copyright 2024 by Environmental Data Resources, LLC. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, LLC, or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, LLC or its affiliates. All other trademarks used herein are the property of their respective owners.

A search of available environmental records was conducted by Environmental Data Resources, Inc (EDR). The report was designed to assist parties seeking to meet the search requirements of EPA's Standards and Practices for All Appropriate Inquiries (40 CFR Part 312), the ASTM Standard Practice for Environmental Site Assessments (E1527 - 21), the ASTM Standard Practice for Environmental Site Assessments for Forestland or Rural Property (E2247 - 16), the ASTM Standard Practice for Limited Environmental Due Diligence: Transaction Screen Process (E1528 - 22) or custom requirements developed for the evaluation of environmental risk associated with a parcel of real estate.

TARGET PROPERTY INFORMATION

ADDRESS

OLD HIGHWAY 80 JACUMBA, CA 91934

COORDINATES

Latitude (North): 32.6181400 - 32° 37' 5.30" Longitude (West): 116.1822200 - 116° 10' 55.99"

Universal Tranverse Mercator: Zone 11 UTM X (Meters): 576723.8 UTM Y (Meters): 3609060.5

Elevation: 2801 ft. above sea level

USGS TOPOGRAPHIC MAP ASSOCIATED WITH TARGET PROPERTY

Target Property Map: 50004023 JACUMBA OE S, CA

Version Date: 2021

North Map: 50005569 JACUMBA, CA

Version Date: 2021

AERIAL PHOTOGRAPHY IN THIS REPORT

Portions of Photo from: 20200420, 20200415

Source: USDA

MAPPED SITES SUMMARY

Target Property Address: OLD HIGHWAY 80 JACUMBA, CA 91934

Click on Map ID to see full detail.

MAP				RELATIVE	DIST (ft. & mi.)
ID	SITE NAME	ADDRESS	DATABASE ACRONYMS	ELEVATION	DIRECTION
1	JACUMBA I & II	1000 OLD HY 80	SAN DIEGO CO. SAM, CPS-SLIC, CERS	Higher	1268, 0.240, ESE
A2	JOSEPHINE NOLTZ	44535 OLD HY 80	LUST, CERS	Higher	2052, 0.389, West
A3	NOLTA APN#660-040-11	44535 OLD HY 80	SAN DIEGO CO. SAM, UST, Cortese	Higher	2052, 0.389, West
A4	JOSEPHINE NOLTZ	44535 OLD HY 80	UST FINDER RELEASE	Higher	2052, 0.389, West
B5	E-M-H REALTY AND INV	RAILROAD ST & HWY 80	LUST, HIST CORTESE	Higher	2310, 0.438, West
B6	E HAEGELE-APN#660-11	OLD HY 80 & RAILROAD	SAN DIEGO CO. SAM	Higher	2314, 0.438, West
B7	E HAEGELE-APN#660-11	NONE OLD HY 80 & RAI	LUST, Cortese, CERS	Higher	2331, 0.441, West
B8	RODGERS AUTO REPAIR	44490 OLD HY 80	UST FINDER RELEASE	Higher	2399, 0.454, West
B9	RODGERS AUTO REPAIR	44490 OLD HY 80	LUST, HIST CORTESE	Higher	2399, 0.454, West
B10	RODGERS AUTO REPAIR	44490 OLD HY 80	LUST, SAN DIEGO CO. SAM, Cortese, SAN DIEGO CO	. Higher	2399, 0.454, West
B11	E HAEGELE-APN#660-11	44485 OLD HY 80	UST FINDER RELEASE	Higher	2413, 0.457, West
B12	E HAEGELE-APN#660-11	44485 OLD HY 80	LUST, Cortese, CERS	Higher	2413, 0.457, West
C13	JACUMBA AIRPORT- NAV		FUDS	Higher	4722, 0.894, East
C14	JACUMBA AIRPORT		ENVIROSTOR, EMI	Higher	4735, 0.897, East

TARGET PROPERTY SEARCH RESULTS

The target property was not listed in any of the databases searched by EDR.

DATABASES WITH NO MAPPED SITES

No mapped sites were found in EDR's search of available ("reasonably ascertainable ") government records either on the target property or within the search radius around the target property for the following databases:

STANDARD ENVIRONMENTAL RECORDS

Lists of Federal NPL (Superfund) sites					
NPL	National Priority List				
Proposed NPL	. Proposed National Priority List Sites				
NPL LIENS	- Federal Superfund Liens				
Lists of Federal Delisted NF	PL sites				
Delisted NPL	National Priority List Deletions				
Lists of Federal sites subject	ct to CERCLA removals and CERCLA orders				
FEDERAL FACILITY	Federal Facility Site Information listing				
SEMS	Superfund Enterprise Management System				
Lists of Federal CERCLA si	tes with NFRAP				
SEMS-ARCHIVE	Superfund Enterprise Management System Archive				
Lists of Federal RCRA facili	ities undergoing Corrective Action				
CORRACTS	. Corrective Action Report				
Lists of Federal RCRA TSD	facilities				
RCRA-TSDF	RCRA - Treatment, Storage and Disposal				
Lists of Federal RCRA gene	erators				
RCRA-LQG	RCRA - Large Quantity Generators				
	RCRA - Small Quantity Generators				
RCRA-VSQG	RCRA - Very Small Quantity Generators (Formerly Conditionally Exempt Small Quantity Generators)				
Federal institutional control	Is / engineering controls registries				
LUCIS	Land Use Control Information System				

US ENG CONTROLS...... Engineering Controls Sites List US INST CONTROLS...... Institutional Controls Sites List

Federal ERNS list

ERNS..... Emergency Response Notification System

Lists of state- and tribal (Superfund) equivalent sites

RESPONSE...... State Response Sites

Lists of state and tribal landfills and solid waste disposal facilities

SWF/LF..... Solid Waste Information System

Lists of state and tribal leaking storage tanks

INDIAN LUST..... Leaking Underground Storage Tanks on Indian Land

Lists of state and tribal registered storage tanks

FEMA UST...... Underground Storage Tank Listing

UST..... Active UST Facilities

AST...... Aboveground Petroleum Storage Tank Facilities

INDIAN UST...... Underground Storage Tanks on Indian Land

Lists of state and tribal voluntary cleanup sites

Lists of state and tribal brownfield sites

BROWNFIELDS..... Considered Brownfieds Sites Listing

ADDITIONAL ENVIRONMENTAL RECORDS

Local Brownfield lists

US BROWNFIELDS..... A Listing of Brownfields Sites

Local Lists of Landfill / Solid Waste Disposal Sites

WMUDS/SWAT...... Waste Management Unit Database

SWRCY..... Recycler Database

HAULERS...... Registered Waste Tire Haulers Listing

INDIAN ODI...... Report on the Status of Open Dumps on Indian Lands

ODI..... Open Dump Inventory

DEBRIS REGION 9..... Torres Martinez Reservation Illegal Dump Site Locations

IHS OPEN DUMPS..... Open Dumps on Indian Land

Local Lists of Hazardous waste / Contaminated Sites

US HIST CDL..... Delisted National Clandestine Laboratory Register

CDL...... Clandestine Drug Labs

San Diego Co. HMMD..... Hazardous Materials Management Division Database

Toxic Pits...... Toxic Pits Cleanup Act Sites

CERS HAZ WASTE...... California Environmental Reporting System Hazardous Waste

US CDL...... National Clandestine Laboratory Register

Local Lists of Registered Storage Tanks

SWEEPS UST..... SWEEPS UST Listing

HIST UST..... Hazardous Substance Storage Container Database

CA FID UST..... Facility Inventory Database

CERS TANKS...... California Environmental Reporting System (CERS) Tanks

Local Land Records

LIENS...... Environmental Liens Listing
LIENS 2...... CERCLA Lien Information
DEED....... Deed Restriction Listing

Records of Emergency Release Reports

HMIRS...... Hazardous Materials Information Reporting System CHMIRS..... California Hazardous Material Incident Report System

LDS...... Land Disposal Sites Listing
MCS..... Military Cleanup Sites Listing
SPILLS 90..... SPILLS 90 data from FirstSearch

Other Ascertainable Records

RCRA NonGen / NLR......... RCRA - Non Generators / No Longer Regulated

DOD...... Department of Defense Sites

SCRD DRYCLEANERS...... State Coalition for Remediation of Drycleaners Listing

US FIN ASSUR..... Financial Assurance Information

EPA WATCH LIST..... EPA WATCH LIST

2020 COR ACTION........... 2020 Corrective Action Program List

TSCA..... Toxic Substances Control Act

TRIS_____ Toxic Chemical Release Inventory System

ICIS...... Integrated Compliance Information System

Act)/TSCA (Toxic Substances Control Act)

MLTS...... Material Licensing Tracking System COAL ASH DOE...... Steam-Electric Plant Operation Data

COAL ASH EPA..... Coal Combustion Residues Surface Impoundments List

PCB TRANSFORMER...... PCB Transformer Registration Database

RADINFO...... Radiation Information Database

HIST FTTS..... FIFRA/TSCA Tracking System Administrative Case Listing

DOT OPS...... Incident and Accident Data

CONSENT..... Superfund (CERCLA) Consent Decrees

INDIAN RESERV..... Indian Reservations

FUSRAP..... Formerly Utilized Sites Remedial Action Program

UMTRA..... Uranium Mill Tailings Sites

LEAD SMELTERS..... Lead Smelter Sites

US AIRS..... Aerometric Information Retrieval System Facility Subsystem

US MINES..... Mines Master Index File

ABANDONED MINES..... Abandoned Mines

MINES MRDS..... Mineral Resources Data System

FINDS...... Facility Index System/Facility Registry System DOCKET HWC..... Hazardous Waste Compliance Docket Listing ECHO_____ Enforcement & Compliance History Information

UXO...... Unexploded Ordnance Sites

FUELS PROGRAM..... EPA Fuels Program Registered Listing

PFAS NPL..... Superfund Sites with PFAS Detections Information

PFAS FEDERAL SITES..... Federal Sites PFAS Information

PFAS TSCA..... PFAS Manufacture and Imports Information

PFAS TRIS. List of PFAS Added to the TRI
PFAS RCRA MANIFEST. PFAS Transfers Identified In the RCRA Database Listing

PFAS ATSDR..... PFAS Contamination Site Location Listing PFAS WQP..... Ambient Environmental Sampling for PFAS PFAS NPDES...... Clean Water Act Discharge Monitoring Information PFAS ECHO..... Facilities in Industries that May Be Handling PFAS Listing PFAS ECHO FIRE TRAINING Facilities in Industries that May Be Handling PFAS Listing PFAS PART 139 AIRPORT ___ All Certified Part 139 Airports PFAS Information Listing

AQUEOUS FOAM NRC..... Aqueous Foam Related Incidents Listing BIOSOLIDS......ICIS-NPDES Biosolids Facility Data PFAS Contamination Site Location Listing AQUEOUS FOAM..... Former Fire Training Facility Assessments Listing

CA BOND EXP. PLAN..... Bond Expenditure Plan

CHROME PLATING..... Chrome Plating Facilities Listing

EMI..... Emissions Inventory Data

ENF..... Enforcement Action Listing Financial Assurance Information Listing ICE...... Inspection, Compliance and Enforcement

HWP..... EnviroStor Permitted Facilities Listing

HWT...... Registered Hazardous Waste Transporter Database

HWTS..... Hazardous Waste Tracking System

HAZNET..... Facility and Manifest Data MINES Site Location Listing

MWMP..... Medical Waste Management Program Listing

NPDES...... NPDES Permits Listing

PEST LIC..... Pesticide Regulation Licenses Listing

PROC..... Certified Processors Database Notify 65...... Proposition 65 Records HAZMAT..... Hazardous Material Facilities

UIC......UIC Listing

UIC GEO...... UIC GEO (GEOTRACKER) WASTEWATER PITS..... Oil Wastewater Pits Listing WDS..... Waste Discharge System

WIP..... Well Investigation Program Case List MILITARY PRIV SITES...... MILITARY PRIV SITES (GEOTRACKER)

PROJECT (GEOTRACKER)

EDR HIGH RISK HISTORICAL RECORDS

EDR Exclusive Records

EDR MGP	EDR Proprietary Manufactured Gas Plants
	EDR Exclusive Historical Auto Stations
EDR Hist Cleaner	EDR Exclusive Historical Cleaners

EDR RECOVERED GOVERNMENT ARCHIVES

Exclusive Recovered Govt. Archives

RGA LF	Recovered Government Archive Solid Waste Facilities List
RGA LUST	Recovered Government Archive Leaking Underground Storage Tank

SURROUNDING SITES: SEARCH RESULTS

Surrounding sites were identified in the following databases.

Elevations have been determined from the USGS Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified. Sites with an elevation equal to or higher than the target property have been differentiated below from sites with an elevation lower than the target property.

Page numbers and map identification numbers refer to the EDR Radius Map report where detailed data on individual sites can be reviewed.

Sites listed in **bold italics** are in multiple databases.

Unmappable (orphan) sites are not considered in the foregoing analysis.

STANDARD ENVIRONMENTAL RECORDS

Lists of state- and tribal hazardous waste facilities

ENVIROSTOR: The Department of Toxic Substances Control's (DTSC's) Site Mitigation and Brownfields Reuse Program's (SMBRP's) EnviroStor database identifies sites that have known contamination or sites for which there may be reasons to investigate further. The database includes the following site types: Federal Superfund sites (National Priorities List (NPL)); State Response, including Military Facilities and State Superfund; Voluntary Cleanup; and School sites. EnviroStor provides similar information to the information that was available in CalSites, and provides additional site information, including, but not limited to, identification of formerly-contaminated properties that have been released for reuse, properties where

environmental deed restrictions have been recorded to prevent inappropriate land uses, and risk characterization information that is used to assess potential impacts to public health and the environment at contaminated sites.

A review of the ENVIROSTOR list, as provided by EDR, and dated 10/23/2023 has revealed that there is 1 ENVIROSTOR site within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
JACUMBA AIRPORT Status: Inactive - Needs Evaluation		E 1/2 - 1 (0.897 mi.)	C14	32
Facility Id: 80000921				

Lists of state and tribal leaking storage tanks

SAN DIEGO CO. SAM: The listing contains all underground tank release cases and projects pertaining to properties contaminated with hazardous substances that are actively under review by the Site Assessment and Mitigation Program.

A review of the SAN DIEGO CO. SAM list, as provided by EDR, and dated 03/23/2010 has revealed that there are 4 SAN DIEGO CO. SAM sites within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
JACUMBA I & II Case Number: H86936-001 Facility Status: Preliminary Assessment	1000 OLD HY 80	ESE 1/8 - 1/4 (0.240 mi.)	1	9
NOLTA APN#660-040-11 Case Number: H29835-001 Facility Status: Closed Case	44535 OLD HY 80	W 1/4 - 1/2 (0.389 mi.)	A3	12
E HAEGELE-APN#660-11 Case Number: H29832-001 Case Number: H29832-002 Facility Status: Remedial Investigation Facility Status: Closed Case	OLD HY 80 & RAILROAD	W 1/4 - 1/2 (0.438 mi.)	B6	16
RODGERS AUTO REPAIR Case Number: H29712-001 Facility Status: Closed Case	44490 OLD HY 80	W 1/4 - 1/2 (0.454 mi.)	B10	27

LUST: Leaking Underground Storage Tank (LUST) Sites included in GeoTracker. GeoTracker is the Water Boards data management system for sites that impact, or have the potential to impact, water quality in California, with emphasis on groundwater.

A review of the LUST list, as provided by EDR, has revealed that there are 6 LUST sites within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
JOSEPHINE NOLTZ	44535 OLD HY 80	W 1/4 - 1/2 (0.389 mi.)	A2	10
Database: LUST, Date of Governm	ent Version: 09/05/2023	,		
Status: Completed - Case Closed				
Global Id: T06019724295				
E-M-H REALTY AND INV	RAILROAD ST & HWY 80	W 1/4 - 1/2 (0.438 mi.)	B5	15
Database: LUST REG 9, Date of G	overnment Version: 03/01/2001	,		

Case Number: 9UT1622 Case Number: 9UT2308

Status: Preliminary site assessment under	rway			
E HAEGELE-APN#660-11 Database: LUST, Date of Government Verstatus: Completed - Case Closed Global Id: T0607301076	NONE OLD HY 80 & RAI rsion: 09/05/2023	W 1/4 - 1/2 (0.441 mi.)	<i>B7</i>	17
RODGERS AUTO REPAIR Database: LUST, Date of Government Verstatus: Completed - Case Closed Global Id: T0607300005	44490 OLD HY 80 rsion: 09/05/2023	W 1/4 - 1/2 (0.454 mi.)	В9	25
RODGERS AUTO REPAIR Database: LUST REG 7, Date of Governme Global ID: T0607300005 Status: 9 - Case Closed	44490 OLD HY 80 nent Version: 02/26/2004	W 1/4 - 1/2 (0.454 mi.)	B10	27

W 1/4 - 1/2 (0.457 mi.)

B12

29

Database: LUST, Date of Government Version: 09/05/2023

Status: Completed - Case Closed

Global Id: T0607300444

E HAEGELE-APN#660-11

CPS-SLIC: Cleanup Program Sites (CPS; also known as Site Cleanups [SC] and formerly known as Spills, Leaks, Investigations, and Cleanups [SLIC] sites) included in GeoTracker. GeoTracker is the Water Boards data management system for sites that impact, or have the potential to impact, water quality in California, with emphasis on groundwater.

A review of the CPS-SLIC list, as provided by EDR, has revealed that there is 1 CPS-SLIC site within approximately 0.5 miles of the target property.

44485 OLD HY 80

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
JACUMBA I & II	1000 OLD HY 80	ESE 1/8 - 1/4 (0.240 mi.)	1	9
Database: CPS-SLIC, Date of Gove	ernment Version: 12/04/2023			

Facility Status: Completed - Case Closed

Global Id: T10000001087

ADDITIONAL ENVIRONMENTAL RECORDS

Other Ascertainable Records

FUDS: The Listing includes locations of Formerly Used Defense Sites Properties where the US Army Corps Of Engineers is actively working or will take necessary cleanup actions.

A review of the FUDS list, as provided by EDR, and dated 09/28/2023 has revealed that there is 1 FUDS site within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
JACUMBA AIRPORT- NAV		E 1/2 - 1 (0.894 mi.)	C13	31

Cortese: The sites for the list are designated by the State Water Resource Control Board (LUST), the Integrated Waste Board (SWF/LS), and the Department of Toxic Substances Control (Cal-Sites).

A review of the Cortese list, as provided by EDR, and dated 09/19/2023 has revealed that there are 4 Cortese sites within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
NOLTA APN#660-040-11 Cleanup Status: COMPLETED - CA	44535 OLD HY 80 ASE CLOSED	W 1/4 - 1/2 (0.389 mi.)	A3	12
E HAEGELE-APN#660-11 Cleanup Status: COMPLETED - CA	NONE OLD HY 80 & RAI ASE CLOSED	W 1/4 - 1/2 (0.441 mi.)	B7	17
RODGERS AUTO REPAIR Cleanup Status: COMPLETED - CA	44490 OLD HY 80 ASE CLOSED	W 1/4 - 1/2 (0.454 mi.)	B10	27
E HAEGELE-APN#660-11 Cleanup Status: COMPLETED - CA	44485 OLD HY 80 ASE CLOSED	W 1/4 - 1/2 (0.457 mi.)	B12	29

HIST CORTESE: The sites for the list are designated by the State Water Resource Control Board [LUST], the Integrated Waste Board [SWF/LS], and the Department of Toxic Substances Control [CALSITES]. This listing is no longer updated by the state agency.

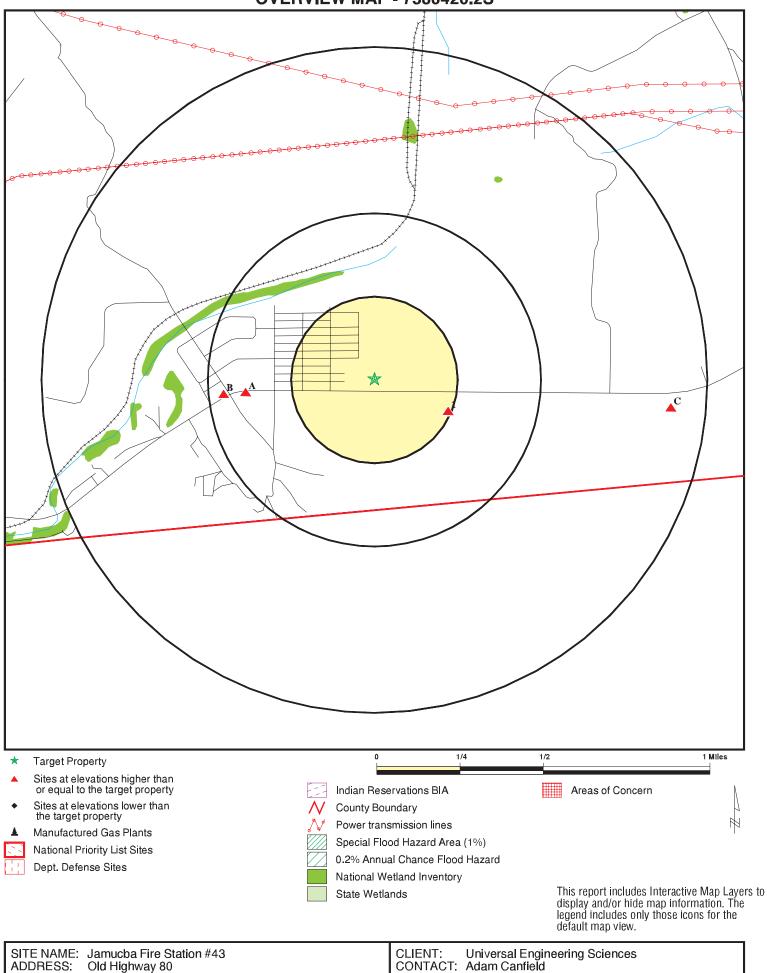
A review of the HIST CORTESE list, as provided by EDR, and dated 04/01/2001 has revealed that there are 2 HIST CORTESE sites within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
E-M-H REALTY AND INV Reg Id: 9UT1622 Reg Id: 9UT2308	RAILROAD ST & HWY 80	W 1/4 - 1/2 (0.438 mi.)	B5	15
RODGERS AUTO REPAIR Reg ld: 7T1934002	44490 OLD HY 80	W 1/4 - 1/2 (0.454 mi.)	В9	25

UST FINDER RELEASE: US EPA's UST Finder data is a national composite of leaking underground storage tanks. This data contains information about, and locations of, leaking underground storage tanks. Data was collected from state sources and standardized into a national profile by EPA's Office of Underground Storage Tanks, Office of Research and Development, and the Association of State and Territorial Solid Waste Management Officials.

A review of the UST FINDER RELEASE list, as provided by EDR, and dated 06/08/2023 has revealed that there are 3 UST FINDER RELEASE sites within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
JOSEPHINE NOLTZ	44535 OLD HY 80	W 1/4 - 1/2 (0.389 mi.)	A4	14
RODGERS AUTO REPAIR	44490 OLD HY 80	W 1/4 - 1/2 (0.454 mi.)	B8	24
E HAEGELE-APN#660-11	44485 OLD HY 80	W 1/4 - 1/2 (0.457 mi.)	B11	28

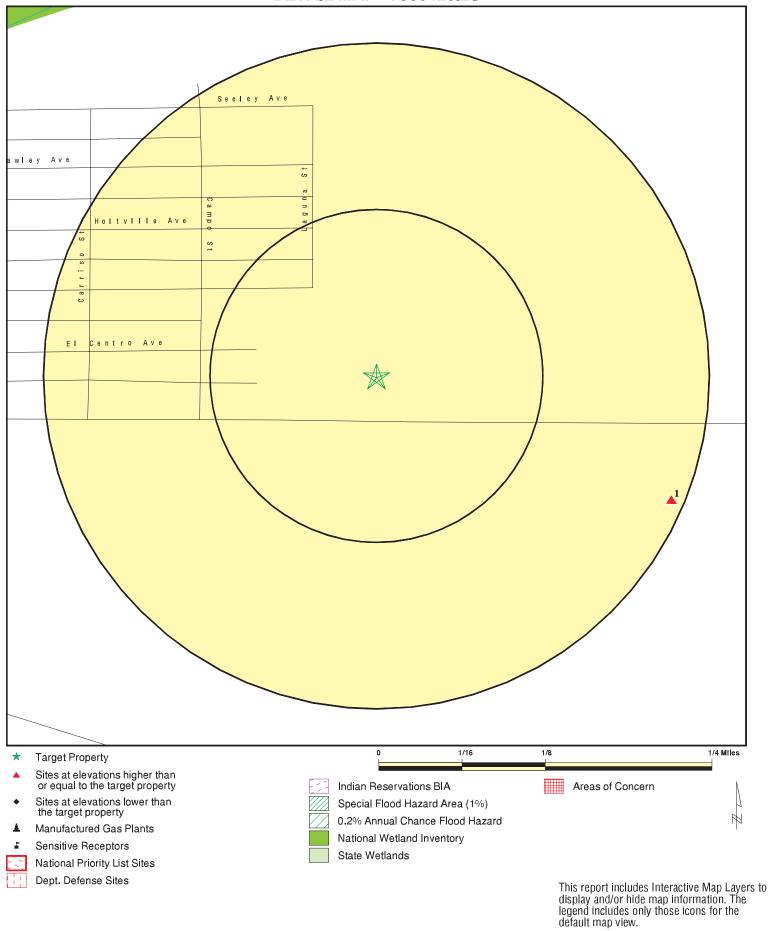

Due to poor or inadequate address information, the following sites were not mapped. Count: 9 records.

Site Name	Database(s)
-----------	-------------

JACUMBA BURNSITE 2
JACUMBA BURNSITE 1
HAEGLE/E-M-H REALTY&INVESTMENT
HAEGELE/E-M-H REALTY & INVEST.
HIGH DESERT FAMILY MEDICINE
FEASERS GARAGE
E HAEGELE-APN#660-110-7
RODGERS AUTO REPAIR
JACUMBA BURNSITE 2

SWF/LF SWF/LF LUST LUST San Diego Co. HMMD San Diego Co. HMMD San Diego Co. HMMD San Diego Co. HMMD

OVERVIEW MAP - 7580420.2S


Old Highway 80 ADDRESS:

Jacumba CA 91934 LAT/LONG: 32.61814 / 116.18222

INQUIRY#: 7580420.2s

February 28, 2024 7:38 am DATE:

DETAIL MAP - 7580420.2S

SITE NAME: Jamucba Fire Station #43

Old Highway 80 Jacumba CA 91934

32.61814 / 116.18222

ADDRESS:

LAT/LONG:

CLIENT: Universal Engineering Sciences
CONTACT: Adam Canfield
INQUIRY#: 7580420.2s
DATE: February 28, 2024 7:39 am

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	>1	Total Plotted
STANDARD ENVIRONMENT	TAL RECORDS							
Lists of Federal NPL (Su	perfund) site	s						
NPL Proposed NPL NPL LIENS	1.000 1.000 1.000		0 0 0	0 0 0	0 0 0	0 0 0	NR NR NR	0 0 0
Lists of Federal Delisted	NPL sites							
Delisted NPL	1.000		0	0	0	0	NR	0
Lists of Federal sites sur CERCLA removals and C		rs						
FEDERAL FACILITY SEMS	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0
Lists of Federal CERCLA	A sites with N	FRAP						
SEMS-ARCHIVE	0.500		0	0	0	NR	NR	0
Lists of Federal RCRA fa undergoing Corrective A								
CORRACTS	1.000		0	0	0	0	NR	0
Lists of Federal RCRA To	SD facilities							
RCRA-TSDF	0.500		0	0	0	NR	NR	0
Lists of Federal RCRA g	enerators							
RCRA-LQG RCRA-SQG RCRA-VSQG	0.250 0.250 0.250		0 0 0	0 0 0	NR NR NR	NR NR NR	NR NR NR	0 0 0
Federal institutional con engineering controls reg								
LUCIS US ENG CONTROLS US INST CONTROLS	0.500 0.500 0.500		0 0 0	0 0 0	0 0 0	NR NR NR	NR NR NR	0 0 0
Federal ERNS list								
ERNS	TP		NR	NR	NR	NR	NR	0
Lists of state- and tribal (Superfund) equivalent s	sites							
RESPONSE	1.000		0	0	0	0	NR	0
Lists of state- and tribal hazardous waste facilitie	es							
ENVIROSTOR	1.000		0	0	0	1	NR	1
Lists of state and tribal land solid waste disposa								
SWF/LF	0.500		0	0	0	NR	NR	0

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
Lists of state and tribal l	leaking storag	ge tanks						
SAN DIEGO CO. SAM LUST INDIAN LUST CPS-SLIC	0.500 0.500 0.500 0.500		0 0 0 0	1 0 0 1	3 6 0 0	NR NR NR NR	NR NR NR NR	4 6 0 1
Lists of state and tribal I	registered sto	rage tanks						
FEMA UST UST AST INDIAN UST	0.250 0.250 0.250 0.250		0 0 0 0	0 0 0 0	NR NR NR NR	NR NR NR NR	NR NR NR NR	0 0 0 0
Lists of state and tribal	voluntary clea	nup sites						
VCP INDIAN VCP	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0
Lists of state and tribal l		es						
BROWNFIELDS	0.500		0	0	0	NR	NR	0
ADDITIONAL ENVIRONMEN	ITAL RECORDS	<u> </u>						
Local Brownfield lists								
US BROWNFIELDS	0.500		0	0	0	NR	NR	0
Local Lists of Landfill / S Waste Disposal Sites			Ü	ŭ	Ü			ŭ
WMUDS/SWAT SWRCY HAULERS INDIAN ODI ODI DEBRIS REGION 9 IHS OPEN DUMPS	0.500 0.500 TP 0.500 0.500 0.500		0 0 NR 0 0 0	0 0 NR 0 0	0 0 NR 0 0	NR NR NR NR NR NR	NR NR NR NR NR NR	0 0 0 0 0
Local Lists of Hazardous Contaminated Sites	s waste /							
US HIST CDL HIST Cal-Sites SCH CDL San Diego Co. HMMD Toxic Pits CERS HAZ WASTE US CDL	TP 1.000 0.250 TP TP 1.000 0.250 TP		NR 0 0 NR NR 0 0	NR 0 0 NR NR 0 0	NR 0 NR NR NR 0 NR	NR 0 NR NR NR 0 NR NR	NR NR NR NR NR NR NR	0 0 0 0 0 0
Local Lists of Registered	d Storage Tan	ıks						
SWEEPS UST HIST UST CA FID UST	0.250 0.250 0.250		0 0 0	0 0 0	NR NR NR	NR NR NR	NR NR NR	0 0 0

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
CERS TANKS	0.250		0	0	NR	NR	NR	0
Local Land Records								
LIENS LIENS 2 DEED	TP TP 0.500		NR NR 0	NR NR 0	NR NR 0	NR NR NR	NR NR NR	0 0 0
Records of Emergency Release Reports								
HMIRS CHMIRS LDS MCS SPILLS 90	TP TP TP TP TP		NR NR NR NR NR	NR NR NR NR NR	NR NR NR NR NR	NR NR NR NR NR	NR NR NR NR NR	0 0 0 0
Other Ascertainable Rec	ords							
RCRA NonGen / NLR FUDS DOD SCRD DRYCLEANERS US FIN ASSUR EPA WATCH LIST 2020 COR ACTION TSCA TRIS SSTS ROD RMP RAATS PRP PADS ICIS FTTS MLTS COAL ASH DOE COAL ASH EPA PCB TRANSFORMER RADINFO HIST FTTS DOT OPS CONSENT INDIAN RESERV FUSRAP UMTRA LEAD SMELTERS	0.250 1.000 1.000 0.500 TP TP TP 0.250 TP TP TP 1.000 TP		0 0 0 0 RR 0 RR NR 0 RR NR	0 0 0 0 RR 0 RR 0 R R N R R R R R R R R	NROOORRRRRRORRNNNNNNNNNNNNNNNNNNNNNNNN	NT	NR R R R R R R R R R R R R R R R R R R	
US AIRS US MINES ABANDONED MINES MINES MRDS FINDS DOCKET HWC ECHO	TP 0.250 0.250 0.250 TP TP TP		NR 0 0 0 NR NR NR	NR 0 0 0 NR NR NR	NR NR NR NR NR NR	NR NR NR NR NR NR	NR NR NR NR NR NR	0 0 0 0 0

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
UXO	1.000		0	0	0	0	NR	0
FUELS PROGRAM	0.250		0	Ö	NR	NR	NR	0
PFAS NPL	0.250		0	Ö	NR	NR	NR	0
PFAS FEDERAL SITES	0.250		0	0	NR	NR	NR	0
PFAS TSCA	0.250		0	0	NR	NR	NR	0
PFAS TRIS	0.250		0	Ö	NR	NR	NR	0
PFAS RCRA MANIFEST	0.250		0	Ö	NR	NR	NR	0
PFAS ATSDR	0.250		0	0	NR	NR	NR	0
PFAS WQP	0.250		0	Ö	NR	NR	NR	0
PFAS NPDES	0.250		0	Ö	NR	NR	NR	0
PFAS ECHO	0.250		0	Ö	NR	NR	NR	0
PFAS ECHO FIRE TRAINI			0	Ö	NR	NR	NR	0
PFAS PART 139 AIRPORT			0	Ö	NR	NR	NR	0
AQUEOUS FOAM NRC	0.250		0	Ö	NR	NR	NR	0
BIOSOLIDS	TP		NR	NŘ	NR	NR	NR	0
PFAS	0.250		0	0	NR	NR	NR	0
AQUEOUS FOAM	0.250		Ö	Ö	NR	NR	NR	0
CA BOND EXP. PLAN	1.000		Ő	Ö	0	0	NR	0
CHROME PLATING	0.500		Ő	Ö	Ö	NR	NR	0
Cortese	0.500		Ő	Ö	4	NR	NR	4
CUPA Listings	0.250		Ő	Ö	NR	NR	NR	Ö
DRYCLEANERS	0.250		0	Ö	NR	NR	NR	0
EMI	TP		NR	NR	NR	NR	NR	0
ENF	TP		NR	NR	NR	NR	NR	0
Financial Assurance	TP		NR	NR	NR	NR	NR	0
ICE	TP		NR	NR	NR	NR	NR	0
HIST CORTESE	0.500		0	0	2	NR	NR	2
HWP	1.000		Ő	Ö	0	0	NR	0
HWT	0.250		Ö	Ö	NR	NR	NR	Ö
HWTS	TP		NR	NR	NR	NR	NR	Ö
HAZNET	TP		NR	NR	NR	NR	NR	Ö
MINES	0.250		0	0	NR	NR	NR	Ö
MWMP	0.250		0	0	NR	NR	NR	Ō
NPDES	TP		NR	NR	NR	NR	NR	Ō
PEST LIC	TP		NR	NR	NR	NR	NR	Ö
PROC	0.500		0	0	0	NR	NR	0
Notify 65	1.000		0	0	0	0	NR	0
HAZMAT	0.250		0	0	NR	NR	NR	0
UIC	TP		NR	NR	NR	NR	NR	0
UIC GEO	TP		NR	NR	NR	NR	NR	0
WASTEWATER PITS	0.500		0	0	0	NR	NR	0
WDS	TP		NR	NR	NR	NR	NR	0
WIP	0.250		0	0	NR	NR	NR	0
MILITARY PRIV SITES	TP		NR	NR	NR	NR	NR	0
PROJECT	TP		NR	NR	NR	NR	NR	0
WDR	TP		NR	NR	NR	NR	NR	0
SAN DIEGO CO LOP	TP		NR	NR	NR	NR	NR	0
CIWQS	TP		NR	NR	NR	NR	NR	0
CERS	TP		NR	NR	NR	NR	NR	0
NON-CASE INFO	TP		NR	NR	NR	NR	NR	0
OTHER OIL GAS	TP		NR	NR	NR	NR	NR	0

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
PROD WATER PONDS	TP		NR	NR	NR	NR	NR	0
SAMPLING POINT	TP		NR	NR	NR	NR	NR	0
WELL STIM PROJ	TP		NR	NR	NR	NR	NR	0
UST FINDER	0.250		0	0	NR	NR	NR	0
UST FINDER RELEASE	0.500		0	0	3	NR	NR	3
EDR HIGH RISK HISTORICA	L RECORDS							
EDR Exclusive Records								
EDR MGP	1.000		0	0	0	0	NR	0
EDR Hist Auto	0.125		0	NR	NR	NR	NR	0
EDR Hist Cleaner	0.125		0	NR	NR	NR	NR	0
EDR RECOVERED GOVERNMENT ARCHIVES								
Exclusive Recovered Go	vt. Archives							
RGA LF	TP		NR	NR	NR	NR	NR	0
RGA LUST	TP		NR	NR	NR	NR	NR	0
- Totals		0	0	2	18	2	0	22

NOTES:

TP = Target Property

NR = Not Requested at this Search Distance

Sites may be listed in more than one database

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

JACUMBA I & II SAN DIEGO CO. SAM S109599090 **ESE** 1000 OLD HY 80 **CPS-SLIC** N/A

JACUMBA, CA 91934 **CERS**

1/8-1/4 0.240 mi. 1268 ft.

Relative: SAN DIEGO CO. SAM:

Higher JACUMBA I & II Name: Address: 1000 OLD HY 80 Actual: City,State,Zip: JACUMBA, CA 91934 2803 ft.

Case Number: H86936-001

Agency: **DEH Site Assessment & Mitigation**

Funding: Private - VAP

Facility Type: OX

Facility Status: Preliminary Assessment

Date: 2/23/2009 Date Began: 2/23/2009

CPS-SLIC:

Name: JACUMBA I & II Address: 1000 OLD HY 80 JACUMBA, CA 91934 City,State,Zip:

Region: STATE

Facility Status: Completed - Case Closed

Status Date: 08/24/2010 T10000001087 Global Id:

SAN DIEGO COUNTY LOP Lead Agency:

H86936-001 Lead Agency Case Number: Latitude: 32.6167905 Longitude: -116.178422

Cleanup Program Site Case Type:

Case Worker: JC

Local Agency: SAN DIEGO COUNTY LOP

RB Case Number: Not reported File Location: Not reported Potential Media Affected: Not reported Potential Contaminants of Concern: Not reported EPA Region: Coordinate Source: Not reported

Cuf Case: NO **Quantity Released Gallons:** Not reported Begin Date: 05/06/2009 Leak Reported Date: Not reported How Discovered: Not reported How Discovered Description: Not reported Not reported Discharge Source: Not reported Discharge Cause: Stop Method: Not reported Stop Description: Not reported No Further Action Date: 08/24/2010

CA Water Watershed Name: Anza Borrego - Jacumba - Jacumba Valley (722.72)

Dwr Groundwater Subbasin Name: Jacumba Valley (7-047)

Disadvantaged Community: Not reported CA Enviroscreen 3 Score: 46-50% CA Enviroscreen 4 Score: 60-65% Military DOD Site: No

Facility Project Subtype: Not reported

RWQCB Region: COLORADO RIVER BASIN RWQCB (REGION 7)

Site History: Voluntary Assistance Program case

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

JACUMBA I & II (Continued)

S109599090

Click here to access the California GeoTracker records for this facility:

CERS:

Name: JACUMBA I & II Address: 1000 OLD HY 80 City,State,Zip: JACUMBA, CA 91934

Site ID: 662047 CERS ID: T10000001087 **CERS** Description: Cleanup Program Site

Affiliation:

Local Agency Caseworker Affiliation Type Desc:

Entity Name: JAMES CLAY - SAN DIEGO COUNTY LOP

Entity Title: Not reported Affiliation Address: P.O. Box 129261 Affiliation City: San Diego Affiliation State: CA

Affiliation Country: Not reported Affiliation Zip: Not reported

Affiliation Phone:

A2 JOSEPHINE NOLTZ LUST S108210645 West 44535 OLD HY 80 **CERS** N/A

1/4-1/2 JACUMBA, CA 91934

0.389 mi.

2052 ft. Site 1 of 3 in cluster A

LUST: Relative: Higher Name:

JOSEPHINE NOLTZ Address: 44535 OLD HY 80 Actual: City,State,Zip: JACUMBA, CA 91934 2821 ft. Lead Agency: SAN DIEGO COUNTY LOP

Case Type: LUST Cleanup Site

http://geotracker.waterboards.ca.gov/profile_report.asp?global_id=T06019724295 Geo Track:

Global Id: T06019724295 32.6152797364842 Latitude: -116.194424607852 Longitude: Completed - Case Closed Status:

Status Date: 11/20/2008 Case Worker: ΕM

RB Case Number: Not reported SAN DIEGO COUNTY LOP Local Agency:

File Location: Local Agency Local Case Number: H29835-001

Aquifer used for drinking water supply Potential Media Affect:

Potential Contaminants of Concern: Gasoline EPA Region:

Coordinate Source: Google Map Move

Cuf Case: NO

Quantity Released Gallons: Not reported Begin Date: 07/29/2004 08/04/2004 Leak Reported Date: How Discovered: Not reported How Discovered Description: Not reported Discharge Source: Tank Discharge Cause: Other

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

JOSEPHINE NOLTZ (Continued)

S108210645

Stop Method: Close and Remove Tank CLOSE AND REMOVE TANK Stop Description:

No Further Action Date: 11/20/2008

CA Water Watershed Name: Anza Borrego - Jacumba - Jacumba Valley (722.72)

Dwr Groundwater Subbasin Name: Not reported Disadvantaged Community: Not reported CA Enviroscreen 3 Score: 46-50% CA Enviroscreen 4 Score: 60-65% Military DOD Site: No

Facility Project Subtype: Not reported

RWQCB Region: COLORADO RIVER BASIN RWQCB (REGION 7)

Not reported Site History:

LUST:

Global Id: T06019724295

Contact Type: Local Agency Caseworker - Primary Caseworker

Contact Name: **EWAN MOFFAT**

Organization Name: SAN DIEGO COUNTY LOP

Address: P.O. Box 129261 City: San Diego

ewan.moffat@sdcounty.ca.gov Email:

Phone Number: Not reported

LUST:

T06019724295 Global Id: Action Type: Other Date: 07/29/2004 Action: Leak Discovery

Global Id: T06019724295 Action Type: Other Date: 08/04/2004 Action: Leak Stopped

Global Id: T06019724295 **ENFORCEMENT** Action Type: Date: 08/11/2004

Action: Notice of Responsibility

T06019724295 Global Id: Action Type: Other Date: 07/29/2004 Action: Leak Began

Global Id: T06019724295 **ENFORCEMENT** Action Type: Date: 09/19/2008

Action: Closure/No Further Action Letter

Global Id: T06019724295 Action Type: Other Date: 08/04/2004 Action: Leak Reported

LUST:

Global Id: T06019724295

Status: Open - Case Begin Date

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

JOSEPHINE NOLTZ (Continued)

S108210645

Status Date: 07/29/2004

T06019724295 Global Id:

Status: Open - Site Assessment

Status Date: 08/11/2004

Global Id: T06019724295

Status: Completed - Case Closed

11/20/2008 Status Date:

CERS:

JOSEPHINE NOLTZ Name: Address: 44535 OLD HY 80 City,State,Zip: JACUMBA, CA 91934

Site ID: 662724 CERS ID: T06019724295

CERS Description: Leaking Underground Storage Tank Cleanup Site

Affiliation:

Affiliation Type Desc: Local Agency Caseworker

Entity Name: **EWAN MOFFAT - SAN DIEGO COUNTY LOP**

Entity Title: Not reported Affiliation Address: P.O. Box 129261 Affiliation City: San Diego Affiliation State: CA Affiliation Country: Not reported Affiliation Zip: Not reported

Affiliation Phone:

SAN DIEGO CO. SAM U003940878 А3 NOLTA APN#660-040-11 West 44535 OLD HY 80 UST N/A 1/4-1/2 JACUMBA, CA 91934 Cortese

JOSEPHINE NOLTZ

0.389 mi.

2052 ft. Site 2 of 3 in cluster A

SAN DIEGO CO. SAM: Relative: Higher Name:

Address: 44535 OLD HY 80 Actual: City, State, Zip: JACUMBA, CA 91934 2821 ft.

Case Number: H29835-001

Agency: **DEH Site Assessment & Mitigation**

Funding: LOP - State Fund

Drinking Water Aquifer Impacted Facility Type:

Facility Status: **Closed Case** 9/18/2008 Date: Date Began: 7/29/2004

UST:

NOLTA APN#660-040-11 Name: Address: 44535 OLD HY 80 City,State,Zip: JACUMBA, CA 91934

Facility ID: H29835

Permitting Agency: SAN DIEGO COUNTY

CERSID: Not reported 32.61766 Latitude:

Direction Distance Elevation

evation Site Database(s) EPA ID Number

NOLTA APN#660-040-11 (Continued)

U003940878

EDR ID Number

Longitude: -116.18884 Owner type: Not reported Not reported Facility type: Num of inuse ust: Not reported Num of closed ust: Not reported Num of oos ust: Not reported Not reported Epa region: Tribal lands: Not reported Not reported Tank owner name: Tank owner mailing address: Not reported Tank owner mailing city: Not reported Tank owner mailing zip: Not reported Tank owner mailing state: Not reported Tank operator name: Not reported Tank operator mailing address:Not reported Tank operator mailing city: Not reported Tank operator mailing zip: Not reported Tank operator mailing state: Not reported Tankidnumber: Not reported Tank status: Not reported Tank configuration: Not reported Tank closure date: Not reported Not reported Tank installation date: Tank num of compartments: Not reported Tank contents: Not reported Not reported Tank capacity gallons: Tank type: Not reported Tank pc construction: Not reported Tank pwpiping construction: Not reported Not reported Tank piping type: Not reported Tank piping construction: Tank sacrificial anode: Not reported Tank cp impressed current: Not reported Tank cp shutoff: Not reported Not reported Tank alarms: Not reported Tank ball float: Tank spill bucket: Not reported

CORTESE:

Name: JOSEPHINE NOLTZ Address: 44535 OLD HY 80 City,State,Zip: JACUMBA, CA 91934

Region: CORTESE
Envirostor Id: Not reported
Global ID: T06019724295
Site/Facility Type: LUST CLEANUP SITE

Cleanup Status: COMPLETED - CASE CLOSED

Status Date: Not reported Site Code: Not reported Latitude: Not reported Not reported Longitude: Owner: Not reported Enf Type: Not reported Not reported Swat R: Flag: active Order No: Not reported Waste Discharge System No: Not reported

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

NOLTA APN#660-040-11 (Continued)

U003940878

Effective Date: Not reported Not reported Region 2: WID Id: Not reported Solid Waste Id No: Not reported Waste Management Uit Name: Not reported Active Open File Name:

Α4 **JOSEPHINE NOLTZ** UST FINDER RELEASE 1029006689 West 44535 OLD HY 80 N/A

1/4-1/2 JACUMBA, CA 91934

0.389 mi.

2052 ft. Site 3 of 3 in cluster A

Relative: **UST FINDER RELEASE:** Higher Object ID:

74650 Facility ID: Not reported Actual: Lust ID: CAT06019724295 2821 ft. Name: JOSEPHINE NOLTZ 44535 OLD HY 80 Address: City,State,Zip: JACUMBA, CA 91934 Address Match Type: StreetAddress Reported Date: Not reported Status: No Further Action

> Substance: Not reported Population within 1500ft: 226 Domestic Wells within 1500ft:

Land Use: Developed, Open Space

Within SPA: No

SPA PWS Facility ID: Not reported SPA Water Type: Not reported SPA Facility Type: Not reported SPA HUC12: Not reported

Within WHPA: Yes

WHPA PWS Facility ID: CA3701588_CA3701588001

WHPA Water Type: GW - Ground water

WHPA Facility Type: WL - Well WHPA HUC12: 181002020203

Within 100yr Floodplain: No

Tribe: Not reported

EPA Region:

NFA Letter 1: Not reported NFA Letter 2: Not reported Not reported NFA Letter 3: NFA Letter 4: Not reported Closed With Residual Contaminate: Not reported

Coordinate Source: Geocode -116.19066 X Coord: Y Coord: 32.61695 32.61695 Latitude:

Longitude: -116.190659999999

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

B5 E-M-H REALTY AND INVEST. CORP LUST S102429036 HIST CORTESE N/A

West **RAILROAD ST & HWY 80** JACUMBA, CA 91934 1/4-1/2

0.438 mi.

2310 ft. Site 1 of 8 in cluster B

LUST REG 9: Relative:

Higher Region:

Status: Preliminary site assessment underway Actual:

Case Number: 9UT1622 2822 ft. Local Case: H29832-001 Substance: Gasoline

Qty Leaked:

Abate Method: Not reported Local Agency: San Diego How Found: Other Means How Stopped: Not reported Source: Not reported Not reported Cause: Lead Agency: Local Agency Case Type: Soil only 12/20/1989 Date Found: Date Stopped: 01/30/1990 Confirm Date: 12/20/1989 Submit Workplan: Not reported Prelim Assess: 02/08/1990 Desc Pollution: Not reported Remed Plan: 11

Not reported Remed Action: Began Monitor: Not reported 12/20/1989 Release Date: Enforce Date: 6/15/92 Closed Date: Not reported Enforce Type: SEL Pilot Program: LOP

Basin Number: 911.85 Not reported GW Depth:

Beneficial Use: Municipal groundwater use

NPDES Number: Not reported

Priority: 2A

File Dispn: File discarded, case closed Interim Remedial Actions: No

Cleanup and Abatement order Number: Not reported Waste Discharge Requirement Number: Not reported

Region:

Status: Preliminary site assessment underway

Case Number: 9UT2308 Local Case: H29832-002 Substance: Gasoline Qty Leaked:

Abate Method: Not reported Local Agency: San Diego How Found: Tank Closure How Stopped: Close Tank Source: Unknown Cause: Unknown Local Agency Lead Agency: Case Type: Soil only

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

E-M-H REALTY AND INVEST. CORP (Continued)

S102429036

Date Found: 09/09/1992 Date Stopped: 09/09/1992 Confirm Date: 10/22/1992 Submit Workplan: 11/23/92 Prelim Assess: 11/23/1992 Desc Pollution: Not reported Remed Plan: //

Remed Action: Not reported Began Monitor: Not reported Release Date: 09/09/1992 12/8/92 Enforce Date: Closed Date: Not reported Enforce Type: SEL Pilot Program: LOP Basin Number: 911.85

>14' Beneficial Use: Municipal groundwater use

NPDES Number: Not reported

Priority: 2B

File Dispn: File discarded, case closed Interim Remedial Actions: Yes Cleanup and Abatement order Number: Not reported Waste Discharge Requirement Number: Not reported

HIST CORTESE:

GW Depth:

edr_fname: E-M-H REALTY AND INVEST edr fadd1: **RAILROAD ST & HWY 80** City,State,Zip: JACUMBA, CA 91934

Region: CORTESE Facility County Code: 37 Reg By: **LTNKA** Reg Id: 9UT1622

edr_fname: E-M-H REALTY AND INVEST edr_fadd1: **RAILROAD ST & HWY 80** City,State,Zip: JACUMBA, CA 91934

Region: **CORTESE** Facility County Code: 37 Reg By: **LTNKA** 9UT2308 Reg Id:

В6 E HAEGELE-APN#660-110-7 West **OLD HY 80 & RAILROAD** 1/4-1/2 JACUMBA, CA 91934

0.438 mi. 2314 ft. Site 2 of 8 in cluster B

Relative: SAN DIEGO CO. SAM:

Higher E HAEGELE-APN#660-110-7 Name: Address: OLD HY 80 & RAILROAD Actual: City,State,Zip: JACUMBA, CA 91934 2822 ft.

Case Number: H29832-001

Agency: **DEH Site Assessment & Mitigation**

Fundina: LOP - Federal Fund

Facility Type: Soils Only Facility Status: Closed Case Date: 11/28/2001

S108407031

N/A

SAN DIEGO CO. SAM

Direction Distance

Distance Elevation Site EDR ID Number Database(s) EPA ID Number

E HAEGELE-APN#660-110-7 (Continued)

S108407031

CERS

Date Began: 1/30/1990

Name: E HAEGELE-APN#660-110-7 Address: OLD HY 80 & RAILROAD City,State,Zip: JACUMBA, CA 91934

Case Number: H29832-002

Agency: DEH Site Assessment & Mitigation

Funding: LOP - State Fund

Facility Type: Drinking Water Aquifer Impacted

Facility Status: Remedial Investigation

Date: 1/30/2002 Date Began: 9/9/1992

B7 E HAEGELE-APN#660-110-7 LUST \$106915927

West NONE OLD HY 80 & RAILROAD Cortese N/A

1/4-1/2 JACUMBA, CA 91934

0.441 mi.

2331 ft. Site 3 of 8 in cluster B

 Relative:
 LUST:

 Higher
 Name:
 E HAEGELE-APN#660-110-7

 Actual:
 Address:
 NONE OLD HY 80 & RAILROAD

2824 ft. City, State, Zip: JACUMBA, CA 91934
Lead Agency: SAN DIEGO COUNTY LO

Lead Agency: SAN DIEGO COUNTY LOP
Case Type: LUST Cleanup Site

Geo Track: http://geotracker.waterboards.ca.gov/profile_report.asp?global_id=T0607301076

 Global Id:
 T0607301076

 Latitude:
 32.6170928767851

 Longitude:
 -116.18968963623

 Status:
 Completed - Case Closed

Status Date: 05/17/2017 Case Worker: EM

RB Case Number: Not reported

Local Agency: SAN DIEGO COUNTY LOP

File Location: Local Agency Local Case Number: H29832-002

Potential Media Affect: Aquifer used for drinking water supply

Potential Contaminants of Concern: Diesel EPA Region: 9

Coordinate Source: Google Map Move

Cuf Case: NO

Quantity Released Gallons: Not reported Begin Date: 09/09/1992 Leak Reported Date: 09/09/1992

How Discovered: UST System Modification

How Discovered Description:

Discharge Source:

Discharge Cause:

Not reported
Tank
Spill

Stop Method: Close and Remove Tank
Stop Description: CLOSE AND REMOVE TANK

No Further Action Date: 05/17/2017

CA Water Watershed Name: Anza Borrego - Jacumba - Jacumba Valley (722.72)

Dwr Groundwater Subbasin Name: Jacumba Valley (7-047)
Disadvantaged Community: Disadvantaged Community

CA Enviroscreen 3 Score: 56-60%
CA Enviroscreen 4 Score: 60-65%
Military DOD Site: No

Facility Project Subtype: Not reported

Map ID
Direction

MAP FINDINGS

Distance EDR ID Number Elevation Site EDR ID Number Database(s) EPA ID Number

E HAEGELE-APN#660-110-7 (Continued)

S106915927

RWQCB Region: Site History: COLORADO RIVER BASIN RWQCB (REGION 7)

This site is currently a vacant lot that was a former gas station that operated until 1953 when the station was demolished. The Underground Storage Tanks (USTs) were not removed. Release H29832-001 was opened in December 1989 when an individual spilled the contents of the USTs while they were pumping them out. The tanks likely contained gasoline, diesel and aviation fuel. That release was closed in November 2001 due to low impacts associated with the spill. The current release (H29832-002), was opened in 1992 due to elevated soil samples noted during a tank removal. Between 1994 and 2012, 12 monitoring wells (including two dual nested wells) were installed to delineate and monitor the groundwater plume. The site is underlain by alluvium up to 80 Below Ground Surface (bgs). Weathered granite was also noted in some borings as shallow as 24 bgs. Groundwater was initially encountered at approximately 27 bgs in 1994, but has since dropped about 22 feet, most likely a result of drought and pumping by off-site supply wells. Groundwater monitoring has taken place between January 1994 and October 2015. Figures 2, 3 and 4 (August 2016) Stantec Response to CAP Comments) show the groundwater flow direction and distribution of contaminants. An October 2015 Corrective Action Plan (CAP) was submitted proposing case closure by natural attenuation by the Low Threat Closure Policy, and was approved by DEH. The public comment period ended on May 27, 2016. The only comment was received was by DUDEK on behalf of the Jacumba Community Services District. Their concerns were addressed sufficiently in an August 26, 2016 memo from the consultant for this case. The consultant proposed natural attenuation because: The plume is stable and shrinking. No Liquid Phase Hydrocarbons (LPH) has been observed in the monitoring wells at any time There are several supply wells within + mile of the site. Those include wells about 600 cross-gradient of site. The closest downgradient well is about + mile from the site. These supply wells would not be affected by hydrocarbon-impacted groundwater from the release due to the distance of the supply wells, low dissolved groundwater plume concentrations and attenuation and stability of the plume Utilities trenches are 1.5 feet to 8 feet deep are unlikely to serve as conduits for contamination migration since the depth to groundwater is about 55 to 69 feet bgs There are no health risks based on soil concentrations of contaminants. Benzene is currently below the Maximum Contaminant Level of 1 ug/l. MtBE was never detected in the groundwater. DEH concurs with the consultant s conclusions and approves case closure. The consultant states that approximately 2,437 cubic yards of soil remains on site with over 100 mg/kg Total Petroleum Hydrocarbons (TPH). This soil is located in two general areas. The first area is at the northern part of the site, including the former tank area (12 feet bgs) and B-11, B-12 & MW-9 (35-55 feet bgs). The second area is in the southern portion of the site with borings SRRB-1, SCB-2, MW-5A & MW-12 (30 55 feet bgs) as shown on the Figure 2 of the CAP. Permit # DEH2017-LMWP-002869 was issued by DEH for destruction of the 12 wells associated with the site. ANY CONTAMINATED SOIL EXCAVATED AS PART OF SUBSURFACE CONSTRUCTION WORK MUST BE MANAGED IN ACCORDANCE WITH THE LEGAL REQUIREMENTS AT THAT TIME. .

LUST:

Global Id: T0607301076

Contact Type: Local Agency Caseworker - Primary Caseworker

Contact Name: EWAN MOFFAT

Organization Name: SAN DIEGO COUNTY LOP

Direction Distance

Elevation Site Database(s) EPA ID Number

E HAEGELE-APN#660-110-7 (Continued)

S106915927

EDR ID Number

Address: P.O. Box 129261 City: San Diego

Email: ewan.moffat@sdcounty.ca.gov

Phone Number: Not reported

LUST:

 Global Id:
 T0607301076

 Action Type:
 ENFORCEMENT

 Date:
 05/15/2012

Action: Technical Correspondence / Assistance / Other

 Global Id:
 T0607301076

 Action Type:
 ENFORCEMENT

 Date:
 07/21/2015

Action: Technical Correspondence / Assistance / Other

 Global Id:
 T0607301076

 Action Type:
 ENFORCEMENT

 Date:
 05/17/2017

Action: Closure/No Further Action Letter

 Global Id:
 T0607301076

 Action Type:
 RESPONSE

 Date:
 11/29/2009

Action: Well Installation Workplan

 Global Id:
 T0607301076

 Action Type:
 RESPONSE

 Date:
 02/11/2011

Action: Correspondence - Regulator Responded

 Global Id:
 T0607301076

 Action Type:
 RESPONSE

 Date:
 10/07/2011

Action: Well Installation Workplan - Regulator Responded

Global Id: T0607301076
Action Type: RESPONSE
Date: 04/25/2011

Action: Well Installation Workplan - Regulator Responded

 Global Id:
 T0607301076

 Action Type:
 RESPONSE

 Date:
 07/30/2011

Action: Monitoring Report - Semi-Annually - Regulator Responded

 Global Id:
 T0607301076

 Action Type:
 RESPONSE

 Date:
 01/31/2014

Action: Monitoring Report - Semi-Annually - Regulator Responded

 Global Id:
 T0607301076

 Action Type:
 RESPONSE

 Date:
 01/30/2015

Action: Monitoring Report - Semi-Annually - Regulator Responded

Global Id: T0607301076

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

E HAEGELE-APN#660-110-7 (Continued)

S106915927

RESPONSE Action Type: Date: 07/30/2014

Monitoring Report - Semi-Annually - Regulator Responded Action:

Global Id: T0607301076 **RESPONSE** Action Type: Date: 07/29/2015

Action: Monitoring Report - Semi-Annually - Regulator Responded

Global Id: T0607301076 **RESPONSE** Action Type: 10/02/2015 Date:

CAP/RAP - Feasibility Study Report - Regulator Responded Action:

Global Id: T0607301076 Action Type: **RESPONSE** 08/26/2016 Date:

Action: Other Report / Document - Regulator Responded

T0607301076 Global Id: **ENFORCEMENT** Action Type: Date: 12/08/1992

Action: Notice of Responsibility

Global Id: T0607301076 Action Type: **ENFORCEMENT** Date: 10/22/2009 Action: Letter - Notice

Global Id: T0607301076 **ENFORCEMENT** Action Type: Date: 12/29/2009

Action: Technical Correspondence / Assistance / Other

Global Id: T0607301076 **ENFORCEMENT** Action Type: Date: 03/25/2015

Action: Technical Correspondence / Assistance / Other

Global Id: T0607301076 Action Type: **ENFORCEMENT** Date: 08/11/2015

Action: Technical Correspondence / Assistance / Other

T0607301076 Global Id: Action Type: Other Date: 09/09/1992 Action: Leak Discovery

Global Id: T0607301076 Action Type: **RESPONSE** Date: 01/30/2011

Action: Monitoring Report - Semi-Annually

Global Id: T0607301076 Action Type: **RESPONSE** Date: 05/03/2012

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

E HAEGELE-APN#660-110-7 (Continued)

S106915927

Action: Well Installation Report

T0607301076 Global Id: **ENFORCEMENT** Action Type: Date: 12/08/1992

Action: * Historical Enforcement

Global Id: T0607301076 Action Type: **ENFORCEMENT** Date: 07/08/2009 Action: Letter - Notice

T0607301076 Global Id: Action Type: **ENFORCEMENT** Date: 02/15/2011

Action: Technical Correspondence / Assistance / Other

T0607301076 Global Id: Action Type: **ENFORCEMENT** Date: 08/17/2011

Technical Correspondence / Assistance / Other Action:

Global Id: T0607301076 Action Type: **ENFORCEMENT** Date: 08/20/2014

Action: Technical Correspondence / Assistance / Other

Global Id: T0607301076 Action Type: Other Date: 09/09/1992 Action: Leak Began

Global Id: T0607301076 Action Type: Other 09/09/1992 Date: Leak Reported Action:

Global Id: T0607301076 **RESPONSE** Action Type: Date: 07/03/2015 Action: Correspondence

Global Id: T0607301076 Action Type: **ENFORCEMENT** Date: 05/04/2011

Action: Technical Correspondence / Assistance / Other

Global Id: T0607301076 Action Type: **ENFORCEMENT** Date: 07/25/2012

Action: Technical Correspondence / Assistance / Other

Global Id: T0607301076 Action Type: **ENFORCEMENT** Date: 08/25/2015

Action: Technical Correspondence / Assistance / Other

Direction Distance

Elevation Site Database(s) EPA ID Number

E HAEGELE-APN#660-110-7 (Continued)

S106915927

EDR ID Number

 Global Id:
 T0607301076

 Action Type:
 ENFORCEMENT

 Date:
 12/02/2013

Action: Technical Correspondence / Assistance / Other

 Global Id:
 T0607301076

 Action Type:
 ENFORCEMENT

 Date:
 09/09/2016

Action: Technical Correspondence / Assistance / Other

 Global Id:
 T0607301076

 Action Type:
 RESPONSE

 Date:
 01/30/2010

Action: Monitoring Report - Semi-Annually

 Global Id:
 T0607301076

 Action Type:
 RESPONSE

 Date:
 07/30/2009

Action: Monitoring Report - Semi-Annually

 Global Id:
 T0607301076

 Action Type:
 RESPONSE

 Date:
 10/16/2012

 Action:
 Correspondence

Global Id: T0607301076
Action Type: RESPONSE
Date: 01/30/2013

Action: Monitoring Report - Semi-Annually

Global Id: T0607301076
Action Type: RESPONSE
Date: 07/30/2013

Action: Monitoring Report - Semi-Annually

 Global Id:
 T0607301076

 Action Type:
 RESPONSE

 Date:
 01/30/2016

Action: Monitoring Report - Semi-Annually

Global Id: T0607301076
Action Type: RESPONSE
Date: 03/11/2016

Action: Other Report / Document

 Global Id:
 T0607301076

 Action Type:
 ENFORCEMENT

 Date:
 08/10/2010

 Action:
 Staff Letter

 Global Id:
 T0607301076

 Action Type:
 ENFORCEMENT

 Date:
 10/27/2011

Action: Technical Correspondence / Assistance / Other

Global Id: T0607301076
Action Type: ENFORCEMENT

Direction Distance Elevation

vation Site Database(s) EPA ID Number

E HAEGELE-APN#660-110-7 (Continued)

S106915927

EDR ID Number

Date: 04/10/2015

Action: Technical Correspondence / Assistance / Other

Global Id: T0607301076
Action Type: ENFORCEMENT
Date: 03/05/2014

Action: Technical Correspondence / Assistance / Other

 Global Id:
 T0607301076

 Action Type:
 ENFORCEMENT

 Date:
 06/30/2015

Action: Referral to Regional Board

 Global Id:
 T0607301076

 Action Type:
 Other

 Date:
 09/09/1992

 Action:
 Leak Stopped

 Global Id:
 T0607301076

 Action Type:
 RESPONSE

 Date:
 07/30/2010

Action: Monitoring Report - Semi-Annually

 Global Id:
 T0607301076

 Action Type:
 RESPONSE

 Date:
 04/30/2012

Action: Monitoring Report - Semi-Annually

 Global Id:
 T0607301076

 Action Type:
 RESPONSE

 Date:
 06/12/2012

 Action:
 Correspondence

 Global Id:
 T0607301076

 Action Type:
 RESPONSE

 Date:
 05/23/2012

 Action:
 Correspondence

 Global Id:
 T0607301076

 Action Type:
 RESPONSE

 Date:
 07/30/2012

Action: Monitoring Report - Semi-Annually

LUST:

Global Id: T0607301076

Status: Open - Case Begin Date

Status Date: 09/09/1992

Global Id: T0607301076
Status: Open - Remediation

Status Date: 07/24/1998

Global Id: T0607301076

Status: Completed - Case Closed

Status Date: 05/17/2017

Direction Distance

Distance Elevation Site EDR ID Number

Database(s) EPA ID Number

E HAEGELE-APN#660-110-7 (Continued)

S106915927

CORTESE:

Name: E HAEGELE-APN#660-110-7 Address: NONE OLD HY 80 & RAILROAD

City, State, Zip: JACUMBA, CA 91934

Region: CORTESE
Envirostor Id: Not reported
Global ID: T0607301076

Site/Facility Type: LUST CLEANUP SITE

Cleanup Status: COMPLETED - CASE CLOSED

Status Date: Not reported Site Code: Not reported Latitude: Not reported Not reported Longitude: Owner: Not reported Not reported Enf Type: Swat R: Not reported Flag: active Order No: Not reported Waste Discharge System No: Not reported

Effective Date:
Region 2:
Wild Waste Id No:
Waste Management Uit Name:
Not reported
Active Open

CERS:

Name: E HAEGELE-APN#660-110-7 Address: NONE OLD HY 80 & RAILROAD

City, State, Zip: JACUMBA, CA 91934

Site ID: 650683 CERS ID: T0607301076

CERS Description: Leaking Underground Storage Tank Cleanup Site

Affiliation:

Affiliation Type Desc: Local Agency Caseworker

Entity Name: EWAN MOFFAT - SAN DIEGO COUNTY LOP

Entity Title:

Affiliation Address:

Affiliation City:

Affiliation State:

Affiliation Country:

Affiliation Country:

Affiliation Country:

Affiliation Country:

Not reported

Affiliation Country: Not reported Affiliation Zip: Not reported

Affiliation Phone: ,

RODGERS AUTO REPAIR UST FINDER RELEASE 1029099378
44490 OLD HY 80 N/A

West 44490 OLD HY 80 1/4-1/2 JACUMBA, CA 91934

0.454 mi.

B8

2399 ft. Site 4 of 8 in cluster B

Relative: UST FINDER RELEASE:

 Higher
 Object ID:
 74651

 Actual:
 Facility ID:
 Not reported

 2824 ft.
 Lust ID:
 CAT0607300005

Name: RODGERS AUTO REPAIR

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

RODGERS AUTO REPAIR (Continued)

1029099378

Address: 44490 OLD HY 80 City, State, Zip: JACUMBA, CA 91934 Address Match Type: StreetAddress Reported Date: Not reported Status: No Further Action Substance: Not reported

Population within 1500ft: 317 Domestic Wells within 1500ft: 49

Land Use: Developed, Low Intensity

Within SPA:

SPA PWS Facility ID: Not reported SPA Water Type: Not reported SPA Facility Type: Not reported SPA HUC12: Not reported

Within WHPA:

WHPA PWS Facility ID: CA3701588_CA3701588001

GW - Ground water WHPA Water Type: WL - Well WHPA Facility Type: WHPA HUC12: 181002020203

Within 100yr Floodplain: No

Tribe: Not reported

EPA Region: 9

NFA Letter 1: Not reported NFA Letter 2: Not reported NFA Letter 3: Not reported NFA Letter 4: Not reported Closed With Residual Contaminate: Not reported Coordinate Source: Geocode X Coord: -116.18995 Y Coord: 32.6174600000001

Latitude: 32.61746

Longitude: -116.189949999999

В9 **RODGERS AUTO REPAIR** LUST S102532319 **HIST CORTESE** N/A

LUST Cleanup Site

West 44490 OLD HY 80 1/4-1/2 JACUMBA, CA 91934

0.454 mi.

2399 ft. Site 5 of 8 in cluster B

LUST: Relative: Higher Name: RODGERS AUTO REPAIR Address: 44490 OLD HY 80 Actual: City, State, Zip: JACUMBA, CA 91934 2824 ft. Lead Agency: SAN DIEGO COUNTY LOP

> Case Type: Geo Track: http://geotracker.waterboards.ca.gov/profile_report.asp?global_id=T0607300005

T0607300005 Global Id: Latitude: 32.6175158 Longitude: -116.189829

Status: Completed - Case Closed

Status Date: 08/11/1998 Case Worker: Not reported RB Case Number: Not reported Local Agency: Not reported File Location: Local Agency Local Case Number: H29712-001 Potential Media Affect: Not reported Potential Contaminants of Concern: Not reported

Direction
Distance

Elevation Site Database(s) EPA ID Number

RODGERS AUTO REPAIR (Continued)

S102532319

EDR ID Number

EPA Region: 9

Coordinate Source: Google Geocode

Cuf Case: NO

Quantity Released Gallons: Not reported Begin Date: 10/21/1992 Leak Reported Date: Not reported How Discovered: Not reported How Discovered Description: Not reported Discharge Source: Not reported Discharge Cause: Not reported Not reported Stop Method: Stop Description: Not reported No Further Action Date: 08/11/1998

CA Water Watershed Name: Anza Borrego - Jacumba - Jacumba Valley (722.72)

Dwr Groundwater Subbasin Name: Jacumba Valley (7-047)

Disadvantaged Community:

CA Enviroscreen 3 Score:

CA Enviroscreen 4 Score:

Military DOD Site:

Not reported
46-50%
60-65%
No

Facility Project Subtype: Not reported

RWQCB Region: COLORADO RIVER BASIN RWQCB (REGION 7)

Site History: Not reported

LUST:

 Global Id:
 T0607300005

 Action Type:
 ENFORCEMENT

 Date:
 08/07/1998

Action: Clean Up Fund - Case Closure Review Summary Report (RSR)

 Global Id:
 T0607300005

 Action Type:
 ENFORCEMENT

 Date:
 08/11/1998

Action: Closure/No Further Action Letter

Global Id: T0607300005
Action Type: ENFORCEMENT
Date: 04/26/1996

Action: Notice of Responsibility

LUST:

Global Id: T0607300005

Status: Open - Case Begin Date

Status Date: 10/21/1992

Global Id: T0607300005

Status: Completed - Case Closed

7T1934002

Status Date: 08/11/1998

HIST CORTESE:

Reg Id:

edr_fname: ROGERS AUTO
edr_fadd1: 44490 OLD 80
City,State,Zip: JACUMBA, CA
Region: CORTESE
Facility County Code: 37
Reg By: LTNKA

Direction Distance

Elevation Site Database(s) **EPA ID Number**

B10 **RODGERS AUTO REPAIR** LUST S106152973

SAN DIEGO CO. SAM West 44490 OLD HY 80 N/A

1/4-1/2 JACUMBA, CA 91934 Cortese SAN DIEGO CO LOP 0.454 mi.

2399 ft. Site 6 of 8 in cluster B **CERS**

LUST REG 7: Relative:

Higher Region:

9 - Case Closed Status: Actual:

Case Num: n/a 2824 ft. Substance: unk

ID: 1116 Global ID: T0607300005 Local Agency Lead Agency: Case Worker: Not reported

SAN DIEGO CO. SAM:

RODGERS AUTO REPAIR Name: Address: 44490 OLD HY 80 City,State,Zip: JACUMBA, CA 91934

Case Number: H29712-001

Agency: **DEH Site Assessment & Mitigation**

Funding: LOP - Federal Fund

Soils Only Facility Type: Facility Status: **Closed Case** 8/11/1998 Date: Date Began: 10/21/1992

CORTESE:

RODGERS AUTO REPAIR Name: Address: 44490 OLD HY 80 City,State,Zip: JACUMBA, CA 91934

Region: **CORTESE** Envirostor Id: Not reported Global ID: T0607300005 LUST CLEANUP SITE Site/Facility Type:

Cleanup Status: **COMPLETED - CASE CLOSED**

Status Date: Not reported Site Code: Not reported Not reported Latitude: Longitude: Not reported Owner: Not reported Enf Type: Not reported Swat R: Not reported Flag: active Order No: Not reported Waste Discharge System No: Not reported Effective Date: Not reported Region 2: Not reported

WID Id: Not reported Solid Waste Id No: Not reported Not reported Waste Management Uit Name: File Name: Active Open

SAN DIEGO CO LOP:

RODGERS AUTO REPAIR Name: Address: 44490 OLD HY 80 City, State, Zip: JACUMBA, CA 91934

EDR ID Number

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

RODGERS AUTO REPAIR (Continued)

S106152973

Record ID: DEH1992-LSAM-H29712-001

Record Status: Completed Opened Date: 10/21/1992 Parcel Number: 660-072-10-00

Case Type: LOP - Local Oversight Program

Historical Name: **ROGERS AUTO** SWRCB Global ID: T0607300005 F - LOP Federal Fund Funding:

Lead Agency: DEH/SAM Lead Agency Date: 10/21/1992 Census Tract: 211.00 Community: Jacumba

UNINCORPORATED Jurisdiction:

Watershed Basin Number: 722.72

UNINCORPORATED Water Purveyor: Fire Agency: **RURAL FIRE PROT DIST**

Latitude: 32.6178231 Longitude: -116.1895331 X MapCoord: 6580291.558 Y MapCoord: 1804560.500

CERS:

Name: RODGERS AUTO REPAIR Address: 44490 OLD HY 80 City,State,Zip: JACUMBA, CA 91934

Site ID: 680826 T0607300005 CERS ID:

CERS Description: Leaking Underground Storage Tank Cleanup Site

B11 **E HAEGELE-APN#660-110-7**

West 44485 OLD HY 80 JACUMBA, CA 91934 1/4-1/2

0.457 mi.

2413 ft. Site 7 of 8 in cluster B

UST FINDER RELEASE: Relative:

Higher Object ID: 74647 Facility ID: Not reported Actual: Lust ID: CAT0607300444 2825 ft.

Name: E HAEGELE-APN#660-110-7

Address: 44485 OLD HY 80 City,State,Zip: JACUMBA, CA 91934 Address Match Type: StreetAddress Reported Date: Not reported Status: No Further Action Substance: Not reported 136

Population within 1500ft: Domestic Wells within 1500ft: 22

Land Use: Developed, Open Space

Within SPA:

SPA PWS Facility ID: Not reported SPA Water Type: Not reported SPA Facility Type: Not reported Not reported SPA HUC12:

Within WHPA:

CA3701588_CA3701588001 WHPA PWS Facility ID:

WHPA Water Type: GW - Ground water UST FINDER RELEASE 1028951019

N/A

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

E HAEGELE-APN#660-110-7 (Continued)

1028951019

WHPA Facility Type: WL - Well 181002020203 WHPA HUC12:

Within 100yr Floodplain: No

Not reported Tribe:

EPA Region:

NFA Letter 1: Not reported NFA Letter 2: Not reported NFA Letter 3: Not reported Not reported NFA Letter 4: Closed With Residual Contaminate: Not reported Coordinate Source: Geocode X Coord: -116.19213 Y Coord: 32.6161700000001 Latitude: 32.6161699999999 Longitude: -116.19213

B12 E HAEGELE-APN#660-110-7 LUST S118821894 N/A

West 44485 OLD HY 80 Cortese 1/4-1/2 JACUMBA, CA 91934 **CERS**

0.457 mi.

2413 ft. Site 8 of 8 in cluster B

LUST: Relative: Higher Name: E HAEGELE-APN#660-110-7

Address: 44485 OLD HY 80 Actual: JACUMBA, CA 91934 City, State, Zip: 2825 ft. Lead Agency: SAN DIEGO COUNTY LOP

> Case Type: **LUST Cleanup Site**

Geo Track: http://geotracker.waterboards.ca.gov/profile_report.asp?global_id=T0607300444

Global Id: T0607300444 Latitude: 32.6171622267744 Longitude: -116.18980938765 Completed - Case Closed Status:

11/28/2001 Status Date: Case Worker: ΕM

RB Case Number: 7T1934003

Local Agency: SAN DIEGO COUNTY LOP

File Location: Local Agency H29832-001 Local Case Number: Potential Media Affect: Soil Potential Contaminants of Concern: Gasoline EPA Region:

Coordinate Source: Google Map Move

Cuf Case:

Quantity Released Gallons: Not reported Begin Date: 01/30/1990 Leak Reported Date: 01/30/1990 Not reported How Discovered: How Discovered Description: Not reported Not reported Discharge Source: Discharge Cause: Not reported Stop Method: Not reported Stop Description: Not reported No Further Action Date: 11/28/2001

CA Water Watershed Name: Anza Borrego - Jacumba - Jacumba Valley (722.72)

Dwr Groundwater Subbasin Name: Jacumba Valley (7-047)

Disadvantaged Community: Not reported CA Enviroscreen 3 Score: 46-50%

Map ID MAP FINDINGS

Direction Distance

Elevation Site Database(s) EPA ID Number

E HAEGELE-APN#660-110-7 (Continued)

S118821894

EDR ID Number

CA Enviroscreen 4 Score: 60-65% Military DOD Site: No

Facility Project Subtype: Not reported

RWQCB Region: COLORADO RIVER BASIN RWQCB (REGION 7)

Site History: Not reported

LUST:

Global Id: T0607300444

Contact Type: Local Agency Caseworker - Primary Caseworker

Contact Name: EWAN MOFFAT

Organization Name: SAN DIEGO COUNTY LOP

Address: P.O. Box 129261 City: San Diego

Email: ewan.moffat@sdcounty.ca.gov

Phone Number: Not reported

LUST:

 Global Id:
 T0607300444

 Action Type:
 Other

 Date:
 01/30/1990

 Action:
 Leak Discovery

Global Id: T0607300444
Action Type: ENFORCEMENT
Date: 06/15/1992

Action: * Historical Enforcement

 Global Id:
 T0607300444

 Action Type:
 Other

 Date:
 01/30/1990

 Action:
 Leak Began

 Global Id:
 T0607300444

 Action Type:
 Other

 Date:
 01/30/1990

 Action:
 Leak Reported

Global Id: T0607300444
Action Type: ENFORCEMENT
Date: 11/28/2001

Action: Closure/No Further Action Letter

 Global Id:
 T0607300444

 Action Type:
 Other

 Date:
 01/30/1990

 Action:
 Leak Stopped

LUST:

Global Id: T0607300444

Status: Open - Case Begin Date

Status Date: 01/30/1990

Global Id: T0607300444

Status: Completed - Case Closed

Status Date: 11/28/2001

Map ID MAP FINDINGS

Direction Distance

Elevation Site Database(s) EPA ID Number

E HAEGELE-APN#660-110-7 (Continued)

S118821894

EDR ID Number

CORTESE:

Name: E HAEGELE-APN#660-110-7

Address: 44485 OLD HY 80 City,State,Zip: JACUMBA, CA 91934

Region: CORTESE
Envirostor Id: Not reported
Global ID: T0607300444

Site/Facility Type: LUST CLEANUP SITE

Cleanup Status: COMPLETED - CASE CLOSED

Status Date: Not reported Site Code: Not reported Latitude: Not reported Not reported Longitude: Owner: Not reported Enf Type: Not reported Swat R: Not reported Flag: active Order No: Not reported

Waste Discharge System No:

Effective Date:

Region 2:

WID Id:

Solid Waste Id No:

Waste Management Uit Name:

Not reported

Not reported

Not reported

Not reported

Not reported

Active Open

CERS:

Name: E HAEGELE-APN#660-110-7

Address: 44485 OLD HY 80 City,State,Zip: JACUMBA, CA 91934

Site ID: 650682 CERS ID: T0607300444

CERS Description: Leaking Underground Storage Tank Cleanup Site

Affiliation:

Affiliation Type Desc: Local Agency Caseworker

Entity Name: EWAN MOFFAT - SAN DIEGO COUNTY LOP

Entity Title:

Affiliation Address:

Affiliation City:

Affiliation State:

Affiliation Country:

Affiliation Country:

Affiliation Country:

Affiliation Country:

Not reported

Affiliation Country: Not reported Affiliation Zip: Not reported

Affiliation Phone: ,

C13 JACUMBA AIRPORT- NAVY FUDS 1024903963

East

1/2-1 SE OF EL CAJON, CA

0.894 mi.

4722 ft. Site 1 of 2 in cluster C

Relative: FUDS:

Higher EPA Region: 09

Actual: Installation ID: CA99799FA06400

2814 ft. Congressional District Number: 48

Name: JACUMBA AIRPORT- NAVY

N/A

Map ID MAP FINDINGS

Direction Distance

Elevation Site **EPA ID Number** Database(s)

JACUMBA AIRPORT- NAVY (Continued)

1024903963

EDR ID Number

FUDS Number: J09CA7241 City: SE OF EL CAJON

State: CA

SAN DIEGO County: Object ID: 8549 **USACE** Division: SPD

USACE District: Los Angeles District (SPL) Properties without projects Status:

LOCAL: COUNTY Department of General Services, Real Property Division. Current Owner:

Mr. Paul Tanguillig, Engineering Section.

EMS Map Link: https://fudsportal.usace.army.mil/ems/inventory/map?id=54211

Eligibility: Eligible Has Projects: No

NPL Status: Not reported

Project Required:

Feature Description: The U.S. Navy acquired this site through condemnation on 15 July 1941.

> The Navy constructed a dirt airstrip and a windsock on the site. The airstrip was used by the Navy as an emergency landing field for military aircraft until 1947. The airstrip and property were declared excess to the immediate needs of the Eleventh Naval District, San Diego, by letter of 13 February 1947 from the Chief of the Bureau of Aeronautics to the Chief of Naval Operations. It was recommended that the airstrip be made available for leasing, subject to the joint use of the Navy for landing purposes in common with the lessee. The Navy subsequently entered into a lease agreement with the County of San Diego for their use of the airstrip on 25 August 1947. The County of San Diego leased the airstrip on a yearly basis until 1953. The U.S.

General Services Administration declared the Jacumba Airport property surplus on 16 June 1953. On 7 July 1953, the County of San Diego applied to transfer the property from the Navy to the County. The General Services Administration executed a Quitclaim Deed on 14 August 1953 transferring the 113.2 acres of property to the County of San

Diego. The airport property is still owned and operated by the County.

Latitude: 32.61694444 -116.16694444 Longitude:

ENVIROSTOR

JACUMBA AIRPORT

C14 **East**

1/2-1 JACUMBA, CA 92034

JACUMBA AIRPORT

0.897 mi.

Site 2 of 2 in cluster C

4735 ft.

ENVIROSTOR: Relative:

Higher

Name:

Address: Not reported Actual: City,State,Zip: JACUMBA, CA 2814 ft. Facility ID: 80000921

Inactive - Needs Evaluation Status:

Status Date: 07/01/2005 Site Code: Not reported Site Type: Military Evaluation

Site Type Detailed: **FUDS** Acres: Not reported NPL: NO Regulatory Agencies: **SMBRP SMBRP** Lead Agency: Program Manager: Not reported Supervisor: Eileen Mananian S107621209

N/A

EMI

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

JACUMBA AIRPORT (Continued)

S107621209

Division Branch: Cleanup Cypress

Assembly: 75 18 Senate:

Special Program: Not reported

Restricted Use: NO

NONE SPECIFIED Site Mgmt Req:

Funding: **DERA** Latitude: 32.61694 Longitude: -116.1669 APN: NONE SPECIFIED

Past Use: NONE SPECIFIED NONE SPECIFIED Potential COC: NONE SPECIFIED Confirmed COC: Potential Description: NONE SPECIFIED Alias Name: CA99799FA06400 Alias Type: Federal Facility ID Alias Name: J09CA7241 **INPR** Alias Type: Alias Name: 80000921

Envirostor ID Number Alias Type:

Completed Info:

PROJECT WIDE Completed Area Name: Completed Sub Area Name: Not reported

Inventory Project Report (INPR) Completed Document Type:

Completed Date: 09/21/1999 Comments: Not reported

Future Area Name: Not reported Future Sub Area Name: Not reported Not reported Future Document Type: Future Due Date: Not reported Schedule Area Name: Not reported Schedule Sub Area Name: Not reported Not reported Schedule Document Type: Not reported Schedule Due Date: Schedule Revised Date: Not reported

EMI:

JACUMBA AIRPORT Name:

Address: Not reported JACUMBA, CA 92034

City, State, Zip: Year: 1987 County Code: 37 Air Basin: SD 100009 Facility ID:

Air District Name: SD SIC Code: 4582

SAN DIEGO COUNTY APCD Air District Name:

Community Health Air Pollution Info System: Not reported Consolidated Emission Reporting Rule: Not reported

Total Organic Hydrocarbon Gases Tons/Yr: Reactive Organic Gases Tons/Yr: 0 Carbon Monoxide Emissions Tons/Yr: 8 NOX - Oxides of Nitrogen Tons/Yr: 0 SOX - Oxides of Sulphur Tons/Yr: 0 Particulate Matter Tons/Yr: 0 Map ID MAP FINDINGS

Direction Distance

Elevation Site Database(s) EPA ID Number

JACUMBA AIRPORT (Continued)

S107621209

EDR ID Number

Part. Matter 10 Micrometers and Smllr Tons/Yr:0

Name: JACUMBA AIRPORT Address: Not reported

City,State,Zip: JACUMBA, CA 92034

 Year:
 1990

 County Code:
 37

 Air Basin:
 SD

 Facility ID:
 100009

 Air District Name:
 SD

 SIC Code:
 4582

Air District Name: SAN DIEGO COUNTY APCD

Community Health Air Pollution Info System: Not reported Consolidated Emission Reporting Rule: Not reported

Total Organic Hydrocarbon Gases Tons/Yr: 0
Reactive Organic Gases Tons/Yr: 0
Carbon Monoxide Emissions Tons/Yr: 9
NOX - Oxides of Nitrogen Tons/Yr: 0
SOX - Oxides of Sulphur Tons/Yr: 0
Particulate Matter Tons/Yr: 0
Part. Matter 10 Micrometers and Smllr Tons/Yr:0

Name: JACUMBA AIRPORT

Address: Not reported

City,State,Zip: JACUMBA, CA 92034

 Year:
 1993

 County Code:
 37

 Air Basin:
 SD

 Facility ID:
 100009

 Air District Name:
 SD

 SIC Code:
 4581

Air District Name: SAN DIEGO COUNTY APCD

Community Health Air Pollution Info System: Not reported Consolidated Emission Reporting Rule: Not reported

Total Organic Hydrocarbon Gases Tons/Yr: 0
Reactive Organic Gases Tons/Yr: 0
Carbon Monoxide Emissions Tons/Yr: 9
NOX - Oxides of Nitrogen Tons/Yr: 0
SOX - Oxides of Sulphur Tons/Yr: 0
Particulate Matter Tons/Yr: 0
Part. Matter 10 Micrometers and Smllr Tons/Yr:0

Name: JACUMBA AIRPORT Address: Not reported

City,State,Zip: JACUMBA, CA 92034

 Year:
 1996

 County Code:
 37

 Air Basin:
 SD

 Facility ID:
 100009

 Air District Name:
 SD

 SIC Code:
 4581

Air District Name: SAN DIEGO COUNTY APCD

Community Health Air Pollution Info System: Not reported Consolidated Emission Reporting Rule: Not reported

Total Organic Hydrocarbon Gases Tons/Yr: 0
Reactive Organic Gases Tons/Yr: 0
Carbon Monoxide Emissions Tons/Yr: 9

Map ID MAP FINDINGS Direction

Distance Elevation Site

Site Database(s) EPA ID Number

JACUMBA AIRPORT (Continued)

S107621209

EDR ID Number

NOX - Oxides of Nitrogen Tons/Yr: 0
SOX - Oxides of Sulphur Tons/Yr: 0
Particulate Matter Tons/Yr: 0
Part. Matter 10 Micrometers and Smllr Tons/Yr:0

Name: JACUMBA AIRPORT

Address: Not reported

City, State, Zip: JACUMBA, CA 92034

 Year:
 1997

 County Code:
 37

 Air Basin:
 SD

 Facility ID:
 100009

 Air District Name:
 SD

 SIC Code:
 4581

Air District Name: SAN DIEGO COUNTY APCD

Community Health Air Pollution Info System: Not reported Consolidated Emission Reporting Rule: Not reported

Total Organic Hydrocarbon Gases Tons/Yr: 0
Reactive Organic Gases Tons/Yr: 0
Carbon Monoxide Emissions Tons/Yr: 9
NOX - Oxides of Nitrogen Tons/Yr: 0
SOX - Oxides of Sulphur Tons/Yr: 0
Particulate Matter Tons/Yr: 0
Part. Matter 10 Micrometers and Smllr Tons/Yr:0

Count: 9 records. ORPHAN SUMMARY

City	EDR ID	Site Name	Site Address	Zip	Database(s)
JACUMBA	S106152921	HAEGLE/E-M-H REALTY&INVESTMENT	OLD HY 80 & RAILROAD		LUST
JACUMBA	S106152920	HAEGELE/E-M-H REALTY & INVEST.	OLD HY 80 & RAILROAD		LUST
JACUMBA	S106068455	HIGH DESERT FAMILY MEDICINE	44460 OLD	91934	San Diego Co. HMMD
JACUMBA	S106064532	FEASERS GARAGE	44535 OLD	91934	San Diego Co. HMMD
JACUMBA	S106063073	E HAEGELE-APN#660-110-7	OLD	91934	San Diego Co. HMMD
JACUMBA	S106063032	RODGERS AUTO REPAIR	44490 OLD	91934	San Diego Co. HMMD
JACUMBA	S106070072	JACUMBA BURNSITE 2	N OLD	91934	San Diego Co. HMMD
JACUMBA	S126984211	JACUMBA BURNSITE 2	100 YARDS NORTH OF OLD HWY 80	91934	SWF/LF
JACUMBA	S126984210	JACUMBA BURNSITE 1	100 YARDS SOUTH OF OLD HWY 80	91934	SWF/LF

To maintain currency of the following federal and state databases, EDR contacts the appropriate governmental agency on a monthly or quarterly basis, as required.

Number of Days to Update: Provides confirmation that EDR is reporting records that have been updated within 90 days from the date the government agency made the information available to the public.

STANDARD ENVIRONMENTAL RECORDS

Lists of Federal NPL (Superfund) sites

NPL: National Priority List

National Priorities List (Superfund). The NPL is a subset of CERCLIS and identifies over 1,200 sites for priority cleanup under the Superfund Program. NPL sites may encompass relatively large areas. As such, EDR provides polygon coverage for over 1,000 NPL site boundaries produced by EPA's Environmental Photographic Interpretation Center (EPIC) and regional EPA offices.

Date of Government Version: 12/26/2023 Source: EPA
Date Data Arrived at EDR: 01/02/2024 Telephone: N/A

Date Made Active in Reports: 01/24/2024 Last EDR Contact: 02/01/2024

Number of Days to Update: 22 Next Scheduled EDR Contact: 04/08/2024
Data Release Frequency: Quarterly

NPL Site Boundaries

Sources

EPA's Environmental Photographic Interpretation Center (EPIC)

Telephone: 202-564-7333

EPA Region 1 EPA Region 6

Telephone 617-918-1143 Telephone: 214-655-6659

EPA Region 3 EPA Region 7

Telephone 215-814-5418 Telephone: 913-551-7247

EPA Region 4 EPA Region 8

Telephone 404-562-8033 Telephone: 303-312-6774

EPA Region 5 EPA Region 9

Telephone 312-886-6686 Telephone: 415-947-4246

EPA Region 10

Telephone 206-553-8665

Proposed NPL: Proposed National Priority List Sites

A site that has been proposed for listing on the National Priorities List through the issuance of a proposed rule in the Federal Register. EPA then accepts public comments on the site, responds to the comments, and places on the NPL those sites that continue to meet the requirements for listing.

Date of Government Version: 12/26/2023 Source: EPA
Date Data Arrived at EDR: 01/02/2024 Telephone: N/A

Date Made Active in Reports: 01/24/2024 Last EDR Contact: 02/01/2024 Number of Days to Update: 22 Next Scheduled EDR Contact:

Next Scheduled EDR Contact: 04/08/2024
Data Release Frequency: Quarterly

NPL LIENS: Federal Superfund Liens

Federal Superfund Liens. Under the authority granted the USEPA by CERCLA of 1980, the USEPA has the authority to file liens against real property in order to recover remedial action expenditures or when the property owner received notification of potential liability. USEPA compiles a listing of filed notices of Superfund Liens.

Date of Government Version: 10/15/1991 Date Data Arrived at EDR: 02/02/1994 Date Made Active in Reports: 03/30/1994

Number of Days to Update: 56

Source: EPA

Telephone: 202-564-4267 Last EDR Contact: 08/15/2011

Next Scheduled EDR Contact: 11/28/2011 Data Release Frequency: No Update Planned

Lists of Federal Delisted NPL sites

Delisted NPL: National Priority List Deletions

The National Oil and Hazardous Substances Pollution Contingency Plan (NCP) establishes the criteria that the EPA uses to delete sites from the NPL. In accordance with 40 CFR 300.425.(e), sites may be deleted from the NPL where no further response is appropriate.

Source: EPA

Date of Government Version: 12/26/2023 Date Data Arrived at EDR: 01/02/2024 Date Made Active in Reports: 01/24/2024

Number of Days to Update: 22

Telephone: N/A Last EDR Contact: 02/01/2024

Next Scheduled EDR Contact: 04/08/2024 Data Release Frequency: Quarterly

Lists of Federal sites subject to CERCLA removals and CERCLA orders

FEDERAL FACILITY: Federal Facility Site Information listing

A listing of National Priority List (NPL) and Base Realignment and Closure (BRAC) sites found in the Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS) Database where EPA Federal Facilities Restoration and Reuse Office is involved in cleanup activities.

Date of Government Version: 12/20/2023 Date Data Arrived at EDR: 12/20/2023 Date Made Active in Reports: 01/24/2024

Number of Days to Update: 35

Source: Environmental Protection Agency Telephone: 703-603-8704

Last EDR Contact: 12/20/2023

Next Scheduled EDR Contact: 04/08/2024 Data Release Frequency: Varies

SEMS: Superfund Enterprise Management System

SEMS (Superfund Enterprise Management System) tracks hazardous waste sites, potentially hazardous waste sites, and remedial activities performed in support of EPA's Superfund Program across the United States. The list was formerly know as CERCLIS, renamed to SEMS by the EPA in 2015. The list contains data on potentially hazardous waste sites that have been reported to the USEPA by states, municipalities, private companies and private persons, pursuant to Section 103 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This dataset also contains sites which are either proposed to or on the National Priorities List (NPL) and the sites which are in the screening and assessment phase for possible inclusion on the NPL.

Date of Government Version: 01/29/2024 Date Data Arrived at EDR: 02/01/2024 Date Made Active in Reports: 02/22/2024

Number of Days to Update: 21

Source: EPA

Telephone: 800-424-9346 Last EDR Contact: 02/01/2024

Next Scheduled EDR Contact: 04/22/2024 Data Release Frequency: Quarterly

Lists of Federal CERCLA sites with NFRAP

SEMS-ARCHIVE: Superfund Enterprise Management System Archive

SEMS-ARCHIVE (Superfund Enterprise Management System Archive) tracks sites that have no further interest under the Federal Superfund Program based on available information. The list was formerly known as the CERCLIS-NFRAP, renamed to SEMS ARCHIVE by the EPA in 2015. EPA may perform a minimal level of assessment work at a site while it is archived if site conditions change and/or new information becomes available. Archived sites have been removed and archived from the inventory of SEMS sites. Archived status indicates that, to the best of EPA's knowledge, assessment at a site has been completed and that EPA has determined no further steps will be taken to list the site on the National Priorities List (NPL), unless information indicates this decision was not appropriate or other considerations require a recommendation for listing at a later time. The decision does not necessarily mean that there is no hazard associated with a given site; it only means that based upon available information, the location is not judged to be potential NPL site.

Date of Government Version: 01/29/2024 Date Data Arrived at EDR: 02/01/2024 Date Made Active in Reports: 02/22/2024

Number of Days to Update: 21

Source: EPA

Telephone: 800-424-9346 Last EDR Contact: 02/01/2024

Next Scheduled EDR Contact: 04/22/2024 Data Release Frequency: Quarterly

Lists of Federal RCRA facilities undergoing Corrective Action

CORRACTS: Corrective Action Report

CORRACTS identifies hazardous waste handlers with RCRA corrective action activity.

Date of Government Version: 12/04/2023 Date Data Arrived at EDR: 12/06/2023 Date Made Active in Reports: 12/12/2023

Number of Days to Update: 6

Source: EPA

Telephone: 800-424-9346 Last EDR Contact: 12/06/2023

Next Scheduled EDR Contact: 04/01/2024 Data Release Frequency: Quarterly

Lists of Federal RCRA TSD facilities

RCRA-TSDF: RCRA - Treatment, Storage and Disposal

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Transporters are individuals or entities that move hazardous waste from the generator offsite to a facility that can recycle, treat, store, or dispose of the waste. TSDFs treat, store, or dispose of the waste.

Date of Government Version: 12/04/2023 Date Data Arrived at EDR: 12/06/2023 Date Made Active in Reports: 12/12/2023

Number of Days to Update: 6

Source: Environmental Protection Agency

Telephone: (415) 495-8895 Last EDR Contact: 12/06/2023

Next Scheduled EDR Contact: 04/01/2024 Data Release Frequency: Quarterly

Lists of Federal RCRA generators

RCRA-LQG: RCRA - Large Quantity Generators

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Large quantity generators (LQGs) generate over 1,000 kilograms (kg) of hazardous waste, or over 1 kg of acutely hazardous waste per month.

Date of Government Version: 12/04/2023 Date Data Arrived at EDR: 12/06/2023 Date Made Active in Reports: 12/12/2023

Number of Days to Update: 6

Source: Environmental Protection Agency

Telephone: (415) 495-8895 Last EDR Contact: 12/06/2023

Next Scheduled EDR Contact: 04/01/2024 Data Release Frequency: Quarterly

RCRA-SQG: RCRA - Small Quantity Generators

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Small quantity generators (SQGs) generate between 100 kg and 1,000 kg of hazardous waste per month.

Date of Government Version: 12/04/2023 Date Data Arrived at EDR: 12/06/2023 Date Made Active in Reports: 12/12/2023

Number of Days to Update: 6

Source: Environmental Protection Agency

Telephone: (415) 495-8895 Last EDR Contact: 12/06/2023

Next Scheduled EDR Contact: 04/01/2024 Data Release Frequency: Quarterly

RCRA-VSQG: RCRA - Very Small Quantity Generators (Formerly Conditionally Exempt Small Quantity Generators)
RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation
and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database
includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste
as defined by the Resource Conservation and Recovery Act (RCRA). Very small quantity generators (VSQGs) generate
less than 100 kg of hazardous waste, or less than 1 kg of acutely hazardous waste per month.

Date of Government Version: 12/04/2023 Date Data Arrived at EDR: 12/06/2023 Date Made Active in Reports: 12/12/2023

Number of Days to Update: 6

Source: Environmental Protection Agency

Telephone: (415) 495-8895 Last EDR Contact: 12/06/2023

Next Scheduled EDR Contact: 04/01/2024 Data Release Frequency: Quarterly

Federal institutional controls / engineering controls registries

LUCIS: Land Use Control Information System

LUCIS contains records of land use control information pertaining to the former Navy Base Realignment and Closure properties.

Date of Government Version: 08/03/2023 Date Data Arrived at EDR: 08/07/2023 Date Made Active in Reports: 10/10/2023

Number of Days to Update: 64

Source: Department of the Navy Telephone: 843-820-7326 Last EDR Contact: 02/02/2024

Next Scheduled EDR Contact: 05/20/2024 Data Release Frequency: Varies

US ENG CONTROLS: Engineering Controls Sites List

A listing of sites with engineering controls in place. Engineering controls include various forms of caps, building foundations, liners, and treatment methods to create pathway elimination for regulated substances to enter environmental media or effect human health.

Date of Government Version: 10/26/2023 Date Data Arrived at EDR: 11/17/2023 Date Made Active in Reports: 02/13/2024

Number of Days to Update: 88

Source: Environmental Protection Agency

Telephone: 703-603-0695 Last EDR Contact: 02/21/2024

Next Scheduled EDR Contact: 06/03/2024 Data Release Frequency: Varies

US INST CONTROLS: Institutional Controls Sites List

A listing of sites with institutional controls in place. Institutional controls include administrative measures, such as groundwater use restrictions, construction restrictions, property use restrictions, and post remediation care requirements intended to prevent exposure to contaminants remaining on site. Deed restrictions are generally required as part of the institutional controls.

Date of Government Version: 10/26/2023 Date Data Arrived at EDR: 11/17/2023 Date Made Active in Reports: 02/13/2024

Number of Days to Update: 88

Source: Environmental Protection Agency

Telephone: 703-603-0695 Last EDR Contact: 02/21/2024

Next Scheduled EDR Contact: 06/03/2024

Data Release Frequency: Varies

Federal ERNS list

ERNS: Emergency Response Notification System

Emergency Response Notification System. ERNS records and stores information on reported releases of oil and hazardous substances.

Date of Government Version: 09/18/2023 Date Data Arrived at EDR: 09/20/2023 Date Made Active in Reports: 12/11/2023

Number of Days to Update: 82

Source: National Response Center, United States Coast Guard

Telephone: 202-267-2180 Last EDR Contact: 12/13/2023

Next Scheduled EDR Contact: 04/01/2024 Data Release Frequency: Quarterly

Lists of state- and tribal (Superfund) equivalent sites

RESPONSE: State Response Sites

Identifies confirmed release sites where DTSC is involved in remediation, either in a lead or oversight capacity.

These confirmed release sites are generally high-priority and high potential risk.

Date of Government Version: 10/23/2023 Date Data Arrived at EDR: 10/24/2023 Date Made Active in Reports: 01/11/2024

Number of Days to Update: 79

Source: Department of Toxic Substances Control

Telephone: 916-323-3400 Last EDR Contact: 01/23/2024

Next Scheduled EDR Contact: 05/06/2024 Data Release Frequency: Quarterly

Lists of state- and tribal hazardous waste facilities

ENVIROSTOR: EnviroStor Database

The Department of Toxic Substances Control's (DTSC's) Site Mitigation and Brownfields Reuse Program's (SMBRP's) EnviroStor database identifes sites that have known contamination or sites for which there may be reasons to investigate further. The database includes the following site types: Federal Superfund sites (National Priorities List (NPL)); State Response, including Military Facilities and State Superfund; Voluntary Cleanup; and School sites. EnviroStor provides similar information to the information that was available in CalSites, and provides additional site information, including, but not limited to, identification of formerly-contaminated properties that have been released for reuse, properties where environmental deed restrictions have been recorded to prevent inappropriate land uses, and risk characterization information that is used to assess potential impacts to public health and the environment at contaminated sites.

Date of Government Version: 10/23/2023 Date Data Arrived at EDR: 10/24/2023 Date Made Active in Reports: 01/11/2024

Number of Days to Update: 79

Source: Department of Toxic Substances Control

Telephone: 916-323-3400 Last EDR Contact: 01/23/2024

Next Scheduled EDR Contact: 05/06/2024 Data Release Frequency: Quarterly

Lists of state and tribal landfills and solid waste disposal facilities

SWF/LF (SWIS): Solid Waste Information System

Active, Closed and Inactive Landfills. SWF/LF records typically contain an inventory of solid waste disposal facilities or landfills. These may be active or inactive facilities or open dumps that failed to meet RCRA Section 4004 criteria for solid waste landfills or disposal sites.

Date of Government Version: 11/06/2023 Date Data Arrived at EDR: 11/07/2023 Date Made Active in Reports: 02/05/2024

Number of Days to Update: 90

Source: Department of Resources Recycling and Recovery

Telephone: 916-341-6320 Last EDR Contact: 02/06/2024

Next Scheduled EDR Contact: 05/20/2024 Data Release Frequency: Quarterly

Lists of state and tribal leaking storage tanks

LUST REG 7: Leaking Underground Storage Tank Case Listing

Leaking Underground Storage Tank locations. Imperial, Riverside, San Diego, Santa Barbara counties.

Date of Government Version: 02/26/2004 Date Data Arrived at EDR: 02/26/2004 Date Made Active in Reports: 03/24/2004

Number of Days to Update: 27

Source: California Regional Water Quality Control Board Colorado River Basin Region (7)

Telephone: 760-776-8943 Last EDR Contact: 08/01/2011

Next Scheduled EDR Contact: 11/14/2011 Data Release Frequency: No Update Planned

LUST REG 6V: Leaking Underground Storage Tank Case Listing

Leaking Underground Storage Tank locations. Inyo, Kern, Los Angeles, Mono, San Bernardino counties.

Date of Government Version: 06/07/2005 Date Data Arrived at EDR: 06/07/2005 Date Made Active in Reports: 06/29/2005

Number of Days to Update: 22

Source: California Regional Water Quality Control Board Victorville Branch Office (6)

Telephone: 760-241-7365 Last EDR Contact: 09/12/2011

Next Scheduled EDR Contact: 12/26/2011 Data Release Frequency: No Update Planned

LUST REG 1: Active Toxic Site Investigation

Del Norte, Humboldt, Lake, Mendocino, Modoc, Siskiyou, Sonoma, Trinity counties. For more current information, please refer to the State Water Resources Control Board's LUST database.

Date of Government Version: 02/01/2001 Date Data Arrived at EDR: 02/28/2001 Date Made Active in Reports: 03/29/2001

Number of Days to Update: 29

Source: California Regional Water Quality Control Board North Coast (1)

Telephone: 707-570-3769 Last EDR Contact: 08/01/2011

Next Scheduled EDR Contact: 11/14/2011
Data Release Frequency: No Update Planned

LUST REG 2: Fuel Leak List

Leaking Underground Storage Tank locations. Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, Santa Clara, Solano, Sonoma counties.

Date of Government Version: 09/30/2004 Date Data Arrived at EDR: 10/20/2004 Date Made Active in Reports: 11/19/2004

Number of Days to Update: 30

Source: California Regional Water Quality Control Board San Francisco Bay Region (2)

Telephone: 510-622-2433 Last EDR Contact: 09/19/2011

Next Scheduled EDR Contact: 01/02/2012 Data Release Frequency: No Update Planned

LUST REG 3: Leaking Underground Storage Tank Database

Leaking Underground Storage Tank locations. Monterey, San Benito, San Luis Obispo, Santa Barbara, Santa Cruz counties.

Date of Government Version: 05/19/2003
Date Data Arrived at EDR: 05/19/2003
Date Made Active in Reports: 06/02/2003

Number of Days to Update: 14

Source: California Regional Water Quality Control Board Central Coast Region (3)

Telephone: 805-542-4786 Last EDR Contact: 07/18/2011

Next Scheduled EDR Contact: 10/31/2011 Data Release Frequency: No Update Planned

LUST REG 4: Underground Storage Tank Leak List

Los Angeles, Ventura counties. For more current information, please refer to the State Water Resources Control Board's LUST database.

Date of Government Version: 09/07/2004 Date Data Arrived at EDR: 09/07/2004 Date Made Active in Reports: 10/12/2004

Number of Days to Update: 35

Source: California Regional Water Quality Control Board Los Angeles Region (4)

Telephone: 213-576-6710 Last EDR Contact: 09/06/2011

Next Scheduled EDR Contact: 12/19/2011 Data Release Frequency: No Update Planned

LUST REG 5: Leaking Underground Storage Tank Database

Leaking Underground Storage Tank locations. Alameda, Alpine, Amador, Butte, Colusa, Contra Costa, Calveras, El Dorado, Fresno, Glenn, Kern, Kings, Lake, Lassen, Madera, Mariposa, Merced, Modoc, Napa, Nevada, Placer, Plumas, Sacramento, San Joaquin, Shasta, Solano, Stanislaus, Sutter, Tehama, Tulare, Tuolumne, Yolo, Yuba counties.

Date of Government Version: 07/01/2008 Date Data Arrived at EDR: 07/22/2008 Date Made Active in Reports: 07/31/2008

Number of Days to Update: 9

Source: California Regional Water Quality Control Board Central Valley Region (5)

Telephone: 916-464-4834 Last EDR Contact: 07/01/2011

Next Scheduled EDR Contact: 10/17/2011 Data Release Frequency: No Update Planned

LUST REG 6L: Leaking Underground Storage Tank Case Listing

For more current information, please refer to the State Water Resources Control Board's LUST database.

Date of Government Version: 09/09/2003 Date Data Arrived at EDR: 09/10/2003 Date Made Active in Reports: 10/07/2003

Number of Days to Update: 27

Source: California Regional Water Quality Control Board Lahontan Region (6)

Telephone: 530-542-5572 Last EDR Contact: 09/12/2011

Next Scheduled EDR Contact: 12/26/2011 Data Release Frequency: No Update Planned

LUST: Leaking Underground Fuel Tank Report (GEOTRACKER)

Leaking Underground Storage Tank (LUST) Sites included in GeoTracker. GeoTracker is the Water Boards data management system for sites that impact, or have the potential to impact, water quality in California, with emphasis on groundwater.

Date of Government Version: 09/05/2023 Date Data Arrived at EDR: 09/06/2023 Date Made Active in Reports: 11/22/2023

Number of Days to Update: 77

Source: State Water Resources Control Board

Telephone: see region list Last EDR Contact: 12/05/2023

Next Scheduled EDR Contact: 03/18/2024 Data Release Frequency: Quarterly

LUST REG 8: Leaking Underground Storage Tanks

California Regional Water Quality Control Board Santa Ana Region (8). For more current information, please refer to the State Water Resources Control Board's LUST database.

Date of Government Version: 02/14/2005 Date Data Arrived at EDR: 02/15/2005 Date Made Active in Reports: 03/28/2005

Number of Days to Update: 41

Source: California Regional Water Quality Control Board Santa Ana Region (8)

Telephone: 909-782-4496 Last EDR Contact: 08/15/2011

Next Scheduled EDR Contact: 11/28/2011 Data Release Frequency: No Update Planned

LUST REG 9: Leaking Underground Storage Tank Report

Orange, Riverside, San Diego counties. For more current information, please refer to the State Water Resources Control Board's LUST database.

Date of Government Version: 03/01/2001 Date Data Arrived at EDR: 04/23/2001 Date Made Active in Reports: 05/21/2001

Number of Days to Update: 28

Source: California Regional Water Quality Control Board San Diego Region (9)

Telephone: 858-637-5595 Last EDR Contact: 09/26/2011

Next Scheduled EDR Contact: 01/09/2012 Data Release Frequency: No Update Planned

INDIAN LUST R4: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Florida, Mississippi and North Carolina.

Date of Government Version: 04/20/2023 Date Data Arrived at EDR: 05/09/2023 Date Made Active in Reports: 07/14/2023

Number of Days to Update: 66

Source: EPA Region 4 Telephone: 404-562-8677 Last EDR Contact: 01/17/2024

Next Scheduled EDR Contact: 04/29/2024 Data Release Frequency: Varies

INDIAN LUST R1: Leaking Underground Storage Tanks on Indian Land A listing of leaking underground storage tank locations on Indian Land.

Date of Government Version: 04/20/2023 Date Data Arrived at EDR: 05/09/2023 Date Made Active in Reports: 07/14/2023

Number of Days to Update: 66

Source: EPA Region 1 Telephone: 617-918-1313 Last EDR Contact: 01/17/2024

Next Scheduled EDR Contact: 04/29/2024 Data Release Frequency: Varies

INDIAN LUST R10: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Alaska, Idaho, Oregon and Washington.

Date of Government Version: 04/20/2023 Date Data Arrived at EDR: 05/09/2023 Date Made Active in Reports: 07/14/2023

Number of Days to Update: 66

Source: EPA Region 10 Telephone: 206-553-2857 Last EDR Contact: 01/17/2024

Next Scheduled EDR Contact: 04/29/2024 Data Release Frequency: Varies

INDIAN LUST R6: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in New Mexico and Oklahoma.

Date of Government Version: 04/26/2023 Date Data Arrived at EDR: 05/09/2023 Date Made Active in Reports: 07/14/2023

Number of Days to Update: 66

Source: EPA Region 6 Telephone: 214-665-6597 Last EDR Contact: 01/17/2024

Next Scheduled EDR Contact: 04/29/2024 Data Release Frequency: Varies

INDIAN LUST R5: Leaking Underground Storage Tanks on Indian Land

Leaking underground storage tanks located on Indian Land in Michigan, Minnesota and Wisconsin.

Date of Government Version: 04/14/2023 Date Data Arrived at EDR: 05/09/2023 Date Made Active in Reports: 07/14/2023

Number of Days to Update: 66

Source: EPA, Region 5 Telephone: 312-886-7439 Last EDR Contact: 01/17/2024

Next Scheduled EDR Contact: 04/29/2024 Data Release Frequency: Varies

INDIAN LUST R9: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Arizona, California, New Mexico and Nevada

Date of Government Version: 04/19/2023 Date Data Arrived at EDR: 05/09/2023 Date Made Active in Reports: 07/14/2023

Number of Days to Update: 66

Source: Environmental Protection Agency

Telephone: 415-972-3372 Last EDR Contact: 01/17/2024

Next Scheduled EDR Contact: 04/29/2024 Data Release Frequency: Varies

INDIAN LUST R7: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Iowa, Kansas, and Nebraska

Date of Government Version: 04/25/2023 Date Data Arrived at EDR: 05/09/2023 Date Made Active in Reports: 07/14/2023

Number of Days to Update: 66

Source: EPA Region 7 Telephone: 913-551-7003 Last EDR Contact: 01/17/2024

Next Scheduled EDR Contact: 04/29/2024 Data Release Frequency: Varies

INDIAN LUST R8: Leaking Underground Storage Tanks on Indian Land

LUSTs on Indian land in Colorado, Montana, North Dakota, South Dakota, Utah and Wyoming.

Date of Government Version: 04/19/2023 Date Data Arrived at EDR: 05/09/2023 Date Made Active in Reports: 07/14/2023

Number of Days to Update: 66

Source: EPA Region 8 Telephone: 303-312-6271 Last EDR Contact: 01/17/2024

Next Scheduled EDR Contact: 04/29/2024 Data Release Frequency: Varies

CPS-SLIC: Statewide SLIC Cases (GEOTRACKER)

Cleanup Program Sites (CPS; also known as Site Cleanups [SC] and formerly known as Spills, Leaks, Investigations, and Cleanups [SLIC] sites) included in GeoTracker. GeoTracker is the Water Boards data management system for sites that impact, or have the potential to impact, water quality in California, with emphasis on groundwater.

Date of Government Version: 12/04/2023 Date Data Arrived at EDR: 12/05/2023 Date Made Active in Reports: 02/27/2024

Number of Days to Update: 84

Source: State Water Resources Control Board Telephone: 866-480-1028

Last EDR Contact: 12/05/2023

Next Scheduled EDR Contact: 03/18/2024

Data Release Frequency: Varies

SLIC REG 1: Active Toxic Site Investigations

The SLIC (Spills, Leaks, Investigations and Cleanup) program is designed to protect and restore water quality

from spills, leaks, and similar discharges.

Date of Government Version: 04/03/2003 Date Data Arrived at EDR: 04/07/2003 Date Made Active in Reports: 04/25/2003

Number of Days to Update: 18

Source: California Regional Water Quality Control Board, North Coast Region (1)

Telephone: 707-576-2220 Last EDR Contact: 08/01/2011

Next Scheduled EDR Contact: 11/14/2011 Data Release Frequency: No Update Planned

SLIC REG 2: Spills, Leaks, Investigation & Cleanup Cost Recovery Listing

The SLIC (Spills, Leaks, Investigations and Cleanup) program is designed to protect and restore water quality

from spills, leaks, and similar discharges.

Date of Government Version: 09/30/2004 Date Data Arrived at EDR: 10/20/2004 Date Made Active in Reports: 11/19/2004

Number of Days to Update: 30

Source: Regional Water Quality Control Board San Francisco Bay Region (2)

Telephone: 510-286-0457 Last EDR Contact: 09/19/2011

Next Scheduled EDR Contact: 01/02/2012 Data Release Frequency: No Update Planned

SLIC REG 3: Spills, Leaks, Investigation & Cleanup Cost Recovery Listing

The SLIC (Spills, Leaks, Investigations and Cleanup) program is designed to protect and restore water quality

from spills, leaks, and similar discharges.

Date of Government Version: 05/18/2006 Date Data Arrived at EDR: 05/18/2006 Date Made Active in Reports: 06/15/2006

Number of Days to Update: 28

Source: California Regional Water Quality Control Board Central Coast Region (3)

Telephone: 805-549-3147 Last EDR Contact: 07/18/2011

Next Scheduled EDR Contact: 10/31/2011 Data Release Frequency: No Update Planned

SLIC REG 4: Spills, Leaks, Investigation & Cleanup Cost Recovery Listing

The SLIC (Spills, Leaks, Investigations and Cleanup) program is designed to protect and restore water quality

from spills, leaks, and similar discharges.

Date of Government Version: 11/17/2004 Date Data Arrived at EDR: 11/18/2004 Date Made Active in Reports: 01/04/2005

Number of Days to Update: 47

Source: Region Water Quality Control Board Los Angeles Region (4)

Telephone: 213-576-6600 Last EDR Contact: 07/01/2011

Next Scheduled EDR Contact: 10/17/2011 Data Release Frequency: No Update Planned

SLIC REG 5: Spills, Leaks, Investigation & Cleanup Cost Recovery Listing

The SLIC (Spills, Leaks, Investigations and Cleanup) program is designed to protect and restore water quality

from spills, leaks, and similar discharges.

Date of Government Version: 04/01/2005 Date Data Arrived at EDR: 04/05/2005 Date Made Active in Reports: 04/21/2005

Number of Days to Update: 16

Source: Regional Water Quality Control Board Central Valley Region (5)

Telephone: 916-464-3291 Last EDR Contact: 09/12/2011

Next Scheduled EDR Contact: 12/26/2011 Data Release Frequency: No Update Planned

SLIC REG 6V: Spills, Leaks, Investigation & Cleanup Cost Recovery Listing

The SLIC (Spills, Leaks, Investigations and Cleanup) program is designed to protect and restore water quality

from spills, leaks, and similar discharges.

Date of Government Version: 05/24/2005 Date Data Arrived at EDR: 05/25/2005 Date Made Active in Reports: 06/16/2005

Number of Days to Update: 22

Source: Regional Water Quality Control Board, Victorville Branch

Telephone: 619-241-6583 Last EDR Contact: 08/15/2011

Next Scheduled EDR Contact: 11/28/2011 Data Release Frequency: No Update Planned

SLIC REG 6L: SLIC Sites

The SLIC (Spills, Leaks, Investigations and Cleanup) program is designed to protect and restore water quality

from spills, leaks, and similar discharges.

Date of Government Version: 09/07/2004 Date Data Arrived at EDR: 09/07/2004 Date Made Active in Reports: 10/12/2004

Number of Days to Update: 35

Source: California Regional Water Quality Control Board, Lahontan Region

Telephone: 530-542-5574 Last EDR Contact: 08/15/2011

Next Scheduled EDR Contact: 11/28/2011 Data Release Frequency: No Update Planned

SLIC REG 7: SLIC List

The SLIC (Spills, Leaks, Investigations and Cleanup) program is designed to protect and restore water quality

from spills, leaks, and similar discharges.

Date of Government Version: 11/24/2004 Date Data Arrived at EDR: 11/29/2004 Date Made Active in Reports: 01/04/2005

Number of Days to Update: 36

Source: California Regional Quality Control Board, Colorado River Basin Region

Telephone: 760-346-7491 Last EDR Contact: 08/01/2011

Next Scheduled EDR Contact: 11/14/2011 Data Release Frequency: No Update Planned

SLIC REG 8: Spills, Leaks, Investigation & Cleanup Cost Recovery Listing

The SLIC (Spills, Leaks, Investigations and Cleanup) program is designed to protect and restore water quality

from spills, leaks, and similar discharges.

Date of Government Version: 04/03/2008 Date Data Arrived at EDR: 04/03/2008 Date Made Active in Reports: 04/14/2008

Number of Days to Update: 11

Source: California Region Water Quality Control Board Santa Ana Region (8)

Telephone: 951-782-3298 Last EDR Contact: 09/12/2011

Next Scheduled EDR Contact: 12/26/2011 Data Release Frequency: No Update Planned

SLIC REG 9: Spills, Leaks, Investigation & Cleanup Cost Recovery Listing

The SLIC (Spills, Leaks, Investigations and Cleanup) program is designed to protect and restore water quality

from spills, leaks, and similar discharges.

Date of Government Version: 09/10/2007 Date Data Arrived at EDR: 09/11/2007 Date Made Active in Reports: 09/28/2007

Number of Days to Update: 17

Source: California Regional Water Quality Control Board San Diego Region (9)

Telephone: 858-467-2980 Last EDR Contact: 08/08/2011

Next Scheduled EDR Contact: 11/21/2011 Data Release Frequency: No Update Planned

Lists of state and tribal registered storage tanks

FEMA UST: Underground Storage Tank Listing

A listing of all FEMA owned underground storage tanks.

Date of Government Version: 11/16/2023 Date Data Arrived at EDR: 11/16/2023 Date Made Active in Reports: 02/13/2024

Number of Days to Update: 89

Source: FEMA

Telephone: 202-646-5797 Last EDR Contact: 01/11/2024

Next Scheduled EDR Contact: 04/15/2024 Data Release Frequency: Varies

UST: Active UST Facilities

Active UST facilities gathered from the local regulatory agencies

Date of Government Version: 09/05/2023 Date Data Arrived at EDR: 09/06/2023 Date Made Active in Reports: 11/28/2023

Number of Days to Update: 83

Source: SWRCB Telephone: 916-341-5851 Last EDR Contact: 12/05/2023

Next Scheduled EDR Contact: 03/18/2024 Data Release Frequency: Semi-Annually

UST CLOSURE: Proposed Closure of Underground Storage Tank (UST) Cases

UST cases that are being considered for closure by either the State Water Resources Control Board or the Executive Director have been posted for a 60-day public comment period. UST Case Closures being proposed for consideration by the State Water Resources Control Board. These are primarily UST cases that meet closure criteria under the decisional framework in State Water Board Resolution No. 92-49 and other Board orders. UST Case Closures proposed for consideration by the Executive Director pursuant to State Water Board Resolution No. 2012-0061. These are cases that meet the criteria of the Low-Threat UST Case Closure Policy. UST Case Closure Review Denials and Approved Orders.

Date of Government Version: 11/28/2023 Date Data Arrived at EDR: 11/30/2023 Date Made Active in Reports: 02/27/2024

Number of Days to Update: 89

Source: State Water Resources Control Board

Telephone: 916-327-7844 Last EDR Contact: 11/30/2023

Next Scheduled EDR Contact: 03/18/2024 Data Release Frequency: Varies

MILITARY UST SITES: Military UST Sites (GEOTRACKER)

Military ust sites

Date of Government Version: 09/05/2023 Date Data Arrived at EDR: 09/06/2023 Date Made Active in Reports: 11/27/2023

Number of Days to Update: 82

Source: State Water Resources Control Board

Telephone: 866-480-1028 Last EDR Contact: 12/05/2023

Next Scheduled EDR Contact: 03/18/2024 Data Release Frequency: Varies

Data Nelease Frequent

AST: Aboveground Petroleum Storage Tank Facilities

A listing of aboveground storage tank petroleum storage tank locations.

Date of Government Version: 07/06/2016 Date Data Arrived at EDR: 07/12/2016 Date Made Active in Reports: 09/19/2016

Number of Days to Update: 69

Source: California Environmental Protection Agency

Telephone: 916-327-5092 Last EDR Contact: 12/05/2023

Next Scheduled EDR Contact: 03/25/2024

Data Release Frequency: Varies

INDIAN UST R5: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 5 (Michigan, Minnesota and Wisconsin and Tribal Nations).

Date of Government Version: 04/14/2023 Date Data Arrived at EDR: 05/09/2023 Date Made Active in Reports: 07/14/2023

Number of Days to Update: 66

Source: EPA Region 5 Telephone: 312-886-6136 Last EDR Contact: 01/17/2024

Next Scheduled EDR Contact: 04/29/2024

Data Release Frequency: Varies

INDIAN UST R10: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 10 (Alaska, Idaho, Oregon, Washington, and Tribal Nations).

Date of Government Version: 04/20/2023 Date Data Arrived at EDR: 05/09/2023 Date Made Active in Reports: 07/14/2023

Number of Days to Update: 66

Source: EPA Region 10 Telephone: 206-553-2857 Last EDR Contact: 01/17/2024

Next Scheduled EDR Contact: 04/29/2024 Data Release Frequency: Varies

INDIAN UST R4: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 4 (Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee and Tribal Nations)

Date of Government Version: 04/20/2023 Date Data Arrived at EDR: 05/09/2023 Date Made Active in Reports: 07/14/2023

Number of Days to Update: 66

Source: EPA Region 4 Telephone: 404-562-9424 Last EDR Contact: 01/17/2024

Next Scheduled EDR Contact: 04/29/2024 Data Release Frequency: Varies

INDIAN UST R6: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 6 (Louisiana, Arkansas, Oklahoma, New Mexico, Texas and 65 Tribes).

Date of Government Version: 04/26/2023 Date Data Arrived at EDR: 05/09/2023 Date Made Active in Reports: 07/14/2023

Number of Days to Update: 66

Source: EPA Region 6 Telephone: 214-665-7591 Last EDR Contact: 01/17/2024

Next Scheduled EDR Contact: 04/29/2024 Data Release Frequency: Varies

INDIAN UST R9: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 9 (Arizona, California, Hawaii, Nevada, the Pacific Islands, and Tribal Nations).

Date of Government Version: 04/19/2023 Date Data Arrived at EDR: 05/09/2023 Date Made Active in Reports: 07/14/2023

Number of Days to Update: 66

Source: EPA Region 9 Telephone: 415-972-3368 Last EDR Contact: 01/17/2024

Next Scheduled EDR Contact: 04/29/2024 Data Release Frequency: Varies

INDIAN UST R8: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 8 (Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming and 27 Tribal Nations).

Date of Government Version: 04/20/2023 Date Data Arrived at EDR: 05/09/2023 Date Made Active in Reports: 07/14/2023

Number of Days to Update: 66

Source: EPA Region 8 Telephone: 303-312-6137 Last EDR Contact: 01/17/2024

Next Scheduled EDR Contact: 04/29/2024

Data Release Frequency: Varies

INDIAN UST R7: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 7 (Iowa, Kansas, Missouri, Nebraska, and 9 Tribal Nations).

Date of Government Version: 04/25/2023 Date Data Arrived at EDR: 05/09/2023 Date Made Active in Reports: 07/14/2023

Number of Days to Update: 66

Source: EPA Region 7 Telephone: 913-551-7003 Last EDR Contact: 01/17/2024

Next Scheduled EDR Contact: 04/29/2024

Data Release Frequency: Varies

INDIAN UST R1: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 1 (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont and ten Tribal Nations).

Date of Government Version: 04/20/2023 Date Data Arrived at EDR: 05/09/2023 Date Made Active in Reports: 07/14/2023

Number of Days to Update: 66

Source: EPA, Region 1 Telephone: 617-918-1313 Last EDR Contact: 01/17/2024

Next Scheduled EDR Contact: 04/29/2024 Data Release Frequency: Varies

Lists of state and tribal voluntary cleanup sites

INDIAN VCP R1: Voluntary Cleanup Priority Listing

A listing of voluntary cleanup priority sites located on Indian Land located in Region 1.

Date of Government Version: 07/27/2015 Date Data Arrived at EDR: 09/29/2015 Date Made Active in Reports: 02/18/2016

Number of Days to Update: 142

Source: EPA, Region 1 Telephone: 617-918-1102 Last EDR Contact: 12/12/2023

Next Scheduled EDR Contact: 04/01/2024

Data Release Frequency: Varies

INDIAN VCP R7: Voluntary Cleanup Priority Lisitng

A listing of voluntary cleanup priority sites located on Indian Land located in Region 7.

Date of Government Version: 03/20/2008 Date Data Arrived at EDR: 04/22/2008 Date Made Active in Reports: 05/19/2008

Number of Days to Update: 27

Source: EPA, Region 7 Telephone: 913-551-7365 Last EDR Contact: 07/08/2021

Next Scheduled EDR Contact: 07/20/2009 Data Release Frequency: Varies

VCP: Voluntary Cleanup Program Properties

Contains low threat level properties with either confirmed or unconfirmed releases and the project proponents have request that DTSC oversee investigation and/or cleanup activities and have agreed to provide coverage for DTSC's costs.

Date of Government Version: 10/23/2023 Date Data Arrived at EDR: 10/24/2023 Date Made Active in Reports: 01/11/2024

Number of Days to Update: 79

Source: Department of Toxic Substances Control

Telephone: 916-323-3400 Last EDR Contact: 01/23/2024

Next Scheduled EDR Contact: 05/06/2024 Data Release Frequency: Quarterly

Lists of state and tribal brownfield sites

BROWNFIELDS: Considered Brownfieds Sites Listing

A listing of sites the SWRCB considers to be Brownfields since these are sites have come to them through the MOA Process

Date of Government Version: 09/19/2023 Date Data Arrived at EDR: 09/20/2023 Date Made Active in Reports: 12/08/2023

Number of Days to Update: 79

Source: State Water Resources Control Board

Telephone: 916-323-7905 Last EDR Contact: 12/13/2023

Next Scheduled EDR Contact: 04/01/2024 Data Release Frequency: Quarterly

ADDITIONAL ENVIRONMENTAL RECORDS

Local Brownfield lists

US BROWNFIELDS: A Listing of Brownfields Sites

Brownfields are real property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant. Cleaning up and reinvesting in these properties takes development pressures off of undeveloped, open land, and both improves and protects the environment. Assessment, Cleanup and Redevelopment Exchange System (ACRES) stores information reported by EPA Brownfields grant recipients on brownfields properties assessed or cleaned up with grant funding as well as information on Targeted Brownfields Assessments performed by EPA Regions. A listing of ACRES Brownfield sites is obtained from Cleanups in My Community. Cleanups in My Community provides information on Brownfields properties for which information is reported back to EPA, as well as areas served by Brownfields grant programs.

Date of Government Version: 08/15/2023 Date Data Arrived at EDR: 08/30/2023 Date Made Active in Reports: 12/01/2023

Number of Days to Update: 93

Source: Environmental Protection Agency

Telephone: 202-566-2777 Last EDR Contact: 12/14/2023

Next Scheduled EDR Contact: 03/25/2024 Data Release Frequency: Semi-Annually

Local Lists of Landfill / Solid Waste Disposal Sites

WMUDS/SWAT: Waste Management Unit Database

Waste Management Unit Database System. WMUDS is used by the State Water Resources Control Board staff and the Regional Water Quality Control Boards for program tracking and inventory of waste management units. WMUDS is composed of the following databases: Facility Information, Scheduled Inspections Information, Waste Management Unit Information, SWAT Program Information, SWAT Report Summary Information, SWAT Report Summary Data, Chapter 15 (formerly Subchapter 15) Information, Chapter 15 Monitoring Parameters, TPCA Program Information, RCRA Program Information, Closure Information, and Interested Parties Information.

Date of Government Version: 04/01/2000 Date Data Arrived at EDR: 04/10/2000 Date Made Active in Reports: 05/10/2000

Number of Days to Update: 30

Source: State Water Resources Control Board

Telephone: 916-227-4448 Last EDR Contact: 01/22/2024

Next Scheduled EDR Contact: 05/06/2024 Data Release Frequency: No Update Planned

SWRCY: Recycler Database

A listing of recycling facilities in California.

Date of Government Version: 11/29/2023 Date Data Arrived at EDR: 11/29/2023 Date Made Active in Reports: 02/23/2024

Number of Days to Update: 86

Source: Department of Conservation

Telephone: 916-323-3836 Last EDR Contact: 11/29/2023

Next Scheduled EDR Contact: 03/18/2024 Data Release Frequency: Quarterly

HAULERS: Registered Waste Tire Haulers Listing A listing of registered waste tire haulers.

Date of Government Version: 11/16/2022 Date Data Arrived at EDR: 11/22/2022 Date Made Active in Reports: 02/13/2023

Number of Days to Update: 83

Source: Integrated Waste Management Board

Telephone: 916-341-6422 Last EDR Contact: 02/20/2024

Next Scheduled EDR Contact: 05/20/2024 Data Release Frequency: Varies

INDIAN ODI: Report on the Status of Open Dumps on Indian Lands

Location of open dumps on Indian land.

Date of Government Version: 12/31/1998 Date Data Arrived at EDR: 12/03/2007 Date Made Active in Reports: 01/24/2008

Number of Days to Update: 52

Source: Environmental Protection Agency

Telephone: 703-308-8245 Last EDR Contact: 01/26/2024

Next Scheduled EDR Contact: 05/06/2024 Data Release Frequency: Varies

DEBRIS REGION 9: Torres Martinez Reservation Illegal Dump Site Locations

A listing of illegal dump sites location on the Torres Martinez Indian Reservation located in eastern Riverside County and northern Imperial County, California.

Date of Government Version: 01/12/2009 Date Data Arrived at EDR: 05/07/2009 Date Made Active in Reports: 09/21/2009

Number of Days to Update: 137

Source: EPA, Region 9 Telephone: 415-947-4219 Last EDR Contact: 01/11/2024

Next Scheduled EDR Contact: 04/29/2024 Data Release Frequency: No Update Planned

ODI: Open Dump Inventory

An open dump is defined as a disposal facility that does not comply with one or more of the Part 257 or Part 258 Subtitle D Criteria.

Date of Government Version: 06/30/1985 Date Data Arrived at EDR: 08/09/2004 Date Made Active in Reports: 09/17/2004

Number of Days to Update: 39

Source: Environmental Protection Agency

Telephone: 800-424-9346 Last EDR Contact: 06/09/2004 Next Scheduled EDR Contact: N/A

Data Release Frequency: No Update Planned

IHS OPEN DUMPS: Open Dumps on Indian Land

A listing of all open dumps located on Indian Land in the United States.

Date of Government Version: 04/01/2014 Date Data Arrived at EDR: 08/06/2014 Date Made Active in Reports: 01/29/2015

Number of Days to Update: 176

Source: Department of Health & Human Serivces, Indian Health Service

Telephone: 301-443-1452 Last EDR Contact: 01/17/2024

Next Scheduled EDR Contact: 05/06/2024

Data Release Frequency: Varies

Local Lists of Hazardous waste / Contaminated Sites

US HIST CDL: National Clandestine Laboratory Register

A listing of clandestine drug lab locations that have been removed from the DEAs National Clandestine Laboratory Register.

Date of Government Version: 11/17/2023 Date Data Arrived at EDR: 11/17/2023 Date Made Active in Reports: 02/07/2024

Number of Days to Update: 82

Source: Drug Enforcement Administration

Telephone: 202-307-1000 Last EDR Contact: 02/21/2024

Next Scheduled EDR Contact: 06/03/2024 Data Release Frequency: No Update Planned

HIST CAL-SITES: Calsites Database

The Calsites database contains potential or confirmed hazardous substance release properties. In 1996, California EPA reevaluated and significantly reduced the number of sites in the Calsites database. No longer updated by the state agency. It has been replaced by ENVIROSTOR.

Date of Government Version: 08/08/2005 Date Data Arrived at EDR: 08/03/2006 Date Made Active in Reports: 08/24/2006

Number of Days to Update: 21

Source: Department of Toxic Substance Control

Telephone: 916-323-3400 Last EDR Contact: 02/23/2009

Next Scheduled EDR Contact: 05/25/2009 Data Release Frequency: No Update Planned

SCH: School Property Evaluation Program

This category contains proposed and existing school sites that are being evaluated by DTSC for possible hazardous materials contamination. In some cases, these properties may be listed in the CalSites category depending on the level of threat to public health and safety or the environment they pose.

Date of Government Version: 10/23/2023 Date Data Arrived at EDR: 10/24/2023 Date Made Active in Reports: 01/11/2024

Number of Days to Update: 79

Source: Department of Toxic Substances Control

Telephone: 916-323-3400 Last EDR Contact: 01/23/2024

Next Scheduled EDR Contact: 05/06/2024 Data Release Frequency: Quarterly

CDL: Clandestine Drug Labs

A listing of drug lab locations. Listing of a location in this database does not indicate that any illegal drug lab materials were or were not present there, and does not constitute a determination that the location either requires or does not require additional cleanup work.

Date of Government Version: 12/31/2021 Date Data Arrived at EDR: 09/28/2023 Date Made Active in Reports: 12/18/2023

Number of Days to Update: 81

Source: Department of Toxic Substances Control

Telephone: 916-255-6504 Last EDR Contact: 02/26/2024

Next Scheduled EDR Contact: 05/13/2024

Data Release Frequency: Varies

TOXIC PITS: Toxic Pits Cleanup Act Sites

Toxic PITS Cleanup Act Sites. TOXIC PITS identifies sites suspected of containing hazardous substances where cleanup has not yet been completed.

Date of Government Version: 07/01/1995 Date Data Arrived at EDR: 08/30/1995 Date Made Active in Reports: 09/26/1995

Number of Days to Update: 27

Source: State Water Resources Control Board

Telephone: 916-227-4364 Last EDR Contact: 01/26/2009

Next Scheduled EDR Contact: 04/27/2009 Data Release Frequency: No Update Planned

CERS HAZ WASTE: California Environmental Reporting System Hazardous Waste

List of sites in the California Environmental Protection Agency (CalEPA) Regulated Site Portal which fall under the Hazardous Chemical Management, Hazardous Waste Onsite Treatment, Household Hazardous Waste Collection, Hazardous Waste Generator, and RCRA LQ HW Generator programs.

Date of Government Version: 10/16/2023 Date Data Arrived at EDR: 10/17/2023 Date Made Active in Reports: 01/09/2024

Number of Days to Update: 84

Source: CalEPA

Telephone: 916-323-2514 Last EDR Contact: 01/16/2024

Next Scheduled EDR Contact: 04/29/2024 Data Release Frequency: Quarterly

US CDL: Clandestine Drug Labs

A listing of clandestine drug lab locations. The U.S. Department of Justice ("the Department") provides this web site as a public service. It contains addresses of some locations where law enforcement agencies reported they found chemicals or other items that indicated the presence of either clandestine drug laboratories or dumpsites. In most cases, the source of the entries is not the Department, and the Department has not verified the entry and does not guarantee its accuracy. Members of the public must verify the accuracy of all entries by, for example, contacting local law enforcement and local health departments.

Date of Government Version: 11/17/2023 Date Data Arrived at EDR: 11/17/2023 Date Made Active in Reports: 02/07/2024

Number of Days to Update: 82

Source: Drug Enforcement Administration

Telephone: 202-307-1000 Last EDR Contact: 02/21/2024

Next Scheduled EDR Contact: 06/03/2024 Data Release Frequency: Quarterly

Local Lists of Registered Storage Tanks

SWEEPS UST: SWEEPS UST Listing

Statewide Environmental Evaluation and Planning System. This underground storage tank listing was updated and maintained by a company contacted by the SWRCB in the early 1990's. The listing is no longer updated or maintained. The local agency is the contact for more information on a site on the SWEEPS list.

Date of Government Version: 06/01/1994 Date Data Arrived at EDR: 07/07/2005 Date Made Active in Reports: 08/11/2005

Number of Days to Update: 35

Source: State Water Resources Control Board

Telephone: N/A

Last EDR Contact: 06/03/2005 Next Scheduled EDR Contact: N/A

Data Release Frequency: No Update Planned

HIST UST: Hazardous Substance Storage Container Database

The Hazardous Substance Storage Container Database is a historical listing of UST sites. Refer to local/county source for current data.

Date of Government Version: 10/15/1990 Date Data Arrived at EDR: 01/25/1991 Date Made Active in Reports: 02/12/1991

Number of Days to Update: 18

Source: State Water Resources Control Board

Telephone: 916-341-5851 Last EDR Contact: 07/26/2001 Next Scheduled EDR Contact: N/A

Data Release Frequency: No Update Planned

SAN FRANCISCO AST: Aboveground Storage Tank Site Listing

Aboveground storage tank sites

Date of Government Version: 10/30/2023 Date Data Arrived at EDR: 11/01/2023 Date Made Active in Reports: 01/23/2024

Number of Days to Update: 83

Source: San Francisco County Department of Public Health

Telephone: 415-252-3896 Last EDR Contact: 01/29/2024

Next Scheduled EDR Contact: 05/13/2024 Data Release Frequency: Varies

CERS TANKS: California Environmental Reporting System (CERS) Tanks

List of sites in the California Environmental Protection Agency (CalEPA) Regulated Site Portal which fall under the Aboveground Petroleum Storage and Underground Storage Tank regulatory programs.

Date of Government Version: 10/16/2023 Date Data Arrived at EDR: 10/17/2023 Date Made Active in Reports: 01/09/2024

Number of Days to Update: 84

Source: California Environmental Protection Agency

Telephone: 916-323-2514 Last EDR Contact: 01/16/2024

Next Scheduled EDR Contact: 04/29/2024 Data Release Frequency: Quarterly

CA FID UST: Facility Inventory Database

The Facility Inventory Database (FID) contains a historical listing of active and inactive underground storage tank locations from the State Water Resource Control Board. Refer to local/county source for current data.

Date of Government Version: 10/31/1994 Date Data Arrived at EDR: 09/05/1995 Date Made Active in Reports: 09/29/1995

Number of Days to Update: 24

Source: California Environmental Protection Agency

Telephone: 916-341-5851 Last EDR Contact: 12/28/1998 Next Scheduled EDR Contact: N/A

Data Release Frequency: No Update Planned

Local Land Records

LIENS: Environmental Liens Listing

A listing of property locations with environmental liens for California where DTSC is a lien holder.

Date of Government Version: 11/21/2023 Date Data Arrived at EDR: 11/22/2023 Date Made Active in Reports: 02/16/2024

Number of Days to Update: 86

Source: Department of Toxic Substances Control

Telephone: 916-323-3400 Last EDR Contact: 02/26/2024

Next Scheduled EDR Contact: 06/10/2024

Data Release Frequency: Varies

LIENS 2: CERCLA Lien Information

A Federal CERCLA ('Superfund') lien can exist by operation of law at any site or property at which EPA has spent Superfund monies. These monies are spent to investigate and address releases and threatened releases of contamination. CERCLIS provides information as to the identity of these sites and properties.

Date of Government Version: 11/14/2023 Date Data Arrived at EDR: 12/22/2023 Date Made Active in Reports: 01/24/2024

Number of Days to Update: 33

Source: Environmental Protection Agency

Telephone: 202-564-6023 Last EDR Contact: 02/01/2024

Next Scheduled EDR Contact: 04/08/2024 Data Release Frequency: Semi-Annually

DEED: Deed Restriction Listing

Site Mitigation and Brownfields Reuse Program Facility Sites with Deed Restrictions & Hazardous Waste Management Program Facility Sites with Deed / Land Use Restriction. The DTSC Site Mitigation and Brownfields Reuse Program (SMBRP) list includes sites cleaned up under the program's oversight and generally does not include current or former hazardous waste facilities that required a hazardous waste facility permit. The list represents deed restrictions that are active. Some sites have multiple deed restrictions. The DTSC Hazardous Waste Management Program (HWMP) has developed a list of current or former hazardous waste facilities that have a recorded land use restriction at the local county recorder's office. The land use restrictions on this list were required by the DTSC HWMP as a result of the presence of hazardous substances that remain on site after the facility (or part of the facility) has been closed or cleaned up. The types of land use restriction include deed notice, deed restriction, or a land use restriction that binds current and future owners.

Date of Government Version: 11/22/2023 Date Data Arrived at EDR: 11/22/2023 Date Made Active in Reports: 02/15/2024

Number of Days to Update: 85

Source: DTSC and SWRCB Telephone: 916-323-3400 Last EDR Contact: 02/27/2024

Next Scheduled EDR Contact: 06/10/2024 Data Release Frequency: Semi-Annually

Records of Emergency Release Reports

HMIRS: Hazardous Materials Information Reporting System

Hazardous Materials Incident Report System. HMIRS contains hazardous material spill incidents reported to DOT.

Date of Government Version: 09/18/2023 Date Data Arrived at EDR: 09/20/2023 Date Made Active in Reports: 11/14/2023

Number of Days to Update: 55

Source: U.S. Department of Transportation

Telephone: 202-366-4555 Last EDR Contact: 12/13/2023

Next Scheduled EDR Contact: 04/01/2024 Data Release Frequency: Quarterly

CHMIRS: California Hazardous Material Incident Report System

California Hazardous Material Incident Reporting System. CHMIRS contains information on reported hazardous material incidents (accidental releases or spills).

Date of Government Version: 06/01/2023 Date Data Arrived at EDR: 07/18/2023 Date Made Active in Reports: 10/05/2023

Number of Days to Update: 79

Source: Office of Emergency Services

Telephone: 916-845-8400 Last EDR Contact: 01/18/2024

Next Scheduled EDR Contact: 04/29/2024 Data Release Frequency: Semi-Annually

LDS: Land Disposal Sites Listing (GEOTRACKER)

Land Disposal sites (Landfills) included in GeoTracker. GeoTracker is the Water Boards data management system for sites that impact, or have the potential to impact, water quality in California, with emphasis on groundwater.

Date of Government Version: 12/04/2023 Date Data Arrived at EDR: 12/05/2023 Date Made Active in Reports: 02/27/2024

Number of Days to Update: 84

Source: State Water Quality Control Board

Telephone: 866-480-1028 Last EDR Contact: 12/05/2023

Next Scheduled EDR Contact: 03/18/2024 Data Release Frequency: Quarterly

MCS: Military Cleanup Sites Listing (GEOTRACKER)

Military sites (consisting of: Military UST sites; Military Privatized sites; and Military Cleanup sites [formerly known as DoD non UST]) included in GeoTracker. GeoTracker is the Water Boards data management system for sites that impact, or have the potential to impact, water quality in California, with emphasis on groundwater.

Date of Government Version: 09/05/2023 Date Data Arrived at EDR: 09/06/2023 Date Made Active in Reports: 11/22/2023

Number of Days to Update: 77

Source: State Water Resources Control Board

Telephone: 866-480-1028 Last EDR Contact: 12/05/2023

Next Scheduled EDR Contact: 03/18/2024 Data Release Frequency: Quarterly

SPILLS 90: SPILLS90 data from FirstSearch

Spills 90 includes those spill and release records available exclusively from FirstSearch databases. Typically, they may include chemical, oil and/or hazardous substance spills recorded after 1990. Duplicate records that are already included in EDR incident and release records are not included in Spills 90.

Date of Government Version: 06/06/2012 Date Data Arrived at EDR: 01/03/2013 Date Made Active in Reports: 02/22/2013

Number of Days to Update: 50

Source: FirstSearch Telephone: N/A

Last EDR Contact: 01/03/2013 Next Scheduled EDR Contact: N/A

Data Release Frequency: No Update Planned

Other Ascertainable Records

RCRA NonGen / NLR: RCRA - Non Generators / No Longer Regulated

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Non-Generators do not presently generate hazardous waste.

Date of Government Version: 12/04/2023 Date Data Arrived at EDR: 12/06/2023 Date Made Active in Reports: 12/12/2023

Number of Days to Update: 6

Source: Environmental Protection Agency

Telephone: (415) 495-8895 Last EDR Contact: 12/06/2023

Next Scheduled EDR Contact: 04/01/2024 Data Release Frequency: Quarterly

FUDS: Formerly Used Defense Sites

The listing includes locations of Formerly Used Defense Sites properties where the US Army Corps of Engineers is actively working or will take necessary cleanup actions.

Date of Government Version: 09/28/2023 Date Data Arrived at EDR: 11/10/2023 Date Made Active in Reports: 02/07/2024

Number of Days to Update: 89

Source: U.S. Army Corps of Engineers

Telephone: 202-528-4285 Last EDR Contact: 02/13/2024

Next Scheduled EDR Contact: 05/27/2024 Data Release Frequency: Varies

DOD: Department of Defense Sites

This data set consists of federally owned or administered lands, administered by the Department of Defense, that have any area equal to or greater than 640 acres of the United States, Puerto Rico, and the U.S. Virgin Islands.

Date of Government Version: 06/07/2021
Date Data Arrived at EDR: 07/13/2021
Date Made Active in Reports: 03/09/2022

Number of Days to Update: 239

Source: USGS

Telephone: 888-275-8747 Last EDR Contact: 01/10/2024

Next Scheduled EDR Contact: 04/22/2024 Data Release Frequency: Varies

FEDLAND: Federal and Indian Lands

Federally and Indian administrated lands of the United States. Lands included are administrated by: Army Corps of Engineers, Bureau of Reclamation, National Wild and Scenic River, National Wildlife Refuge, Public Domain Land, Wilderness, Wilderness Study Area, Wildlife Management Area, Bureau of Indian Affairs, Bureau of Land Management, Department of Justice, Forest Service, Fish and Wildlife Service, National Park Service.

Date of Government Version: 04/02/2018 Date Data Arrived at EDR: 04/11/2018 Date Made Active in Reports: 11/06/2019

Number of Days to Update: 574

Source: U.S. Geological Survey Telephone: 888-275-8747 Last EDR Contact: 01/05/2024

Next Scheduled EDR Contact: 04/15/2024

Data Release Frequency: N/A

SCRD DRYCLEANERS: State Coalition for Remediation of Drycleaners Listing

The State Coalition for Remediation of Drycleaners was established in 1998, with support from the U.S. EPA Office of Superfund Remediation and Technology Innovation. It is comprised of representatives of states with established drycleaner remediation programs. Currently the member states are Alabama, Connecticut, Florida, Illinois, Kansas, Minnesota, Missouri, North Carolina, Oregon, South Carolina, Tennessee, Texas, and Wisconsin.

Date of Government Version: 07/30/2021 Date Data Arrived at EDR: 02/03/2023 Date Made Active in Reports: 02/10/2023

Number of Days to Update: 7

Source: Environmental Protection Agency

Telephone: 615-532-8599 Last EDR Contact: 02/06/2024

Next Scheduled EDR Contact: 05/20/2024

Data Release Frequency: Varies

US FIN ASSUR: Financial Assurance Information

All owners and operators of facilities that treat, store, or dispose of hazardous waste are required to provide proof that they will have sufficient funds to pay for the clean up, closure, and post-closure care of their facilities.

Date of Government Version: 09/18/2023 Date Data Arrived at EDR: 09/20/2023 Date Made Active in Reports: 12/12/2023

Number of Days to Update: 83

Source: Environmental Protection Agency

Telephone: 202-566-1917 Last EDR Contact: 12/13/2023

Next Scheduled EDR Contact: 04/01/2024 Data Release Frequency: Quarterly

EPA WATCH LIST: EPA WATCH LIST

EPA maintains a "Watch List" to facilitate dialogue between EPA, state and local environmental agencies on enforcement matters relating to facilities with alleged violations identified as either significant or high priority. Being on the Watch List does not mean that the facility has actually violated the law only that an investigation by EPA or a state or local environmental agency has led those organizations to allege that an unproven violation has in fact occurred. Being on the Watch List does not represent a higher level of concern regarding the alleged violations that were detected, but instead indicates cases requiring additional dialogue between EPA, state and local agencies - primarily because of the length of time the alleged violation has gone unaddressed or unresolved.

Date of Government Version: 08/30/2013 Date Data Arrived at EDR: 03/21/2014 Date Made Active in Reports: 06/17/2014

Number of Days to Update: 88

Source: Environmental Protection Agency

Telephone: 617-520-3000 Last EDR Contact: 01/29/2024

Next Scheduled EDR Contact: 05/13/2024 Data Release Frequency: Quarterly

2020 COR ACTION: 2020 Corrective Action Program List

The EPA has set ambitious goals for the RCRA Corrective Action program by creating the 2020 Corrective Action Universe. This RCRA cleanup baseline includes facilities expected to need corrective action. The 2020 universe contains a wide variety of sites. Some properties are heavily contaminated while others were contaminated but have since been cleaned up. Still others have not been fully investigated yet, and may require little or no remediation. Inclusion in the 2020 Universe does not necessarily imply failure on the part of a facility to meet its RCRA obligations.

Date of Government Version: 09/30/2017 Date Data Arrived at EDR: 05/08/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 73

Source: Environmental Protection Agency

Telephone: 703-308-4044 Last EDR Contact: 02/02/2024

Next Scheduled EDR Contact: 05/13/2024 Data Release Frequency: Varies

TSCA: Toxic Substances Control Act

Toxic Substances Control Act. TSCA identifies manufacturers and importers of chemical substances included on the TSCA Chemical Substance Inventory list. It includes data on the production volume of these substances by plant site.

Date of Government Version: 12/31/2020 Date Data Arrived at EDR: 06/14/2022 Date Made Active in Reports: 03/24/2023

Number of Days to Update: 283

Source: EPA

Telephone: 202-260-5521 Last EDR Contact: 12/14/2023

Next Scheduled EDR Contact: 03/25/2024 Data Release Frequency: Every 4 Years

TRIS: Toxic Chemical Release Inventory System

Toxic Release Inventory System. TRIS identifies facilities which release toxic chemicals to the air, water and land in reportable quantities under SARA Title III Section 313.

Date of Government Version: 12/31/2022 Date Data Arrived at EDR: 11/13/2023 Date Made Active in Reports: 02/07/2024

Number of Days to Update: 86

Source: EPA

Telephone: 202-566-0250 Last EDR Contact: 02/15/2024

Next Scheduled EDR Contact: 05/27/2024 Data Release Frequency: Annually

SSTS: Section 7 Tracking Systems

Section 7 of the Federal Insecticide, Fungicide and Rodenticide Act, as amended (92 Stat. 829) requires all registered pesticide-producing establishments to submit a report to the Environmental Protection Agency by March 1st each year. Each establishment must report the types and amounts of pesticides, active ingredients and devices being produced, and those having been produced and sold or distributed in the past year.

Date of Government Version: 10/19/2023 Date Data Arrived at EDR: 10/20/2023 Date Made Active in Reports: 01/16/2024

Number of Days to Update: 88

Source: EPA

Telephone: 202-564-4203 Last EDR Contact: 01/17/2024

Next Scheduled EDR Contact: 04/29/2024 Data Release Frequency: Annually

ROD: Records Of Decision

Record of Decision. ROD documents mandate a permanent remedy at an NPL (Superfund) site containing technical and health information to aid in the cleanup.

Date of Government Version: 12/26/2023 Date Data Arrived at EDR: 01/02/2024 Date Made Active in Reports: 01/24/2024

Number of Days to Update: 22

Source: EPA

Telephone: 703-416-0223 Last EDR Contact: 02/01/2024

Next Scheduled EDR Contact: 03/11/2024 Data Release Frequency: Annually

RMP: Risk Management Plans

When Congress passed the Clean Air Act Amendments of 1990, it required EPA to publish regulations and guidance for chemical accident prevention at facilities using extremely hazardous substances. The Risk Management Program Rule (RMP Rule) was written to implement Section 112(r) of these amendments. The rule, which built upon existing industry codes and standards, requires companies of all sizes that use certain flammable and toxic substances to develop a Risk Management Program, which includes a(n): Hazard assessment that details the potential effects of an accidental release, an accident history of the last five years, and an evaluation of worst-case and alternative accidental releases; Prevention program that includes safety precautions and maintenance, monitoring, and employee training measures; and Emergency response program that spells out emergency health care, employee training measures and procedures for informing the public and response agencies (e.g the fire department) should an accident occur.

Date of Government Version: 09/01/2023 Date Data Arrived at EDR: 09/27/2023 Date Made Active in Reports: 12/21/2023

Number of Days to Update: 85

Source: Environmental Protection Agency

Telephone: 202-564-8600 Last EDR Contact: 01/12/2024

Next Scheduled EDR Contact: 04/19/2024 Data Release Frequency: Varies

RAATS: RCRA Administrative Action Tracking System

RCRA Administration Action Tracking System. RAATS contains records based on enforcement actions issued under RCRA pertaining to major violators and includes administrative and civil actions brought by the EPA. For administration actions after September 30, 1995, data entry in the RAATS database was discontinued. EPA will retain a copy of the database for historical records. It was necessary to terminate RAATS because a decrease in agency resources made it impossible to continue to update the information contained in the database.

Date of Government Version: 04/17/1995 Date Data Arrived at EDR: 07/03/1995 Date Made Active in Reports: 08/07/1995

Number of Days to Update: 35

Source: EPA

Telephone: 202-564-4104 Last EDR Contact: 06/02/2008

Next Scheduled EDR Contact: 09/01/2008

Data Release Frequency: No Update Planned

PRP: Potentially Responsible Parties

A listing of verified Potentially Responsible Parties

Date of Government Version: 09/19/2023 Date Data Arrived at EDR: 10/03/2023 Date Made Active in Reports: 10/19/2023

Number of Days to Update: 16

Source: EPA

Telephone: 202-564-6023 Last EDR Contact: 02/01/2024

Next Scheduled EDR Contact: 05/13/2024 Data Release Frequency: Quarterly

PADS: PCB Activity Database System

PCB Activity Database. PADS Identifies generators, transporters, commercial storers and/or brokers and disposers of PCB's who are required to notify the EPA of such activities.

Date of Government Version: 03/20/2023 Date Data Arrived at EDR: 04/04/2023 Date Made Active in Reports: 06/09/2023

Number of Days to Update: 66

Source: EPA

Telephone: 202-566-0500 Last EDR Contact: 01/05/2024

Next Scheduled EDR Contact: 04/15/2024 Data Release Frequency: Annually

ICIS: Integrated Compliance Information System

The Integrated Compliance Information System (ICIS) supports the information needs of the national enforcement and compliance program as well as the unique needs of the National Pollutant Discharge Elimination System (NPDES) program.

Date of Government Version: 11/18/2016 Date Data Arrived at EDR: 11/23/2016 Date Made Active in Reports: 02/10/2017

Number of Days to Update: 79

Source: Environmental Protection Agency

Telephone: 202-564-2501 Last EDR Contact: 12/26/2023

Next Scheduled EDR Contact: 04/15/2024 Data Release Frequency: Quarterly

FTTS: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act)

FTTS tracks administrative cases and pesticide enforcement actions and compliance activities related to FIFRA, TSCA and EPCRA (Emergency Planning and Community Right-to-Know Act). To maintain currency, EDR contacts the Agency on a quarterly basis.

Date of Government Version: 04/09/2009 Date Data Arrived at EDR: 04/16/2009 Date Made Active in Reports: 05/11/2009

Number of Days to Update: 25

Source: EPA/Office of Prevention, Pesticides and Toxic Substances

Telephone: 202-566-1667 Last EDR Contact: 08/18/2017

Next Scheduled EDR Contact: 12/04/2017 Data Release Frequency: No Update Planned

FTTS INSP: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act)
A listing of FIFRA/TSCA Tracking System (FTTS) inspections and enforcements.

Date of Government Version: 04/09/2009 Date Data Arrived at EDR: 04/16/2009 Date Made Active in Reports: 05/11/2009

Number of Days to Update: 25

Source: EPA

Telephone: 202-566-1667 Last EDR Contact: 08/18/2017

Next Scheduled EDR Contact: 12/04/2017 Data Release Frequency: No Update Planned

MLTS: Material Licensing Tracking System

MLTS is maintained by the Nuclear Regulatory Commission and contains a list of approximately 8,100 sites which possess or use radioactive materials and which are subject to NRC licensing requirements. To maintain currency, EDR contacts the Agency on a quarterly basis.

Date of Government Version: 07/20/2023 Date Data Arrived at EDR: 09/01/2023 Date Made Active in Reports: 09/20/2023

Number of Days to Update: 19

Source: Nuclear Regulatory Commission

Telephone: 301-415-0717 Last EDR Contact: 01/11/2024

Next Scheduled EDR Contact: 04/29/2024 Data Release Frequency: Quarterly

COAL ASH DOE: Steam-Electric Plant Operation Data

A listing of power plants that store ash in surface ponds.

Date of Government Version: 12/31/2022 Date Data Arrived at EDR: 11/27/2023 Date Made Active in Reports: 02/22/2024

Number of Days to Update: 87

Source: Department of Energy Telephone: 202-586-8719 Last EDR Contact: 02/23/2024

Next Scheduled EDR Contact: 06/10/2024 Data Release Frequency: Varies

COAL ASH EPA: Coal Combustion Residues Surface Impoundments List

A listing of coal combustion residues surface impoundments with high hazard potential ratings.

Date of Government Version: 01/12/2017 Date Data Arrived at EDR: 03/05/2019 Date Made Active in Reports: 11/11/2019

Number of Days to Update: 251

Source: Environmental Protection Agency

Telephone: N/A

Last EDR Contact: 02/23/2024

Next Scheduled EDR Contact: 06/10/2024 Data Release Frequency: Varies

PCB TRANSFORMER: PCB Transformer Registration Database

The database of PCB transformer registrations that includes all PCB registration submittals.

Date of Government Version: 09/13/2019 Date Data Arrived at EDR: 11/06/2019 Date Made Active in Reports: 02/10/2020

Number of Days to Update: 96

Source: Environmental Protection Agency

Telephone: 202-566-0517 Last EDR Contact: 02/02/2024

Next Scheduled EDR Contact: 05/13/2024 Data Release Frequency: Varies

RADINFO: Radiation Information Database

The Radiation Information Database (RADINFO) contains information about facilities that are regulated by U.S. Environmental Protection Agency (EPA) regulations for radiation and radioactivity.

Date of Government Version: 07/01/2019 Date Data Arrived at EDR: 07/01/2019 Date Made Active in Reports: 09/23/2019

Number of Days to Update: 84

Source: Environmental Protection Agency

Telephone: 202-343-9775 Last EDR Contact: 12/19/2023

Next Scheduled EDR Contact: 04/08/2024 Data Release Frequency: Quarterly

HIST FTTS: FIFRA/TSCA Tracking System Administrative Case Listing

A complete administrative case listing from the FIFRA/TSCA Tracking System (FTTS) for all ten EPA regions. The information was obtained from the National Compliance Database (NCDB). NCDB supports the implementation of FIFRA (Federal Insecticide, Fungicide, and Rodenticide Act) and TSCA (Toxic Substances Control Act). Some EPA regions are now closing out records. Because of that, and the fact that some EPA regions are not providing EPA Headquarters with updated records, it was decided to create a HIST FTTS database. It included records that may not be included in the newer FTTS database updates. This database is no longer updated.

Date of Government Version: 10/19/2006 Date Data Arrived at EDR: 03/01/2007 Date Made Active in Reports: 04/10/2007

Number of Days to Update: 40

Source: Environmental Protection Agency

Telephone: 202-564-2501 Last EDR Contact: 12/17/2007

Next Scheduled EDR Contact: 03/17/2008 Data Release Frequency: No Update Planned

HIST FTTS INSP: FIFRA/TSCA Tracking System Inspection & Enforcement Case Listing

A complete inspection and enforcement case listing from the FIFRA/TSCA Tracking System (FTTS) for all ten EPA regions. The information was obtained from the National Compliance Database (NCDB). NCDB supports the implementation of FIFRA (Federal Insecticide, Fungicide, and Rodenticide Act) and TSCA (Toxic Substances Control Act). Some EPA regions are now closing out records. Because of that, and the fact that some EPA regions are not providing EPA Headquarters with updated records, it was decided to create a HIST FTTS database. It included records that may not be included in the newer FTTS database updates. This database is no longer updated.

Date of Government Version: 10/19/2006 Date Data Arrived at EDR: 03/01/2007 Date Made Active in Reports: 04/10/2007

Number of Days to Update: 40

Source: Environmental Protection Agency

Telephone: 202-564-2501 Last EDR Contact: 12/17/2008

Next Scheduled EDR Contact: 03/17/2008 Data Release Frequency: No Update Planned

DOT OPS: Incident and Accident Data

Department of Transporation, Office of Pipeline Safety Incident and Accident data.

Date of Government Version: 01/02/2020 Date Data Arrived at EDR: 01/28/2020 Date Made Active in Reports: 04/17/2020

Number of Days to Update: 80

Source: Department of Transporation, Office of Pipeline Safety

Telephone: 202-366-4595 Last EDR Contact: 01/05/2024

Next Scheduled EDR Contact: 05/06/2024 Data Release Frequency: Quarterly

CONSENT: Superfund (CERCLA) Consent Decrees

Major legal settlements that establish responsibility and standards for cleanup at NPL (Superfund) sites. Released periodically by United States District Courts after settlement by parties to litigation matters.

Date of Government Version: 12/31/2023 Date Data Arrived at EDR: 01/11/2024 Date Made Active in Reports: 01/16/2024

Number of Days to Update: 5

Source: Department of Justice, Consent Decree Library

Telephone: Varies

Last EDR Contact: 01/03/2024

Next Scheduled EDR Contact: 04/15/2024 Data Release Frequency: Varies

BRS: Biennial Reporting System

The Biennial Reporting System is a national system administered by the EPA that collects data on the generation and management of hazardous waste. BRS captures detailed data from two groups: Large Quantity Generators (LQG) and Treatment, Storage, and Disposal Facilities.

Date of Government Version: 12/31/2021 Date Data Arrived at EDR: 03/09/2023 Date Made Active in Reports: 03/20/2023

Number of Days to Update: 11

Source: EPA/NTIS Telephone: 800-424-9346 Last EDR Contact: 12/06/2023

Next Scheduled EDR Contact: 04/01/2024 Data Release Frequency: Biennially

INDIAN RESERV: Indian Reservations

This map layer portrays Indian administered lands of the United States that have any area equal to or greater

than 640 acres.

Date of Government Version: 12/31/2014 Date Data Arrived at EDR: 07/14/2015 Date Made Active in Reports: 01/10/2017

Number of Days to Update: 546

Source: USGS

Telephone: 202-208-3710 Last EDR Contact: 01/02/2024

Next Scheduled EDR Contact: 04/15/2024 Data Release Frequency: Semi-Annually

FUSRAP: Formerly Utilized Sites Remedial Action Program

DOE established the Formerly Utilized Sites Remedial Action Program (FUSRAP) in 1974 to remediate sites where radioactive contamination remained from Manhattan Project and early U.S. Atomic Energy Commission (AEC) operations.

Date of Government Version: 03/03/2023 Date Data Arrived at EDR: 03/03/2023 Date Made Active in Reports: 06/09/2023

Number of Days to Update: 98

Source: Department of Energy Telephone: 202-586-3559 Last EDR Contact: 01/29/2024

Next Scheduled EDR Contact: 05/13/2024

Data Release Frequency: Varies

UMTRA: Uranium Mill Tailings Sites

Uranium ore was mined by private companies for federal government use in national defense programs. When the mills shut down, large piles of the sand-like material (mill tailings) remain after uranium has been extracted from the ore. Levels of human exposure to radioactive materials from the piles are low; however, in some cases tailings were used as construction materials before the potential health hazards of the tailings were recognized.

Date of Government Version: 08/30/2019 Date Data Arrived at EDR: 11/15/2019 Date Made Active in Reports: 01/28/2020

Number of Days to Update: 74

Source: Department of Energy Telephone: 505-845-0011 Last EDR Contact: 02/15/2024

Next Scheduled EDR Contact: 05/27/2024

Data Release Frequency: Varies

LEAD SMELTER 1: Lead Smelter Sites

A listing of former lead smelter site locations.

Date of Government Version: 12/26/2024 Date Data Arrived at EDR: 01/02/2024 Date Made Active in Reports: 01/24/2024

Number of Days to Update: 22

Source: Environmental Protection Agency

Telephone: 703-603-8787 Last EDR Contact: 02/01/2024

Next Scheduled EDR Contact: 04/08/2024

Data Release Frequency: Varies

LEAD SMELTER 2: Lead Smelter Sites

A list of several hundred sites in the U.S. where secondary lead smelting was done from 1931and 1964. These sites may pose a threat to public health through ingestion or inhalation of contaminated soil or dust

Date of Government Version: 04/05/2001 Date Data Arrived at EDR: 10/27/2010 Date Made Active in Reports: 12/02/2010

Number of Days to Update: 36

Source: American Journal of Public Health

Telephone: 703-305-6451 Last EDR Contact: 12/02/2009 Next Scheduled EDR Contact: N/A

Data Release Frequency: No Update Planned

US AIRS (AFS): Aerometric Information Retrieval System Facility Subsystem (AFS)

The database is a sub-system of Aerometric Information Retrieval System (AIRS). AFS contains compliance data on air pollution point sources regulated by the U.S. EPA and/or state and local air regulatory agencies. This information comes from source reports by various stationary sources of air pollution, such as electric power plants, steel mills, factories, and universities, and provides information about the air pollutants they produce. Action, air program, air program pollutant, and general level plant data. It is used to track emissions and compliance data from industrial plants.

Date of Government Version: 10/12/2016 Date Data Arrived at EDR: 10/26/2016 Date Made Active in Reports: 02/03/2017

Number of Days to Update: 100

US AIRS MINOR: Air Facility System Data A listing of minor source facilities.

Date of Government Version: 10/12/2016
Date Data Arrived at EDR: 10/26/2016
Date Made Active in Reports: 02/03/2017

Number of Days to Update: 100

Source: EPA

Telephone: 202-564-2496 Last EDR Contact: 09/26/2017

Next Scheduled EDR Contact: 01/08/2018 Data Release Frequency: Annually

Source: EPA

Telephone: 202-564-2496 Last EDR Contact: 09/26/2017

Next Scheduled EDR Contact: 01/08/2018 Data Release Frequency: Annually

MINES VIOLATIONS: MSHA Violation Assessment Data

Mines violation and assessment information. Department of Labor, Mine Safety & Health Administration.

Date of Government Version: 01/02/2024 Date Data Arrived at EDR: 01/03/2024 Date Made Active in Reports: 01/04/2024

Number of Days to Update: 1

Source: DOL, Mine Safety & Health Admi

Telephone: 202-693-9424 Last EDR Contact: 01/03/2024

Next Scheduled EDR Contact: 05/20/2024 Data Release Frequency: Quarterly

US MINES: Mines Master Index File

Contains all mine identification numbers issued for mines active or opened since 1971. The data also includes violation information.

Date of Government Version: 11/01/2023 Date Data Arrived at EDR: 11/17/2023 Date Made Active in Reports: 02/13/2024

Number of Days to Update: 88

Source: Department of Labor, Mine Safety and Health Administration

Telephone: 303-231-5959 Last EDR Contact: 02/21/2024

Next Scheduled EDR Contact: 06/03/2024 Data Release Frequency: Semi-Annually

US MINES 2: Ferrous and Nonferrous Metal Mines Database Listing

This map layer includes ferrous (ferrous metal mines are facilities that extract ferrous metals, such as iron ore or molybdenum) and nonferrous (Nonferrous metal mines are facilities that extract nonferrous metals, such as gold, silver, copper, zinc, and lead) metal mines in the United States.

Date of Government Version: 01/07/2022 Date Data Arrived at EDR: 02/24/2023 Date Made Active in Reports: 05/17/2023

Number of Days to Update: 82

Source: USGS

Telephone: 703-648-7709 Last EDR Contact: 02/22/2024

Next Scheduled EDR Contact: 06/03/2024 Data Release Frequency: Varies

US MINES 3: Active Mines & Mineral Plants Database Listing

Active Mines and Mineral Processing Plant operations for commodities monitored by the Minerals Information Team of the USGS.

Date of Government Version: 04/14/2011 Date Data Arrived at EDR: 06/08/2011 Date Made Active in Reports: 09/13/2011

Number of Days to Update: 97

Source: USGS

Telephone: 703-648-7709 Last EDR Contact: 02/22/2024

Next Scheduled EDR Contact: 06/03/2024

Data Release Frequency: Varies

ABANDONED MINES: Abandoned Mines

An inventory of land and water impacted by past mining (primarily coal mining) is maintained by OSMRE to provide information needed to implement the Surface Mining Control and Reclamation Act of 1977 (SMCRA). The inventory contains information on the location, type, and extent of AML impacts, as well as, information on the cost associated with the reclamation of those problems. The inventory is based upon field surveys by State, Tribal, and OSMRE program officials. It is dynamic to the extent that it is modified as new problems are identified and existing problems are reclaimed.

Date of Government Version: 11/28/2023 Date Data Arrived at EDR: 11/29/2023 Date Made Active in Reports: 12/11/2023

Number of Days to Update: 12

MINES MRDS: Mineral Resources Data System Mineral Resources Data System

> Date of Government Version: 08/23/2022 Date Data Arrived at EDR: 11/22/2022 Date Made Active in Reports: 02/28/2023

Number of Days to Update: 98

Source: Department of Interior Telephone: 202-208-2609 Last EDR Contact: 11/28/2023 Next Scheduled EDR Contact: 03/18/2024

Data Release Frequency: Quarterly

Source: USGS

Telephone: 703-648-6533 Last EDR Contact: 02/22/2024

Next Scheduled EDR Contact: 06/03/2024 Data Release Frequency: Varies

FINDS: Facility Index System/Facility Registry System

Facility Index System. FINDS contains both facility information and 'pointers' to other sources that contain more detail. EDR includes the following FINDS databases in this report: PCS (Permit Compliance System), AIRS (Aerometric Information Retrieval System), DOCKET (Enforcement Docket used to manage and track information on civil judicial enforcement cases for all environmental statutes), FURS (Federal Underground Injection Control), C-DOCKET (Criminal Docket System used to track criminal enforcement actions for all environmental statutes), FFIS (Federal Facilities Information System), STATE (State Environmental Laws and Statutes), and PADS (PCB Activity Data System).

Date of Government Version: 11/03/2023 Date Data Arrived at EDR: 11/08/2023 Date Made Active in Reports: 11/20/2023

Number of Days to Update: 12

Source: EPA

Telephone: (415) 947-8000 Last EDR Contact: 02/27/2024

Next Scheduled EDR Contact: 06/10/2024 Data Release Frequency: Quarterly

UXO: Unexploded Ordnance Sites

A listing of unexploded ordnance site locations

Date of Government Version: 09/06/2023 Date Data Arrived at EDR: 09/13/2023 Date Made Active in Reports: 12/11/2023

Number of Days to Update: 89

Source: Department of Defense Telephone: 703-704-1564 Last EDR Contact: 01/05/2024

Next Scheduled EDR Contact: 04/22/2024 Data Release Frequency: Varies

ECHO: Enforcement & Compliance History Information

ECHO provides integrated compliance and enforcement information for about 800,000 regulated facilities nationwide.

Date of Government Version: 09/23/2023 Date Data Arrived at EDR: 10/03/2023 Date Made Active in Reports: 01/04/2024

Number of Days to Update: 93

Source: Environmental Protection Agency

Telephone: 202-564-2280 Last EDR Contact: 12/28/2023

Next Scheduled EDR Contact: 04/15/2024 Data Release Frequency: Quarterly

DOCKET HWC: Hazardous Waste Compliance Docket Listing

A complete list of the Federal Agency Hazardous Waste Compliance Docket Facilities.

Date of Government Version: 05/06/2021 Date Data Arrived at EDR: 05/21/2021 Date Made Active in Reports: 08/11/2021

Number of Days to Update: 82

Source: Environmental Protection Agency

Telephone: 202-564-0527 Last EDR Contact: 02/20/2024

Next Scheduled EDR Contact: 06/03/2024 Data Release Frequency: Varies

FUELS PROGRAM: EPA Fuels Program Registered Listing

This listing includes facilities that are registered under the Part 80 (Code of Federal Regulations) EPA Fuels

Programs. All companies now are required to submit new and updated registrations.

Date of Government Version: 11/10/2023 Date Data Arrived at EDR: 11/10/2023 Date Made Active in Reports: 02/07/2024

Number of Days to Update: 89

Source: EPA

Telephone: 800-385-6164 Last EDR Contact: 02/13/2024

Next Scheduled EDR Contact: 05/27/2024 Data Release Frequency: Quarterly

PFAS NPL: Superfund Sites with PFAS Detections Information

EPA's Office of Land and Emergency Management and EPA Regional Offices maintain data describing what is known about site investigations, contamination, and remedial actions under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) where PFAS is present in the environment.

Date of Government Version: 09/23/2023 Date Data Arrived at EDR: 10/03/2023 Date Made Active in Reports: 12/21/2023

Number of Days to Update: 79

Source: Environmental Protection Agency

Telephone: 703-603-8895 Last EDR Contact: 12/28/2023

Next Scheduled EDR Contact: 04/15/2024 Data Release Frequency: Varies

PFAS FEDERAL SITES: Federal Sites PFAS Information

Several federal entities, such as the federal Superfund program, Department of Defense, National Aeronautics and Space Administration, Department of Transportation, and Department of Energy provided information for sites with known or suspected detections at federal facilities.

Date of Government Version: 09/23/2023 Date Data Arrived at EDR: 10/03/2023 Date Made Active in Reports: 12/21/2023

Number of Days to Update: 79

Source: Environmental Protection Agency

Telephone: 202-272-0167 Last EDR Contact: 12/28/2023

Next Scheduled EDR Contact: 04/15/2024 Data Release Frequency: Varies

PFAS TRIS: List of PFAS Added to the TRI

Section 7321 of the National Defense Authorization Act for Fiscal Year 2020 (NDAA) immediately added certain per- and polyfluoroalkyl substances (PFAS) to the list of chemicals covered by the Toxics Release Inventory (TRI) under Section 313 of the Emergency Planning and Community Right-to-Know Act (EPCRA) and provided a framework for additional PFAS to be added to TRI on an annual basis.

Date of Government Version: 12/28/2023 Date Data Arrived at EDR: 12/28/2023 Date Made Active in Reports: 01/04/2024

Number of Days to Update: 7

Source: Environmental Protection Agency

Telephone: 202-566-0250 Last EDR Contact: 12/28/2023

Next Scheduled EDR Contact: 04/15/2024 Data Release Frequency: Varies

PFAS TSCA: PFAS Manufacture and Imports Information

EPA issued the Chemical Data Reporting (CDR) Rule under the Toxic Substances Control Act (TSCA) and requires chemical manufacturers and facilities that manufacture or import chemical substances to report data to EPA. EPA publishes non-confidential business information (non-CBI) and includes descriptive information about each site, corporate parent, production volume, other manufacturing information, and processing and use information.

Date of Government Version: 12/28/2023 Date Data Arrived at EDR: 12/28/2023 Date Made Active in Reports: 01/04/2024

Number of Days to Update: 7

Source: Environmental Protection Agency

Telephone: 202-272-0167 Last EDR Contact: 12/28/2023

Next Scheduled EDR Contact: 04/15/2024 Data Release Frequency: Varies

PFAS RCRA MANIFEST: PFAS Transfers Identified In the RCRA Database Listing

To work around the lack of PFAS waste codes in the RCRA database, EPA developed the PFAS Transfers dataset by mining e-Manifest records containing at least one of these common PFAS keywords: PFAS, PFOA, PFOS, PERFL, AFFF, GENX, GEN-X (plus the VT waste codes). These keywords were searched for in the following text fields: Manifest handling instructions (MANIFEST_HANDLING_INSTR), Non-hazardous waste description (NON_HAZ_WASTE_DESCRIPTION), DOT printed information (DOT_PRINTED_INFORMATION), Waste line handling instructions (WASTE_LINE_HANDLING_INSTR), Waste residue comments (WASTE_RESIDUE_COMMENTS).

Date of Government Version: 12/28/2023 Date Data Arrived at EDR: 12/28/2023 Date Made Active in Reports: 01/04/2024

Number of Days to Update: 7

Source: Environmental Protection Agency

Telephone: 202-272-0167 Last EDR Contact: 12/28/2023

Next Scheduled EDR Contact: 04/15/2024 Data Release Frequency: Varies

PFAS ATSDR: PFAS Contamination Site Location Listing

PFAS contamination site locations from the Department of Health & Human Services, Center for Disease Control & Prevention. ATSDR is involved at a number of PFAS-related sites, either directly or through assisting state and federal partners. As of now, most sites are related to drinking water contamination connected with PFAS production facilities or fire training areas where aqueous film-forming firefighting foam (AFFF) was regularly used.

Date of Government Version: 06/24/2020 Date Data Arrived at EDR: 03/17/2021 Date Made Active in Reports: 11/08/2022

Number of Days to Update: 601

Source: Department of Health & Human Services

Telephone: 202-741-5770 Last EDR Contact: 01/22/2024

Next Scheduled EDR Contact: 05/06/2024

Data Release Frequency: Varies

PFAS WQP: Ambient Environmental Sampling for PFAS

The Water Quality Portal (WQP) is a part of a modernized repository storing ambient sampling data for all environmental media and tissue samples. A wide range of federal, state, tribal and local governments, academic and non-governmental organizations and individuals submit project details and sampling results to this public repository. The information is commonly used for research and assessments of environmental quality.

Date of Government Version: 09/23/2023 Date Data Arrived at EDR: 10/03/2023 Date Made Active in Reports: 10/10/2023

Number of Days to Update: 7

Source: Environmental Protection Agency

Telephone: 202-272-0167 Last EDR Contact: 12/28/2023

Next Scheduled EDR Contact: 04/15/2024 Data Release Frequency: Varies

PFAS NPDES: Clean Water Act Discharge Monitoring Information

Any discharger of pollutants to waters of the United States from a point source must have a National Pollutant Discharge Elimination System (NPDES) permit. The process for obtaining limits involves the regulated entity (permittee) disclosing releases in a NPDES permit application and the permitting authority (typically the state but sometimes EPA) deciding whether to require monitoring or monitoring with limits. Caveats and Limitations: Less than half of states have required PFAS monitoring for at least one of their permittees and fewer states have established PFAS effluent limits for permittees. New rulemakings have been initiated that may increase the number of facilities monitoring for PFAS in the future.

Date of Government Version: 09/23/2023 Date Data Arrived at EDR: 10/03/2023 Date Made Active in Reports: 01/04/2024

Number of Days to Update: 93

Source: Environmental Protection Agency

Telephone: 202-272-0167 Last EDR Contact: 12/28/2023

Next Scheduled EDR Contact: 04/15/2024 Data Release Frequency: Varies

PFAS ECHO: Facilities in Industries that May Be Handling PFAS Listing

Regulators and the public have expressed interest in knowing which regulated entities may be using PFAS. EPA has developed a dataset from various sources that show which industries may be handling PFAS. Approximately 120,000 facilities subject to federal environmental programs have operated or currently operate in industry sectors with processes that may involve handling and/or release of PFAS.

Date of Government Version: 09/23/2023 Date Data Arrived at EDR: 10/03/2023 Date Made Active in Reports: 12/21/2023

Number of Days to Update: 79

Source: Environmental Protection Agency

Telephone: 202-272-0167 Last EDR Contact: 12/28/2023

Next Scheduled EDR Contact: 04/15/2024 Data Release Frequency: Varies

PFAS ECHO FIRE TRAINING: Facilities in Industries that May Be Handling PFAS Listing

A list of fire training sites was added to the Industry Sectors dataset using a keyword search on the permitted facilitys name to identify sites where fire-fighting foam may have been used in training exercises. Additionally, you may view an example spreadsheet of the subset of fire training facility data, as well as the keywords used in selecting or deselecting a facility for the subset. as well as the keywords used in selecting or deselecting a facility for the subset. These keywords were tested to maximize accuracy in selecting facilities that may use fire-fighting foam in training exercises, however, due to the lack of a required reporting field in the data systems for designating fire training sites, this methodology may not identify all fire training sites or may potentially misidentify them.

Date of Government Version: 09/23/2023 Date Data Arrived at EDR: 10/03/2023 Date Made Active in Reports: 12/21/2023

Number of Days to Update: 79

Source: Environmental Protection Agency

Telephone: 202-272-0167 Last EDR Contact: 12/28/2023

Next Scheduled EDR Contact: 04/15/2024 Data Release Frequency: Varies

PFAS PART 139 AIRPORT: All Certified Part 139 Airports PFAS Information Listing

Since July 1, 2006, all certified part 139 airports are required to have fire-fighting foam onsite that meet military specifications (MIL-F-24385) (14 CFR 139.317). To date, these military specification fire-fighting foams are fluorinated and have been historically used for training and extinguishing. The 2018 FAA Reauthorization Act has a provision stating that no later than October 2021, FAA shall not require the use of fluorinated AFFF. This provision does not prohibit the use of fluorinated AFFF at Part 139 civilian airports; it only prohibits FAA from mandating its use. The Federal Aviation Administration?s document AC 150/5210-6D - Aircraft Fire Extinguishing Agents provides guidance on Aircraft Fire Extinguishing Agents, which includes Aqueous Film Forming Foam (AFFF).

Date of Government Version: 09/23/2023 Date Data Arrived at EDR: 10/03/2023 Date Made Active in Reports: 12/21/2023

Number of Days to Update: 79

Source: Environmental Protection Agency

Telephone: 202-272-0167 Last EDR Contact: 12/28/2023

Next Scheduled EDR Contact: 04/15/2024 Data Release Frequency: Varies

AQUEOUS FOAM NRC: Aqueous Foam Related Incidents Listing

The National Response Center (NRC) serves as an emergency call center that fields initial reports for pollution and railroad incidents and forwards that information to appropriate federal/state agencies for response. The spreadsheets posted to the NRC website contain initial incident data that has not been validated or investigated by a federal/state response agency. Response center calls from 1990 to the most recent complete calendar year where there was indication of Aqueous Film Forming Foam (AFFF) usage are included in this dataset. NRC calls may reference AFFF usage in the ?Material Involved? or ?Incident Description? fields.

Date of Government Version: 09/23/2023 Date Data Arrived at EDR: 10/03/2023 Date Made Active in Reports: 12/21/2023 Number of Days to Update: 79 Source: Environmental Protection Agency Telephone: 202-267-2675 Last EDR Contact: 12/28/2023

Next Scheduled EDR Contact: 04/15/2024 Data Release Frequency: Varies

PCS ENF: Enforcement data

No description is available for this data

Date of Government Version: 12/31/2014 Date Data Arrived at EDR: 02/05/2015 Date Made Active in Reports: 03/06/2015

Number of Days to Update: 29

Source: EPA

Telephone: 202-564-2497 Last EDR Contact: 12/27/2023

Next Scheduled EDR Contact: 04/15/2024 Data Release Frequency: Varies

PCS: Permit Compliance System

PCS is a computerized management information system that contains data on National Pollutant Discharge Elimination System (NPDES) permit holding facilities. PCS tracks the permit, compliance, and enforcement status of NPDES facilities.

Date of Government Version: 12/16/2016 Date Data Arrived at EDR: 01/06/2017 Date Made Active in Reports: 03/10/2017

Number of Days to Update: 63

Source: EPA, Office of Water Telephone: 202-564-2496 Last EDR Contact: 12/27/2023

Next Scheduled EDR Contact: 04/15/2024 Data Release Frequency: No Update Planned

BIOSOLIDS: ICIS-NPDES Biosolids Facility Data

The data reflects compliance information about facilities in the biosolids program.

Date of Government Version: 12/31/2023 Date Data Arrived at EDR: 01/03/2024 Date Made Active in Reports: 01/16/2024

Number of Days to Update: 13

Source: Environmental Protection Agency

Telephone: 202-564-4700 Last EDR Contact: 01/03/2024

Next Scheduled EDR Contact: 04/29/2024

PFAS: PFAS Contamination Site Location Listing

A listing of PFAS contaminated sites included in the GeoTracker database.

Date of Government Version: 11/30/2023 Date Data Arrived at EDR: 11/30/2023 Date Made Active in Reports: 02/26/2024

Number of Days to Update: 88

Source: State Water Resources Control Board

Telephone: 866-480-1028 Last EDR Contact: 11/30/2023

Next Scheduled EDR Contact: 03/18/2024 Data Release Frequency: Varies

AQUEOUS FOAM: Former Fire Training Facility Assessments Listing

Airports shown on this list are those believed to use Aqueous Film Forming Foam (AFFF), and certified by the Federal Aviation Administration (FAA) under Title 14, Code of Federal Regulations (CFR), Part 139 (14 CFR Part 139). This list was created by SWRCB using information available from the FAA. Location points shown are from the latitude and longitude listed on the FAA airport master record.

Date of Government Version: 11/30/2023 Date Data Arrived at EDR: 11/30/2023 Date Made Active in Reports: 02/23/2024

Number of Days to Update: 85

Source: State Water Resources Control Board

Telephone: 916-341-5455 Last EDR Contact: 11/30/2023

Next Scheduled EDR Contact: 03/18/2024

Data Release Frequency: Varies

CA BOND EXP. PLAN: Bond Expenditure Plan

Department of Health Services developed a site-specific expenditure plan as the basis for an appropriation of Hazardous Substance Cleanup Bond Act funds. It is not updated.

Date of Government Version: 01/01/1989 Date Data Arrived at EDR: 07/27/1994 Date Made Active in Reports: 08/02/1994

Number of Days to Update: 6

Source: Department of Health Services

Telephone: 916-255-2118 Last EDR Contact: 05/31/1994 Next Scheduled EDR Contact: N/A

Data Release Frequency: No Update Planned

CHROME PLATING: Chrome Plating Facilities Listing

This listing represents chrome plating facilities the California State Water Resources Control Board staff identified as possibly being a source of Per- and polyfluoroalkyl substance (PFAS) contamination. Sites and locations were identified by staff with the Division of Water Quality in the California State Water Board. Data was collected from the CA Air Resources Board 2013 and 2018 - Cr VI emission survey, CA Emission Inventory, CA HAZ Waste discharge database and by reviewing storm water permits. Former chrome plating sites are also included that are open site investigation or remediation cases with the Regional Water Quality Control Boards and the Department of Toxic Substances Control.

Date of Government Version: 11/30/2023 Date Data Arrived at EDR: 11/30/2023 Date Made Active in Reports: 02/23/2024

Number of Days to Update: 85

Source: State Water Resources Control Board

Telephone: 916-341-5455 Last EDR Contact: 11/30/2023

Next Scheduled EDR Contact: 03/18/2024 Data Release Frequency: Varies

CORTESE: "Cortese" Hazardous Waste & Substances Sites List

The sites for the list are designated by the State Water Resource Control Board (LUST), the Integrated Waste Board (SWF/LS), and the Department of Toxic Substances Control (Cal-Sites).

Date of Government Version: 09/19/2023 Date Data Arrived at EDR: 09/20/2023 Date Made Active in Reports: 12/08/2023

Number of Days to Update: 79

Source: CAL EPA/Office of Emergency Information

Telephone: 916-323-3400 Last EDR Contact: 12/13/2023

Next Scheduled EDR Contact: 04/01/2024 Data Release Frequency: Quarterly

CUPA LIVERMORE-PLEASANTON: CUPA Facility Listing

list of facilities associated with the various CUPA programs in Livermore-Pleasanton

Date of Government Version: 03/31/2023 Date Data Arrived at EDR: 05/08/2023 Date Made Active in Reports: 07/31/2023

Number of Days to Update: 84

Source: Livermore-Pleasanton Fire Department

Telephone: 925-454-2361 Last EDR Contact: 02/09/2024

Next Scheduled EDR Contact: 05/20/2024 Data Release Frequency: Varies

DRYCLEAN NO SIERRA DIST: Northern Sierra Air Quality Management District Drycleaner Facility Listing A listing of drycleaner facility locations, for the Northern Sierra Air Quality Management District,

Date of Government Version: 05/07/2019 Date Data Arrived at EDR: 05/07/2019 Date Made Active in Reports: 05/01/2023 Number of Days to Update: 1455 Source: Northern Sierra Air Quality Management District

Telephone: 530-274-9350 Last EDR Contact: 01/03/2024

Next Scheduled EDR Contact: 09/11/2023 Data Release Frequency: Varies

DRYCLEAN NO SONOMA CO DIST: Norther Sonoma County County Air Pollution Control District Drycleaner Facility Listing A listing of drycleaner facility locations, for the Northern Sonoma County Air Pollution Control District.,

Date of Government Version: 04/17/2019 Date Data Arrived at EDR: 04/17/2019 Date Made Active in Reports: 05/01/2023 Number of Days to Update: 1475 Source: Santa Barbara County Air Pollution Control District

Telephone: 707-433-5911 Last EDR Contact: 01/03/2024

Next Scheduled EDR Contact: 09/11/2023 Data Release Frequency: Varies

DRYCLEAN SANTA BARB CO DIST: Santa Barbara County Air Pollution Control District Drycleaner Facility Listing A listing of drycleaner facility locations, for the Santa Barbara County Air Pollution Control District.

Date of Government Version: 02/19/2019 Date Data Arrived at EDR: 04/17/2019 Date Made Active in Reports: 05/01/2023 Number of Days to Update: 1475 Source: Santa Barbara County Air Pollution Control District

Telephone: 805-961-8867 Last EDR Contact: 01/03/2024

Next Scheduled EDR Contact: 09/11/2023 Data Release Frequency: Varies

DRYCLEAN TEHAMA CO DIST: Tehama County Air Pollution Control District Drycleaner Facility Listing A listing of drycleaner facility locations, for the Tehama County Air Pollution Control District.

Date of Government Version: 04/24/2019 Date Data Arrived at EDR: 04/24/2019 Date Made Active in Reports: 05/01/2023 Number of Days to Update: 1468 Source: Tehama County Air Pollution Control District

Telephone: 530-527-3717 Last EDR Contact: 01/03/2024

468 Next Scheduled EDR Contact: 09/11/2023

Data Release Frequency: Varies

DRYCLEAN SACRAMENTO METO DIST: Sacramento Metropolitan Air Quality Management DistrictDrycleaner Facility Listing A listing of drycleaner facility locations, for the Sacramento Metropolitan Air Quality Management District.

Date of Government Version: 08/15/2023 Date Data Arrived at EDR: 08/17/2023 Date Made Active in Reports: 10/31/2023 Number of Days to Update: 75 Source: Sacramento Metropolitan Air Quality Management District

Telephone: 916-874-3958 Last EDR Contact: 01/03/2024

Next Scheduled EDR Contact: 09/11/2023 Data Release Frequency: Varies

DRYCLEAN SAN LUIS OB CO DIST: San Luis Obispo County Air Pollution Control District Drycleaner Facility Listing A listing of drycleaner facility locations, for the San Luis Obispo County Air Pollution Control District.

Date of Government Version: 07/26/2023 Date Data Arrived at EDR: 07/27/2023 Date Made Active in Reports: 10/13/2023

Number of Days to Update: 78

Source: San Luis Obispo County Air Pollution Control District

Telephone: 805-781-5756 Last EDR Contact: 01/03/2024

Next Scheduled EDR Contact: 09/11/2023

DRYCLEAN BUTTE CO DIST: Butte County Air Quality Management DistrictDrycleaner Facility Listing Butte County Air Quality Management DistrictDrycleaner Facility Listing.

Date of Government Version: 04/25/2023 Date Data Arrived at EDR: 10/18/2023 Date Made Active in Reports: 01/16/2024

Number of Days to Update: 90

Source: Butte County Air Quality Management District

Telephone: 530-332-9400 Last EDR Contact: 01/03/2024

Next Scheduled EDR Contact: 09/11/2023 Data Release Frequency: Varies

DRYCLEAN FEATHER RIVER DIST: Feather River Air Quality Management District Drycleaner Facility Listing A listing of drycleaner facility locations, for the Feather River Air Quality Management District.

Date of Government Version: 03/08/2023 Date Data Arrived at EDR: 03/09/2023 Date Made Active in Reports: 06/05/2023

Number of Days to Update: 88

Source: Feather River Air Quality Management District

Telephone: 530-634-7659 Last EDR Contact: 01/03/2024

Next Scheduled EDR Contact: 09/11/2023 Data Release Frequency: Varies

DRYCLEAN SAN JOAQ VAL DIST: San Joaquin Valley Air Pollution Control District District Drycleaner Facility Listing

A listing of drycleaner facility locations, for the San Joaquin Valley Air Pollution Control District.

Date of Government Version: 05/24/2023 Date Data Arrived at EDR: 05/30/2023 Date Made Active in Reports: 08/21/2023

Number of Days to Update: 83

Source: San Joaquin Valley Air Pollution Control District

Telephone: 559-230-6001 Last EDR Contact: 01/03/2024

Next Scheduled EDR Contact: 09/11/2023

Data Release Frequency: Varies

DRYCLEAN EAST KERN DIST: Eastern Kern Air Pollution Control District Drycleaner Facility Listing A listing of drycleaner facility locations, for the Eastern Kern Air Pollution Control District.

Date of Government Version: 01/12/2023 Date Data Arrived at EDR: 04/26/2023 Date Made Active in Reports: 07/14/2023

Number of Days to Update: 79

Source: Eastern Kern Air Pollution Control District

Telephone: 661-862-9684 Last EDR Contact: 01/03/2024

Next Scheduled EDR Contact: 09/11/2023 Data Release Frequency: Varies

DRYCLEAN IMPERIAL CO DIST: Imperial County Air Pollution Control District Drycleaner Facility Listing A listing of drycleaner facility locations, for the Imperial County Air Pollution Control District

Date of Government Version: 04/25/2023 Date Data Arrived at EDR: 04/26/2023 Date Made Active in Reports: 07/14/2023

Number of Days to Update: 79

Source: Imperial County Air Pollution Control District

Telephone: 442-265-1800 Last EDR Contact: 01/03/2024

Next Scheduled EDR Contact: 09/11/2023 Data Release Frequency: Varies

DRYCLEAN MENDO CO DIST: Mendocino County Air Quality Management District Drycleaner Facility Listing A listing of drycleaner facility locations, for the Mendocino County Air Quality Management District.

Date of Government Version: 04/27/2023 Date Data Arrived at EDR: 04/28/2023 Date Made Active in Reports: 07/14/2023

Number of Days to Update: 77

Source: Mendocino County Air Quality Management District

Telephone: 707-463-4354 Last EDR Contact: 01/03/2024

Next Scheduled EDR Contact: 09/11/2023 Data Release Frequency: Varies

DRYCLEAN MOJAVE DESERT DIST: Mojave Desert Air Quality Management District Drycleaner Facility Listing A listing of drycleaner facility locations, for the Mojave Desert Air Quality Management District.

Date of Government Version: 04/26/2023 Date Data Arrived at EDR: 04/27/2023 Date Made Active in Reports: 07/14/2023

Number of Days to Update: 78

Source: Mojave Desert Air Quality Management District

Telephone: 760-245-1661 Last EDR Contact: 01/03/2024

Next Scheduled EDR Contact: 09/11/2023

DRYCLEAN MONTEREY BAY DIST: Monterey Bay Air Quality Management District Drycleaner Facility Listing A listing of drycleaner facility locations, for the Monterey Bay Air Quality Management District.

Date of Government Version: 04/25/2023 Date Data Arrived at EDR: 04/26/2023 Date Made Active in Reports: 07/14/2023

Number of Days to Update: 79

Source: Monterey Bay Air Quality Management District

Telephone: 831-647-9411 Last EDR Contact: 01/03/2024

Next Scheduled EDR Contact: 09/11/2023 Data Release Frequency: Varies

DRYCLEAN SHASTA CO DIST: Shasta County Air Quality Management District Drycleaner Facility Listing

A listing of drycleaner facility locations, for the Shasta County Air Quality Management District.

Date of Government Version: 04/26/2023 Date Data Arrived at EDR: 04/27/2023 Date Made Active in Reports: 07/14/2023

Number of Days to Update: 78

Source: Shasta County Air Quality Management District

Telephone: 530-225-5674 Last EDR Contact: 01/03/2024

Next Scheduled EDR Contact: 09/11/2023

Data Release Frequency: Varies

DRYCLEAN YOLO-SOLANO DIST: Yolo-Solano Air Quality Management District Drycleaner Facility Listing

A listing of drycleaner facility locations, for the Yolo-Solano Air Quality Management District.

Date of Government Version: 04/25/2023 Date Data Arrived at EDR: 04/27/2023 Date Made Active in Reports: 07/14/2023

Number of Days to Update: 78

Source: Yolo-Solano Air Quality Management District

Telephone: 530-757-3650 Last EDR Contact: 01/03/2024

Next Scheduled EDR Contact: 09/11/2023

Data Release Frequency: Varies

DRYCLEAN PLACER CO DIST: Placer County Air Quality Management District Drycleaner Facility Listing A listing of drycleaner facility locations, for the Placer County Air Quality Management District.

Date of Government Version: 05/15/2023 Date Data Arrived at EDR: 05/17/2023 Date Made Active in Reports: 08/14/2023

Number of Days to Update: 89

Source: Placer County Air Quality Management District

Telephone: 530-745-2335 Last EDR Contact: 01/03/2024

Next Scheduled EDR Contact: 09/11/2023 Data Release Frequency: Varies

DRYCLEAN BAY AREA DIST: Bay Area Air Quality Management District Drycleaner Facility Listing Bay Area Air Quality Management District Drycleaner Facility Listing.

Date of Government Version: 02/20/2019 Date Data Arrived at EDR: 05/30/2019 Date Made Active in Reports: 05/01/2023

Number of Days to Update: 1432

Source: Bay Area Air Quality Management District

Telephone: 415-516-1916 Last EDR Contact: 01/03/2024

Next Scheduled EDR Contact: 09/11/2023 Data Release Frequency: Varies

DRYCLEAN CALAVERAS CO DIST: Calaveras County Environmental Management Agency Drycleaner Facility Listing A listing of drycleaner facility locations, for the Calaveras County Environmental Management Agency.

Date of Government Version: 06/17/2019 Date Data Arrived at EDR: 06/19/2019 Date Made Active in Reports: 05/01/2023

Number of Days to Update: 1412

Source: Calaveras County Environmental Management Agency

Telephone: 209-754-6399 Last EDR Contact: 01/03/2024

Next Scheduled EDR Contact: 09/16/2019 Data Release Frequency: Varies

DRYCLEAN GRANT: Grant Recipients List

Assembly Bill 998 (AB 998) established the Non-Toxic Dry Cleaning Incentive Program to provide financial assistance to the dry cleaning industry to switch from systems using perchloroethylene (Perc), an identified toxic air contaminant and potential human carcinogen, to non-toxic and non-smog forming alternatives.

Date of Government Version: 12/31/2020 Date Data Arrived at EDR: 02/04/2021 Date Made Active in Reports: 05/01/2023

Number of Days to Update: 816

Source: California Air Resources Board Telephone: 916-323-0006

Last EDR Contact: 01/26/2024

Next Scheduled EDR Contact: 05/06/2024

DRYCLEAN LAKE CO DIST: Lake County Air Quality Management District Drycleaner Facility Listing A listing of drycleaner facility locations, for the Lake County Air Quality Management District,

Date of Government Version: 04/29/2019 Date Data Arrived at EDR: 05/07/2019 Date Made Active in Reports: 05/01/2023 Number of Days to Update: 1455 Source: Lake County Air Quality Management District Telephone: 707-263-7000

Last EDR Contact: 01/03/2024

Next Scheduled EDR Contact: 09/11/2023 Data Release Frequency: Varies

DRYCLEAN NO COAST UNIFIED DIST: North Coast Unified Air Quality Management District Drycleaner Facility Listing

A listing of drycleaner facility locations, for the North Coast Unified Air Quality Management District.

Date of Government Version: 11/30/2016 Date Data Arrived at EDR: 04/19/2019 Date Made Active in Reports: 05/01/2023 Number of Days to Update: 1473

Source: North Coast Unified Air Quality Management District

Telephone: 707-443-3093 Last EDR Contact: 01/03/2024

Next Scheduled EDR Contact: 09/11/2023

Data Release Frequency: Varies

DRYCLEAN SOUTH COAST: South Coast Air Quality Management District Drycleaner Listing

A listing of dry cleaners in the South Coast Air Quality Management District

Date of Government Version: 11/14/2023 Date Data Arrived at EDR: 11/16/2023 Date Made Active in Reports: 02/12/2024 Source: South Coast Air Quality Management District

Telephone: 909-396-3211 Last EDR Contact: 02/20/2024

Number of Days to Update: 88

Next Scheduled EDR Contact: 06/03/2024

Data Release Frequency: Varies

DRYCLEAN VENTURA CO DIST: Drycleaner Facility Listing

A listing of drycleaner facility locations, for the Ventura County Air Pollution Control District.

Date of Government Version: 01/04/2024 Date Data Arrived at EDR: 01/16/2024 Date Made Active in Reports: 02/08/2024 Source: Ventura County Air Pollution Control District

Telephone: 805-645-1421 Last EDR Contact: 01/03/2024

Number of Days to Update: 23

Next Scheduled EDR Contact: 09/11/2023 Data Release Frequency: Varies

DRYCLEAN AVAQMD: Antelope Valley Air Quality Management District Drycleaner Listing A listing of dry cleaners in the Antelope Valley Air Quality Management District.

Date of Government Version: 11/21/2023 Date Data Arrived at EDR: 11/22/2023 Date Made Active in Reports: 02/16/2024

Source: Antelope Valley Air Quality Management District

Telephone: 661-723-8070 Last EDR Contact: 02/26/2024

Number of Days to Update: 86

Next Scheduled EDR Contact: 06/10/2024 Data Release Frequency: Varies

DRYCLEAN AMADOR: Amador Air District Drycleaner Facility Listing

A listing of drycleaner facility locations, for the Amador Air Quality Management District

Date of Government Version: 04/26/2023 Date Data Arrived at EDR: 04/27/2023 Date Made Active in Reports: 07/13/2023 Source: Amador Air Quality Management District

Telephone: 209-257-0112 Last EDR Contact: 01/03/2024

Number of Days to Update: 77

Next Scheduled EDR Contact: 09/11/2023 Data Release Frequency: Varies

DRYCLEANERS: Cleaner Facilities

A list of drycleaner related facilities that have EPA ID numbers. These are facilities with certain SIC codes: power laundries, family and commercial; garment pressing and cleaner's agents; linen supply; coin-operated laundries and cleaning; drycleaning plants, except rugs; carpet and upholster cleaning; industrial launderers; laundry and garment services.

Date of Government Version: 08/31/2023 Date Data Arrived at EDR: 09/08/2023 Date Made Active in Reports: 11/27/2023

Number of Days to Update: 80

Source: Department of Toxic Substance Control

Telephone: 916-327-4498 Last EDR Contact: 02/26/2024

Next Scheduled EDR Contact: 06/10/2024 Data Release Frequency: Annually

DRYCLEAN GLENN CO DIST: Glenn County Air Pollution Control District Drycleaner Facility Listing A listing of drycleaner facility locations, for the Glenn County Air Pollution Control District.

Date of Government Version: 05/02/2023 Date Data Arrived at EDR: 05/03/2023 Date Made Active in Reports: 07/25/2023

Number of Days to Update: 83

Source: Glenn County Air Pollution Control District

Telephone: 530-934-6500 Last EDR Contact: 01/03/2024

Next Scheduled EDR Contact: 09/11/2023 Data Release Frequency: Varies

DRYCLEAN SAN DIEGO CO DIST: San Diego County Air Pollution Control District Drycleaner Facility Listing A listing of drycleaner facility locations, for the San Diego County Air Pollution Control District.

Date of Government Version: 08/08/2023 Date Data Arrived at EDR: 08/09/2023 Date Made Active in Reports: 10/26/2023

Number of Days to Update: 78

Source: San Diego County Air Pollution Control District

Telephone: 858-586-2616 Last EDR Contact: 08/08/2023

Next Scheduled EDR Contact: 09/11/2023 Data Release Frequency: Varies

EMI: Emissions Inventory Data

Toxics and criteria pollutant emissions data collected by the ARB and local air pollution agencies.

Date of Government Version: 12/31/2021 Date Data Arrived at EDR: 06/09/2023 Date Made Active in Reports: 08/30/2023

Number of Days to Update: 82

Source: California Air Resources Board

Telephone: 916-322-2990 Last EDR Contact: 12/14/2023

Next Scheduled EDR Contact: 03/25/2024

Data Release Frequency: Varies

ENF: Enforcement Action Listing

A listing of Water Board Enforcement Actions. Formal is everything except Oral/Verbal Communication, Notice of Violation, Expedited Payment Letter, and Staff Enforcement Letter.

Date of Government Version: 10/16/2023 Date Data Arrived at EDR: 10/17/2023 Date Made Active in Reports: 01/09/2024

Number of Days to Update: 84

Source: State Water Resoruces Control Board

Telephone: 916-445-9379 Last EDR Contact: 01/16/2024

Next Scheduled EDR Contact: 04/29/2024

Data Release Frequency: Varies

Financial Assurance 1: Financial Assurance Information Listing

Financial Assurance information

Date of Government Version: 09/13/2023 Date Data Arrived at EDR: 09/14/2023 Date Made Active in Reports: 09/21/2023

Number of Days to Update: 7

Source: Department of Toxic Substances Control

Telephone: 916-255-3628 Last EDR Contact: 01/11/2024

Next Scheduled EDR Contact: 04/29/2024 Data Release Frequency: Varies

Financial Assurance 2: Financial Assurance Information Listing

A listing of financial assurance information for solid waste facilities. Financial assurance is intended to ensure that resources are available to pay for the cost of closure, post-closure care, and corrective measures if the owner or operator of a regulated facility is unable or unwilling to pay.

Date of Government Version: 11/08/2023 Date Data Arrived at EDR: 11/22/2023 Date Made Active in Reports: 02/16/2024

Number of Days to Update: 86

Source: California Integrated Waste Management Board

Telephone: 916-341-6066 Last EDR Contact: 02/20/2024

Next Scheduled EDR Contact: 05/20/2024 Data Release Frequency: Varies

ICE: Inspection, Compliance and Enforcement

Contains data pertaining to the Permitted Facilities with Inspections / Enforcements sites tracked in Envirostor.

Date of Government Version: 02/07/2024 Date Data Arrived at EDR: 02/07/2024 Date Made Active in Reports: 02/07/2024

Number of Days to Update: 0

Source: Department of Toxic Subsances Control

Telephone: 877-786-9427 Last EDR Contact: 02/07/2024

Next Scheduled EDR Contact: 05/27/2024 Data Release Frequency: Quarterly

HIST CORTESE: Hazardous Waste & Substance Site List

The sites for the list are designated by the State Water Resource Control Board [LUST], the Integrated Waste Board [SWF/LS], and the Department of Toxic Substances Control [CALSITES]. This listing is no longer updated by the state agency.

Date of Government Version: 04/01/2001 Date Data Arrived at EDR: 01/22/2009 Date Made Active in Reports: 04/08/2009

Number of Days to Update: 76

Source: Department of Toxic Substances Control

Telephone: 916-323-3400 Last EDR Contact: 01/22/2009 Next Scheduled EDR Contact: N/A

Data Release Frequency: No Update Planned

HWP: EnviroStor Permitted Facilities Listing

Detailed information on permitted hazardous waste facilities and corrective action ("cleanups") tracked in EnviroStor.

Date of Government Version: 02/07/2024 Date Data Arrived at EDR: 02/07/2024 Date Made Active in Reports: 02/07/2024

Number of Days to Update: 0

Source: Department of Toxic Substances Control

Telephone: 916-323-3400 Last EDR Contact: 02/07/2024

Next Scheduled EDR Contact: 05/27/2024 Data Release Frequency: Quarterly

HWT: Registered Hazardous Waste Transporter Database

A listing of hazardous waste transporters. In California, unless specifically exempted, it is unlawful for any person to transport hazardous wastes unless the person holds a valid registration issued by DTSC. A hazardous waste transporter registration is valid for one year and is assigned a unique registration number.

Date of Government Version: 10/02/2023 Date Data Arrived at EDR: 10/04/2023 Date Made Active in Reports: 12/27/2023

Number of Days to Update: 84

Source: Department of Toxic Substances Control

Telephone: 916-440-7145 Last EDR Contact: 01/03/2024

Next Scheduled EDR Contact: 04/15/2024 Data Release Frequency: Quarterly

HWTS: Hazardous Waste Tracking System

DTSC maintains the Hazardous Waste Tracking System that stores ID number information since the early 1980s and manifest data since 1993. The system collects both manifest copies from the generator and destination facility.

Date of Government Version: 10/26/2023 Date Data Arrived at EDR: 10/27/2023 Date Made Active in Reports: 01/29/2024

Number of Days to Update: 94

Source: Department of Toxic Substances Control

Telephone: 916-324-2444 Last EDR Contact: 12/26/2023

Next Scheduled EDR Contact: 04/15/2024 Data Release Frequency: Varies

HAZNET: Facility and Manifest Data

Facility and Manifest Data. The data is extracted from the copies of hazardous waste manifests received each year by the DTSC. The annual volume of manifests is typically 700,000 - 1,000,000 annually, representing approximately 350,000 - 500,000 shipments. Data are from the manifests submitted without correction, and therefore many contain some invalid values for data elements such as generator ID, TSD ID, waste category, and disposal method. This database begins with calendar year 1993.

Date of Government Version: 12/31/2021 Date Data Arrived at EDR: 07/05/2022 Date Made Active in Reports: 09/19/2022

Number of Days to Update: 76

Source: California Environmental Protection Agency

Telephone: 916-255-1136 Last EDR Contact: 01/03/2024

Next Scheduled EDR Contact: 04/15/2024 Data Release Frequency: Annually

MINES: Mines Site Location Listing

A listing of mine site locations from the Office of Mine Reclamation.

Date of Government Version: 11/29/2023 Date Data Arrived at EDR: 11/29/2023 Date Made Active in Reports: 02/23/2024

Number of Days to Update: 86

Source: Department of Conservation Telephone: 916-322-1080

Last EDR Contact: 11/29/2023

Next Scheduled EDR Contact: 03/18/2024 Data Release Frequency: Quarterly

MWMP: Medical Waste Management Program Listing

The Medical Waste Management Program (MWMP) ensures the proper handling and disposal of medical waste by permitting and inspecting medical waste Offsite Treatment Facilities (PDF) and Transfer Stations (PDF) throughout the

state. MWMP also oversees all Medical Waste Transporters.

Date of Government Version: 11/08/2023 Date Data Arrived at EDR: 11/22/2023 Date Made Active in Reports: 02/16/2024

Number of Days to Update: 86

Source: Department of Public Health

Telephone: 916-558-1784 Last EDR Contact: 02/27/2024

Next Scheduled EDR Contact: 06/10/2024

Data Release Frequency: Varies

NPDES: NPDES Permits Listing

A listing of NPDES permits, including stormwater.

Date of Government Version: 11/06/2023 Date Data Arrived at EDR: 11/07/2023 Date Made Active in Reports: 02/05/2024

Number of Days to Update: 90

Source: State Water Resources Control Board

Telephone: 916-445-9379 Last EDR Contact: 02/06/2024

Next Scheduled EDR Contact: 05/20/2024 Data Release Frequency: Quarterly

PEST LIC: Pesticide Regulation Licenses Listing

A listing of licenses and certificates issued by the Department of Pesticide Regulation. The DPR issues licenses and/or certificates to: Persons and businesses that apply or sell pesticides; Pest control dealers and brokers; Persons who advise on agricultural pesticide applications.

Date of Government Version: 11/22/2023 Date Data Arrived at EDR: 11/22/2023 Date Made Active in Reports: 02/16/2024

Number of Days to Update: 86

Source: Department of Pesticide Regulation

Telephone: 916-445-4038 Last EDR Contact: 02/27/2024

Next Scheduled EDR Contact: 06/10/2024 Data Release Frequency: Quarterly

PROC: Certified Processors Database A listing of certified processors.

> Date of Government Version: 11/29/2023 Date Data Arrived at EDR: 11/29/2023 Date Made Active in Reports: 02/23/2024

Number of Days to Update: 86

Source: Department of Conservation

Telephone: 916-323-3836 Last EDR Contact: 11/29/2023

Next Scheduled EDR Contact: 03/18/2024 Data Release Frequency: Quarterly

NOTIFY 65: Proposition 65 Records

Listings of all Proposition 65 incidents reported to counties by the State Water Resources Control Board and the Regional Water Quality Control Board. This database is no longer updated by the reporting agency.

Date of Government Version: 09/07/2023 Date Data Arrived at EDR: 09/08/2023 Date Made Active in Reports: 11/28/2023

Number of Days to Update: 81

Source: State Water Resources Control Board

Telephone: 916-445-3846 Last EDR Contact: 12/05/2023

Next Scheduled EDR Contact: 03/25/2024 Data Release Frequency: No Update Planned

SAN JOSE HAZMAT: Hazardous Material Facilities

Hazardous material facilities, including underground storage tank sites.

Date of Government Version: 11/03/2020 Date Data Arrived at EDR: 11/05/2020 Date Made Active in Reports: 01/26/2021

Number of Days to Update: 82

Source: City of San Jose Fire Department

Telephone: 408-535-7694 Last EDR Contact: 01/29/2024

Next Scheduled EDR Contact: 05/13/2024 Data Release Frequency: Annually

SANTA CRUZ CO SITE MITI: Site Mitigation Listing

Sites may become contaminated with toxic chemicals through illegal dumping or disposal, from leaking underground storage tanks, or through industrial or commercial activities. The goal of the site mitigation program is to protect the public health and the environment while facilitating completion of contaminated site clean-up projects in a timely manner.

Date of Government Version: 12/03/2018 Date Data Arrived at EDR: 06/23/2023 Date Made Active in Reports: 07/13/2023

Number of Days to Update: 20

Source: Santa Cruz Environmental Health Services

Telephone: 831-454-2761 Last EDR Contact: 02/09/2024

Next Scheduled EDR Contact: 05/27/2024

Data Release Frequency: Varies

UIC: UIC Listing

A listing of wells identified as underground injection wells, in the California Oil and Gas Wells database.

Date of Government Version: 11/29/2023 Date Data Arrived at EDR: 11/29/2023 Date Made Active in Reports: 02/27/2024

Number of Days to Update: 90

Source: Deaprtment of Conservation Telephone: 916-445-2408

Last EDR Contact: 11/29/2023

Next Scheduled EDR Contact: 03/18/2024

Data Release Frequency: Varies

UIC GEO: Underground Injection Control Sites (GEOTRACKER)

Underground control injection sites

Date of Government Version: 09/05/2023 Date Data Arrived at EDR: 09/06/2023 Date Made Active in Reports: 11/27/2023

Number of Days to Update: 82

Source: State Water Resource Control Board

Telephone: 866-480-1028 Last EDR Contact: 12/05/2023

Next Scheduled EDR Contact: 03/18/2024

Data Release Frequency: Varies

WASTEWATER PITS: Oil Wastewater Pits Listing

Water officials discovered that oil producers have been dumping chemical-laden wastewater into hundreds of unlined pits that are operating without proper permits. Inspections completed by the Central Valley Regional Water Quality Control Board revealed the existence of previously unidentified waste sites. The water boards review found that more than one-third of the region's active disposal pits are operating without permission.

Date of Government Version: 02/11/2021 Date Data Arrived at EDR: 07/01/2021 Date Made Active in Reports: 09/29/2021

Number of Days to Update: 90

Source: RWQCB, Central Valley Region

Telephone: 559-445-5577 Last EDR Contact: 01/05/2024

Next Scheduled EDR Contact: 04/15/2024 Data Release Frequency: Varies

WDS: Waste Discharge System

Sites which have been issued waste discharge requirements.

Date of Government Version: 06/19/2007 Date Data Arrived at EDR: 06/20/2007 Date Made Active in Reports: 06/29/2007

Number of Days to Update: 9

Source: State Water Resources Control Board

Telephone: 916-341-5227 Last EDR Contact: 02/09/2024

Next Scheduled EDR Contact: 05/27/2024 Data Release Frequency: No Update Planned

WIP: Well Investigation Program Case List

Well Investigation Program case in the San Gabriel and San Fernando Valley area.

Date of Government Version: 07/03/2009 Date Data Arrived at EDR: 07/21/2009 Date Made Active in Reports: 08/03/2009

Number of Days to Update: 13

Source: Los Angeles Water Quality Control Board

Telephone: 213-576-6726 Last EDR Contact: 12/12/2023

Next Scheduled EDR Contact: 04/01/2024 Data Release Frequency: No Update Planned

MILITARY PRIV SITES: Military Privatized Sites (GEOTRACKER)

Military privatized sites

Date of Government Version: 09/05/2023 Date Data Arrived at EDR: 09/06/2023 Date Made Active in Reports: 11/27/2023

Number of Days to Update: 82

Source: State Water Resources Control Board

Telephone: 866-480-1028 Last EDR Contact: 12/05/2023

Next Scheduled EDR Contact: 03/18/2024

Data Release Frequency: Varies

PROJECT: Project Sites (GEOTRACKER)

Projects sites

Date of Government Version: 09/05/2023 Date Data Arrived at EDR: 09/06/2023 Date Made Active in Reports: 11/27/2023

Number of Days to Update: 82

Source: State Water Resources Control Board

Telephone: 866-480-1028 Last EDR Contact: 12/05/2023

Next Scheduled EDR Contact: 03/18/2024

Data Release Frequency: Varies

WDR: Waste Discharge Requirements Listing

In general, the Waste Discharge Requirements (WDRs) Program (sometimes also referred to as the "Non Chapter 15 (Non 15) Program") regulates point discharges that are exempt pursuant to Subsection 20090 of Title 27 and not subject to the Federal Water Pollution Control Act. Exemptions from Title 27 may be granted for nine categories of discharges (e.g., sewage, wastewater, etc.) that meet, and continue to meet, the preconditions listed for each specific exemption. The scope of the WDRs Program also includes the discharge of wastes classified as inert, pursuant to section 20230 of Title 27.

Date of Government Version: 11/29/2023 Date Data Arrived at EDR: 11/29/2023 Date Made Active in Reports: 02/22/2024

Number of Days to Update: 85

Source: State Water Resources Control Board

Telephone: 916-341-5810 Last EDR Contact: 11/29/2023

Next Scheduled EDR Contact: 03/18/2024 Data Release Frequency: Quarterly

CIWQS: California Integrated Water Quality System

The California Integrated Water Quality System (CIWQS) is a computer system used by the State and Regional Water Quality Control Boards to track information about places of environmental interest, manage permits and other orders, track inspections, and manage violations and enforcement activities.

Date of Government Version: 11/22/2023 Date Data Arrived at EDR: 11/22/2023 Date Made Active in Reports: 02/16/2024

Number of Days to Update: 86

Source: State Water Resources Control Board

Telephone: 866-794-4977 Last EDR Contact: 02/27/2024

Next Scheduled EDR Contact: 06/10/2024

Data Release Frequency: Varies

CERS: CalEPA Regulated Site Portal Data

The CalEPA Regulated Site Portal database combines data about environmentally regulated sites and facilities in California into a single database. It combines data from a variety of state and federal databases, and provides an overview of regulated activities across the spectrum of environmental programs for any given location in California. These activities include hazardous materials and waste, state and federal cleanups, impacted ground and surface waters, and toxic materials

Date of Government Version: 10/16/2023 Date Data Arrived at EDR: 10/17/2023 Date Made Active in Reports: 01/09/2024

Number of Days to Update: 84

Source: California Environmental Protection Agency

Telephone: 916-323-2514 Last EDR Contact: 01/16/2024

Next Scheduled EDR Contact: 04/29/2024 Data Release Frequency: Varies

NON-CASE INFO: Non-Case Information Sites (GEOTRACKER)

Non-Case Information sites

Date of Government Version: 09/05/2023 Date Data Arrived at EDR: 09/06/2023 Date Made Active in Reports: 11/27/2023

Number of Days to Update: 82

Source: State Water Resources Control Board

Telephone: 866-480-1028 Last EDR Contact: 12/05/2023

Next Scheduled EDR Contact: 03/18/2024 Data Release Frequency: Varies

OTHER OIL GAS: Other Oil & Gas Projects Sites (GEOTRACKER)

Other Oil & Gas Projects sites

Date of Government Version: 09/05/2023 Date Data Arrived at EDR: 09/06/2023 Date Made Active in Reports: 11/27/2023

Number of Days to Update: 82

Source: State Water Resources Control Board

Telephone: 866-480-1028 Last EDR Contact: 12/05/2023

Next Scheduled EDR Contact: 03/18/2024 Data Release Frequency: Varies

PROD WATER PONDS: Produced Water Ponds Sites (GEOTRACKER)

Produced water ponds sites

Date of Government Version: 09/05/2023 Date Data Arrived at EDR: 09/06/2023 Date Made Active in Reports: 11/27/2023

Number of Days to Update: 82

Source: State Water Resources Control Board

Telephone: 866-480-1028 Last EDR Contact: 12/05/2023

Next Scheduled EDR Contact: 03/18/2024

Data Release Frequency: Varies

SAMPLING POINT: Sampling Point? Public Sites (GEOTRACKER)

Sampling point - public sites

Date of Government Version: 09/05/2023 Date Data Arrived at EDR: 09/06/2023 Date Made Active in Reports: 11/27/2023

Number of Days to Update: 82

Source: State Water Resources Control Board

Telephone: 866-480-1028 Last EDR Contact: 12/05/2023

Next Scheduled EDR Contact: 03/18/2024

Data Release Frequency: Varies

WELL STIM PROJ: Well Stimulation Project (GEOTRACKER)

Includes areas of groundwater monitoring plans, a depiction of the monitoring network, and the facilities, boundaries, and subsurface characteristics of the oilfield and the features (oil and gas wells, produced water ponds, UIC wells, water supply wells, etc?) being monitored

Date of Government Version: 09/05/2023 Date Data Arrived at EDR: 09/06/2023 Date Made Active in Reports: 11/27/2023

Number of Days to Update: 82

Source: State Water Resources Control Board

Telephone: 866-480-1028 Last EDR Contact: 12/05/2023

Next Scheduled EDR Contact: 03/18/2024

Data Release Frequency: Varies

UST FINDER: UST Finder Database

EPA developed UST Finder, a web map application containing a comprehensive, state-sourced national map of underground storage tank (UST) and leaking UST (LUST) data. It provides the attributes and locations of active and closed USTs, UST facilities, and LUST sites from states and from Tribal lands and US territories. UST Finder contains information about proximity of UST facilities and LUST sites to: surface and groundwater public drinking water protection areas; estimated number of private domestic wells and number of people living nearby; and flooding and wildfires.

Date of Government Version: 06/08/2023 Date Data Arrived at EDR: 10/04/2023 Date Made Active in Reports: 01/18/2024

Number of Days to Update: 106

Source: Environmental Protection Agency

Telephone: 202-564-0394 Last EDR Contact: 02/09/2024

Next Scheduled EDR Contact: 05/20/2024 Data Release Frequency: Varies

UST FINDER RELEASE: UST Finder Releases Database

US EPA's UST Finder data is a national composite of leaking underground storage tanks. This data contains information about, and locations of, leaking underground storage tanks. Data was collected from state sources and standardized into a national profile by EPA's Office of Underground Storage Tanks, Office of Research and Development, and the Association of State and Territorial Solid Waste Management Officials.

Date of Government Version: 06/08/2023 Date Data Arrived at EDR: 10/31/2023 Date Made Active in Reports: 01/18/2024

Number of Days to Update: 79

Source: Environmental Protecton Agency

Telephone: 202-564-0394 Last EDR Contact: 02/09/2024

Next Scheduled EDR Contact: 05/20/2024 Data Release Frequency: Semi-Annually

EDR HIGH RISK HISTORICAL RECORDS

EDR Exclusive Records

EDR MGP: EDR Proprietary Manufactured Gas Plants

The EDR Proprietary Manufactured Gas Plant Database includes records of coal gas plants (manufactured gas plants) compiled by EDR's researchers. Manufactured gas sites were used in the United States from the 1800's to 1950's to produce a gas that could be distributed and used as fuel. These plants used whale oil, rosin, coal, or a mixture of coal, oil, and water that also produced a significant amount of waste. Many of the byproducts of the gas production, such as coal tar (oily waste containing volatile and non-volatile chemicals), sludges, oils and other compounds are potentially hazardous to human health and the environment. The byproduct from this process was frequently disposed of directly at the plant site and can remain or spread slowly, serving as a continuous source of soil and groundwater contamination.

Date of Government Version: N/A Date Data Arrived at EDR: N/A Date Made Active in Reports: N/A

Number of Days to Update: N/A

Source: EDR, Inc. Telephone: N/A Last EDR Contact: N/A

Next Scheduled EDR Contact: N/A

Data Release Frequency: No Update Planned

EDR Hist Auto: EDR Exclusive Historical Auto Stations

EDR has searched selected national collections of business directories and has collected listings of potential gas station/filling station/service station sites that were available to EDR researchers. EDR's review was limited to those categories of sources that might, in EDR's opinion, include gas station/filling station/service station establishments. The categories reviewed included, but were not limited to gas, gas station, gasoline station, filling station, auto, automobile repair, auto service station, service station, etc. This database falls within a category of information EDR classifies as "High Risk Historical Records", or HRHR. EDR's HRHR effort presents unique and sometimes proprietary data about past sites and operations that typically create environmental concerns, but may not show up in current government records searches.

Date of Government Version: N/A Date Data Arrived at EDR: N/A Date Made Active in Reports: N/A

Number of Days to Update: N/A

Source: EDR, Inc. Telephone: N/A Last EDR Contact: N/A

Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

EDR Hist Cleaner: EDR Exclusive Historical Cleaners

EDR has searched selected national collections of business directories and has collected listings of potential dry cleaner sites that were available to EDR researchers. EDR's review was limited to those categories of sources that might, in EDR's opinion, include dry cleaning establishments. The categories reviewed included, but were not limited to dry cleaners, cleaners, laundry, laundromat, cleaning/laundry, wash & dry etc. This database falls within a category of information EDR classifies as "High Risk Historical Records", or HRHR. EDR's HRHR effort presents unique and sometimes proprietary data about past sites and operations that typically create environmental concerns, but may not show up in current government records searches.

Date of Government Version: N/A
Date Data Arrived at EDR: N/A
Date Made Active in Reports: N/A
Number of Days to Update: N/A

Source: EDR, Inc. Telephone: N/A Last EDR Contact: N/A

Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

EDR RECOVERED GOVERNMENT ARCHIVES

Exclusive Recovered Govt. Archives

RGA LF: Recovered Government Archive Solid Waste Facilities List

The EDR Recovered Government Archive Landfill database provides a list of landfills derived from historical databases and includes many records that no longer appear in current government lists. Compiled from Records formerly available from the Department of Resources Recycling and Recovery in California.

Date of Government Version: N/A
Date Data Arrived at EDR: 07/01/2013
Date Made Active in Reports: 01/13/2014
Number of Days to Update: 196

Source: Department of Resources Recycling and Recovery Telephone: N/A

Last EDR Contact: 06/01/2012 Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

RGA LUST: Recovered Government Archive Leaking Underground Storage Tank

The EDR Recovered Government Archive Leaking Underground Storage Tank database provides a list of LUST incidents derived from historical databases and includes many records that no longer appear in current government lists. Compiled from Records formerly available from the State Water Resources Control Board in California.

Date of Government Version: N/A
Date Data Arrived at EDR: 07/01/2013
Date Made Active in Reports: 12/30/2013
Number of Days to Update: 182

Source: State Water Resources Control Board

Telephone: N/A

Last EDR Contact: 06/01/2012 Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

COUNTY RECORDS

ALAMEDA COUNTY:

CS ALAMEDA: Contaminated Sites

A listing of contaminated sites overseen by the Toxic Release Program (oil and groundwater contamination from chemical releases and spills) and the Leaking Underground Storage Tank Program (soil and ground water contamination from leaking petroleum USTs).

Date of Government Version: 01/09/2019 Date Data Arrived at EDR: 01/11/2019 Date Made Active in Reports: 03/05/2019

Source: Alameda County Environmental Health Services

Telephone: 510-567-6700 Last EDR Contact: 12/26/2023

Number of Days to Update: 53 Next Scheduled EDR Contact: 04/15/2024
Data Release Frequency: Semi-Annually

UST ALAMEDA: Underground Tanks

Underground storage tank sites located in Alameda county.

Date of Government Version: 09/27/2023 Date Data Arrived at EDR: 09/28/2023 Date Made Active in Reports: 12/18/2023 Number of Days to Update: 81 Source: Alameda County Environmental Health Services

Telephone: 510-567-6700 Last EDR Contact: 12/26/2023

Next Scheduled EDR Contact: 04/15/2024 Data Release Frequency: Semi-Annually

AMADOR COUNTY:

CUPA AMADOR: CUPA Facility List

Cupa Facility List

Date of Government Version: 04/27/2023 Date Data Arrived at EDR: 04/27/2023 Date Made Active in Reports: 07/13/2023

Number of Days to Update: 77

Source: Amador County Environmental Health

Telephone: 209-223-6439 Last EDR Contact: 04/26/2023

Next Scheduled EDR Contact: 05/13/2024

Data Release Frequency: Varies

BUTTE COUNTY:

CUPA BUTTE: CUPA Facility Listing

Cupa facility list.

Date of Government Version: 04/21/2017 Date Data Arrived at EDR: 04/25/2017 Date Made Active in Reports: 08/09/2017

Number of Days to Update: 106

Source: Public Health Department Telephone: 530-538-7149 Last EDR Contact: 12/26/2023

Next Scheduled EDR Contact: 04/15/2024 Data Release Frequency: No Update Planned

CALVERAS COUNTY:

CUPA CALVERAS: CUPA Facility Listing

Cupa Facility Listing

Date of Government Version: 09/12/2023 Date Data Arrived at EDR: 09/13/2023 Date Made Active in Reports: 12/04/2023

Number of Days to Update: 82

Source: Calveras County Environmental Health

Telephone: 209-754-6399 Last EDR Contact: 12/12/2023

Next Scheduled EDR Contact: 04/01/2024 Data Release Frequency: Quarterly

COLUSA COUNTY:

CUPA COLUSA: CUPA Facility List

Cupa facility list.

Date of Government Version: 04/06/2020 Date Data Arrived at EDR: 04/23/2020 Date Made Active in Reports: 07/10/2020

Number of Days to Update: 78

Source: Health & Human Services Telephone: 530-458-0396 Last EDR Contact: 01/29/2024

Next Scheduled EDR Contact: 05/13/2024 Data Release Frequency: Semi-Annually

CONTRA COSTA COUNTY:

SL CONTRA COSTA: Site List

List includes sites from the underground tank, hazardous waste generator and business plan/2185 programs.

Date of Government Version: 10/20/2023 Date Data Arrived at EDR: 10/24/2023 Date Made Active in Reports: 01/16/2024

Number of Days to Update: 84

Source: Contra Costa Health Services Department

Telephone: 925-646-2286 Last EDR Contact: 01/22/2024

Next Scheduled EDR Contact: 05/06/2024 Data Release Frequency: Semi-Annually

DEL NORTE COUNTY:

CUPA DEL NORTE: CUPA Facility List

Cupa Facility list

Date of Government Version: 10/24/2023 Date Data Arrived at EDR: 10/25/2023 Date Made Active in Reports: 01/16/2024

Number of Days to Update: 83

Source: Del Norte County Environmental Health Division

Telephone: 707-465-0426 Last EDR Contact: 02/05/2024

Next Scheduled EDR Contact: 05/06/2024

Data Release Frequency: Varies

EL DORADO COUNTY:

CUPA EL DORADO: CUPA Facility List

CUPA facility list.

Date of Government Version: 08/08/2022 Date Data Arrived at EDR: 08/09/2022 Date Made Active in Reports: 09/01/2022

Number of Days to Update: 23

Source: El Dorado County Environmental Management Department

Telephone: 530-621-6623 Last EDR Contact: 01/22/2024

Next Scheduled EDR Contact: 05/06/2024

Data Release Frequency: Varies

FRESNO COUNTY:

CUPA FRESNO: CUPA Resources List

Certified Unified Program Agency. CUPA's are responsible for implementing a unified hazardous materials and hazardous waste management regulatory program. The agency provides oversight of businesses that deal with hazardous materials, operate underground storage tanks or aboveground storage tanks.

Date of Government Version: 06/28/2021 Date Data Arrived at EDR: 12/21/2021 Date Made Active in Reports: 03/03/2022

Number of Days to Update: 72

Source: Dept. of Community Health Telephone: 559-445-3271 Last EDR Contact: 12/26/2023

Next Scheduled EDR Contact: 04/08/2024 Data Release Frequency: Semi-Annually

GLENN COUNTY:

CUPA GLENN: CUPA Facility List

Cupa facility list

Date of Government Version: 01/22/2018 Date Data Arrived at EDR: 01/24/2018 Date Made Active in Reports: 03/14/2018

Number of Days to Update: 49

Source: Glenn County Air Pollution Control District

Telephone: 830-934-6500 Last EDR Contact: 01/11/2024

Next Scheduled EDR Contact: 04/29/2024 Data Release Frequency: No Update Planned

HUMBOLDT COUNTY:

CUPA HUMBOLDT: CUPA Facility List

CUPA facility list.

Date of Government Version: 08/12/2021 Date Data Arrived at EDR: 08/12/2021 Date Made Active in Reports: 11/08/2021

Number of Days to Update: 88

Source: Humboldt County Environmental Health

Telephone: N/A

Last EDR Contact: 02/09/2024

Next Scheduled EDR Contact: 05/27/2024 Data Release Frequency: Semi-Annually

IMPERIAL COUNTY:

CUPA IMPERIAL: CUPA Facility List

Cupa facility list.

Date of Government Version: 10/10/2023 Date Data Arrived at EDR: 10/11/2023 Date Made Active in Reports: 01/04/2024

Number of Days to Update: 85

Source: San Diego Border Field Office

Telephone: 760-339-2777 Last EDR Contact: 01/11/2024

Next Scheduled EDR Contact: 04/29/2024

Data Release Frequency: Varies

INYO COUNTY:

CUPA INYO: CUPA Facility List

Cupa facility list.

Date of Government Version: 04/02/2018 Date Data Arrived at EDR: 04/03/2018 Date Made Active in Reports: 06/14/2018

Number of Days to Update: 72

Source: Inyo County Environmental Health Services

Telephone: 760-878-0238 Last EDR Contact: 02/09/2024

Next Scheduled EDR Contact: 05/27/2024

Data Release Frequency: Varies

KERN COUNTY:

CUPA KERN: CUPA Facility List

A listing of sites included in the Kern County Hazardous Material Business Plan.

Date of Government Version: 10/30/2023 Date Data Arrived at EDR: 11/01/2023 Date Made Active in Reports: 01/23/2024

Number of Days to Update: 83

Source: Kern County Public Health Telephone: 661-321-3000 Last EDR Contact: 02/12/2024

Next Scheduled EDR Contact: 05/13/2024 Data Release Frequency: Varies

UST KERN: Underground Storage Tank Sites & Tank Listing

Kern County Sites and Tanks Listing.

Date of Government Version: 10/30/2023 Date Data Arrived at EDR: 11/01/2023 Date Made Active in Reports: 01/23/2024

Number of Days to Update: 83

Source: Kern County Environment Health Services Department

Telephone: 661-862-8700 Last EDR Contact: 02/12/2024

Next Scheduled EDR Contact: 05/13/2024 Data Release Frequency: Quarterly

KINGS COUNTY:

CUPA KINGS: CUPA Facility List

A listing of sites included in the county's Certified Unified Program Agency database. California's Secretary for Environmental Protection established the unified hazardous materials and hazardous waste regulatory program as required by chapter 6.11 of the California Health and Safety Code. The Unified Program consolidates the administration, permits, inspections, and enforcement activities.

Date of Government Version: 12/03/2020 Date Data Arrived at EDR: 01/26/2021 Date Made Active in Reports: 04/14/2021

Number of Days to Update: 78

Source: Kings County Department of Public Health

Telephone: 559-584-1411 Last EDR Contact: 02/09/2024

Next Scheduled EDR Contact: 05/27/2024

Data Release Frequency: Varies

LAKE COUNTY:

CUPA LAKE: CUPA Facility List

Cupa facility list

Date of Government Version: 10/27/2023 Date Data Arrived at EDR: 11/01/2023 Date Made Active in Reports: 11/21/2023

Number of Days to Update: 20

Source: Lake County Environmental Health

Telephone: 707-263-1164 Last EDR Contact: 01/09/2024

Next Scheduled EDR Contact: 04/22/2024

Data Release Frequency: Varies

LASSEN COUNTY:

CUPA LASSEN: CUPA Facility List

Cupa facility list

Date of Government Version: 07/31/2020 Date Data Arrived at EDR: 08/21/2020 Date Made Active in Reports: 11/09/2020

Number of Days to Update: 80

Source: Lassen County Environmental Health

Telephone: 530-251-8528 Last EDR Contact: 01/11/2024

Next Scheduled EDR Contact: 04/29/2024

Data Release Frequency: Varies

LOS ANGELES COUNTY:

AOCONCERN: Key Areas of Concerns in Los Angeles County

San Gabriel Valley areas where VOC contamination is at or above the MCL as designated by region 9 EPA office. Date of Government Version: 3/30/2009 Exide Site area is a cleanup plan of lead-impacted soil surrounding the former

Exide Facility as designated by the DTSC. Date of Government Version: 7/17/2017

Date of Government Version: 03/30/2009 Date Data Arrived at EDR: 03/31/2009 Date Made Active in Reports: 10/23/2009

Number of Days to Update: 206

Source: N/A Telephone: N/A

Last EDR Contact: 12/05/2023

Next Scheduled EDR Contact: 03/25/2024 Data Release Frequency: No Update Planned

HMS LOS ANGELES: HMS: Street Number List

Industrial Waste and Underground Storage Tank Sites.

Date of Government Version: 10/01/2023 Date Data Arrived at EDR: 10/06/2023 Date Made Active in Reports: 12/27/2023

Number of Days to Update: 82

Source: Department of Public Works

Telephone: 626-458-3517 Last EDR Contact: 01/11/2024

Next Scheduled EDR Contact: 04/15/2024 Data Release Frequency: Semi-Annually

LF LOS ANGELES: List of Solid Waste Facilities Solid Waste Facilities in Los Angeles County.

> Date of Government Version: 10/09/2023 Date Data Arrived at EDR: 10/09/2023 Date Made Active in Reports: 12/27/2023

Number of Days to Update: 79

Source: La County Department of Public Works

Telephone: 818-458-5185 Last EDR Contact: 01/10/2024

Next Scheduled EDR Contact: 04/22/2024 Data Release Frequency: Varies

LF LOS ANGELES CITY: City of Los Angeles Landfills

Landfills owned and maintained by the City of Los Angeles.

Date of Government Version: 12/31/2022 Date Data Arrived at EDR: 01/12/2023 Date Made Active in Reports: 03/29/2023

Number of Days to Update: 76

Source: Engineering & Construction Division

Telephone: 213-473-7869 Last EDR Contact: 01/04/2024

Next Scheduled EDR Contact: 04/22/2024

LOS ANGELES AST: Active & Inactive AST Inventory

A listing of active & inactive above ground petroleum storage tank site locations, located in the City of Los Angeles.

Date of Government Version: 06/01/2019 Date Data Arrived at EDR: 06/25/2019 Date Made Active in Reports: 08/22/2019

Number of Days to Update: 58

Source: Los Angeles Fire Department

Telephone: 213-978-3800 Last EDR Contact: 12/13/2023

Next Scheduled EDR Contact: 04/01/2024 Data Release Frequency: Varies

LOS ANGELES CO LF METHANE: Methane Producing Landfills

This data was created on April 30, 2012 to represent known disposal sites in Los Angeles County that may produce and emanate methane gas. The shapefile contains disposal sites within Los Angeles County that once accepted degradable refuse material. Information used to create this data was extracted from a landfill survey performed by County Engineers (Major Waste System Map, 1973) as well as historical records from CalRecycle, Regional Water Quality Control Board, and Los Angeles County Department of Public Health

Date of Government Version: 04/13/2023 Date Data Arrived at EDR: 07/13/2023 Date Made Active in Reports: 09/27/2023

Number of Days to Update: 76

Source: Los Angeles County Department of Public Works

Telephone: 626-458-6973 Last EDR Contact: 01/11/2024

Next Scheduled EDR Contact: 04/22/2024 Data Release Frequency: No Update Planned

LOS ANGELES HM: Active & Inactive Hazardous Materials Inventory

A listing of active & inactive hazardous materials facility locations, located in the City of Los Angeles.

Date of Government Version: 12/01/2023 Date Data Arrived at EDR: 12/13/2023 Date Made Active in Reports: 12/14/2023

Number of Days to Update: 1

Source: Los Angeles Fire Department

Telephone: 213-978-3800 Last EDR Contact: 12/13/2023

Next Scheduled EDR Contact: 04/01/2024

Data Release Frequency: Varies

LOS ANGELES UST: Active & Inactive UST Inventory

A listing of active & inactive underground storage tank site locations and underground storage tank historical sites, located in the City of Los Angeles.

Date of Government Version: 09/01/2023 Date Data Arrived at EDR: 09/20/2023 Date Made Active in Reports: 12/08/2023

Number of Days to Update: 79

Source: Los Angeles Fire Department

Telephone: 213-978-3800 Last EDR Contact: 12/13/2023

Next Scheduled EDR Contact: 04/01/2024

Data Release Frequency: Varies

SITE MIT LOS ANGELES: Site Mitigation List

Industrial sites that have had some sort of spill or complaint.

Date of Government Version: 07/11/2023 Date Data Arrived at EDR: 10/17/2023 Date Made Active in Reports: 01/09/2024

Number of Days to Update: 84

Source: Community Health Services

Telephone: 323-890-7806 Last EDR Contact: 01/19/2024

Next Scheduled EDR Contact: 04/29/2024 Data Release Frequency: Annually

UST EL SEGUNDO: City of El Segundo Underground Storage Tank

Underground storage tank sites located in El Segundo city.

Date of Government Version: 01/21/2017 Date Data Arrived at EDR: 04/19/2017 Date Made Active in Reports: 05/10/2017

Number of Days to Update: 21

Source: City of El Segundo Fire Department

Telephone: 310-524-2236 Last EDR Contact: 01/04/2024

Next Scheduled EDR Contact: 04/22/2024 Data Release Frequency: No Update Planned

UST LONG BEACH: City of Long Beach Underground Storage Tank
Underground storage tank sites located in the city of Long Beach.

Date of Government Version: 04/22/2019 Date Data Arrived at EDR: 04/23/2019 Date Made Active in Reports: 06/27/2019

Number of Days to Update: 65

Source: City of Long Beach Fire Department

Telephone: 562-570-2563 Last EDR Contact: 01/11/2024

Next Scheduled EDR Contact: 04/29/2024 Data Release Frequency: Varies

UST TORRANCE: City of Torrance Underground Storage Tank
Underground storage tank sites located in the city of Torrance.

Date of Government Version: 04/12/2023 Date Data Arrived at EDR: 05/02/2023 Date Made Active in Reports: 06/13/2023

Number of Days to Update: 42

Source: City of Torrance Fire Department

Telephone: 310-618-2973 Last EDR Contact: 01/11/2024

Next Scheduled EDR Contact: 04/29/2024 Data Release Frequency: Semi-Annually

MADERA COUNTY:

CUPA MADERA: CUPA Facility List

A listing of sites included in the county's Certified Unified Program Agency database. California's Secretary for Environmental Protection established the unified hazardous materials and hazardous waste regulatory program as required by chapter 6.11 of the California Health and Safety Code. The Unified Program consolidates the administration, permits, inspections, and enforcement activities.

Date of Government Version: 08/10/2020 Date Data Arrived at EDR: 08/12/2020 Date Made Active in Reports: 10/23/2020

Number of Days to Update: 72

Source: Madera County Environmental Health

Telephone: 559-675-7823 Last EDR Contact: 02/09/2024

Next Scheduled EDR Contact: 05/27/2024

Data Release Frequency: Varies

MARIN COUNTY:

UST MARIN: Underground Storage Tank Sites Currently permitted USTs in Marin County.

> Date of Government Version: 09/26/2018 Date Data Arrived at EDR: 10/04/2018 Date Made Active in Reports: 11/02/2018

Number of Days to Update: 29

Source: Public Works Department Waste Management

Telephone: 415-473-6647 Last EDR Contact: 12/18/2023

Next Scheduled EDR Contact: 04/08/2024 Data Release Frequency: Semi-Annually

MENDOCINO COUNTY:

UST MENDOCINO: Mendocino County UST Database

A listing of underground storage tank locations in Mendocino County.

Date of Government Version: 09/22/2021 Date Data Arrived at EDR: 11/18/2021 Date Made Active in Reports: 11/22/2021

Number of Days to Update: 4

Source: Department of Public Health

Telephone: 707-463-4466 Last EDR Contact: 02/20/2024

Next Scheduled EDR Contact: 06/03/2024 Data Release Frequency: Annually

MERCED COUNTY:

CUPA MERCED: CUPA Facility List

CUPA facility list.

Date of Government Version: 11/15/2023 Date Data Arrived at EDR: 11/20/2023 Date Made Active in Reports: 02/15/2024

Number of Days to Update: 87

Source: Merced County Environmental Health

Telephone: 209-381-1094 Last EDR Contact: 02/12/2024

Next Scheduled EDR Contact: 05/27/2024

Data Release Frequency: Varies

MONO COUNTY:

CUPA MONO: CUPA Facility List

CUPA Facility List

Date of Government Version: 02/22/2021 Date Data Arrived at EDR: 03/02/2021 Date Made Active in Reports: 05/19/2021

Number of Days to Update: 78

Source: Mono County Health Department

Telephone: 760-932-5580 Last EDR Contact: 02/16/2024

Next Scheduled EDR Contact: 06/03/2024

Data Release Frequency: Varies

MONTEREY COUNTY:

CUPA MONTEREY: CUPA Facility Listing

CUPA Program listing from the Environmental Health Division.

Date of Government Version: 10/04/2021 Date Data Arrived at EDR: 10/06/2021 Date Made Active in Reports: 12/29/2021

Number of Days to Update: 84

Source: Monterey County Health Department

Telephone: 831-796-1297 Last EDR Contact: 01/22/2024

Next Scheduled EDR Contact: 04/08/2024

Data Release Frequency: Varies

NAPA COUNTY:

LUST NAPA: Sites With Reported Contamination

A listing of leaking underground storage tank sites located in Napa county.

Date of Government Version: 01/09/2017 Date Data Arrived at EDR: 01/11/2017 Date Made Active in Reports: 03/02/2017

Number of Days to Update: 50

Source: Napa County Department of Environmental Management

Telephone: 707-253-4269 Last EDR Contact: 02/16/2024

Next Scheduled EDR Contact: 06/03/2024 Data Release Frequency: No Update Planned

UST NAPA: Closed and Operating Underground Storage Tank Sites Underground storage tank sites located in Napa county.

Date of Government Version: 09/05/2019 Date Data Arrived at EDR: 09/09/2019 Date Made Active in Reports: 10/31/2019

Number of Days to Update: 52

Source: Napa County Department of Environmental Management

Telephone: 707-253-4269 Last EDR Contact: 02/16/2024

Next Scheduled EDR Contact: 06/03/2024 Data Release Frequency: No Update Planned

NEVADA COUNTY:

CUPA NEVADA: CUPA Facility List CUPA facility list.

Date of Government Version: 10/31/2023 Date Data Arrived at EDR: 11/03/2023 Date Made Active in Reports: 01/23/2024

Number of Days to Update: 81

Source: Community Development Agency

Telephone: 530-265-1467 Last EDR Contact: 01/22/2024

Next Scheduled EDR Contact: 05/06/2024 Data Release Frequency: Varies

ORANGE COUNTY:

IND_SITE ORANGE: List of Industrial Site Cleanups

Petroleum and non-petroleum spills.

Date of Government Version: 10/10/2023 Date Data Arrived at EDR: 11/01/2023 Date Made Active in Reports: 01/23/2024

Number of Days to Update: 83

Source: Health Care Agency Telephone: 714-834-3446 Last EDR Contact: 02/02/2024

Next Scheduled EDR Contact: 05/13/2024 Data Release Frequency: Annually

LUST ORANGE: List of Underground Storage Tank Cleanups Orange County Underground Storage Tank Cleanups (LUST).

Date of Government Version: 10/10/2023 Date Data Arrived at EDR: 11/01/2023 Date Made Active in Reports: 01/23/2024

Number of Days to Update: 83

Source: Health Care Agency Telephone: 714-834-3446 Last EDR Contact: 02/02/2024

Next Scheduled EDR Contact: 05/13/2024 Data Release Frequency: Quarterly

UST ORANGE: List of Underground Storage Tank Facilities
Orange County Underground Storage Tank Facilities (UST).

Date of Government Version: 10/10/2023 Date Data Arrived at EDR: 11/01/2023 Date Made Active in Reports: 01/23/2024

Number of Days to Update: 83

Source: Health Care Agency Telephone: 714-834-3446 Last EDR Contact: 02/02/2024

Next Scheduled EDR Contact: 05/13/2024 Data Release Frequency: Quarterly

PLACER COUNTY:

MS PLACER: Master List of Facilities

List includes aboveground tanks, underground tanks and cleanup sites.

Date of Government Version: 11/09/2023 Date Data Arrived at EDR: 11/09/2023 Date Made Active in Reports: 11/21/2023

Number of Days to Update: 12

Source: Placer County Health and Human Services

Telephone: 530-745-2363 Last EDR Contact: 02/26/2024

Next Scheduled EDR Contact: 06/10/2024 Data Release Frequency: Semi-Annually

PLUMAS COUNTY:

CUPA PLUMAS: CUPA Facility List

Plumas County CUPA Program facilities.

Date of Government Version: 03/31/2019 Date Data Arrived at EDR: 04/23/2019 Date Made Active in Reports: 06/26/2019

Number of Days to Update: 64

Source: Plumas County Environmental Health

Telephone: 530-283-6355 Last EDR Contact: 01/11/2024

Next Scheduled EDR Contact: 04/29/2024

Data Release Frequency: Varies

RIVERSIDE COUNTY:

LUST RIVERSIDE: Listing of Underground Tank Cleanup Sites

Riverside County Underground Storage Tank Cleanup Sites (LUST).

Date of Government Version: 09/29/2023 Date Data Arrived at EDR: 10/04/2023 Date Made Active in Reports: 12/27/2023

Number of Days to Update: 84

Source: Department of Environmental Health

Telephone: 951-358-5055 Last EDR Contact: 12/05/2023

Next Scheduled EDR Contact: 03/25/2024 Data Release Frequency: Quarterly

UST RIVERSIDE: Underground Storage Tank Tank List

Underground storage tank sites located in Riverside county.

Date of Government Version: 09/29/2023 Date Data Arrived at EDR: 10/04/2023 Date Made Active in Reports: 12/27/2023

Number of Days to Update: 84

Source: Department of Environmental Health

Telephone: 951-358-5055 Last EDR Contact: 12/05/2023

Next Scheduled EDR Contact: 03/25/2024 Data Release Frequency: Quarterly

SACRAMENTO COUNTY:

CS SACRAMENTO: Toxic Site Clean-Up List

List of sites where unauthorized releases of potentially hazardous materials have occurred.

Date of Government Version: 11/07/2022 Date Data Arrived at EDR: 12/21/2022 Date Made Active in Reports: 03/16/2023

Number of Days to Update: 85

Source: Sacramento County Environmental Management

Telephone: 916-875-8406 Last EDR Contact: 12/18/2023

Next Scheduled EDR Contact: 04/08/2024 Data Release Frequency: Quarterly

ML SACRAMENTO: Master Hazardous Materials Facility List

Any business that has hazardous materials on site - hazardous material storage sites, underground storage tanks, waste generators.

Date of Government Version: 11/07/2022 Date Data Arrived at EDR: 12/09/2022 Date Made Active in Reports: 03/01/2023

Number of Days to Update: 82

Source: Sacramento County Environmental Management

Telephone: 916-875-8406 Last EDR Contact: 12/18/2023

Next Scheduled EDR Contact: 04/08/2024 Data Release Frequency: Quarterly

SAN BENITO COUNTY:

CUPA SAN BENITO: CUPA Facility List

Cupa facility list

Date of Government Version: 01/17/2024 Date Data Arrived at EDR: 01/18/2024 Date Made Active in Reports: 01/26/2024

Number of Days to Update: 8

Source: San Benito County Environmental Health

Telephone: N/A

Last EDR Contact: 01/11/2024

Next Scheduled EDR Contact: 05/13/2024 Data Release Frequency: Varies

SAN BERNARDINO COUNTY:

PERMITS SAN BERNARDINO: Hazardous Material Permits

This listing includes underground storage tanks, medical waste handlers/generators, hazardous materials handlers, hazardous waste generators, and waste oil generators/handlers.

Date of Government Version: 11/08/2023 Date Data Arrived at EDR: 11/09/2023 Date Made Active in Reports: 02/07/2024

Number of Days to Update: 90

Source: San Bernardino County Fire Department Hazardous Materials Division

Telephone: 909-387-3041 Last EDR Contact: 01/29/2024

Next Scheduled EDR Contact: 05/12/2024 Data Release Frequency: Quarterly

SAN DIEGO COUNTY:

HMMD SAN DIEGO: Hazardous Materials Management Division Database

The database includes: HE58 - This report contains the business name, site address, business phone number, establishment 'H' permit number, type of permit, and the business status. HE17 - In addition to providing the same information provided in the HE58 listing, HE17 provides inspection dates, violations received by the establishment, hazardous waste generated, the quantity, method of storage, treatment/disposal of waste and the hauler, and information on underground storage tanks. Unauthorized Release List - Includes a summary of environmental contamination cases in San Diego County (underground tank cases, non-tank cases, groundwater contamination, and soil contamination are included.)

Date of Government Version: 11/27/2023 Date Data Arrived at EDR: 11/27/2023 Date Made Active in Reports: 02/16/2024

Number of Days to Update: 81

Source: Hazardous Materials Management Division

Telephone: 619-338-2268 Last EDR Contact: 02/27/2024

Next Scheduled EDR Contact: 06/10/2024 Data Release Frequency: Quarterly

LF SAN DIEGO: Solid Waste Facilities

San Diego County Solid Waste Facilities.

Date of Government Version: 04/04/2023 Date Data Arrived at EDR: 04/05/2023 Date Made Active in Reports: 06/27/2023

Number of Days to Update: 83

Source: Department of Health Services

Telephone: 619-338-2209 Last EDR Contact: 01/11/2024

Next Scheduled EDR Contact: 04/29/2024 Data Release Frequency: Varies

SAN DIEGO CO LOP: Local Oversight Program Listing

A listing of all LOP release sites that are or were under the County of San Diego's jurisdiction. Included are closed or transferred cases, open cases, and cases that did not have a case type indicated. The cases without a case type are mostly complaints; however, some of them could be LOP cases.

Date of Government Version: 07/22/2021 Date Data Arrived at EDR: 10/19/2021 Date Made Active in Reports: 01/13/2022

Number of Days to Update: 86

Source: Department of Environmental Health

Telephone: 858-505-6874 Last EDR Contact: 01/11/2024

Next Scheduled EDR Contact: 04/29/2024 Data Release Frequency: Varies

SAN DIEGO CO SAM: Environmental Case Listing

The listing contains all underground tank release cases and projects pertaining to properties contaminated with hazardous substances that are actively under review by the Site Assessment and Mitigation Program.

Date of Government Version: 03/23/2010 Date Data Arrived at EDR: 06/15/2010 Date Made Active in Reports: 07/09/2010

Number of Days to Update: 24

Source: San Diego County Department of Environmental Health

Telephone: 619-338-2371 Last EDR Contact: 02/23/2024

Next Scheduled EDR Contact: 06/10/2024 Data Release Frequency: No Update Planned

SAN FRANCISCO COUNTY:

CUPA SAN FRANCISCO CO: CUPA Facility Listing

Cupa facilities

Date of Government Version: 10/30/2023 Date Data Arrived at EDR: 11/01/2023 Date Made Active in Reports: 01/23/2024

Number of Days to Update: 83

Source: San Francisco County Department of Environmental Health

Telephone: 415-252-3896 Last EDR Contact: 01/29/2024

Next Scheduled EDR Contact: 05/13/2024 Data Release Frequency: Varies

LUST SAN FRANCISCO: Local Oversite Facilities

A listing of leaking underground storage tank sites located in San Francisco county.

Date of Government Version: 09/19/2008 Date Data Arrived at EDR: 09/19/2008 Date Made Active in Reports: 09/29/2008

Number of Days to Update: 10

Source: Department Of Public Health San Francisco County

Telephone: 415-252-3920 Last EDR Contact: 01/29/2024

Next Scheduled EDR Contact: 05/13/2024 Data Release Frequency: No Update Planned

UST SAN FRANCISCO: Underground Storage Tank Information
Underground storage tank sites located in San Francisco county.

Date of Government Version: 10/30/2023 Date Data Arrived at EDR: 11/01/2023 Date Made Active in Reports: 01/23/2024

Number of Days to Update: 83

Source: Department of Public Health

Telephone: 415-252-3920 Last EDR Contact: 01/29/2024

Next Scheduled EDR Contact: 05/13/2024 Data Release Frequency: Quarterly

SAN FRANCISO COUNTY:

SAN FRANCISCO MAHER: Maher Ordinance Property Listing

a listing of properties that fall within a Maher Ordinance, for all of San Francisco

Date of Government Version: 10/15/2023 Date Data Arrived at EDR: 10/17/2023 Date Made Active in Reports: 01/11/2024

Number of Days to Update: 86

Source: San Francisco Planning Telephone: 628-652-7483 Last EDR Contact: 01/18/2024

Next Scheduled EDR Contact: 04/29/2024 Data Release Frequency: Varies

SAN JOAQUIN COUNTY:

UST SAN JOAQUIN: San Joaquin Co. UST

A listing of underground storage tank locations in San Joaquin county.

Date of Government Version: 06/22/2018 Date Data Arrived at EDR: 06/26/2018 Date Made Active in Reports: 07/11/2018

Number of Days to Update: 15

Source: Environmental Health Department

Telephone: N/A

Last EDR Contact: 12/05/2023

Next Scheduled EDR Contact: 03/25/2024 Data Release Frequency: Semi-Annually

SAN LUIS OBISPO COUNTY:

CUPA SAN LUIS OBISPO: CUPA Facility List

Cupa Facility List.

Date of Government Version: 11/08/2023 Date Data Arrived at EDR: 11/09/2023 Date Made Active in Reports: 02/07/2024

Number of Days to Update: 90

Source: San Luis Obispo County Public Health Department

Telephone: 805-781-5596 Last EDR Contact: 02/12/2024

Next Scheduled EDR Contact: 05/27/2024

Data Release Frequency: Varies

SAN MATEO COUNTY:

BI SAN MATEO: Business Inventory

List includes Hazardous Materials Business Plan, hazardous waste generators, and underground storage tanks.

Date of Government Version: 02/20/2020 Date Data Arrived at EDR: 02/20/2020 Date Made Active in Reports: 04/24/2020

Number of Days to Update: 64

Source: San Mateo County Environmental Health Services Division

Telephone: 650-363-1921 Last EDR Contact: 12/07/2023

Next Scheduled EDR Contact: 03/18/2024 Data Release Frequency: Annually

LUST SAN MATEO: Fuel Leak List

A listing of leaking underground storage tank sites located in San Mateo county.

Date of Government Version: 03/29/2019 Date Data Arrived at EDR: 03/29/2019 Date Made Active in Reports: 05/29/2019

Number of Days to Update: 61

Source: San Mateo County Environmental Health Services Division

Telephone: 650-363-1921 Last EDR Contact: 11/28/2023

Next Scheduled EDR Contact: 03/18/2024 Data Release Frequency: Semi-Annually

SANTA BARBARA COUNTY:

CUPA SANTA BARBARA: CUPA Facility Listing

CUPA Program Listing from the Environmental Health Services division.

Date of Government Version: 09/08/2011 Date Data Arrived at EDR: 09/09/2011 Date Made Active in Reports: 10/07/2011

Number of Days to Update: 28

Source: Santa Barbara County Public Health Department

Telephone: 805-686-8167 Last EDR Contact: 02/09/2024

Next Scheduled EDR Contact: 05/27/2024 Data Release Frequency: No Update Planned

SANTA CLARA COUNTY:

CUPA SANTA CLARA: Cupa Facility List

Cupa facility list

Date of Government Version: 11/07/2023 Date Data Arrived at EDR: 11/08/2023 Date Made Active in Reports: 11/16/2023

Number of Days to Update: 8

Source: Department of Environmental Health

Telephone: 408-918-1973 Last EDR Contact: 02/12/2024

Next Scheduled EDR Contact: 05/27/2024

Data Release Frequency: Varies

HIST LUST SANTA CLARA: HIST LUST - Fuel Leak Site Activity Report

A listing of open and closed leaking underground storage tanks. This listing is no longer updated by the county.

Leaking underground storage tanks are now handled by the Department of Environmental Health.

Date of Government Version: 03/29/2005 Date Data Arrived at EDR: 03/30/2005 Date Made Active in Reports: 04/21/2005

Number of Days to Update: 22

Source: Santa Clara Valley Water District

Telephone: 408-265-2600 Last EDR Contact: 03/23/2009

Next Scheduled EDR Contact: 06/22/2009 Data Release Frequency: No Update Planned

LUST SANTA CLARA: LOP Listing

A listing of leaking underground storage tanks located in Santa Clara county.

Date of Government Version: 03/03/2014 Date Data Arrived at EDR: 03/05/2014 Date Made Active in Reports: 03/18/2014

Number of Days to Update: 13

Source: Department of Environmental Health

Telephone: 408-918-3417 Last EDR Contact: 02/16/2024

Next Scheduled EDR Contact: 06/03/2024 Data Release Frequency: No Update Planned

SANTA CRUZ COUNTY:

CUPA SANTA CRUZ: CUPA Facility List CUPA facility listing.

Date of Government Version: 01/21/2017 Date Data Arrived at EDR: 02/22/2017 Date Made Active in Reports: 05/23/2017

Number of Days to Update: 90

Source: Santa Cruz County Environmental Health

Telephone: 831-464-2761 Last EDR Contact: 02/09/2024

Next Scheduled EDR Contact: 05/27/2024

Data Release Frequency: Varies

SHASTA COUNTY:

CUPA SHASTA: CUPA Facility List

Cupa Facility List.

Date of Government Version: 06/15/2017 Date Data Arrived at EDR: 06/19/2017 Date Made Active in Reports: 08/09/2017

Number of Days to Update: 51

Source: Shasta County Department of Resource Management

Telephone: 530-225-5789 Last EDR Contact: 02/09/2024

Next Scheduled EDR Contact: 05/27/2024

Data Release Frequency: Varies

SOLANO COUNTY:

LUST SOLANO: Leaking Underground Storage Tanks

A listing of leaking underground storage tank sites located in Solano county.

Date of Government Version: 06/04/2019 Date Data Arrived at EDR: 06/06/2019 Date Made Active in Reports: 08/13/2019

Number of Days to Update: 68

Source: Solano County Department of Environmental Management

Telephone: 707-784-6770 Last EDR Contact: 02/23/2024

Next Scheduled EDR Contact: 06/10/2024 Data Release Frequency: Quarterly

UST SOLANO: Underground Storage Tanks

Underground storage tank sites located in Solano county.

Date of Government Version: 09/15/2021 Date Data Arrived at EDR: 09/16/2021 Date Made Active in Reports: 12/09/2021

Number of Days to Update: 84

Source: Solano County Department of Environmental Management

Telephone: 707-784-6770 Last EDR Contact: 02/23/2024

Next Scheduled EDR Contact: 06/10/2024 Data Release Frequency: Quarterly

SONOMA COUNTY:

CUPA SONOMA: Cupa Facility List

Cupa Facility list

Date of Government Version: 07/02/2021 Date Data Arrived at EDR: 07/06/2021 Date Made Active in Reports: 07/14/2021

Number of Days to Update: 8

Source: County of Sonoma Fire & Emergency Services Department

Telephone: 707-565-1174 Last EDR Contact: 12/12/2023

Next Scheduled EDR Contact: 04/01/2024 Data Release Frequency: Varies

LUST SONOMA: Leaking Underground Storage Tank Sites

A listing of leaking underground storage tank sites located in Sonoma county.

Date of Government Version: 06/30/2021 Date Data Arrived at EDR: 06/30/2021 Date Made Active in Reports: 09/24/2021

Number of Days to Update: 86

Source: Department of Health Services

Telephone: 707-565-6565 Last EDR Contact: 12/12/2023

Next Scheduled EDR Contact: 04/01/2024 Data Release Frequency: Quarterly

STANISLAUS COUNTY:

CUPA STANISLAUS: CUPA Facility List

Cupa facility list

Date of Government Version: 02/08/2022 Date Data Arrived at EDR: 02/10/2022 Date Made Active in Reports: 05/04/2022

Number of Days to Update: 83

Source: Stanislaus County Department of Ennvironmental Protection

Telephone: 209-525-6751 Last EDR Contact: 01/04/2024

Next Scheduled EDR Contact: 04/22/2024

Data Release Frequency: Varies

SUTTER COUNTY:

UST SUTTER: Underground Storage Tanks

Underground storage tank sites located in Sutter county.

Date of Government Version: 08/03/2023 Date Data Arrived at EDR: 08/24/2023 Date Made Active in Reports: 09/12/2023

Number of Days to Update: 19

Source: Sutter County Environmental Health Services

Telephone: 530-822-7500 Last EDR Contact: 02/26/2024

Next Scheduled EDR Contact: 06/10/2024 Data Release Frequency: Semi-Annually

TEHAMA COUNTY:

CUPA TEHAMA: CUPA Facility List

Cupa facilities

Date of Government Version: 08/01/2023 Date Data Arrived at EDR: 08/02/2023 Date Made Active in Reports: 10/19/2023

Number of Days to Update: 78

Source: Tehama County Department of Environmental Health

Telephone: 530-527-8020 Last EDR Contact: 01/29/2024

Next Scheduled EDR Contact: 05/13/2024

Data Release Frequency: Varies

TRINITY COUNTY:

CUPA TRINITY: CUPA Facility List

Cupa facility list

Date of Government Version: 10/10/2023 Date Data Arrived at EDR: 10/11/2023 Date Made Active in Reports: 01/04/2024

Number of Days to Update: 85

Source: Department of Toxic Substances Control

Telephone: 760-352-0381 Last EDR Contact: 01/11/2024

Next Scheduled EDR Contact: 04/29/2024

Data Release Frequency: Varies

TULARE COUNTY:

CUPA TULARE: CUPA Facility List Cupa program facilities

> Date of Government Version: 10/07/2022 Date Data Arrived at EDR: 10/07/2022 Date Made Active in Reports: 12/21/2022

Number of Days to Update: 75

Source: Tulare County Environmental Health Services Division

Telephone: 559-624-7400 Last EDR Contact: 01/29/2024

Next Scheduled EDR Contact: 05/13/2024

Data Release Frequency: Varies

TUOLUMNE COUNTY:

CUPA TUOLUMNE: CUPA Facility List

Cupa facility list

Date of Government Version: 04/23/2018 Date Data Arrived at EDR: 04/25/2018 Date Made Active in Reports: 06/25/2018

Number of Days to Update: 61

Source: Divison of Environmental Health

Telephone: 209-533-5633 Last EDR Contact: 01/11/2024

Next Scheduled EDR Contact: 04/29/2024 Data Release Frequency: Varies

VENTURA COUNTY:

BWT VENTURA: Business Plan, Hazardous Waste Producers, and Operating Underground Tanks

The BWT list indicates by site address whether the Environmental Health Division has Business Plan (B), Waste Producer (W), and/or Underground Tank (T) information.

Date of Government Version: 09/26/2023 Source:

Date Data Arrived at EDR: 10/20/2023 Date Made Active in Reports: 01/11/2024

Number of Days to Update: 83

Source: Ventura County Environmental Health Division

Telephone: 805-654-2813 Last EDR Contact: 01/16/2024

Next Scheduled EDR Contact: 04/29/2024 Data Release Frequency: Quarterly

LF VENTURA: Inventory of Illegal Abandoned and Inactive Sites

Ventura County Inventory of Closed, Illegal Abandoned, and Inactive Sites.

Date of Government Version: 12/01/2011 Date Data Arrived at EDR: 12/01/2011 Date Made Active in Reports: 01/19/2012

Number of Days to Update: 49

Source: Environmental Health Division

Telephone: 805-654-2813 Last EDR Contact: 12/18/2023

Next Scheduled EDR Contact: 04/08/2024 Data Release Frequency: No Update Planned

LUST VENTURA: Listing of Underground Tank Cleanup Sites

Ventura County Underground Storage Tank Cleanup Sites (LUST).

Date of Government Version: 05/29/2008 Date Data Arrived at EDR: 06/24/2008 Date Made Active in Reports: 07/31/2008

Number of Days to Update: 37

Source: Environmental Health Division

Telephone: 805-654-2813 Last EDR Contact: 02/02/2024

Next Scheduled EDR Contact: 05/20/2024 Data Release Frequency: No Update Planned

MED WASTE VENTURA: Medical Waste Program List

To protect public health and safety and the environment from potential exposure to disease causing agents, the Environmental Health Division Medical Waste Program regulates the generation, handling, storage, treatment and disposal of medical waste throughout the County.

Date of Government Version: 09/26/2023 Date Data Arrived at EDR: 10/24/2023 Date Made Active in Reports: 01/11/2024

Number of Days to Update: 79

Source: Ventura County Resource Management Agency

Telephone: 805-654-2813 Last EDR Contact: 01/16/2024

Next Scheduled EDR Contact: 04/29/2024 Data Release Frequency: Quarterly

UST VENTURA: Underground Tank Closed Sites List

Ventura County Operating Underground Storage Tank Sites (UST)/Underground Tank Closed Sites List.

Date of Government Version: 11/28/2023 Date Data Arrived at EDR: 11/29/2023 Date Made Active in Reports: 02/26/2024

Number of Days to Update: 89

Source: Environmental Health Division Telephone: 805-654-2813 Last EDR Contact: 11/29/2023

Next Scheduled EDR Contact: 03/18/2024 Data Release Frequency: Quarterly

YOLO COUNTY:

UST YOLO: Underground Storage Tank Comprehensive Facility Report Underground storage tank sites located in Yolo county.

Date of Government Version: 09/21/2023 Date Data Arrived at EDR: 10/04/2023 Date Made Active in Reports: 12/27/2023

Number of Days to Update: 84

Source: Yolo County Department of Health

Telephone: 530-666-8646 Last EDR Contact: 12/18/2023

Next Scheduled EDR Contact: 04/08/2024 Data Release Frequency: Annually

YUBA COUNTY:

CUPA YUBA: CUPA Facility List

CUPA facility listing for Yuba County.

Date of Government Version: 10/30/2023 Date Data Arrived at EDR: 11/03/2023 Date Made Active in Reports: 01/23/2024

Number of Days to Update: 81

Source: Yuba County Environmental Health Department

Telephone: 530-749-7523 Last EDR Contact: 01/22/2024

Next Scheduled EDR Contact: 05/06/2024

Data Release Frequency: Varies

OTHER DATABASE(S)

Depending on the geographic area covered by this report, the data provided in these specialty databases may or may not be complete. For example, the existence of wetlands information data in a specific report does not mean that all wetlands in the area covered by the report are included. Moreover, the absence of any reported wetlands information does not necessarily mean that wetlands do not exist in the area covered by the report.

CT MANIFEST: Hazardous Waste Manifest Data

Facility and manifest data. Manifest is a document that lists and tracks hazardous waste from the generator through transporters to a tsd facility.

Date of Government Version: 11/06/2023 Date Data Arrived at EDR: 11/07/2023 Date Made Active in Reports: 01/31/2024

Number of Days to Update: 85

Source: Department of Energy & Environmental Protection

Telephone: 860-424-3375 Last EDR Contact: 02/06/2024

Next Scheduled EDR Contact: 05/20/2024 Data Release Frequency: No Update Planned

NJ MANIFEST: Manifest Information

Hazardous waste manifest information.

Date of Government Version: 12/31/2018 Date Data Arrived at EDR: 04/10/2019 Date Made Active in Reports: 05/16/2019

Number of Days to Update: 36

Source: Department of Environmental Protection

Telephone: N/A

Last EDR Contact: 12/27/2023

Next Scheduled EDR Contact: 04/15/2024 Data Release Frequency: Annually

NY MANIFEST: Facility and Manifest Data

Manifest is a document that lists and tracks hazardous waste from the generator through transporters to a TSD facility.

Date of Government Version: 12/31/2019 Date Data Arrived at EDR: 11/30/2023 Date Made Active in Reports: 12/01/2023

Number of Days to Update: 1

Source: Department of Environmental Conservation

Telephone: 518-402-8651 Last EDR Contact: 01/26/2024

Next Scheduled EDR Contact: 05/06/2024 Data Release Frequency: Quarterly

PA MANIFEST: Manifest Information

Hazardous waste manifest information.

Date of Government Version: 06/30/2018 Date Data Arrived at EDR: 07/19/2019 Date Made Active in Reports: 09/10/2019

Number of Days to Update: 53

Source: Department of Environmental Protection

Telephone: 717-783-8990 Last EDR Contact: 01/05/2024

Next Scheduled EDR Contact: 04/22/2024 Data Release Frequency: Annually

RI MANIFEST: Manifest information

Hazardous waste manifest information

Date of Government Version: 12/31/2020 Date Data Arrived at EDR: 11/30/2021 Date Made Active in Reports: 02/18/2022

Number of Days to Update: 80

Source: Department of Environmental Management

Telephone: 401-222-2797 Last EDR Contact: 02/12/2024

Next Scheduled EDR Contact: 05/27/2024 Data Release Frequency: Annually

WI MANIFEST: Manifest Information

Hazardous waste manifest information.

Date of Government Version: 05/31/2018 Date Data Arrived at EDR: 06/19/2019 Date Made Active in Reports: 09/03/2019

Number of Days to Update: 76

Source: Department of Natural Resources

Telephone: N/A

Last EDR Contact: 11/29/2023

Next Scheduled EDR Contact: 03/18/2024 Data Release Frequency: Annually

Oil/Gas Pipelines

Source: Endeavor Business Media

Petroleum Bundle (Crude Oil, Refined Products, Petrochemicals, Gas Liquids (LPG/NGL), and Specialty Gases (Miscellaneous)) N = Natural Gas Bundle (Natural Gas, Gas Liquids (LPG/NGL), and Specialty Gases (Miscellaneous)). This map includes information copyrighted by Endeavor Business Media. This information is provided on a best effort basis and Endeavor Business Media does not guarantee its accuracy nor warrant its fitness for any particular purpose. Such information has been reprinted with the permission of Endeavor Business Media.

Electric Power Transmission Line Data

Source: Endeavor Business Media

This map includes information copyrighted by Endeavor Business Media. This information is provided on a best effort basis and Endeavor Business Media does not guarantee its accuracy nor warrant its fitness for any particular purpose. Such information has been reprinted with the permission of Endeavor Business Media.

Sensitive Receptors: There are individuals deemed sensitive receptors due to their fragile immune systems and special sensitivity to environmental discharges. These sensitive receptors typically include the elderly, the sick, and children. While the location of all sensitive receptors cannot be determined, EDR indicates those buildings and facilities - schools, daycares, hospitals, medical centers, and nursing homes - where individuals who are sensitive receptors are likely to be located.

AHA Hospitals:

Source: American Hospital Association, Inc.

Telephone: 312-280-5991

The database includes a listing of hospitals based on the American Hospital Association's annual survey of hospitals.

Medical Centers: Provider of Services Listing

Source: Centers for Medicare & Medicaid Services

Telephone: 410-786-3000

A listing of hospitals with Medicare provider number, produced by Centers of Medicare & Medicaid Services,

a federal agency within the U.S. Department of Health and Human Services.

Nursing Homes

Source: National Institutes of Health

Telephone: 301-594-6248

Information on Medicare and Medicaid certified nursing homes in the United States.

Public Schools

Source: National Center for Education Statistics

Telephone: 202-502-7300

The National Center for Education Statistics' primary database on elementary

and secondary public education in the United States. It is a comprehensive, annual, national statistical database of all public elementary and secondary schools and school districts, which contains data that are comparable across all states.

Private Schools

Source: National Center for Education Statistics

Telephone: 202-502-7300

The National Center for Education Statistics' primary database on private school locations in the United States.

Daycare Centers: Licensed Facilities Source: Department of Social Services

Telephone: 916-657-4041

Flood Zone Data: This data was obtained from the Federal Emergency Management Agency (FEMA). It depicts 100-year and 500-year flood zones as defined by FEMA. It includes the National Flood Hazard Layer (NFHL) which incorporates Flood Insurance Rate Map (FIRM) data and Q3 data from FEMA in areas not covered by NFHL.

Source: FEMA

Telephone: 877-336-2627

Date of Government Version: 2003, 2015

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002, 2005, 2010 and 2015 from the U.S. Fish and Wildlife Service.

State Wetlands Data: Wetland Inventory Source: Department of Fish and Wildlife

Telephone: 916-445-0411

Current USGS 7.5 Minute Topographic Map Source: U.S. Geological Survey

STREET AND ADDRESS INFORMATION

© 2015 TomTom North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.

GEOCHECK ®- PHYSICAL SETTING SOURCE ADDENDUM

TARGET PROPERTY ADDRESS

JAMUCBA FIRE STATION #43 OLD HIGHWAY 80 JACUMBA, CA 91934

TARGET PROPERTY COORDINATES

Latitude (North): 32.61814 - 32° 37' 5.30" Longitude (West): 116.18222 - 116° 10' 55.99"

Universal Tranverse Mercator: Zone 11 UTM X (Meters): 576723.8 UTM Y (Meters): 3609060.5

Elevation: 2801 ft. above sea level

USGS TOPOGRAPHIC MAP

Target Property Map: 50004023 JACUMBA OE S, CA

Version Date: 2021

North Map: 50005569 JACUMBA, CA

Version Date: 2021

EDR's GeoCheck Physical Setting Source Addendum is provided to assist the environmental professional in forming an opinion about the impact of potential contaminant migration.

Assessment of the impact of contaminant migration generally has two principle investigative components:

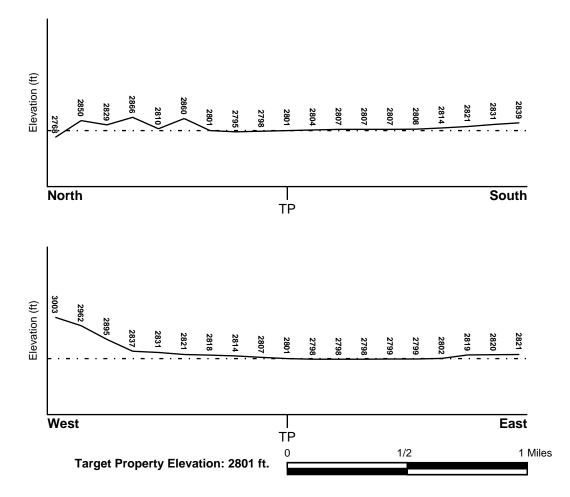
- 1. Groundwater flow direction, and
- 2. Groundwater flow velocity.

Groundwater flow direction may be impacted by surface topography, hydrology, hydrogeology, characteristics of the soil, and nearby wells. Groundwater flow velocity is generally impacted by the nature of the geologic strata.

GEOCHECK® - PHYSICAL SETTING SOURCE SUMMARY

GROUNDWATER FLOW DIRECTION INFORMATION

Groundwater flow direction for a particular site is best determined by a qualified environmental professional using site-specific well data. If such data is not reasonably ascertainable, it may be necessary to rely on other sources of information, such as surface topographic information, hydrologic information, hydrogeologic data collected on nearby properties, and regional groundwater flow information (from deep aquifers).


TOPOGRAPHIC INFORMATION

Surface topography may be indicative of the direction of surficial groundwater flow. This information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

TARGET PROPERTY TOPOGRAPHY

General Topographic Gradient: General NE

SURROUNDING TOPOGRAPHY: ELEVATION PROFILES

Source: Topography has been determined from the USGS 7.5' Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified.

HYDROLOGIC INFORMATION

Surface water can act as a hydrologic barrier to groundwater flow. Such hydrologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

Refer to the Physical Setting Source Map following this summary for hydrologic information (major waterways and bodies of water).

FEMA FLOOD ZONE

Flood Plain Panel at Target Property FEMA Source Type

Not Reported

Additional Panels in search area: FEMA Source Type

Not Reported

NATIONAL WETLAND INVENTORY

NWI Quad at Target Property Data Coverage

SOUTH JACUMBA (OE) YES - refer to the Overview Map and Detail Map

HYDROGEOLOGIC INFORMATION

Hydrogeologic information obtained by installation of wells on a specific site can often be an indicator of groundwater flow direction in the immediate area. Such hydrogeologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

Site-Specific Hydrogeological Data*:

Search Radius: 1.25 miles Status: Not found

AQUIFLOW®

Search Radius: 1.000 Mile.

EDR has developed the AQUIFLOW Information System to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted by environmental professionals to regulatory authorities at select sites and has extracted the date of the report, groundwater flow direction as determined hydrogeologically, and the depth to water table.

LOCATION GENERAL DIRECTION

MAP ID FROM TP GROUNDWATER FLOW

Not Reported

GROUNDWATER FLOW VELOCITY INFORMATION

Groundwater flow velocity information for a particular site is best determined by a qualified environmental professional using site specific geologic and soil strata data. If such data are not reasonably ascertainable, it may be necessary to rely on other sources of information, including geologic age identification, rock stratigraphic unit and soil characteristics data collected on nearby properties and regional soil information. In general, contaminant plumes move more quickly through sandy-gravelly types of soils than silty-clayey types of soils.

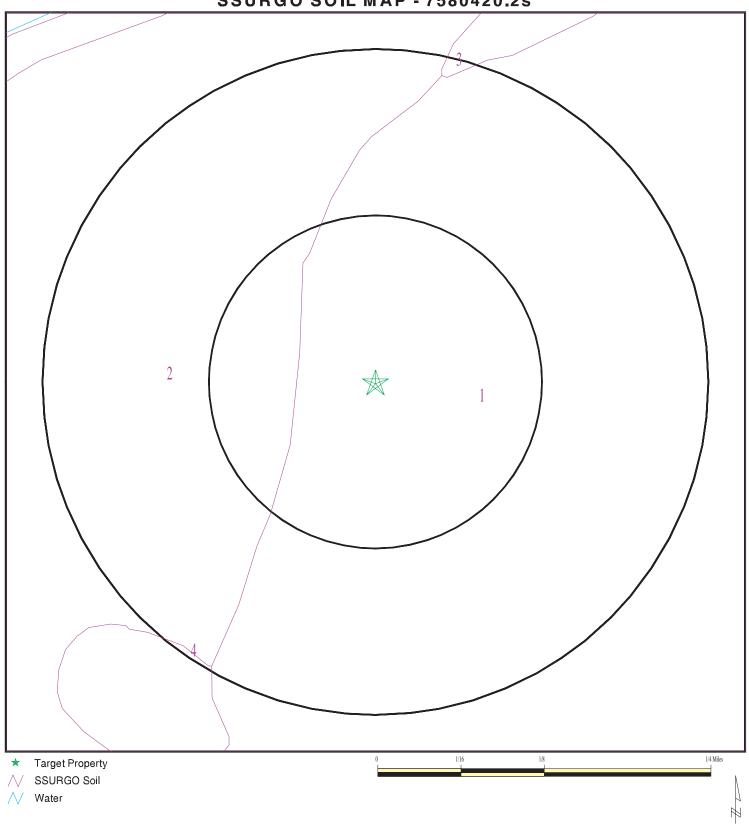
GEOLOGIC INFORMATION IN GENERAL AREA OF TARGET PROPERTY

Geologic information can be used by the environmental professional in forming an opinion about the relative speed at which contaminant migration may be occurring.

ROCK STRATIGRAPHIC UNIT

GEOLOGIC AGE IDENTIFICATION

Era: Mesozoic Category: Eugeosynclinal Deposits


System: Lower Jurassic and Upper Triassic

Series: Lower Mesozoic

Code: IMze (decoded above as Era, System & Series)

Geologic Age and Rock Stratigraphic Unit Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - a digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

SSURGO SOIL MAP - 7580420.2s

SITE NAME: Jamucba Fire Station #43 ADDRESS: Old Highway 80 Jacumba CA 91934 LAT/LONG: 32.61814 / 116.18222

CLIENT: Universal Engineering Sciences
CONTACT: Adam Canfield
INQUIRY#: 7580420.2s

DATE: February 28, 2024 7:39 am

DOMINANT SOIL COMPOSITION IN GENERAL AREA OF TARGET PROPERTY

The U.S. Department of Agriculture's (USDA) Soil Conservation Service (SCS) leads the National Cooperative Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. The following information is based on Soil Conservation Service SSURGO data.

Soil Map ID: 1

Soil Component Name: REIFF

Soil Surface Texture: fine sandy loam

Hydrologic Group: Class B - Moderate infiltration rates. Deep and moderately deep,

moderately well and well drained soils with moderately coarse

textures.

Soil Drainage Class: Well drained

Hydric Status: Not hydric

Corrosion Potential - Uncoated Steel: High

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 0 inches

	Soil Layer Information						
	Bou	ındary		Classi	Classification Sat		
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec	Oon Roadion
1	0 inches	14 inches	fine sandy loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	COARSE-GRAINED SOILS, Sands, Sands with fines, Silty Sand.	Max: 42 Min: 14	Max: 8.4 Min: 6.6
2	14 inches	42 inches	stratified sandy loam to loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	COARSE-GRAINED SOILS, Sands, Sands with fines, Silty Sand.	Max: 42 Min: 14	Max: 8.4 Min: 6.6
3	42 inches	59 inches	stratified sandy loam to loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	COARSE-GRAINED SOILS, Sands, Sands with fines, Silty Sand.	Max: 42 Min: 14	Max: 8.4 Min: 6.6

Soil Map ID: 2

Soil Component Name: ROSITAS

Soil Surface Texture: loamy coarse sand

Hydrologic Group: Class A - High infiltration rates. Soils are deep, well drained to

excessively drained sands and gravels.

Soil Drainage Class: Somewhat excessively drained

Hydric Status: Not hydric

Corrosion Potential - Uncoated Steel: High

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 0 inches

	Soil Layer Information						
	Воц	ındary		Classi	fication	Saturated hydraulic	Oon Reaction
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec	
1	0 inches	5 inches	loamy coarse sand	Granular materials (35 pct. or less passing No. 200), Stone Fragments, Gravel and Sand.	COARSE-GRAINED SOILS, Sands, Sands with fines, Silty Sand.	Max: 141 Min: 42	Max: 8.4 Min: 7.9
2	5 inches	59 inches	gravelly loamy sand	Granular materials (35 pct. or less passing No. 200), Stone Fragments, Gravel and Sand.	COARSE-GRAINED SOILS, Sands, Sands with fines, Silty Sand.	Max: 141 Min: 42	Max: 8.4 Min: 7.9

Soil Map ID: 3

Soil Component Name: INDIO

Soil Surface Texture: silt loam

Hydrologic Group: Class B - Moderate infiltration rates. Deep and moderately deep,

moderately well and well drained soils with moderately coarse

textures.

Soil Drainage Class: Moderately well drained

Hydric Status: Partially hydric

Corrosion Potential - Uncoated Steel: High

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 0 inches

	Soil Layer Information						
	Воц	ındary		Classification Saturated hydraulic	Classification		
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec	Oon Roudin
1	0 inches	5 inches	silt loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), silt.	Max: 14 Min: 4	Max: 8.4 Min: 7.9
2	5 inches	59 inches	stratified fine sandy loam to silt loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), silt.	Max: 14 Min: 4	Max: 8.4 Min: 7.9

Soil Map ID: 4

Soil Component Name: **RAMONA**

Soil Surface Texture: sandy loam

Class B - Moderate infiltration rates. Deep and moderately deep, moderately well and well drained soils with moderately coarse Hydrologic Group:

textures.

Soil Drainage Class: Well drained

Hydric Status: Not hydric

Corrosion Potential - Uncoated Steel: Moderate

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 0 inches

	Soil Layer Information						
Boundary		Boundary		Classification		Saturated hydraulic	
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec	Oon Noadhon
1	0 inches	9 inches	sandy loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	COARSE-GRAINED SOILS, Sands, Sands with fines, Clayey sand.	Max: 4 Min: 1.4	Max: 7.3 Min: 6.6
2	9 inches	59 inches	sandy clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	COARSE-GRAINED SOILS, Sands, Sands with fines, Clayey sand.	Max: 4 Min: 1.4	Max: 7.3 Min: 6.6
3	59 inches	74 inches	sandy clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	COARSE-GRAINED SOILS, Sands, Sands with fines, Clayey sand.	Max: 4 Min: 1.4	Max: 7.3 Min: 6.6

LOCAL / REGIONAL WATER AGENCY RECORDS

EDR Local/Regional Water Agency records provide water well information to assist the environmental professional in assessing sources that may impact ground water flow direction, and in forming an opinion about the impact of contaminant migration on nearby drinking water wells.

WELL SEARCH DISTANCE INFORMATION

DATABASE SEARCH DISTANCE (miles)

Federal USGS 1.000

Federal FRDS PWS Nearest PWS within 1 mile

State Database 1.000

FEDERAL USGS WELL INFORMATION

MAP ID WELL ID LOCATION FROM TP

No Wells Found

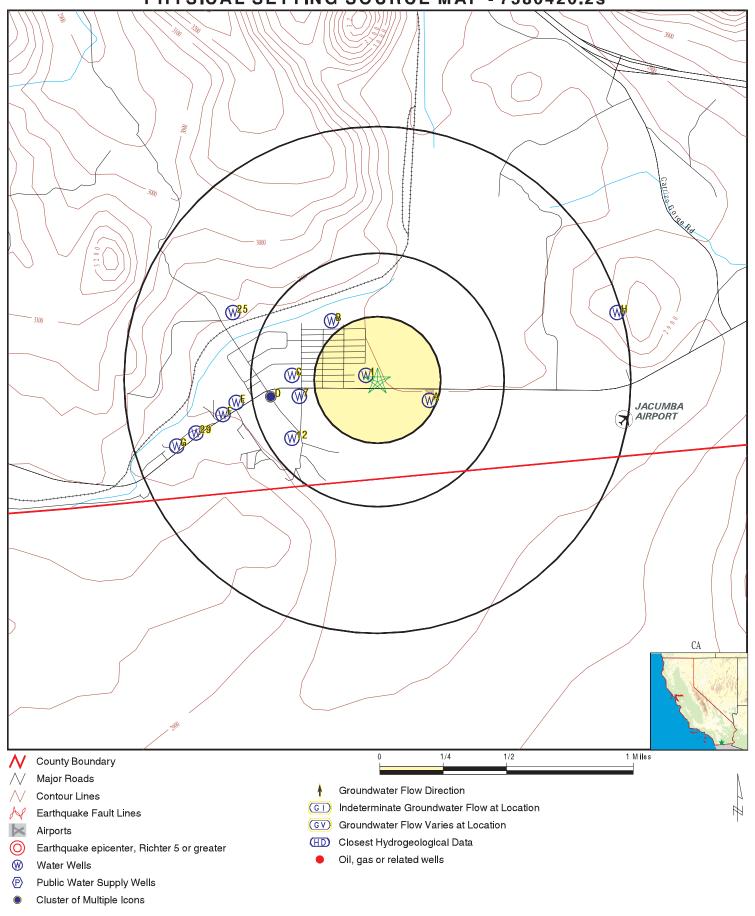
FEDERAL FRDS PUBLIC WATER SUPPLY SYSTEM INFORMATION

MAP ID WELL ID LOCATION FROM TP

GEOCHECK[®] - PHYSICAL SETTING SOURCE SUMMARY

FEDERAL FRDS PUBLIC WATER SUPPLY SYSTEM INFORMATION

MAP ID WELL ID FROM TP


D19 CA3702703 1/4 - 1/2 Mile West

Note: PWS System location is not always the same as well location.

STATE DATABASE WELL INFORMATION

MAP ID	WELL ID	LOCATION FROM TP
MAP ID 1 A2 A3 A4 B5 B6 7 C8 C9 C10 D11 12 D13 D14 D15 D16 D17 D18 D20 E21 E22 F23 F24 25 F26 F27 F28 29 G30 G31	WELL ID CADWR0000036259 13747 13748 CADDW2000006757 CADDW2000018605 13746 CAEDF0000079894 CADWR0000035207 CADWR0000035207 CADWR0000039666 CAEDF0000043128 CADWR000001891 CAEDF00000106602 CAEDF0000175349 CAEDF0000137750 CAEDF0000137750 CAEDF0000137750 CAEDF0000137750 CAEDF0000137750 CAEDF0000137750 CAEDF00000137750 CAEDF00000137750 CAEDF00000137750 CAEDF00000137750 CAEDF00000137750 CAEDF00000137750 CAEDF00000137750 CAEDF00000137750 CAEDF0000013775 CADDW2000014666 13745 CADDW2000013114 CADWR0000001978 CADDW200001378 CADDW200002500 CAUSGSN00002025 CAEDF0000035308 CADDW2000021378 CADDW2000021378 CADDW2000012661	FROM TP 0 - 1/8 Mile WNW 1/8 - 1/4 Mile ESE 1/4 - 1/2 Mile NW 1/4 - 1/2 Mile NW 1/4 - 1/2 Mile WSW 1/4 - 1/2 Mile West 1/2 - 1 Mile Wsw
H32 H33	CADWR0000028395 CADWR0000028535	1/2 - 1 Mile ENE 1/2 - 1 Mile ENE

PHYSICAL SETTING SOURCE MAP - 7580420.2s

SITE NAME: Jamucba Fire Station #43

Old Highway 80 Jacumba CA 91934 ADDRESS: LAT/LONG: 32.61814 / 116.18222 CLIENT: Universal Engir CONTACT: Adam Canfield Universal Engineering Sciences

INQUIRY#: 7580420.2s

February 28, 2024 7:39 am DATE:

Map ID Direction Distance

Elevation Database EDR ID Number

WNW 0 - 1/8 Mile CA WELLS CADWR0000036259

Higher

Well ID: 18S08E08J001S Well Type: UNK

Source: Department of Water Resources

Other Name: 18S08E08J001S GAMA PFAS Testing: Not Reported

Groundwater Quality Data: https://gamagroundwater.waterboards.ca.gov/gama/gamamap/public/GamaDataDisplay.asp?dataset=DWR&samp_

date=&global_id=&assigned_name=18S08E08J001S&store_num=

GeoTracker Data: Not Reported

A2
ESE
CA WELLS 13747
1/8 - 1/4 Mile

1/8 - 1/4 M Higher

Seq: 13747 Prim sta c: 18S/08E-08K98 S

 Frds no:
 3710011002
 County:
 37

 District:
 14
 User id:
 WAT

 System no:
 3710011
 Water type:
 G

Source nam:WELL 02 - ABANDONEDStation ty:WELL/AMBNTLatitude:323701.0Longitude:1161042.0Precision:2Status:AB

Comment 1: Not Reported Comment 2: Not Reported Comment 3: Not Reported Comment 4: Not Reported Comment 5: Not Reported Comment 6: Not Reported

Comment 7: Not Reported

System no: 3710011 System nam: Jacumba Community Sd

Hqname: Not Reported Address: P.O. Box 425

City: Jacumba State: CA

Zip: 92034 Zip ext: Not Reported

Pop serv: 500 Connection: 234
Area serve: JACUMBA

A3
ESE
CA WELLS 13748
1/8 - 1/4 Mile

1/8 - 1/4 Mile Higher

Seq: 13748 Prim sta c: 18S/08E-08K?A S

 Frds no:
 3710011001
 County:
 37

 District:
 14
 User id:
 WAT

 System no:
 3710011
 Water type:
 G

Source nam:WELL 01 - ABANDONEDStation ty:WELL/AMBNTLatitude:323701.0Longitude:1161040.0Precision:2Status:AB

Comment 1: Not Reported Comment 2: Not Reported Comment 3: Not Reported Comment 4: Not Reported Comment 5: Not Reported Comment 6: Not Reported

Comment 7: Not Reported

System no: 3710011 System nam: Jacumba Community Sd

Hqname: Not Reported Address: P.O. Box 425

City: Jacumba State: CA

Zip: 92034 Zip ext: Not Reported

234 500 Connection: Pop serv:

Area serve: **JACUMBA**

ESE **CA WELLS** CADDW2000006757

1/8 - 1/4 Mile Higher

GAMA:

Well ID: CA3710011_002_002 Well Type: MUNICIPAL Source: DDW Other Names: 3710011-002

GAMA Pfas testing: Not Reported

Groundwater Quality Data: https://gamagroundwater.waterboards.ca.gov/gama/gamamap/public/GamaDataDisplay.asp?dataset=DHS&samp_

date=&global_id=&assigned_name=CA3710011_002_002&store_num=

GeoTracker Data: Not Reported

CA WELLS CADDW2000018605

NW 1/4 - 1/2 Mile Higher

GAMA:

Well ID: CA3701588_001_001 Well Type: **MUNICIPAL** DDW Other Names: 3701588-001 Source:

Not Reported GAMA Pfas testing:

https://gamagroundwater.waterboards.ca.gov/gama/gamamap/public/GamaDataDisplay.asp?dataset=DHS&samp_ Groundwater Quality Data:

date=&global id=&assigned name=CA3701588 001 001&store num=

GeoTracker Data: Not Reported

CA WELLS 13746

1/4 - 1/2 Mile Higher

> 13746 18S/08E-08C01 S Seq: Prim sta c:

Frds no: 3701588001 County: 37 District: User id: 37C 67 System no: Water type: 3701588 G

Station ty: Source nam: WELL 01 WELL/AMBNT/MUN/INTAKE

Latitude: 323717.0 Longitude: 1161105.0 Precision: Status:

WELL ~ 100 YDS N/W OF INTERSECTION OF CAMPO & SEELEY AVE, JACUMBA CA Comment 1: Not Reported Not Reported Comment 2: Comment 3: Comment 4: Not Reported Comment 5: Not Reported Comment 6: Not Reported Comment 7: Not Reported

System no: 3701588 System nam: Jojoba Ltd Wc Hqname: Not Reported Address: Not Reported Not Reported Not Reported City: State: Not Reported Zip ext: Not Reported Zip:

Pop serv: 0 Connection: 0

Area serve: Not Reported

Sample date: 20-APR-17 Finding: 1.1 Chemical: NITRATE (AS N) Report units: MG/L

DIr: 0.4

Sample date: 16-APR-15 Finding: 4.8 Chemical: NITRATE (AS NO3) Report units: MG/L

Dlr: 2.

7
WSW
CA WELLS CAEDF000079894

1/4 - 1/2 Mile Higher

 Well ID:
 T0607301076-MW-8D
 Well Type:
 MONITORING

 Source:
 EDF
 Other Name:
 MW-8D

GAMA PFAS Testing: Not Reported

Groundwater Quality Data: https://gamagroundwater.waterboards.ca.gov/gama/gamamap/public/GamaDataDisplay.asp?dataset=EDF&samp_

date=&global_id=T0607301076&assigned_name=MW-8D&store_num=

GeoTracker Data: https://geotracker.waterboards.ca.gov/profile_report.asp?cmd=MWEDFResults&global_id=T0607301076&assi

gned_name=MW-8D

C8
West CA WELLS CADWR0000035207

1/4 - 1/2 Mile Higher

Well ID: 18S08E08K003S Well Type: UNK

Source: Department of Water Resources

Other Name: 18S08E08K003S GAMA PFAS Testing: Not Reported

Groundwater Quality Data: https://gamagroundwater.waterboards.ca.gov/gama/gamamap/public/GamaDataDisplay.asp?dataset=DWR&samp_

date=&global_id=&assigned_name=18S08E08K003S&store_num=

GeoTracker Data: Not Reported

C9
West CA WELLS CADWR000028243

1/4 - 1/2 Mile Higher

Well ID: 18S08E08K001S Well Type: UNK

Source: Department of Water Resources

Other Name: 18S08E08K001S GAMA PFAS Testing: Not Reported

Groundwater Quality Data: https://gamagroundwater.waterboards.ca.gov/gama/gamamap/public/GamaDataDisplay.asp?dataset=DWR&samp_

date=&global_id=&assigned_name=18S08E08K001S&store_num=

GeoTracker Data: Not Reported

C10
West CA WELLS CADWR0000030666

1/4 - 1/2 Mile Higher

Well ID: 18S08E08K002S Well Type: UNK

Source: Department of Water Resources

Other Name: 18S08E08K002S GAMA PFAS Testing: Not Reported

Groundwater Quality Data: https://gamagroundwater.waterboards.ca.gov/gama/gamamap/public/GamaDataDisplay.asp?dataset=DWR&samp_

date=&global_id=&assigned_name=18S08E08K002S&store_num=

GeoTracker Data: Not Reported

Map ID Direction Distance

EDR ID Number Elevation Database

D11 West

CA WELLS CAEDF0000043128

CADWR0000001891

CAEDF0000008254

CAEDF0000106602

CA WELLS

CA WELLS

CA WELLS

UNK

1/4 - 1/2 Mile Higher

> Well ID: T0607301076-MW-14 Well Type: MONITORING **EDF** Other Name: MW-14 Source:

GAMA PFAS Testing: Not Reported

Groundwater Quality Data: https://gamagroundwater.waterboards.ca.gov/gama/gamamap/public/GamaDataDisplay.asp?dataset=EDF&samp_

date=&global_id=T0607301076&assigned_name=MW-14&store_num=

GeoTracker Data: https://geotracker.waterboards.ca.gov/profile_report.asp?cmd=MWEDFResults&global_id=T0607301076&assi

gned_name=MW-14

18S08E08Q001S

św 1/4 - 1/2 Mile Higher

Well ID:

Source: Department of Water Resources

Other Name: 18S08E08Q001S **GAMA PFAS Testing:** Not Reported

Groundwater Quality Data: https://gamagroundwater.waterboards.ca.gov/gama/gamamap/public/GamaDataDisplay.asp?dataset=DWR&samp_

Well Type:

date=&global_id=&assigned_name=18S08E08Q001S&store_num=

GeoTracker Data: Not Reported

D13

West 1/4 - 1/2 Mile Higher

> Well ID: T0607301076-MW-11 **MONITORING** Well Type:

Source: **EDF** Other Name: MW-11 **GAMA PFAS Testing:** Not Reported

Groundwater Quality Data: https://gamagroundwater.waterboards.ca.gov/gama/gamamap/public/GamaDataDisplay.asp?dataset=EDF&samp_

date=&global_id=T0607301076&assigned_name=MW-11&store_num=

https://geotracker.waterboards.ca.gov/profile_report.asp?cmd=MWEDFResults&global_id=T0607301076&assi GeoTracker Data:

gned_name=MW-11

D14

West 1/4 - 1/2 Mile Higher

Well ID:

Source:

Well Type: MONITORING Other Name: MW-10

GAMA PFAS Testing: Not Reported

Groundwater Quality Data:

https://gamagroundwater.waterboards.ca.gov/gama/gamamap/public/GamaDataDisplay.asp?dataset=EDF&samp_ date=&global_id=T0607301076&assigned_name=MW-10&store_num=

https://geotracker.waterboards.ca.gov/profile_report.asp?cmd=MWEDFResults&global_id=T0607301076&assi GeoTracker Data:

gned name=MW-10

T0607301076-MW-10

EDF

Map ID Direction Distance

EDR ID Number Elevation Database

D15 West

CA WELLS CAEDF0000037748

1/4 - 1/2 Mile Higher

> Well ID: T0607301076-MW-13 Well Type: MONITORING **EDF** Other Name: MW-13 Source:

GAMA PFAS Testing: Not Reported

Groundwater Quality Data: https://gamagroundwater.waterboards.ca.gov/gama/gamamap/public/GamaDataDisplay.asp?dataset=EDF&samp_

date=&global_id=T0607301076&assigned_name=MW-13&store_num=

GeoTracker Data: https://geotracker.waterboards.ca.gov/profile_report.asp?cmd=MWEDFResults&global_id=T0607301076&assi

gned_name=MW-13

D16

CA WELLS CAEDF0000075349 West 1/4 - 1/2 Mile

Higher

Well ID: T0607301076-MW-7 Well Type: MONITORING Source: **FDF** Other Name: MW-7

GAMA PFAS Testing: Not Reported

Groundwater Quality Data: https://gamagroundwater.waterboards.ca.gov/gama/gamamap/public/GamaDataDisplay.asp?dataset=EDF&samp

date=&global_id=T0607301076&assigned_name=MW-7&store_num=

https://geotracker.waterboards.ca.gov/profile_report.asp?cmd=MWEDFResults&global_id=T0607301076&assi GeoTracker Data:

gned_name=MW-7

D17

West **CA WELLS** CAEDF0000137750

1/4 - 1/2 Mile Higher

> **MONITORING** Well ID: T0607301076-MW-12 Well Type: Source: **EDF** Other Name: MW-12

GAMA PFAS Testing: Not Reported

Groundwater Quality Data: https://gamagroundwater.waterboards.ca.gov/gama/gamamap/public/GamaDataDisplay.asp?dataset=EDF&samp_ date=&global_id=T0607301076&assigned_name=MW-12&store_num=

GeoTracker Data: https://geotracker.waterboards.ca.gov/profile_report.asp?cmd=MWEDFResults&global_id=T0607301076&assi

gned_name=MW-12

D18 West 1/4 - 1/2 Mile

CAEDF0000039322 **CA WELLS**

Higher

Well Type: Well ID: T0607301076-MW-5A **MONITORING EDF** Other Name: MW-5A Source:

GAMA PFAS Testing:

Groundwater Quality Data: https://gamagroundwater.waterboards.ca.gov/gama/gamamap/public/GamaDataDisplay.asp?dataset=EDF&samp_

date=&global_id=T0607301076&assigned_name=MW-5A&store_num=

GeoTracker Data: https://geotracker.waterboards.ca.gov/profile_report.asp?cmd=MWEDFResults&global_id=T0607301076&assi

gned name=MW-5A

Map ID Direction Distance

EDR ID Number Elevation Database

D19 **FRDS PWS** West 1/4 - 1/2 Mile

Higher

Latitude:

Epa region: 09 State:

DE ANZA SPRINGS RESORT Pwsid: CA3702703 Pwsname:

Cityserved: Not Reported Stateserved: 06073 Zipserved: Not Reported Fipscounty: Status: Retpopsrvd: 400 Active Pwssvcconn: 225 Psource longname: Groundwater Pwstype: **TNCWS** Owner: Private

DE ANZA SPRINGS RESORT DAVE LANDMAN Contact: Contactorgname:

Contactphone: 6197664301 Contactaddress1: P.O. BOX 561 Contactaddress2: Not Reported Contactcity: **JACUMBA** Contactstate: CA Contactzip: 91934

Pwsactivitycode: Α

PWS ID: CA3702703 PWS type: System Owner/Responsible Party

PWS name: THOUSAND TRAILS ANZA BORREGO

PWS address: Not Reported PWS city: **JACUMBA** PWS state: PWS zip: 92034 CA PWS name: DE ANZA SPRINGS RESORT PWS type code: NC

Retail population served: 400 Contact: Not Reported Contact address: Not Reported Contact city: Not Reported Not Reported Not Reported Contact state: Contact zip:

Contact telephone: Not Reported

PWS ID: CA3702703 Activity status: Active Date system activated: 7706 Date system deactivated: Not Reported

THOUSAND TRAILS ANZA BORREGO Retail population: 00000450 System name:

Longitude:

System address: THOUSAND TRAILS ANZA BORREGO

323703

System address: 1951 CARRIZO GORGE RD System city: **JACUMBA** System state: CA System zip: 92034 101 - 500 Persons Untreated

Population served: Treatment:

0401241 Violation id: Orig code: S

Violation Year: State: CA 2004 Contamination code: 3100 Contamination Name: Coliform (TCR)

Violation code: 23 Violation name: Monitoring, Routine Major (TCR)

Rule code: 110 Rule name: Violation measur: Not Reported Unit of measure: Not Reported Not Reported 04/01/2004 State mcl: Cmp bdt:

06/30/2004 Cmp edt:

0601980 Violation id: Orig code: S Violation Year: State: CA 2005

Coliform (TCR) Contamination code: 3100 Contamination Name: Monitoring, Routine Major (TCR) Violation code: 23 Violation name:

Rule code: 110 Rule name: Violation measur: Not Reported Unit of measure: Not Reported Not Reported 10/01/2005 State mcl: Cmp bdt:

Cmp edt: 12/31/2005

0702424 S Violation id: Orig code: Violation Year: State: CA 2007 Contamination code: 1041 Contamination Name: Nitrite

1161120

CA3702703

Violation code: 03 Violation name: Monitoring, Regular Rule code: 331 Rule name: **Nitrates**

Violation measur: Not Reported Unit of measure: Not Reported Not Reported 04/01/2007 State mcl: Cmp bdt: 06/30/2007 Cmp edt:

Violation id: 0702497 Orig code: State: CA Violation Year: 2007

3100 Contamination code: Contamination Name: Coliform (TCR)

23 Monitoring, Routine Major (TCR) Violation code: Violation name:

Rule code: 110 Rule name: **TCR**

Violation measur: Not Reported Unit of measure: Not Reported State mcl: Not Reported Cmp bdt: 07/01/2007 Cmp edt: 09/30/2007

0903031 Violation id: Orig code: S State: CA Violation Year: 2009

Contamination code: 3100 Contamination Name: Coliform (TCR)

Monitoring, Routine Major (TCR) Violation code: 23 Violation name:

Rule code: 110 Rule name: **TCR**

Violation measur: Not Reported Unit of measure: Not Reported State mcl: Not Reported Cmp bdt: 04/01/2009

06/30/2009 Cmp edt:

Violation id: 1103323 S Orig code: State: CA Violation Year: 2011

Coliform (TCR) Contamination code: 3100 Contamination Name:

Monitoring, Routine Major (TCR) Violation code: 23 Violation name:

Rule code: 110 Rule name: Violation measur: Not Reported Unit of measure: Not Reported Not Reported 01/01/2011 State mcl: Cmp bdt:

Cmp edt: 03/31/2011

1203658 S Violation id: Orig code: State: CA Violation Year: 2012

Coliform (TCR) Contamination code: 3100 Contamination Name:

Monitoring, Routine Major (TCR) Violation code: 23 Violation name:

Rule code: 110 Rule name: **TCR** Violation measur: Not Reported Unit of measure: Not Reported

State mcl: Not Reported Cmp bdt: 04/01/2012 Cmp edt: 06/30/2012

1303924 S Violation id: Orig code: Violation Year: State: CA 2013

Contamination code: 3100 Contamination Name: Coliform (TCR)

Violation code: 23 Violation name: Monitoring, Routine Major (TCR)

Rule code: 110 Rule name: **TCR**

Violation measur: Not Reported Unit of measure: Not Reported 07/01/2013 State mcl: Not Reported Cmp bdt:

Cmp edt: 09/30/2013

PWS currently has or had major violation(s) or enforcement:Yes

Violation ID: 9300001 Violation source ID: Not Reported COLIFORM (TCR) PWS telephone: Not Reported Contaminant:

Max Contaminant Level, Acute (TCR) Violation type:

070193 Violation end date: Violation start date: 093093 Violation period (months): 003 Violation awareness date: 103093 Major violator: Not Reported Maximum contaminant level: Not Reported Number of required samples: Not Reported Number of samples taken: Not Reported

Analysis method: Not Reported Analysis result: Not Reported

Violation ID: 0401241 Orig Code:

Enforcemnt FY: 2004 **Enforcement Action:** 07/13/2004

Enforcement Detail: St AO (w/o penalty) issued

Enforcement Category: Formal

Violation ID: 0601980 Orig Code: S

Enforcemnt FY: 2006 **Enforcement Action:** 01/12/2006

Enforcement Detail: St AO (w/o penalty) issued

Enforcement Category: Formal

Violation ID: 0903031 Orig Code:

Enforcemnt FY: 2009 **Enforcement Action:** 07/15/2009

Enforcement Detail: St AO (w/o penalty) issued

Enforcement Category: Formal

Violation ID: 1103323 Orig Code:

04/15/2011 Enforcemnt FY: 2011 **Enforcement Action:**

St AO (w/o penalty) issued **Enforcement Detail:**

Enforcement Category: Formal

Violation ID: 1203658 Orig Code:

Enforcemnt FY: 2012 **Enforcement Action:** 07/13/2012

Enforcement Detail: St AO (w/o penalty) issued

Enforcement Category: Formal

PWS name: DE ANZA SPRINGS RESORT Population served: 400

PWS type code: Violation ID: 0401241

COLIFORM (TCR) Violation type: Monitoring, Routine Major (TCR) Contaminant:

Compliance start date: 4/1/2004 0:00:00 Compliance end date: 6/30/2004 0:00:00

7/13/2004 0:00:00 Enforcement action: State AO (w/o Penalty) Issued Enforcement date:

Not Reported Violation measurement:

DE ANZA SPRINGS RESORT PWS name: Population served: 400 Violation ID: PWS type code: 0601980

Contaminant: COLIFORM (TCR) Violation type: Monitoring, Routine Major (TCR)

Compliance start date: 10/1/2005 0:00:00 Compliance end date: 12/31/2005 0:00:00

Enforcement date: 1/12/2006 0:00:00 Enforcement action: State AO (w/o Penalty) Issued

Violation measurement: Not Reported

Higher

DE ANZA SPRINGS RESORT PWS name: Population served: 400 PWS type code: NC Violation ID: 0702424 Contaminant: **NITRITE** Violation type:

4/1/2007 0:00:00 Compliance end date: 6/30/2007 0:00:00 Compliance start date:

7/8/2009 0:00:00 Enforcement date: No Enf Action as of Enforcement action: Violation measurement: Not Reported

D20 CAEDF0000042048 **CA WELLS** West 1/4 - 1/2 Mile

MONITORING Well ID: T0607301076-MW-9D Well Type: **EDF** Other Name: MW-9D Source:

GAMA PFAS Testing:

 $https://gamagroundwater.waterboards.ca.gov/gama/gamamap/public/GamaDataDisplay.asp? dataset = EDF\&samp_theres.waterboards.ca.gov/gama/gamamap/public/GamaDataDisplay.asp? dataset = EDF\&samp_theres.waterboards.ca.gov/gama/gamamap/public/GamaDataDisplay.asp. dataset = EDF\&samp_theres.waterboards.ca.gov/gama/gamamap/public/GamaDataDisplay.asp. dataset = EDF\&samp_theres.waterboards.co.gov/gama/gamamap/public/GamaDataDisplay.asp. dataset = EDF\&samp_theres.waterboards.co.gov/gama/gamamap/public/GamaDataDisplay.asp. dataset = EDF\&samp_theres.waterboards.co.gov/gama/gamamap/public/GamaDataDisplay.asp. dataset = EDF\&samp_theres.waterboards.co.gov/gama/gamamap/gamap/ga$ Groundwater Quality Data:

date=&global_id=T0607301076&assigned_name=MW-9D&store_num=

GeoTracker Data: https://geotracker.waterboards.ca.gov/profile_report.asp?cmd=MWEDFResults&global_id=T0607301076&assi

gned_name=MW-9D

Map ID Direction Distance Elevation

Database EDR ID Number E21 **CA WELLS** West 13743

1/2 - 1 Mile Higher

> Seq: 13743 Prim sta c: 18S/08E-07J97 S

3710011005 Frds no: County: 37 User id: WAT District: 14 3710011 Water type: System no: G

Source nam: WELL 05 Station ty: WELL/AMBNT Latitude: 323701.0 Longitude: 1161126.0 Precision: Status: ΑU 2 Comment 1: Not Reported Comment 2: Not Reported Comment 3: Not Reported Comment 4: Not Reported Comment 5: Not Reported Comment 6: Not Reported

Not Reported Comment 7:

System no: 3710011 System nam: Jacumba Community Sd

Hqname: Not Reported Address: P.O. Box 425

City: Jacumba State: CA

Zip: 92034 Zip ext: Not Reported

Connection: Pop serv: 500 234 Area serve: **JACUMBA**

E22 **CA WELLS** CADDW2000014666 West 1/2 - 1 Mile Higher

GAMA:

Well ID: CA3710011_005_005 Well Type: **MUNICIPAL** Source: DDW Other Names: 3710011-005

GAMA Pfas testing: Not Reported

Groundwater Quality Data: https://gamagroundwater.waterboards.ca.gov/gama/gamamap/public/GamaDataDisplay.asp?dataset=DHS&samp_

date=&global_id=&assigned_name=CA3710011_005_005&store_num=

GeoTracker Data: Not Reported

WSW 1/2 - 1 Mile **CA WELLS** 13745

Higher

Seq: 13745 Prim sta c: 18S/08E-07J?A S

3710011004 Frds no: County: 37 District: 14 User id: WAT System no: 3710011 Water type: G

WELL 04 Source nam: Station ty: WELL/AMBNT Latitude: 323657.0 Longitude: 1161129.0 Precision: 2 Status: ΑU

Comment 1: Not Reported Comment 2: Not Reported Comment 3: Not Reported Comment 4: Not Reported Comment 5: Not Reported Comment 6: Not Reported

Comment 7: Not Reported

System no: 3710011 System nam: Jacumba Community Sd

Not Reported Address: P.O. Box 425 Hqname:

City: Jacumba State: CA

Zip: Pop serv: Area serve:	92034 500 JACUMBA	Zip ext: Connection:	Not Reported 234
Sample date: Chemical: Dlr:	26-JAN-18 TOTAL TRIHALOMETHANES 0.	Finding: Report units:	1.1 UG/L
Sample date: Chemical: Dlr:	26-JAN-18 CHLOROFORM (THM) 1.	Finding: Report units:	1.1 UG/L
Sample date: Chemical: Dlr:	28-DEC-17 PH, LABORATORY 0.	Finding: Report units:	6.95 Not Reported
Sample date: Chemical: Dlr:	28-DEC-17 ALKALINITY (TOTAL) AS CACO3 0.	Finding: Report units:	142. MG/L
Sample date: Chemical: Dlr:	28-DEC-17 CALCIUM 0.	Finding: Report units:	40.7 MG/L
Sample date: Chemical: Dlr:	28-DEC-17 SPECIFIC CONDUCTANCE 0.	Finding: Report units:	576. US
Sample date: Chemical: Dlr:	26-SEP-17 RADIUM 226 COUNTING ERROR 0.	Finding: Report units:	0.123 PCI/L
Sample date: Chemical: Dlr:	26-SEP-17 GROSS ALPHA COUNTING ERROR 0.	Finding: Report units:	1.2 PCI/L
Sample date: Chemical: Dlr:	26-SEP-17 GROSS ALPHA 3.	Finding: Report units:	4.98 PCI/L
Sample date: Chemical: Dlr:	26-SEP-17 RADIUM 228 COUNTING ERROR 0.	Finding: Report units:	0.463 PCI/L
Sample date: Chemical: Dlr:	26-SEP-17 URANIUM COUNTING ERROR 0.	Finding: Report units:	0.528 PCI/L
Sample date: Chemical: Dlr:	26-SEP-17 GROSS ALPHA MDA95 0.	Finding: Report units:	0.989 PCI/L
Sample date: Chemical: Dlr:	26-SEP-17 URANIUM MDA95 0.	Finding: Report units:	0.47 PCI/L
Sample date: Chemical: Dlr:	26-SEP-17 RADIUM 226 MDA95 0.	Finding: Report units:	0.363 PCI/L
Sample date: Chemical:	26-SEP-17 RADIUM 228 MDA95	Finding: Report units:	0.505 PCI/L

Dlr: 0.

01-JUN-17 Sample date: Finding: 42.9 **CALCIUM** Chemical: Report units: MG/L

Dlr: 0.

Sample date: 01-JUN-17 Finding: 156. Chemical: ALKALINITY (TOTAL) AS CACO3 Report units: MG/L

DIr:

01-JUN-17 Sample date: Finding: 7.06

Chemical: PH, LABORATORY Report units: Not Reported

DIr:

Sample date:

Sample date: 01-JUN-17 620. Finding:

SPECIFIC CONDUCTANCE Chemical: Report units: US DIr:

22-MAY-17 0.43 Sample date: Finding: Chemical: Report units: MG/L

NITRATE (AS N) DIr: 0.4

20-JAN-17 Finding: Sample date: 1.8

UG/L DIBROMOCHLOROMETHANE (THM) Chemical: Report units: DIr:

20-JAN-17 Sample date: Finding: 5.5

Chemical: **BROMOFORM (THM)** Report units: UG/L

DIr:

Sample date: 20-JAN-17 Finding: 7.3 Chemical: TOTAL TRIHALOMETHANES Report units: UG/L

DIr:

Sample date: 30-NOV-16 Finding: 6.91

Chemical: PH, LABORATORY Report units: Not Reported

DIr: 0. 30-NOV-16

Finding: Chemical: **CALCIUM** Report units: MG/L DIr: 0.

30-NOV-16 Sample date: 120. Finding:

ALKALINITY (TOTAL) AS CACO3 Report units: MG/L Chemical: DIr:

Sample date: 30-NOV-16 Finding: 578.

SPECIFIC CONDUCTANCE Chemical: Report units: US DIr:

Sample date: 30-SEP-16 Finding: 67. Chemical: SODIUM

Report units: MG/L DIr: 0.

Sample date: 30-SEP-16 Finding: 34.3 Chemical: SULFATE Report units: MG/L

DIr: 0.5

Sample date: 30-SEP-16 Finding: 1.43

FLUORIDE (F) (NATURAL-SOURCE) Chemical: Report units: MG/L DIr: 0.1

37.1

Sample date: Chemical: Dlr:	30-SEP-16 CALCIUM 0.	Finding: Report units:	37.8 MG/L
Sample date: Chemical: Dlr:	30-SEP-16 MAGNESIUM 0.	Finding: Report units:	9.21 MG/L
Sample date: Chemical: Dlr:	19-MAY-16 NITRATE (AS N) 0.4	Finding: Report units:	0.91 MG/L
Sample date: Chemical: Dlr:	01-DEC-15 CHLORIDE 0.	Finding: Report units:	82. MG/L
Sample date: Chemical: Dlr:	01-DEC-15 HARDNESS (TOTAL) AS CACO3 0.	Finding: Report units:	161. MG/L
Sample date: Chemical: Dlr:	01-DEC-15 BICARBONATE ALKALINITY 0.	Finding: Report units:	147. MG/L
Sample date: Chemical: Dlr:	01-DEC-15 SPECIFIC CONDUCTANCE 0.	Finding: Report units:	611. US
Sample date: Chemical: Dlr:	01-DEC-15 TOTAL DISSOLVED SOLIDS 0.	Finding: Report units:	331. MG/L
Sample date: Chemical: Dlr:	01-DEC-15 TURBIDITY, LABORATORY 0.1	Finding: Report units:	0.18 NTU
Sample date: Chemical: Dlr:	01-DEC-15 PH, LABORATORY 0.	Finding: Report units:	7.49 Not Reported
Sample date: Chemical: Dlr:	01-DEC-15 ALKALINITY (TOTAL) AS CACO3 0.	Finding: Report units:	150. MG/L
Sample date: Chemical: Dlr:	01-DEC-15 DICHLOROMETHANE 0.5	Finding: Report units:	0.68 UG/L
Sample date: Chemical: Dlr:	01-DEC-15 AGGRSSIVE INDEX (CORROSIVITY) 0.	Finding: Report units:	11.7 Not Reported
Sample date: Chemical: Dlr:	01-DEC-15 PH, LABORATORY 0.	Finding: Report units:	7.6 Not Reported
Sample date: Chemical: Dlr:	23-DEC-14 NITRATE (AS NO3) 2.	Finding: Report units:	3.3 MG/L
Sample date: Chemical:	12-SEP-13 FOAMING AGENTS (MBAS)	Finding: Report units:	0.13 MG/L

Dlr: 0.

Sample date: 12-SEP-13 Finding: 16.
Chemical: CHROMIUM (TOTAL) Report units: UG/L

Dlr: 10.

Sample date: 12-SEP-13 Finding: 0.43 Chemical: FLUORIDE (F) (NATURAL-SOURCE) Report units: MG/L

Dlr: 0.1

Sample date: 12-SEP-13 Finding: 22.3 Chemical: SULFATE Report units: MG/L

Dlr: 0.5

Sample date: 12-SEP-13 Finding: 10.7 Chemical: MAGNESIUM Report units: MG/L

DIr: 0

Sample date: 12-SEP-13 Finding: 52.1 Chemical: CALCIUM Report units: MG/L

Dlr: 0.

Sample date: 12-SEP-13 Finding: 53.7 Chemical: SODIUM Report units: MG/L

Dlr: 0.

Sample date: 12-SEP-13 Finding: 600.
Chemical: BARIUM Report units: UG/L

Dlr: 100.

F24
WSW
CA WELLS CADDW2000013114

1/2 - 1 Mile Higher

GAMA:

 Well ID:
 CA3710011_004_004
 Well Type:
 MUNICIPAL

 Source:
 DDW
 Other Names:
 3710011-004

GAMA Pfas testing: Not Reported

Groundwater Quality Data: https://gamagroundwater.waterboards.ca.gov/gama/gamamap/public/GamaDataDisplay.asp?dataset=DHS&samp_

date=&global_id=&assigned_name=CA3710011_004_004&store_num=

GeoTracker Data: Not Reported

25

25 WNW CA WELLS CADWR0000001978 1/2 - 1 Mile

Higher

Well ID: 18S08E08F001S Well Type: UNK

Source: Department of Water Resources

Other Name: 18S08E08F001S GAMA PFAS Testing: Not Reported

Groundwater Quality Data: https://gamagroundwater.waterboards.ca.gov/gama/gamamap/public/GamaDataDisplay.asp?dataset=DWR&samp_

date=&global_id=&assigned_name=18S08E08F001S&store_num=

GeoTracker Data: Not Reported

Map ID Direction Distance

Elevation Database EDR ID Number

WSW 1/2 - 1 Mile Higher CA WELLS CADDW2000024042

GAMA:

 Well ID:
 CA3710011_006_006
 Well Type:
 MUNICIPAL

 Source:
 DDW
 Other Names:
 3710011-006

GAMA Pfas testing: Not Reported

Groundwater Quality Data: https://gamagroundwater.waterboards.ca.gov/gama/gamamap/public/GamaDataDisplay.asp?dataset=DHS&samp_

date=&global_id=&assigned_name=CA3710011_006_006&store_num=

GeoTracker Data: Not Reported

F27
WSW
CA WELLS CAUSGS000002500
1/2 - 1 Mile

Higher

GAMA:

Well ID: LUB-18 Well Type: MUNICIPAL

Source: United States Geological Survey

Other Names: LUB-18 GAMA Pfas testing: Not Reported

Groundwater Quality Data: https://gamagroundwater.waterboards.ca.gov/gama/gamamap/public/GamaDataDisplay.asp?dataset=USGS&samp

_date=&global_id=&assigned_name=LUB-18&store_num=

GeoTracker Data: Not Reported

F28

WSW 1/2 - 1 Mile Higher

Well ID: USGS-323600116110001 Well Type: UNK

Source: United States Geological Survey

Other Name: USGS-323600116110001 GAMA PFAS Testing: Not Reported

Groundwater Quality Data: https://gamagroundwater.waterboards.ca.gov/gama/gamamap/public/GamaDataDisplay.asp?dataset=USGSNEW&s

amp_date=&global_id=&assigned_name=USGS-323600116110001&store_num=

GeoTracker Data: Not Reported

29

WSW 1/2 - 1 Mile Higher

Well ID: T06019724295-MW-1 Well Type: MONITORING

Source: EDF Other Name: MW-1

GAMA PFAS Testing: Not Reported

Groundwater Quality Data: https://gamagroundwater.waterboards.ca.gov/gama/gamamap/public/GamaDataDisplay.asp?dataset=EDF&samp_

date=&global_id=T06019724295&assigned_name=MW-1&store_num=

GeoTracker Data: https://geotracker.waterboards.ca.gov/profile_report.asp?cmd=MWEDFResults&global_id=T06019724295&ass

igned_name=MW-1

CA WELLS

CA WELLS

CAUSGSN00002025

CAEDF0000035308

Map ID Direction Distance

Database EDR ID Number Elevation

G30 WSW 1/2 - 1 Mile

CA WELLS CADDW2000021378

Higher GAMA:

> Well ID: CA3710011_009_009 MUNICIPAL Well Type: DDW Source: Other Names: 3710011-009

GAMA Pfas testing: Not Reported

Groundwater Quality Data: https://gamagroundwater.waterboards.ca.gov/gama/gamamap/public/GamaDataDisplay.asp?dataset=DHS&samp_

date=&global_id=&assigned_name=CA3710011_009_009&store_num=

GeoTracker Data: Not Reported

G31 WSW **CA WELLS** CADDW2000012661

1/2 - 1 Mile Higher

GAMA:

Well ID: CA3710011_008_008 Well Type: MUNICIPAL Source: DDW Other Names: 3710011-008

GAMA Pfas testing: Not Reported

https://gamagroundwater.waterboards.ca.gov/gama/gamamap/public/GamaDataDisplay.asp?dataset=DHS&samp_ Groundwater Quality Data:

date=&global_id=&assigned_name=CA3710011_008_008&store_num=

GeoTracker Data: Not Reported

H32 ENE

1/2 - 1 Mile Higher

> Well ID: 18S08E09H002S Well Type: UNK

Source: Department of Water Resources

Other Name: 18S08E09H002S **GAMA PFAS Testing:** Not Reported

Groundwater Quality Data: https://gamagroundwater.waterboards.ca.gov/gama/gamamap/public/GamaDataDisplay.asp?dataset=DWR&samp_

date=&global_id=&assigned_name=18S08E09H002S&store_num=

GeoTracker Data: Not Reported

H33

FNF **CA WELLS** CADWR0000028535

1/2 - 1 Mile Higher

> Well ID: 18S08E09H001S Well Type: UNK

Source: Department of Water Resources

18S08E09H001S **GAMA PFAS Testing:** Not Reported Other Name:

Groundwater Quality Data: https://gamagroundwater.waterboards.ca.gov/gama/gamamap/public/GamaDataDisplay.asp?dataset=DWR&samp_

date=&global_id=&assigned_name=18S08E09H001S&store_num=

GeoTracker Data: Not Reported **CA WELLS**

CADWR0000028395

AREA RADON INFORMATION

State Database: CA Radon

Radon Test Results

Zipcode	Num Tests	> 4 pCi/L	
91934	1	0	

Federal EPA Radon Zone for SAN DIEGO County: 3

Note: Zone 1 indoor average level > 4 pCi/L.

: Zone 2 indoor average level >= 2 pCi/L and <= 4 pCi/L.

: Zone 3 indoor average level < 2 pCi/L.

Federal Area Radon Information for SAN DIEGO COUNTY, CA

Number of sites tested: 30

Area	Average Activity	% <4 pCi/L	% 4-20 pCi/L	% >20 pCi/L
Living Area - 1st Floor Living Area - 2nd Floor	0.677 pCi/L 0.400 pCi/L	100% 100%	0% 0%	0% 0%
Basement	Not Reported	Not Reported	Not Reported	Not Reported

PHYSICAL SETTING SOURCE RECORDS SEARCHED

TOPOGRAPHIC INFORMATION

USGS 7.5' Digital Elevation Model (DEM)

Source: United States Geologic Survey

EDR acquired the USGS 7.5' Digital Elevation Model in 2002 and updated it in 2006. The 7.5 minute DEM corresponds to the USGS 1:24,000- and 1:25,000-scale topographic quadrangle maps. The DEM provides elevation data with consistent elevation units and projection.

Current USGS 7.5 Minute Topographic Map Source: U.S. Geological Survey

HYDROLOGIC INFORMATION

Flood Zone Data: This data was obtained from the Federal Emergency Management Agency (FEMA). It depicts 100-year and 500-year flood zones as defined by FEMA. It includes the National Flood Hazard Layer (NFHL) which incorporates Flood Insurance Rate Map (FIRM) data and Q3 data from FEMA in areas not covered by NFHL.

Source: FEMA

Telephone: 877-336-2627

Date of Government Version: 2003, 2015

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002, 2005, 2010 and 2015 from the U.S. Fish and Wildlife Service.

State Wetlands Data: Wetland Inventory Source: Department of Fish and Wildlife

Telephone: 916-445-0411

HYDROGEOLOGIC INFORMATION

AQUIFLOW^R Information System

Source: EDR proprietary database of groundwater flow information

EDR has developed the AQUIFLOW Information System (AIS) to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted to regulatory authorities at select sites and has extracted the date of the report, hydrogeologically determined groundwater flow direction and depth to water table information.

GEOLOGIC INFORMATION

Geologic Age and Rock Stratigraphic Unit

Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - A digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

STATSGO: State Soil Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Service (NRCS)

The U.S. Department of Agriculture's (USDA) Natural Resources Conservation Service (NRCS) leads the national Conservation Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. Soil maps for STATSGO are compiled by generalizing more detailed (SSURGO) soil survey maps.

SSURGO: Soil Survey Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Service (NRCS)

Telephone: 800-672-5559

SSURGO is the most detailed level of mapping done by the Natural Resources Conservation Service, mapping scales generally range from 1:12,000 to 1:63,360. Field mapping methods using national standards are used to construct the soil maps in the Soil Survey Geographic (SSURGO) database. SSURGO digitizing duplicates the original soil survey maps. This level of mapping is designed for use by landowners, townships and county natural resource planning and management.

PHYSICAL SETTING SOURCE RECORDS SEARCHED

LOCAL / REGIONAL WATER AGENCY RECORDS

FEDERAL WATER WELLS

PWS: Public Water Systems

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Public Water System data from the Federal Reporting Data System. A PWS is any water system which provides water to at least 25 people for at least 60 days annually. PWSs provide water from wells, rivers and other sources.

PWS ENF: Public Water Systems Violation and Enforcement Data

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Violation and Enforcement data for Public Water Systems from the Safe Drinking Water Information System (SDWIS) after August 1995. Prior to August 1995, the data came from the Federal Reporting Data System (FRDS).

USGS Water Wells: USGS National Water Inventory System (NWIS)

This database contains descriptive information on sites where the USGS collects or has collected data on surface water and/or groundwater. The groundwater data includes information on wells, springs, and other sources of groundwater.

OTHER STATE DATABASE INFORMATION

Groundwater Ambient Monitoring & Assessment Program

State Water Resources Control Board

Telephone: 916-341-5577

The GAMA Program is Californias comprehensive groundwater quality monitoring program. GAMA collects data by testing the untreated, raw water in different types of wells for naturally-occurring and man-made chemicals. The GAMA data includes Domestic, Monitoring and Municipal well types from the following sources, Department of Water Resources, Department of Heath Services, EDF, Agricultural Lands, Lawrence Livermore National Laboratory, Department of Pesticide Regulation, United States Geological Survey, Groundwater Ambient Monitoring and Assessment Program and Local Groundwater Projects.

Water Well Database

Source: Department of Water Resources

Telephone: 916-651-9648

California Drinking Water Quality Database Source: Department of Public Health

Telephone: 916-324-2319

The database includes all drinking water compliance and special studies monitoring for the state of California since 1984. It consists of over 3,200,000 individual analyses along with well and water system information.

Geothermal Wells Listing

Department of Conservation Telephone: 916-445-9686

Geothermal well means a well constructed to extract or return water to the ground after it has been used for heating or cooling purposes. Geothermal wells in California (except for wells on federal leases which are administered by the Bureau of Land Management) are permitted, drilled, operated, and permanently sealed and closed (plugged and abandoned) under requirements and procedures administered by the Geothermal Section of the Department of Conservations Geologic Energy Management Division (CalGEM, formerly DOGGR).

California Oil and Gas Well Locations

Source: Dept of Conservation, Geologic Energy Management Division

Telephone: 916-323-1779

Oil and Gas well locations in the state.

PHYSICAL SETTING SOURCE RECORDS SEARCHED

California Earthquake Fault Lines

Source: California Division of Mines and Geology

The fault lines displayed on EDR's Topographic map are digitized quaternary fault lines prepared in 1975 by the United State Geological Survey. Additional information (also from 1975) regarding activity at specific fault lines comes from California's Preliminary Fault Activity Map prepared by the California Division of Mines and Geology.

RADON

State Database: CA Radon

Source: Department of Public Health

Telephone: 916-210-8558 Radon Database for California

Area Radon Information Source: USGS

Telephone: 703-356-4020

The National Radon Database has been developed by the U.S. Environmental Protection Agency

(USEPA) and is a compilation of the EPA/State Residential Radon Survey and the National Residential Radon Survey. The study covers the years 1986 - 1992. Where necessary data has been supplemented by information collected at private sources such as universities and research institutions.

EPA Radon Zones Source: EPA

Telephone: 703-356-4020

Sections 307 & 309 of IRAA directed EPA to list and identify areas of U.S. with the potential for elevated indoor

radon levels.

OTHER

Airport Landing Facilities: Private and public use landing facilities

Source: Federal Aviation Administration, 800-457-6656

Epicenters: World earthquake epicenters, Richter 5 or greater

Source: Department of Commerce, National Oceanic and Atmospheric Administration

California Earthquake Fault Lines: The fault lines displayed on EDR's Topographic map are digitized quaternary fault lines, prepared in 1975 by the United State Geological Survey. Additional information (also from 1975) regarding activity at specific fault lines comes from California's Preliminary Fault Activity Map prepared by the California Division of Mines and Geology.

STREET AND ADDRESS INFORMATION

© 2015 TomTom North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.

ATTACHMENT G-2 TOPOGRAPHIC MAPS

Jamucba Fire Station #43 Old Highway 80 Jacumba, CA 91934

Inquiry Number: 7580420.4

February 28, 2024

EDR Historical Topo Map Report

with QuadMatch™

EDR Historical Topo Map Report

02/28/24

Site Name: Client Name:

Jamucba Fire Station #43
Old Highway 80
Jacumba, CA 91934
EDR Inquiry # 7580420.4

Universal Engineering Sciences 1441 Montiel Rd Escondido, CA 92026 Contact: Adam Canfield

EDR Topographic Map Library has been searched by EDR and maps covering the target property location as provided by Universal Engineering Sciences were identified for the years listed below. EDR's Historical Topo Map Report is designed to assist professionals in evaluating potential liability on a target property resulting from past activities. EDRs Historical Topo Map Report includes a search of a collection of public and private color historical topographic maps, dating back to the late 1800s.

Search Res	ults:	Coordinates:	
P.O.#	4830.2400003	Latitude:	32.61814 32° 37' 5" North
Project:	Jamucba Fire Station #43	Longitude:	-116.18222 -116° 10' 56" West
•		UTM Zone:	Zone 11 North
		UTM X Meters:	576722.08
		UTM Y Meters:	3609250.35
		Elevation:	2801.30' above sea level
Maps Provid	ded:		
2021	1942		

2018 1939 2015

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, LLC. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. This Report is provided on an "AS IS", "AS AVAILABLE" basis. NO WARRANTY EXPRESS OR IMPLIED IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT.

ENVIRONMENTAL DATA RESOURCES, LLC AND ITS SUBSIDIARIES, AFFILIATES AND THIRD PARTY SUPPLIERS DISCLAIM ALL WARRANTIES, OF ANY KIND OR NATURE, EXPRESS OR IMPLIED, ARISING OUT OF OR RELATED TO THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES REGARDING ACCURACY, QUALITY, CORRECTNESS, COMPLETENESS, COMPREHENSIVENESS, SUITABILITY, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, MISAPPROPRIATION, OR OTHERWISE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, LLC OR ITS SUBSIDIARIES, AFFILIATES OR THIRD PARTY SUPPLIERS BE LIABLE TO ANYONE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES OF ANY TYPE OR KIND (INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS, LOSS OF USE, OR LOSS OF DATA), ARISING OUT OF OR IN ANY WAY CONNECTED WITH THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT. Any analyses, estimates, ratings, environmental risk levels, or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk or conditions in, on or at any property.

Copyright 2024 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, LLC or its affiliates. All other trademarks used herein are the property of their respective owners.

Topo Sheet Key

This EDR Topo Map Report is based upon the following USGS topographic map sheets.

2021 Source Sheets

Jacumba OE S 2021 7.5-minute, 24000

Jacumba 2021 7.5-minute, 24000

2018 Source Sheets

Jacumba OE S 2018 7.5-minute, 24000

Jacumba 2018 7.5-minute, 24000

2015 Source Sheets

Jacumba OE S 2015 7.5-minute, 24000

Jacumba 2015 7.5-minute, 24000

2012 Source Sheets

Jacumba OE S 2012 7.5-minute, 24000

Jacumba 2012 7.5-minute, 24000

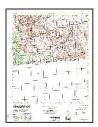
Topo Sheet Key

This EDR Topo Map Report is based upon the following USGS topographic map sheets.

1997 Source Sheets

Jacumba 1997 7.5-minute, 24000 Aerial Photo Revised 1975

1975 Source Sheets


Jacumba 1975 7.5-minute, 24000 Aerial Photo Revised 1975

1959 Source Sheets

Jacumba 1959 7.5-minute, 24000 Aerial Photo Revised 1955

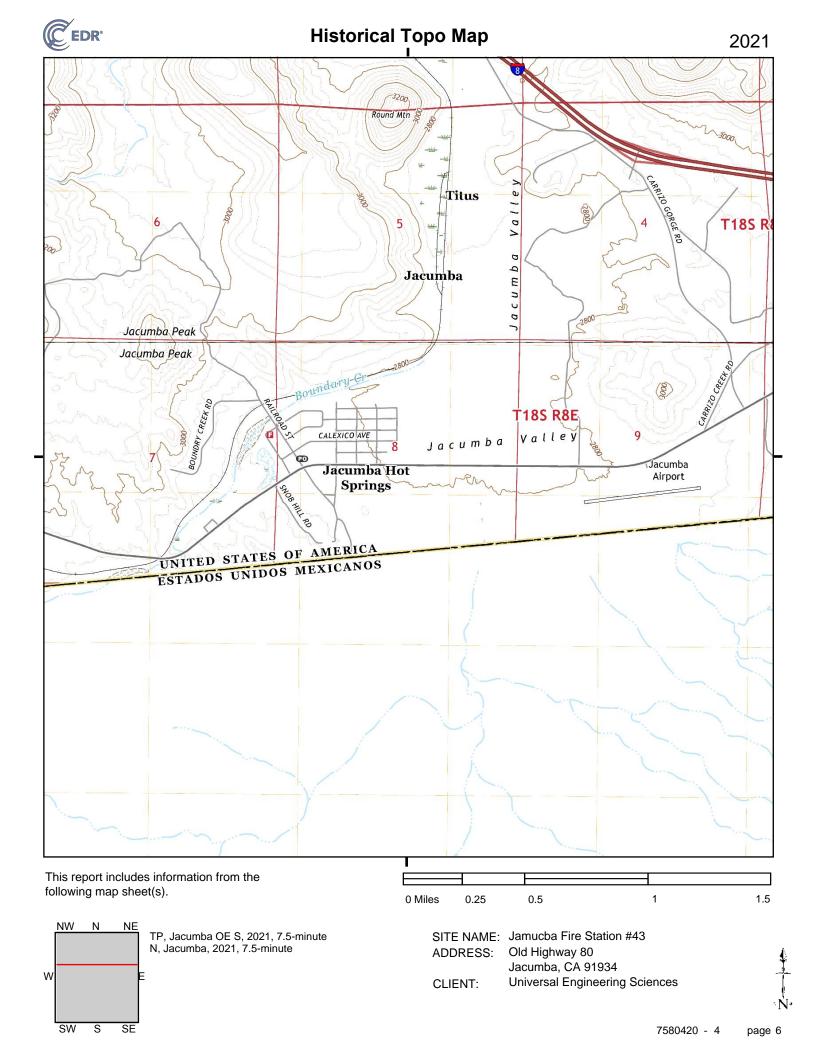
1947 Source Sheets

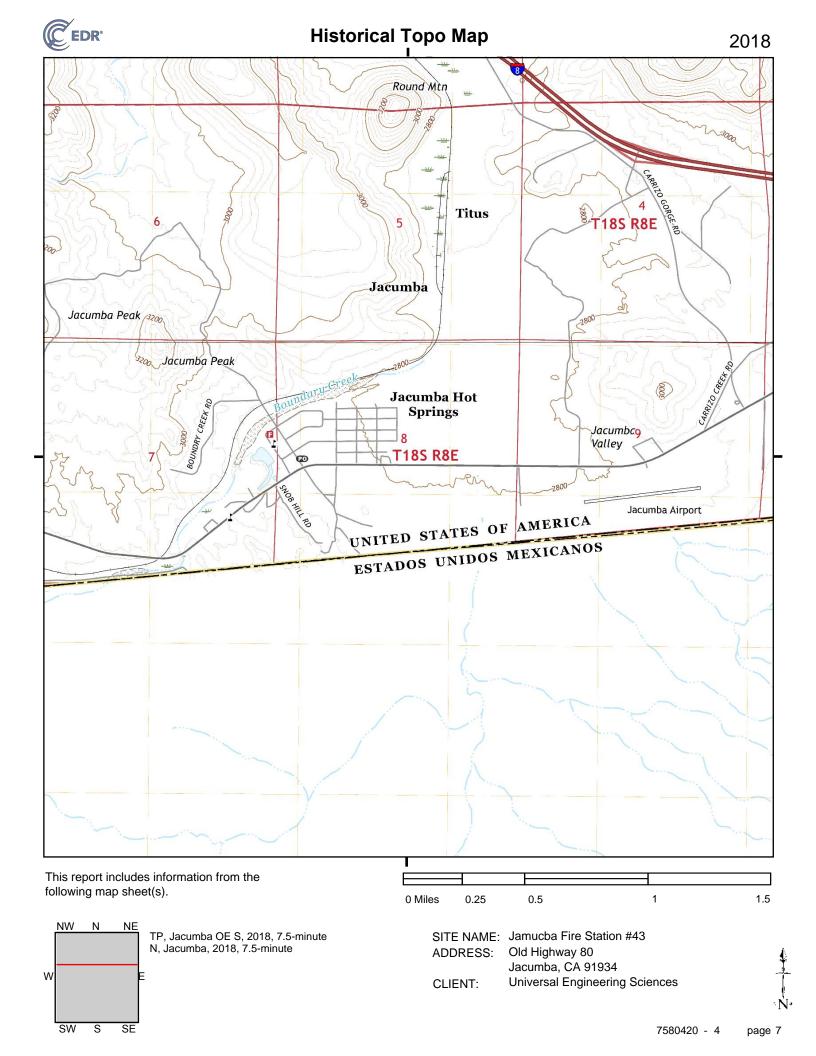
JACUMBA 1947 15-minute, 50000

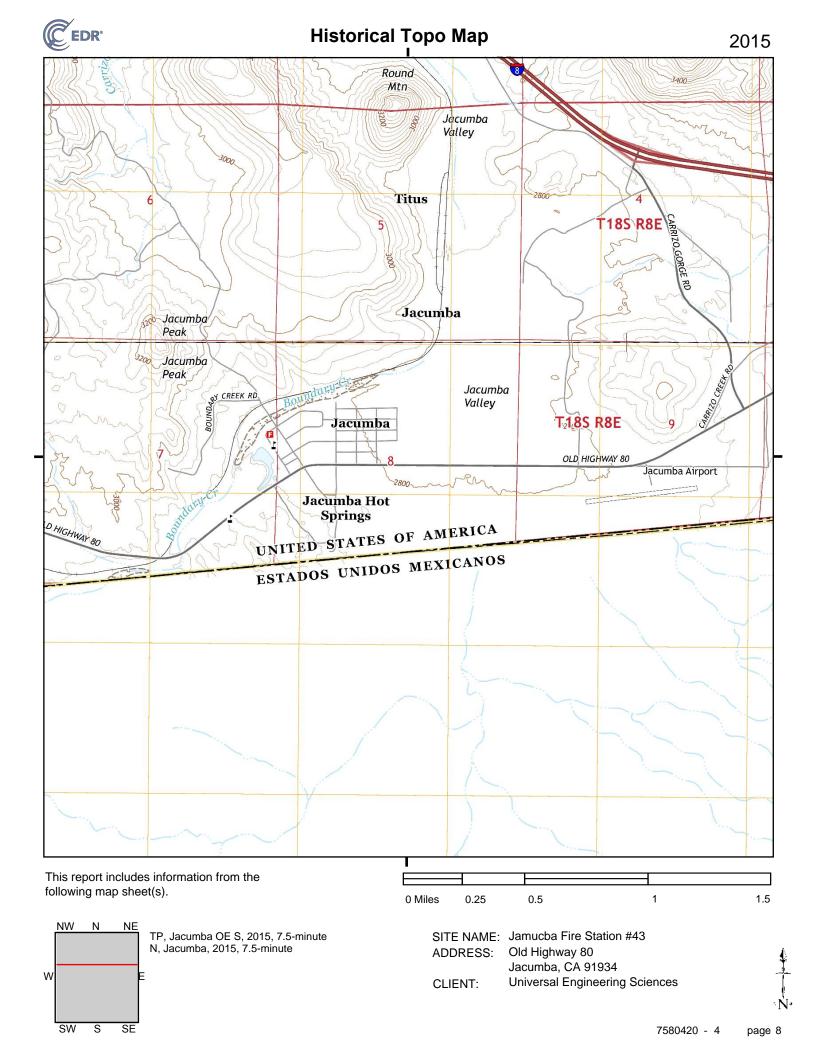
Topo Sheet Key

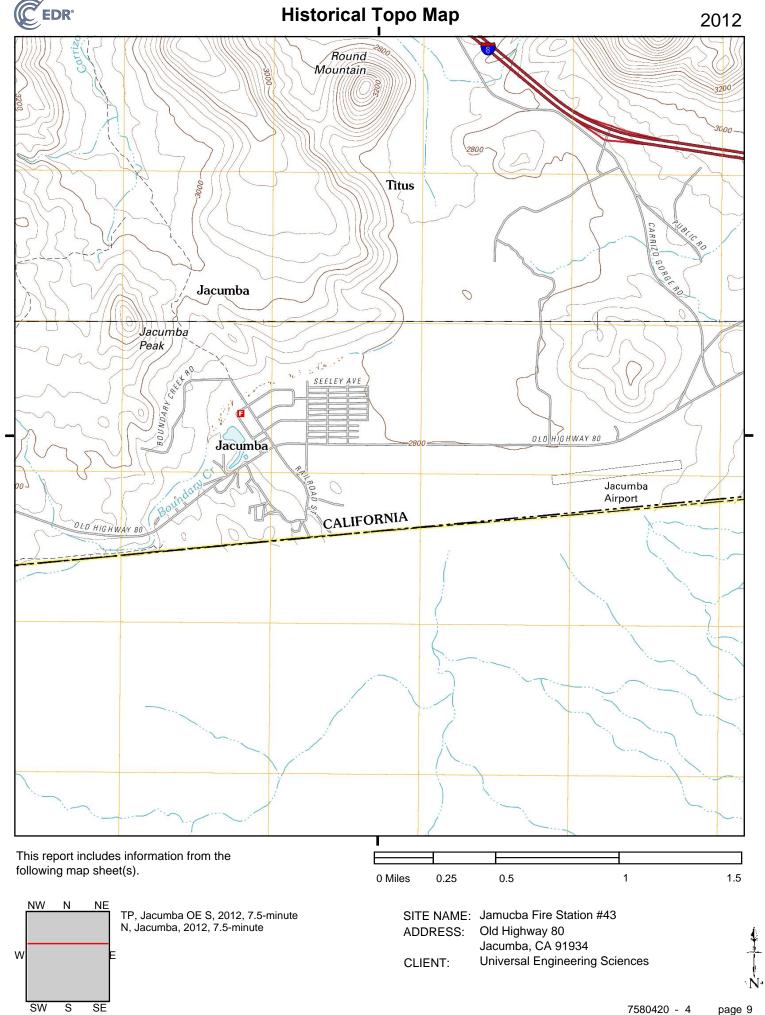
This EDR Topo Map Report is based upon the following USGS topographic map sheets.

1942 Source Sheets

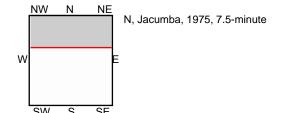



Jacumba 1942 15-minute, 62500 Aerial Photo Revised 1939


1939 Source Sheets




Jacumba 1939 15-minute, 62500 Aerial Photo Revised 1939


SITE NAME: Jamucba Fire Station #43 ADDRESS: Old Highway 80

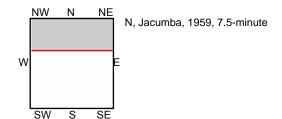
Jacumba, CA 91934

Universal Engineering Sciences CLIENT:

This report includes information from the following map sheet(s).

0 Miles 0.25 0.5 1 1.5

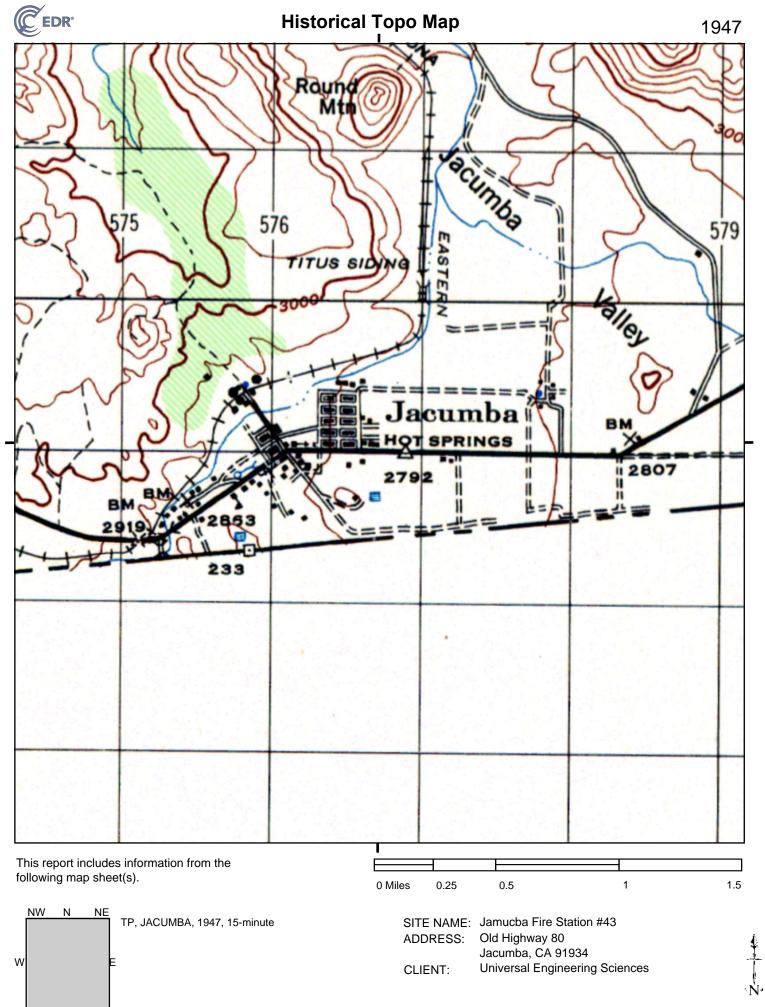
SITE NAME: Jamucba Fire Station #43

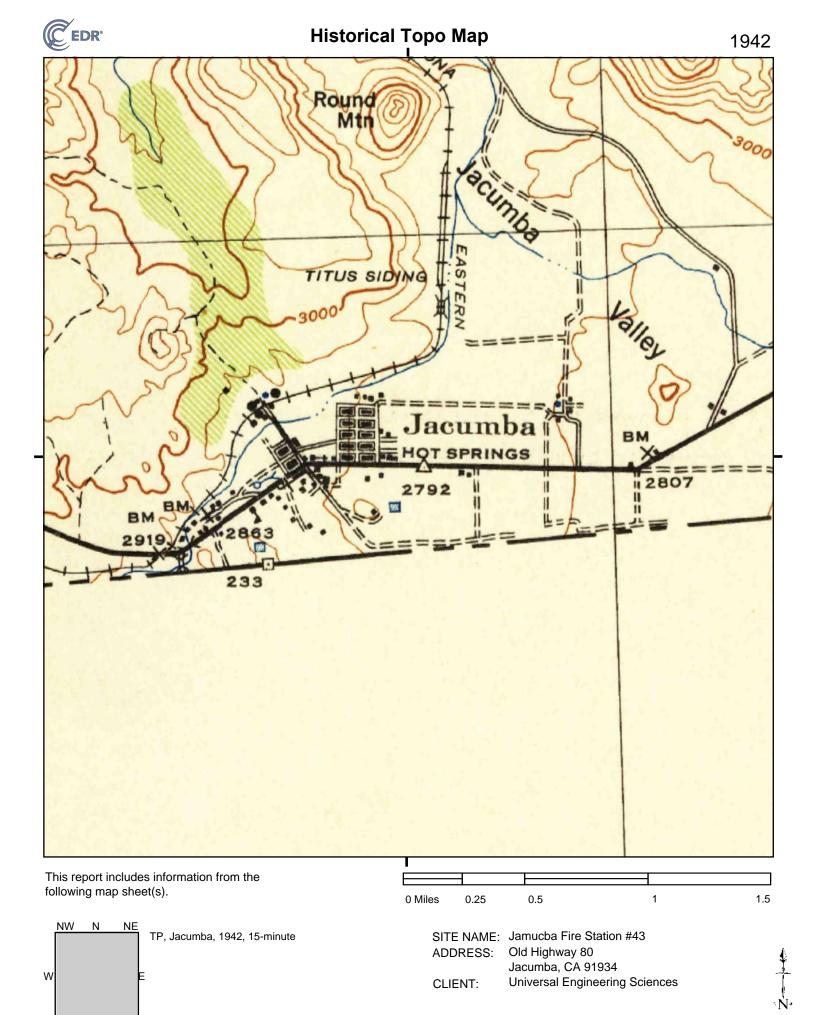

ADDRESS: Old Highway 80

Jacumba, CA 91934

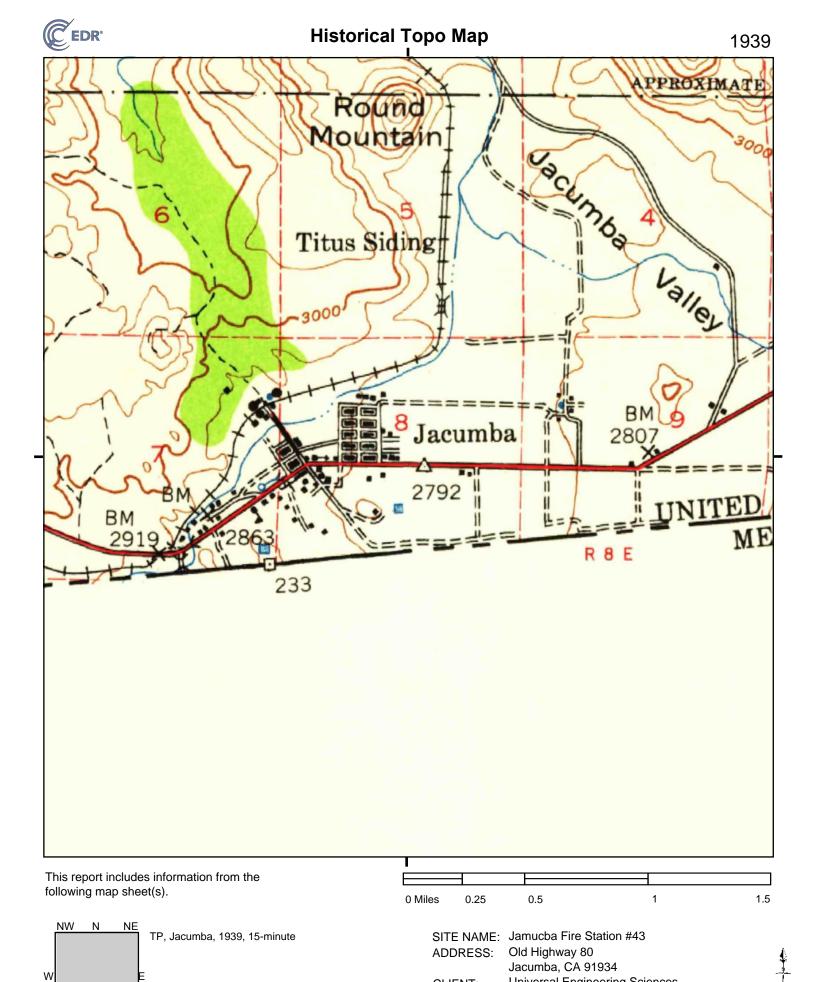
CLIENT: Universal Engineering Sciences

This report includes information from the following map sheet(s).


0 Miles 0.25 0.5 1 1.5


SITE NAME: Jamucba Fire Station #43

ADDRESS: Old Highway 80 Jacumba, CA 91934


CLIENT: Universal Engineering Sciences

SW

Universal Engineering Sciences

CLIENT:

SW

ATTACHMENT G-3 CITY DIRECTORY REPORT

Jamucba Fire Station #43

Old Highway 80 Jacumba, CA 91934

Inquiry Number: 7580420.5

March 01, 2024

The EDR-City Directory Image Report

TABLE OF CONTENTS

SECTION

Executive Summary

Findings

City Directory Images

Thank you for your business.

Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, LLC. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. This Report is provided on an "AS IS", "AS AVAILABLE" basis. NO WARRANTY EXPRESS OR IMPLIED IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, LLC AND ITS SUBSIDIARIES, AFFILIATES AND THIRD PARTY SUPPLIERS DISCLAIM ALL WARRANTIES, OF ANY KIND OR NATURE, EXPRESS OR IMPLIED, ARISING OUT OF OR RELATED TO THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES REGARDING ACCURACY, QUALITY, CORRECTNESS, COMPLETENESS, COMPREHENSIVENESS, SUITABILITY, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, MISAPPROPRIATION, OR OTHERWISE ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES. LLC OR ITS SUBSIDIARIES. AFFILIATES OR THIRD PARTY SUPPLIERS BE LIABLE TO ANYONE FOR ANY DIRECT. INCIDENTAL. INDIRECT. SPECIAL. CONSEQUENTIAL OR OTHER DAMAGES OF ANY TYPE OR KIND (INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS, LOSS OF USE, OR LOSS OF DATA), ARISING OUT OF OR IN ANY WAY CONNECTED WITH THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT. Any analyses, estimates, ratings, environmental risk levels, or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only an assessment performed by a qualified environmental professional can provide findings, opinions or conclusions regarding the environmental risk or conditions in, on or at any property.

Copyright 2023 by Environmental Data Resources, LLC. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, LLC, or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, LLC or its affiliates. All other trademarks used herein are the property of their respective owners.

EXECUTIVE SUMMARY

DESCRIPTION

Environmental Data Resources, Inc.'s (EDR) City Directory Report is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDR's City Directory Report includes a search of available business directory data at approximately five year intervals.

RECORD SOURCES

The EDR City Directory Report accesses a variety of business directory sources, including Haines, InfoUSA, Polk, Cole, Bresser, and Stewart. Listings marked as EDR Digital Archive access Cole and InfoUSA records. The various directory sources enhance and complement each other to provide a more thorough and accurate report.

EDR is licensed to reproduce certain City Directory works by the copyright holders of those works. The purchaser of this EDR City Directory Report may include it in report(s) delivered to a customer.

RESEARCH SUMMARY

The following research sources were consulted in the preparation of this report. A check mark indicates where information was identified in the source and provided in this report.

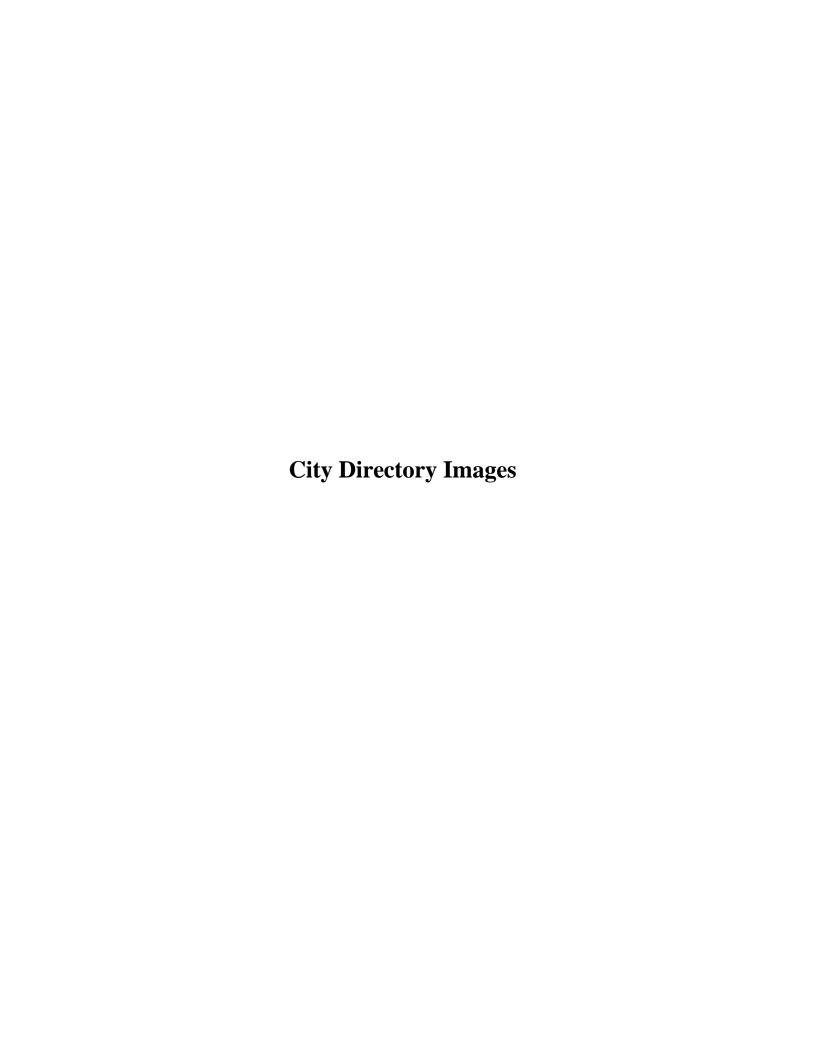
<u>Year</u>	Target Street	Cross Street	<u>Source</u>
2020	$\overline{\checkmark}$	$\overline{\checkmark}$	EDR Digital Archive
2017	$\overline{\checkmark}$		Cole Information
2014	$\overline{\checkmark}$	$\overline{\checkmark}$	Cole Information
2010	$\overline{\checkmark}$	$\overline{\checkmark}$	Cole Information
2005	$\overline{\checkmark}$	$\overline{\checkmark}$	Cole Information
2000	$\overline{\checkmark}$		Cole Information
1995	$\overline{\checkmark}$	$\overline{\checkmark}$	Cole Information
1992	$\overline{\checkmark}$	$\overline{\checkmark}$	Cole Information
1986		$\overline{\checkmark}$	Haines Criss-Cross Directory
1982		$\overline{\checkmark}$	Haines Criss-Cross Directory
1979		$\overline{\checkmark}$	Haines Criss-Cross Directory
1975		$\overline{\checkmark}$	Haines Criss-Cross Directory
1971		$\overline{\checkmark}$	Haines Criss-Cross Directory

FINDINGS

TARGET PROPERTY STREET

Old Highway 80 Jacumba, CA 91934

<u>Year</u>	<u>CD Image</u>	<u>Source</u>			
OLD HIGH	OLD HIGHWAY 80				
2020	pg A2	EDR Digital Archive			
2017	pg A3	Cole Information			
2014	pg A5	Cole Information			
2010	pg A7	ColeInformation			
2005	pg A9	ColeInformation			
2000	pg A10	Cole Information			
1995	pg A12	Cole Information			
1992	pg A14	Cole Information			
1986	-	Haines Criss-Cross Directory	Street not listed in Source		
1982	-	Haines Criss-Cross Directory	Street not listed in Source		
1979	-	Haines Criss-Cross Directory	Street not listed in Source		
1975	-	Haines Criss-Cross Directory	Street not listed in Source		
1971	-	Haines Criss-Cross Directory	Street not listed in Source		


7580420-5 Page 2

FINDINGS

CROSS STREETS

<u>Year</u>	<u>CD Image</u>	<u>Source</u>			
BRAWLEY	BRAWLEY AVE				
2020	pg.A1	EDR Digital Archive			
2017	-	Cole Information	Street not listed in Source		
2014	pg.A4	Cole Information			
2010	pg.A6	Cole Information			
2005	pg.A8	Cole Information			
2000	-	Cole Information	Street not listed in Source		
1995	pg.A11	Cole Information			
1992	pg. A13	Cole Information			
1986	pg. A15	Haines Criss-Cross Directory			
1982	pg. A16	Haines Criss-Cross Directory			
1979	pg. A17	Haines Criss-Cross Directory			
1975	pg. A18	Haines Criss-Cross Directory			
1971	pg. A19	Haines Criss-Cross Directory			

7580420-5 Page 3

Target Street Cross Street Source
- Source EDR Digital Archive

5116	CHERYL HANSEN-FURR
	FLOYD FURR
44510	MORGAN STEVENS
44525	ROBERT BRUNO
44541	FRANCISCO ULLOA
44542	SCOTT KING
44561	ASHLEY WESTON-COUSINS
44562	REAGAN SHALLAL
44566	ISAAC RAMIREZ
	JOSE AMEZCUA
44569	ARNE RAMSTEAD
44570	DONALD STEELE
44577	KATHRYN GRAZE
44600	HEATHER SCHWARTZ
44629	THOMAS BARRIOS

Target Street Cross Street Source

→ EDR Digital Archive

43850	ERIC RUTH GLEN RUTH

<u>Target Street</u> <u>Cross Street</u> <u>Source</u>
✓ - Cole Information

43850	DEMERCHANT, AMANDA

Target Street Cross Street Source
- Cole Information

	BRAWLEY AVE 2014
44624 44630 44654 44668 44671	RAMIREZ, MARIA WILKINS, ROBERT WEAKLAND, MARCY ROE, LASH A FISHER, JOE

<u>Target Street</u> <u>Cross Street</u> <u>Source</u>

✓ - Cole Information

45864	SHINSKY, MICHAEL R

Target Street Cross Street Source
- Cole Information

		DIAWLLI AVL	2010	
44624 44625 44630 44668	SANCHEZ, MICHAEL TAYLOR, JASON			

<u>Target Street</u> <u>Cross Street</u> <u>Source</u>

✓ - Cole Information

45864 \$	SHINSKY, MICHAEL R

Target Street Cross Street Source
- Cole Information

44600	COULTER, RANDY L

<u>Target Street</u> <u>Cross Street</u> <u>Source</u>

✓ - Cole Information

45864 \$	SHINSKY, MICHAEL R

<u>Target Street</u> <u>Cross Street</u> <u>Source</u>

✓ - Cole Information

45851 T	RENTI, MARIO

Target Street Cross Street Source
- Cole Information

44632 44654	GILLIARD, L RANDLE, JAKE

Target Street Cross Street Source

✓ - Cole Information

44681	HIGHLANDS SENIORS CITIZENS GRP

Target Street Cross Street Source
- Cole Information

	DRAWLETAVE	1992
1242 5116 5200 44501 44525 44553	WOODS, KENNETH D HILGER, J ALGIER, ROSS C SHIRLEY, DONALD WILLIAMS, H D THOMPSON, WILLIAM E	
44632	GILLIARD, L	

Target Street	Cross Street	<u>Source</u>
✓	-	Cole Information

JACI	JMBA	
721	ANDERSON JOHN A	766-4755 +6
722	BIEDEL MARVIN J	766-4396 +6
1242	WOODS ANNALEE	766-4024 3
	WDODS KENNETH D	766-4024
	WOODS N B	766-4571
5105	VANDERPOEL E C	766-4380 1
5116	WALLACE J	766-4723 +6
44510	SHIRLEY DONALD	766-4854 S
44553	THOMPSON W E	766-4601 4
44561	XXXX	00
44569	LAWRENCE GEO	766-4035 4
A SPECIAL OF	LAWRENCE RUTH	766-4035
44585	XXXX	00
44586	RUBIO MONICA	766-4082 +6
44600	XXXX	00
44622	XXXX	00
NO#	RANOLE JAKE O	766-4515
NO #	WYLY BEN	766-4353 9
	O BUS 18 RES	4 NEW

JACL	JMBA		
40.0	11/00000 1 1	705 4574	
20 30 mm 85 mm	WOODS L A	766-4571	1
	XXXX	00	
1246	THOMPSON W E	766-4601 5	Î
5105	VANOERPOEL E C	756-4380 1	
5118	WISE JOSEPH	766-4427 +2	
5208	XXXX	00	
44541		00	
44561	ZOL NIUCAOL	766-4513 8	
44569	WINTERTON WM T MRS		
44585		00	
[18] SET FFEE FEE	FOSTER MARIAN V	766-4846 1	
44600		00	
	ESKEW LILY	766-4285 1	
	RANDLE JAKE D	766-4515 5	
	WYLY BEN	766-4353 9	
110 #	0 BUS 15 RES	1 NEW	

JACC	JMBA	
1242	WOODS LA	766-4571
1243	XXXX	00
1246	THOMPSON W E	766-4601
5105	VAN DERPOEL E	766-4380-
5116	MCFARLAND EDNA	766-4214
44541	XXXX	00
44561	JOAQUIN JOS	766-4513
44569	WINTERTON WM T	766-4744
NO =	RANDLE JAKE D	766-4515
NO =	WYLY BEN	766-4353-
	O BUS 10 RES	3 NEW

Target Street

Cross Street

<u>Source</u>

Haines Criss-Cross Directory

BRAWLEY AVE 1975

BRAWLEY 92034 JACUMBA

711	CHRISSON RUB!	160-4289+5
848	NOLTA E L	766-4629 4
1242	WOODS L A	766-4571 0
1243	MATESZ GEO N	766-4726+5
1246	THOMPSON W E	766-4601+5
NO #	BURGOYNE LULA MRS	766-4384
NO #	RANOLE JAKE O	766-4515+5
***************************************	0 8US 7 RES	4 NEW

BRAWLEY AVE 1971

BRAWLEY 92034 JACUMBA

1242 HOOOS L A 766-4571 0 1246 CASE CLARENCE K 766-4535 5208 XXXX 00 NO # BURGOYNE LULA MRS 766-4384 766-4394 NO # RARKER L C * RANOLE JAKE NO 766-4515 0 8US 6 RES D NEW

ATTACHMENT G-4 AERIAL PHOTOGRAPHS

Jamucba Fire Station #43

Old Highway 80 Jacumba, CA 91934

Inquiry Number: 7580420.8

February 28, 2024

The EDR Aerial Photo Decade Package

EDR Aerial Photo Decade Package

02/28/24

Site Name: Client Name:

Jamucba Fire Station #43 Old Highway 80 Jacumba, CA 91934 EDR Inquiry # 7580420.8 Universal Engineering Sciences 1441 Montiel Rd Escondido, CA 92026 Contact: Adam Canfield

Environmental Data Resources, Inc. (EDR) Aerial Photo Decade Package is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDR's professional researchers provide digitally reproduced historical aerial photographs, and when available, provide one photo per decade.

Search Results:

Year	Scale	Details	Source
			
2020	1"=500'	Flight Year: 2020	USDA/NAIP
2016	1"=500'	Flight Year: 2016	USDA/NAIP
2012	1"=500'	Flight Year: 2012	USDA/NAIP
2009	1"=500'	Flight Year: 2009	USDA/NAIP
2005	1"=500'	Flight Year: 2005	USDA/NAIP
2002	1"=500'	Acquisition Date: January 01, 2002	USGS/DOQQ
1996	1"=500'	Acquisition Date: January 01, 1996	USGS/DOQQ
1994	1"=500'	Acquisition Date: January 01, 1994	USGS/DOQQ
1989	1"=500'	Flight Date: August 16, 1989	USDA
1985	1"=500'	Flight Date: July 24, 1985	USDA
1975	1"=500'	Flight Date: October 16, 1975	USGS
1953	1"=500'	Flight Date: March 30, 1953	USDA

When delivered electronically by EDR, the aerial photo images included with this report are for ONE TIME USE ONLY. Further reproduction of these aerial photo images is prohibited without permission from EDR. For more information contact your EDR Account Executive.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, LLC. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. This Report is provided on an "AS IS", "AS AVAILABLE" basis. NO WARRANTY EXPRESS OR IMPLIED IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, LLC AND ITS SUBSIDIARIES, AFFILIATES AND THIRD PARTY SUPPLIERS DISCLAIM ALL WARRANTIES, OF ANY KIND OR NATURE, EXPRESS OR IMPLIED, ARISING OUT OF OR RELATED TO THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES REGARDING ACCURACY, QUALITY, CORRECTNESS, COMPLETENESS, COMPREHENSIVENESS, SUITABILITY, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, MISAPPROPRIATION, OR OTHERWISE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, LLC OR ITS SUBSIDIARIES, AFFILIATES OR THIRD PARTY SUPPLIERS BE LIABLE TO ANYONE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES OF ANY TYPE OR KIND (INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS, LOSS OF USE, OR LOSS OF DATA), ARISING OUT OF OR IN ANY WAY CONNECTED WITH THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT. Any analyses, estimates, ratings, environmental risk levels, or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only an assessment performed by a qualified environmental professional can provide findings, opinions or conclusions regarding the environmental risk or conditions in, on or at any property.

Copyright 2024 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, LLC or its affiliates. All other trademarks used herein are the property of their respective owners.

ATTACHMENT G-5 SANBORN MAPS

Jamucba Fire Station #43 Old Highway 80 Jacumba, CA 91934

Inquiry Number: 7580420.3

February 28, 2024

Certified Sanborn® Map Report

02/28/24

Certified Sanborn® Map Report

Site Name: Client Name:

Jamucba Fire Station #43 Old Highway 80 Jacumba, CA 91934 EDR Inquiry # 7580420.3 Universal Engineering Sciences 1441 Montiel Rd Escondido, CA 92026

Contact: Adam Canfield

The Sanborn Library has been searched by EDR and maps covering the target property location as provided by Universal Engineering Sciences were identified for the years listed below. The Sanborn Library is the largest, most complete collection of fire insurance maps. The collection includes maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow, and others. Only Environmental Data Resources Inc. (EDR) is authorized to grant rights for commercial reproduction of maps by the Sanborn Library LLC, the copyright holder for the collection. Results can be authenticated by visiting www.edrnet.com/sanborn.

The Sanborn Library is continually enhanced with newly identified map archives. This report accesses all maps in the collection as of the day this report was generated.

Certified Sanborn Results:

Certification # 9247-4A84-B611 **PO #** 4830.2400003

Project Jamucba Fire Station #43

UNMAPPED PROPERTY

This report certifies that the complete holdings of the Sanborn Library, LLC collection have been searched based on client supplied target property information, and fire insurance maps covering the target property were not found.

Sanborn® Library search results

Certification #: 9247-4A84-B611

The Sanborn Library includes more than 1.2 million fire insurance maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow and others which track historical property usage in approximately 12,000 American cities and towns. Collections searched:

Library of Congress

University Publications of America

EDR Private Collection

The Sanborn Library LLC Since 1866™

Limited Permission To Make Copies

Universal Engineering Sciences (the client) is permitted to make up to FIVE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, LLC. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. This Report is provided on an "AS IS", "AS AVAILABLE" basis. NO WARRANTY EXPRESS OR IMPLIED IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, LLC AND ITS SUBSIDIARIES, AFFILIATES AND THIRD PARTY SUPPLIERS DISCLAIM ALL WARRANTIES, OF ANY KIND OR NATURE, EXPRESS OR IMPLIED, ARISING OUT OF OR RELATED TO THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES REGARDING ACCURACY, QUALITY, CORRECTNESS, COMPLETENESS, COMPREHENSIVENESS, SUITABILITY, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, MISAPPROPRIATION, OR OTHERWISE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, LLC OR ITS SUBSIDIARIES, AFFILIATES OR THIRD PARTY SUPPLIERS BE LIABLE TO ANYONE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES OF ANY TYPE OR KIND (INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS, LOSS OF USE, OR LOSS OF DATA), ARISING OUT OF OR IN ANY WAY CONNECTED WITH THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT. Any analyses, estimates, ratings, environmental risk levels, or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only an assessment performed by a qualified environmental professional can provide findings, opinions or conclusions regarding the environmental risk or conditions in, on or at any property.

Copyright 2024 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, LLC or its affiliates. All other trademarks used herein are the property of their respective owners.

APPENDIX G

LIQUEFACTION ANALYSIS

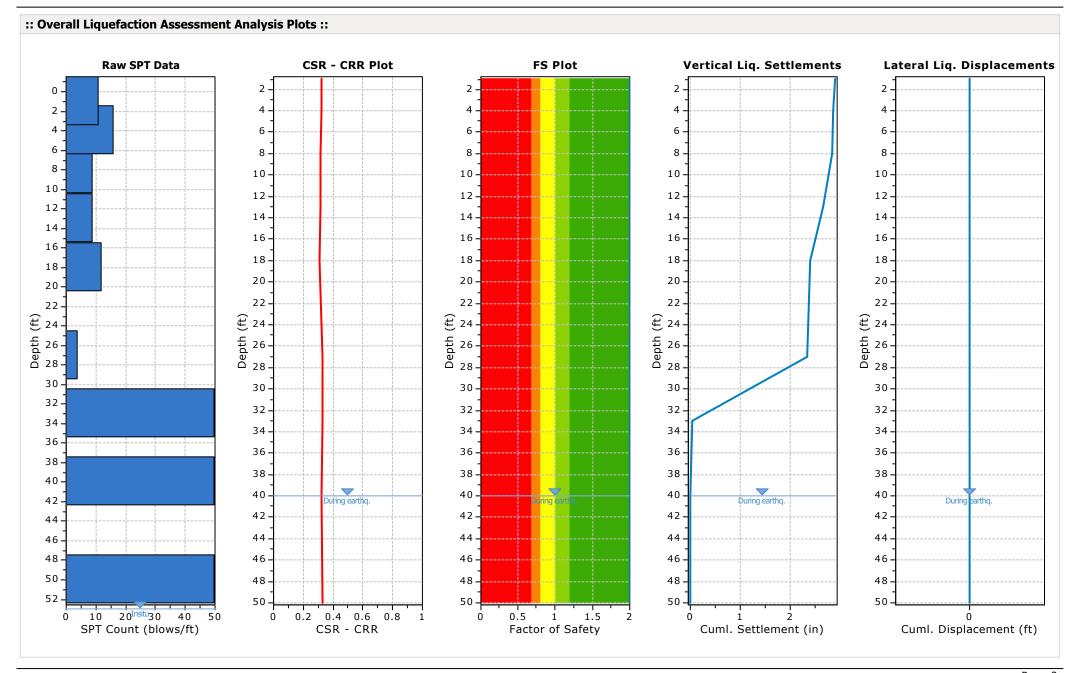
SPT BASED LIQUEFACTION ANALYSIS REPORT

Project title: SPT Name: B-5

Location:


:: Input parameters and analysis properties ::

Analysis method: Fines correction method: Sampling method: Borehole diameter: Rod length:


NCEER 1998 NCEER 1998 Sampler wo liners 200mm 4.50 ft

G.W.T. (in-situ): G.W.T. (earthq.): 53.00 ft 40.00 ft Earthquake magnitude M_w: 7.20 Peak ground acceleration: 0.55 g Eq. external load:

0.00 tsf

Corrected Blow Count N1(60),cs

LiqSVs 2.3.2.5 - SPT & Vs Liquefaction Assessment Software

:: Vertic	al settle	ments e	stimati	on for dry	y sands	::						
Depth (ft)	(N ₁) ₆₀	T _{av}	р	G _{max} (tsf)	а	b	γ (%)	ε ₁₅	N _c	ε _{Νc} (%)	Δh (ft)	ΔS (in)
1.00	22	0.02	0.04	245.84	0.13	45157.97	0.05	0.00	12.48	0.04	4.00	0.038
4.00	30	0.08	0.15	545.23	0.13	19656.15	0.05	0.00	12.48	0.03	4.00	0.025
8.00	14	0.17	0.31	604.56	0.14	12801.96	0.13	0.00	12.48	0.19	4.00	0.180
13.00	14	0.27	0.52	773.81	0.14	9520.08	0.15	0.00	12.48	0.21	5.00	0.250
18.00	18	0.37	0.72	991.88	0.15	7814.57	0.12	0.00	12.48	0.13	2.00	0.061
27.00	5	0.54	1.08	793.87	0.17	6115.61	0.67	0.04	12.48	3.23	3.00	2.326
33.00	57	0.64	1.32	1976.38	0.18	5418.20	0.05	0.00	12.48	0.01	9.00	0.031

Cumulative settlemetns: 2.911

Abbreviations

τ_{av}: Average cyclic shear stress

p: Average stress

 $\begin{array}{ll} G_{\text{max}} \colon & \text{Maximum shear modulus (tsf)} \\ \text{a, b:} & \text{Shear strain formula variables} \\ \text{y:} & \text{Average shear strain (\%)} \\ \text{ϵ_{15}:} & \text{Volumetric strain after 15 cycles} \end{array}$

N_c: Number of cycles

 ϵ_{Nc} : Volumetric strain for number of cycles N_c (%)

 Δh : Thickness of soil layer (in) ΔS : Settlement of soil layer (in)

:: Vertica	(ft) (in) weight (%) (ft) (in)											
Depth (ft)		q _c /N				_						
40.00	0.00	5.00	1.00	0.00	6.00	0.000						
50.00	0.00	5.00	1.00	0.00	7.00	0.000						

Cumulative settlements: 0.000

Abbreviations

 $\begin{array}{lll} D_{50} \colon & \text{Median grain size (in)} \\ q_{\text{d}} / N \colon & \text{Ratio of cone resistance to SPT} \\ e_{\text{v}} \colon & \text{Post liquefaction volumetric strain (\%)} \\ \Delta h \colon & \text{Thickness of soil layer to be considered (ft)} \end{array}$

s: Estimated settlement (in)

:: Latera	l displa	ements	estima	tion for	saturated	l sands ::
Depth (ft)	(N ₁) ₆₀	D _r (%)	Ymax (%)	d _z (ft)	LDI	LD (ft)
1.00	22	65.67	0.00	4.00	0.000	0.00
4.00	30	76.68	0.00	4.00	0.000	0.00
8.00	14	52.38	0.00	4.00	0.000	0.00
13.00	14	52.38	0.00	5.00	0.000	0.00
18.00	18	59.40	0.00	2.00	0.000	0.00
27.00	5	31.30	0.00	3.00	0.000	0.00
33.00	57	100.00	0.00	9.00	0.000	0.00
40.00	51	100.00	0.00	6.00	0.000	0.00
50.00	44	100.00	0.00	7.00	0.000	0.00

:: Lateral displacements estimation for saturated sands ::

D_r (%) d_z (ft) LDI Depth (N₁)₆₀ γ_{max} (%) (ft) (ft)

> **Cumulative lateral displacements:** 0.00

Abbreviations

Relative density (%) D_r:

Maximum amplitude of cyclic shear strain (%)

 γ_{max} : d_z : Soil layer thickness (ft) Lateral displacement index (ft) LDI: LD: Actual estimated displacement (ft)

APPENDIX H

WATER WELL SAMPLING AND DESIGN

Mr. Dylan DeJauregui Universal Engineering Services (UES) Project Geophysicist/Geologist 1441 Montiel Road, Suite 115 Escondido, CA 92026

Dylan,

March 28, 2024

By Email: Dylan.dj@teamues.com

9 pages plus 3 attachments

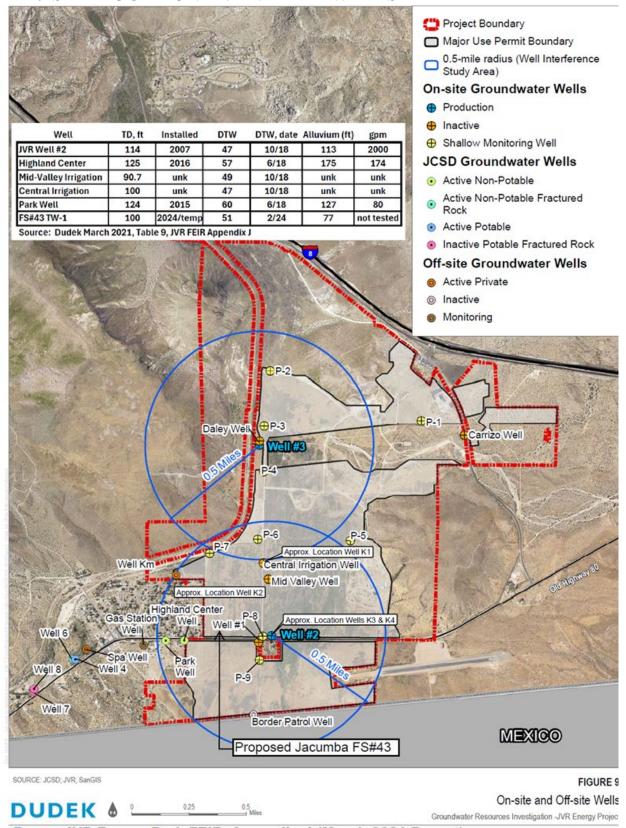
The following technical memorandum summarizes the results of sampling and testing of a temporary boring located at a proposed location for a water supply well to be used to support proposed Jacumba Fire Station 43 (the "Site"). The temporary boring (TW-1) was installed by UES to provide Site-specific lithologic information specific to the local aquifer. It was also used to obtain water samples for a preliminary water quality assessment prior to the installation of a water supply well. **Attachment A** contains a compilation of data obtained from TW-1 (Lab Reports, Sampling Documentation).

The Site is located within the Jacumba Valley Basin (DWR Basin 7-47), an area with historical agricultural water production from an alluvial aquifer system. The Site area has recently been the subject of detailed hydrologic testing and evaluation as part of the JVR Park Development. **Figure 1**, adapted from the FEIR¹, shows the Site location relative to nearby wells. **Attachment 2** contains the DWR summary for the groundwater basin, followed by a copy of a relevant portion of the FEIR.

It is understood that boring TW-1 was drilled at the location of the future water supply well. It consisted of an open boring drilled to a depth of 100 ft bgs and was temporarily completed with an inner PVC well screen to support water sampling. No filter pack was installed, and the boring was not developed prior to sampling.

In summary the following information was obtained by the installation and testing of TW-1 (Boring Log attached in **Figure 2**):

- Groundwater was observed to occur at a depth of ~51 feet bgs during sampling done 2/26/2024 (as documented in **Attachment 1**)
- Alluvium was encountered to a depth of 77 feet bgs. Bedrock, reported as local volcanics in the boring log, occurred below alluvium (**Figure 2**).
- The alluvial aquifer at TW-1 has a saturated thickness of approximately 26 ft and is comprised of sediment that ranged from coarse grained sand to fine-grained clayey silt. The results of sieve testing are described in the well recommendation section.
- Review of nearby well data indicates that the Site is located within a shallow portion of the alluvial aquifer (**Attachment 2**). Nearby wells appear to be located in thicker alluvium with production rates of 80 to 2000 gpm (see Table in **Figure 1**). The production rate of the Site well will likely be lower and will need to be determined following installation and testing of a properly developed water supply well.


¹https://www.sandiegocounty.gov/content/dam/sdc/pds/ceqa/JVR/PreBoard/Appendices/JVR%20FEIR%20Appendix%20J%20--%20Groundwater%20Resources%20Investigation%20Report.pdf

• Water quality testing was conducted 2/26/2024 (see **Table 1**). The temporary well did not have a filter pack and was not developed prior to sampling. Samples were obtained using low flow sampling methods from two depths that included the alluvium (at 67 ft bgs) and bedrock (at 80 ft bgs). The alluvial aquifer water sample results for inorganics showed it is potable but does exceed some secondary water quality standards and treatment may be desired for drinking water assuming the temporary well samples are representative. The bedrock water is high in TDS (960 mg/L) and coupled with expected low flow rates and will not be further considered as a water source.

In summary by method for sample TW1-67:

- Microbial. Coliform bacteria were present in the sample. However, the boring was open to the surface and the bacteria could be non-fecal and related to the introduction of surface soil. Water treatment (disinfection) will be necessary should these prove to be present in the water supply well.
- General Minerals and Metals. The TDS was 530 mg/L and well within the range allowable for drinking water. Iron and manganese levels exceeded secondary drinking water standards meaning that the presence of the metals can have aesthetic (odor/taste/color) or technical effects (corrosion/staining). Water treatment may be desirable even though the water is likely safe to use. Effects include:
 - Iron: rusty color; sediment; metallic taste; reddish or orange staining
 - Manganese: black to brown color; black staining; bitter metallic taste
- VOCs (Volatile Organic Compounds). No VOCs were detected. These are typically associated with gasoline and solvents.
- o Organochlorine Pesticides. The Site is understood to have been used for agriculture, none were detected.
- A short-term flow test of 2.5 to 3 gpm was attempted but the pump failed after 15 minutes due to high levels of suspended solids and the testing was terminated. The presence of ~26 feet of saturated alluvium is indicative of potential flow rates on the order of at least 5 to 10 gpm or higher depending on local aquifer conditions and well conditions.
- Samples of the alluvium encountered during drilling were tested by UES' geotechnical laboratory to support well design. These are depicted in **Figure 3** and confirmed the lithologies reported in the boring log for TW-1.
 - The production rate of a future well is dependent continuity and extent of higher permeability sands within the alluvium- this cannot be determined based on one test boring. However, the Jacumba Valley Basin has proven to support meaningful agricultural pumping rates as summarized in the table within **Figure 1.** Area well production rates are further documented in Appendix J of the JVR Energy Park FEIR which is included for reference in **Attachment 2**.

FIGURE 1: SITE LOCATION AND NEARBY WELLS

From: JVR Energy Park FEIR. Appendix J (March 2021 Report)

FIGURE 2: BORING LOG: TW-1

PROJ UES J				Jacumba 4830.240		ation #4	3	DRILLER: BAJA EXPLORATION SHEET: DRILL METHOD: CME-95: 8" AUGER DRILLIN	3 G DATE:	of 4 2/20/2024
LOGO	GED	BY:		DD				SAMPLE METHOD: RING, SPT and BULK ELEVAT	ION:	~ 2798 ft msl
Depth (Feet)	Bulk Sample	⊊	Blows/6"	Dry Density (pd)	Moisture (%)	U.S.C.S. Symbol	Graphic Log	BORING: TW-1	Labo	ratory Tests
<u> </u>	H	Н						DESCRIPTION	 	
- 50 						sw	<u>▼</u>	Medium dense, wet, gray-brown, fine- to coarse-grained SAND. Well graded Groundwater encountered at 53 feet bgs.		
-5 5 			3 5 8			sc		Loose, wet, dark gray-brown, fine-grained Clayey SAND.		
 			2 3 5			ML		Stiff, moist, dark gray, fine-grained Clayey SILT.		
 			4 5 5			SM		Medium dense, wet, dark gray, fine- to medium-grained Silty SAND.		
 -6 5 			8 9 12			sw sw		Medium dense, wet, gray, fine- to coarse-grained SAND. Well graded.		
 - 70- 			4 9 5 7 10			SM		Meidum dense, wet, dark gray, fine- to coarse-grained Silty SAND.		
 - 7 5			5 6 9							
	_									TW-1

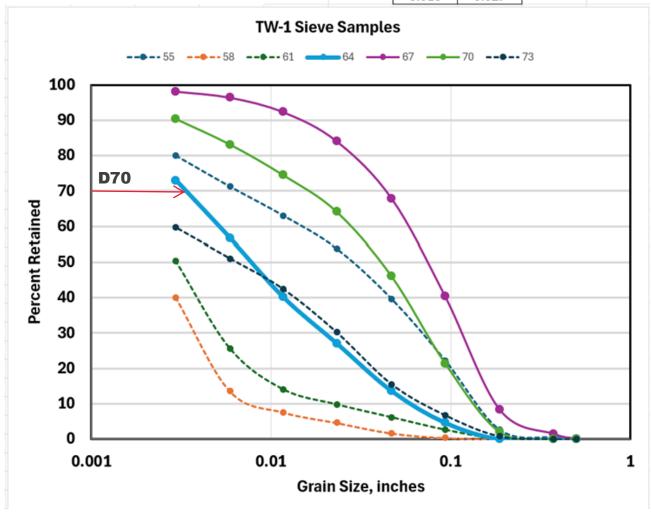
FIGURE 2: BORING LOG: TW-1, continued

PRO. UES . LOG	JOB	NO:		Jacumba 4830.240 DD		ation #43	3	DRILLER: BAJA EXPLORATION SHEET: DRILL METHOD: CME-95: 8" AUGER DRILLIN SAMPLE METHOD: RING, SPT and BULK ELEVAT	IG DATE:	of 4 2/20/2024 ~ 2798 ft msl
Depth (Feet)	Bulk Sample	Driven Type	Blows/6"	Dry Density (pcf)	Moisture (%)	U.S.C.S. Symbol	Graphic Log	BORING: TW-1	Labo	ratory Tests
_	╀	Н						DESCRIPTION		
-7 5 						SM		PEDDOCK.	-	
- 						SIVI		<u>BEDROCK:</u> Excavates as very dense, slightly moist, light reddishbrown, fine-grained Silty SAND.		
-80 			50/6"							
- 										
-8 5 		Ш	50/6"							
- 										
-90 										
- 										
-9 5 	1	Ш	50/6"							
 							/	Total Depth = 100.0 feet bgs. Groundwater encountered at 53 feet bgs. Temporary Well Constructed.		
		ш						remporary well constructed.		TW-1

TECHNICAL MEMORANDUM: JACUMBA FS#43, TEST RESULTS FOR E	BORING TW-1
TABLE 1: WQ Data (landscape)	

WATER SUPPLY WELL RECOMMENDATIONS

Samples obtained during drilling were submitted to UES' geotechnical lab for sieve analysis (**Attachment C**). The gradation curves are presented in **Figure 3**. Review of the boring log (**Figure 2**) shows that the highest permeability is expected to occur at a depth of 66 to 69 feet bgs due to the presence of a well graded medium dense, wet, gray, fine- to coarse-grained sand. It occurs within a layer of silty sand located between the depths of 62 and 77 feet bgs. In contrast the finest grained and likely lower permeability materials were from samples at 58 and 61 feet bgs.


A well screened from 62 to 72 feet would encounter the 'best' sands occurring in the samples obtained at 67 and 70 feet bgs. A 10-ft screen interval would employ a commonly used well casing length.

The gradation chart (**Figure 3**) is used here to provide an initial well design as follows:

- 1. The particle size where 70% is retained (D_{70}) for finest-grained material within the screened section is commonly used to design the filter pack, in this case using the sample results from 64 ft bgs. This corresponds to a sieve size between #100 and #200 which is a very fine-grained silty material.
- 2. A 6x to 9x multiplier is typically applied to the D_{70} grain size, resulting in a screen slot size of 0.020 to 0.030 inches. 0.020 is a commonly used screen size used for groundwater monitoring wells and can be considered conservative for this application to minimize potential sand pumping by the supply well. A #30 mesh sand is the smallest that can be used and not pass through the screen. Filter pack selection should be based on material availability and driller experience.
- 3. The small well screen slot size will limit the hydraulic efficiency of the well. A continuous wrap screen is recommended to maximize the open area within the well screen. Increasing the well diameter will also improve efficiency. A minimum 8-inch diameter well casing is recommended for use with a 4-inch submersible pump. The pump capacity (size) will need to be determined following well installation and development.
- 4. Given the depth of the water supply well (~72 ft bgs plus sump) and a well diameter of 8 to 10 inches the well can be installed using commonly available large diameter hollow stem auger drilling methods. The choice of drilling methods will be based on local driller experience and cost considerations.

FIGURE 3. GRADATION CHART: TW-1 SAMPLES

BORING	TW-1 SI	EVE SAMP	LES: PE	RCENT R	ETAINED				
		USCS	sc	ML	ML	SM	sw	SM	SM
Mesh	mm	Inches	55	58	61	64	67	70	73
	12.7	0.5	0.51	0.00	0.00	0.00	0.00	0.00	0.00
	9.5	0.374016	0.51	0.00	0.00	0.00	1.43	0.00	0.00
#4	4.75	0.187	2.61	0.00	0.05	0.00	8.30	2.05	0.79
#8	2.36	0.0931	22.25	0.36	2.66	4.70	40.36	21.45	6.76
#16	1.18	0.0469	39.64	1.66	6.20	13.67	67.87	46.05	15.51
#30	0.6	0.0232	53.79	4.63	9.84	27.13	84.08	64.14	30.20
#50	0.3	0.0117	63.05	7.60	14.11	40.16	92.33	74.50	42.42
#100	0.15	0.005906	71.25	13.58	25.70	56.77	96.43	83.18	51.06
#200	0.075	0.002953	80.02	40.10	50.47	72.99	98.16	90.41	59.65
	•			•		Screen Size	. Inches		
					Pct ret.	6x	9x		
					73	0.018	0.027		

WATER QUALITY TESTING AND POTENTIAL TREATMENT NEEDS

The data in **Table 1** provide a preliminary indication of the potential water quality to be expected from a water supply well completed in the alluvial aquifer. These analyses are preliminary and may not be fully representative of the water quality associated with a properly constructed and developed water well. Review of the current data supports that the water is potable but treatment may be desirable to address the impact of iron and manganese on drinking water. The need for disinfection will need to be assessed based on sampling from the properly completed and developed water well.

CONCLUDING REMARKS

TW-1 provided supporting data that a water supply well can feasibly be installed at the Site. Locally there are nearby wells with production rates with a minimum of 80 gpm; however, while the depth to groundwater is similar the alluvial thickness is comparatively less at the Site. A well screened from ~62 to 72 feet bgs will encounter a productive interval of sand within the aquifer. The flow rate of the well can only be determined after well installation and development. An 8-hour constant discharge test is recommended to assess the well performance and water quality samples will need to be obtained to confirm the water quality and determine the need or desire for water treatment.

Of potential concern to the local water supply is the pending construction of the JVR Energy park which will include the operation of Well #2 shown in **Figure 1**, located east of the site. An impact analysis was conducted in the FEIR (included in **Attachment 2**) to examine the effect of pumping at Well #2 on water levels in the Highland Park well located west of the Site. The analysis and associated mitigation plan did not contemplate a water supply well as proposed for the Site which is located between Well #2 and the Highland Park well. A dedicated sounding tube should be installed to facilitate water level measurements at the new water supply well and can be compared to the water level observed March 2024 during sampling to assess potential impacts. Should impacts be observed it is recommended that they be documented, and the information provided to the County of SanDiego² acting as lead agency for the project EIR.

Please let me know if you have any questions or concerns regarding this technical memorandum.

Sincerely,

Jay W Jones, CA PG#4106, Ph.D.

Principal Hydrogeologist, Environmental Navigation Services, Inc.

Phone: 760 944 9576 Email: jaywjones@environavigation.com

Attachments

1. Water Quality Sampling Results, 2/26/2024

2. Jacumba Valley Basin: Aquifer Information from DWR and the JVR Energy FEIR

3. Sieve Test Results (UES)

² County of San Diego Planning and Development Services, 5510 Overland Avenue, San Diego, California 92123 Contact indicated in the FEIR: Bronwyn Brown

ATTACHMENT 1. Water Quality Sampling Results, 2/26/2024

Low-Flow Sampling

Site Name: <u>Jacumba F. S.</u>

Site Address: Old Hwy 80, Jacumba, CA

Sampler: <u>D. Chambers</u>

Date: 2 / 26 / 24
Well ID: TW - 1 / 6 7

Purge Data										:
(Variable)	0.2 C	3-5%	0.2 u	20mv	0.2mg/L	10%	ML			Purge Pump: Peristaltic
Time	Temp.	E.C.(US)	ρH	ORP	· DO	Turbidity	Volume	DIW	Notes	Pump Set Time: /4:30
Start: 11:00	~~~~~	~~~~	~~~	~~~~~	~~~~~	~~~~~	~~~~~	51.39		Pump/Inlet Depth (BGS):6+/
11:10	20.0	870	7.67	107.9	2.91	99.15	2000	51,43	Slightly TURBIDIGREY	Decon:
11:15	20.1	807	7.62	95.0	2.26	91.88	3000	51-43		Triple-Rinse
11:20	20,4	806	7.37	68.6	1.49	67.60	4000	51.42		Total Vol. Purged 7.0 Lit
11:25	20.7	810	6.97	45.4	1.34	80.45	5000	51.43		Final Temp.: 20-8
11:30	20.8	812	6.80	39.5	1.34	69,99	6000	51.43		Final EC: <u>\$14</u>
11:35	20.8	814	6.81	35.0	1.32	66-88	7000	51.43		Final pH:
										Final ORP: <u>35.0</u>
										Final DO: <u>ル多</u>
										Final Turb: <u>66,88</u>
										Draw Down: _ 0 / 0 4
										Sample Start: 17:55
										Sample Stop 11:43
top: 11: 35										Analyses: Sample Containe
ate: (ML/Min.)	200									
Vell Data			Special N	otes for T	his Well:	· 				<u> :</u>
ore OD:	8									
asing ID:	2				; 					TW1-67
/ell TD:	100							<u> </u>		Sample ID: 27 <<<<
.T.W.:	51.39									(If different from above)
				10147 -4-		0-1-4				DTW @ Sample: <u>51.43</u>
				IDVV STOI	ea in 55-	Gal. drum	on site.		<u> </u>	
····· - <u></u> :					·					
										<u> </u>
					· -		: = :		·	Methods: 1=3 BV sample after 80%.
			Meters:					1		2= 1 BV and monitor parameters each 0.5 BV.
			Solinst 12			Spe	į			3=Low-flow.
			Oakton /	Horika /	YSI		-			4= slow recharge. 5= non-purge.
						: 				
						<u>. </u>	-			

Site Name: <u>Jacumba F. S.</u>

Low-Flow Sampling

Site Address: Old Hwy 80, Jacumba, CA

Sampler: <u>D. Chambers</u>

Date: $\frac{2}{126}$ $\frac{24}{126}$ Well ID: $\frac{7}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ 80

(Variable)	0.2 C	2 E0/								
	DOMESTIC TOWNS AND PROPERTY OF THE PROPERTY OF	3-5%	0.2 u		0.2mg/L	10%	ML			Purge Pump: Peristaltic
L	Temp	E.C.(US)	pH	ORP	DO	Turbidity	Volume	MTQ	Notes	Pump Set Time: 11:50
tart: 12;35	~~~~~	~~~~	~~~~~	~~~~~	~~~~~	~~~~	~~~~~	9,39	VERY TURBID/GREY	Pump/Inlet Depth (BGS): 80
12:45	19.2	821	6-58	114.0	1.94	76.69	2000	51.42		Decon:
12:50	19.3	817	6.52	113.0	2.11	139.49	3000	51.43		<u>Triple-Rinse</u>
12:50	19.3	818	6.51	113.1	2.48	127.24	4000	51. 43		Total Vol. Purged 6.04.
13:00	19.4	826	6.53	114.8	2.68	115.50	5000	57. 43		Final Temp.: <u>/</u> 9.4
13:05	19.4	828	6.52	114.9	2,71	115.90	6800	51. 43		Final EC: 828
										Final pH: 6 - 5 2
										Final ORP://-4,-9
								ļ		Final DO: <u>2.7/</u>
										Final Turb: _//5.90
										Draw Down: 0.04
		,								Sample Start: 13:05
								<u></u>	·	Sample Stop 13: 25
top: 13:05										Analyses: Sample Container
Rate: (ML/Min.)	200									
Vell Data			Special N	otes for T	his Well:				4+ Ft of Silt/clay IN BOTTOM of Well.	
ore OD:	8								Bottom of well.	
asing ID:	2							<u> </u>	<i>,</i>	Tw1-80
Vell TD:	96					·				Sample ID: <u>/ / < < < < </u>
).T.W.:	51.39							ļ		(If different from above)
										DTW @ Sample: <u>57.43</u>
	!			IDW stor	ed in 55-	Gal. drum	on site.			
	<u> </u>				: 					
							• • • • • • • • • • • • • • • • • • • •			
			B8-4							Methods: 1=3 BV sample after 80%.
			Meters:	202 Int		: 	·- · · · · · · · · · · · · · · · ·	<u> </u>		2= 1 BV and monitor parameters each 0.5 BV.
	-		Solinst 12			ane		ļ		3=Low-flow.
			Oakton /	HONOB /	101	,		<u>i</u>		4= slow recharge. 5= non-purge.
								ļ		

Date: 2/26/24

Well ID	Time	Elapsed time	DTW	GPM		Comments	/Notes					
TW-1	13:44	D	51.44	0		Static Water	er Level	51.44				
	:					Pump Star	t:	13:45	***************************************			
	13:45	Θ	51.44	2.0 START		Pump Stop):	14:01				
	13:47		51.95	2.5								
	13:50		52.04	2.5		JERY	SILty	Clayer	1 WATE	ere; H	19h 7	しれるか
	13:55		52.34			LESS	TURBIL	1/74				
	14:00		52,34	3.0		LE33 .	TURBIL	ity				
	14:01		52.34	b 57	opped oump	<u> </u>						
					Ump	Pump	lost CA	pacity.	plossic	3 le Dun	ns Da	macel
	14:03		51.60			Occl	usion.				, -	
	14:03:30)	51.50						:			
	14:11	· ·	ENI) T-	est, Pump	Failure	Unash	to DUN	A MORE	than	1.06	OM P	Peak
						Hz.			:			
ļ		:						_				
				· · · · -								<u> </u>
	,			····								
				: : :						: :		
	<u></u>					<u> </u>			 			
		:		. 					•			·
		:		: +								
								<u></u>				
						L						
		<u> </u>									· · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·				<u> </u>			·	-		
									<u> </u>			
						.				· · · · · · · · · · · · · · · · · · ·		
									<u> </u>			
		-									<u>;</u>	
	•	·		· .		L				-		
		:								:		
	-	<u>:</u>							·	1	:	
						<u> </u>	-					
	 1			·								
												
	<u> </u>				······································	<u> </u>	ļ	_				

08 March 2024

Jay Jones Environmental Navigation Services, Inc. P.O. Box 231026 Encinitas, CA 92024

RE:Jacumba F. S.

Work Order No.: 2402460

Attached are the results of the analyses for samples received by the laboratory on 02/27/24 09:40.

The samples were received by Sierra Analytical Labs, Inc. with a chain of custody record attached or completed at the submittal of the samples.

The analyses were performed according to the prescribed method as outlined by EPA, Standard Methods, and A.S.T.M.

The remaining portions of the samples will be disposed of within 30 days from the date of this report. If you require any additional retaining time, please advise us.

Sincerely,

Richard X. Forsyth

Laboratory Director

Sierra Analytical Labs, Inc. is certified by the California Department of Health Services (DOHS), Environmental Laboratory Accredidation Program (ELAP) No. 2320.

Project: Jacumba F. S.

P.O. Box 231026 Encinitas CA, 92024 Project Number: [none]
Project Manager: Jay Jones

Reported: 03/08/24 16:56

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
TWI-67	2402460-01	Water	02/26/24 11:35	02/27/24 09:40
TWI-80	2402460-02	Water	02/26/24 13:05	02/27/24 09:40

Project: Jacumba F. S.

P.O. Box 231026 Encinitas CA, 92024 Project Number: [none]
Project Manager: Jay Jones

Reported: 03/08/24 16:56

Microbiological Parameters by APHA Standard Methods Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
TWI-67 (2402460-01) Water Sampled: 0	2/26/24 11:35 Rece	eived: 02/2	7/24 09:40						
E. Coli	Absent		P/A	1	B4B2812	02/27/24	02/27/24 11:00	SM 9223B	
Plate Count-Pour Plate (1 ml)	>5700	1	CFU/mL	"	"	"	"	SM 9215B	
Standard Method Agar 35°C/48h	0		"	"	"	"	"	"	
Total Coliforms	Present		P/A	"	"	"	"	SM 9223B	EC-0

Environmental Navigation Services, Inc. Project: Jacumba F. S.

 P.O. Box 231026
 Project Number: [none]
 Reported:

 Encinitas CA, 92024
 Project Manager: Jay Jones
 03/08/24 16:56

Conventional Chemistry Parameters by APHA/EPA Methods Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit		Dilution	Batch	Prepared	Analyzed	Method	Notes
·				Dilution	Daton	i iepaieu	Allalyzed	Metriod	Notes
TWI-67 (2402460-01) Water Sampled: 02	2/26/24 11:35 Red	eived: 02/	27/24 09:40						
Total Alkalinity	213	4.00	mg/L CaCO3	1	B4B2910	02/27/24	02/27/24 10:50	SM 2320 B	
Carbonate Alkalinity	ND	4.00	"	"	"	"	"	"	
Bicarbonate Alkalinity	213	4.00	"	"	"	"	"	n .	
Hydroxide Alkalinity	ND	4.00	"	"	"	"	"	n .	
Chloride	106	0.500	mg/L	"	"	"	"	SM 4500-CI- B	
Methylene Blue Active Substances	ND	0.100	"	"	"	"	"	SM 5540-C	
pH	6.79	0.100	pH Units	"	u u	"	"	SM 4500-H+	H-0
at Temperature °C	22.4		"	"	"	"	"	II .	
Sulfate as SO4	83.0	1.00	mg/L	"	"	"	"	SM 4500-SO4 E	
Total Dissolved Solids	530	1.00	"	"	"	"	"	SM 2540 C	
TWI-80 (2402460-02) Water Sampled: 02	2/26/24 13:05 Red	eived: 02	27/24 09:40						
Total Alkalinity	536	4.00	mg/L CaCO3	1	B4B2910	02/27/24	02/27/24 10:50	SM 2320 B	
Carbonate Alkalinity	ND	4.00	"	"	"	"	"	n .	
Bicarbonate Alkalinity	536	4.00	"	"	"	"		"	
Hydroxide Alkalinity	ND	4.00	"	"	"	"	"	"	
Chloride	110	0.500	mg/L	"	u u	"	"	SM 4500-CI- B	
Methylene Blue Active Substances	ND	0.100	"	"	"	"	"	SM 5540-C	
pH	7.39	0.100	pH Units	"	"	"	"	SM 4500-H+	H-
	20.0		"	"	"	"	"	п	
at Temperature °C	22.2								
at Temperature °C Sulfate as SO4	120	1.00	mg/L	"	"	"	"	SM 4500-SO4 E	

Project: Jacumba F. S.

P.O. Box 231026 Encinitas CA, 92024 Project Number: [none]
Project Manager: Jay Jones

Reported: 03/08/24 16:56

Metals by EPA 200 Series Methods

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
TWI-67 (2402460-01) Water	Sampled: 02/26/24 11:35	Received: 02/2	7/24 09:40						
Calcium	4	18 0.50	mg/L	1	B4B2713	02/27/24	02/28/24 12:50	EPA 200.7	
Copper	NI	D 0.030	"	"	"	"	"	"	
Iron	0.9	0.010	"	"	"	"	"	"	
Potassium	NI	D 5.1	"	"	"	"	"	"	
Magnesium	1	l 1 0.75	"	"	"	"	"	"	
Manganese	0.3	0.010	"	"	"	"	"	"	
Sodium	9	1.5	"	"	"	"	"	"	
Zinc	NI	D 0.020	"	"	"	II .	"	"	
TWI-80 (2402460-02) Water	Sampled: 02/26/24 13:05	Received: 02/2	7/24 09:40						
Calcium	15	50 0.50	mg/L	1	B4B2713	02/27/24	02/28/24 12:50	EPA 200.7	
Copper	NI	D 0.030	"	"	"	"	"	n .	
Iron	1.	.3 0.010	"	"	"	"	"	n .	
Potassium	5.	.7 5.1	"	"	"	"	"	n .	
Magnesium	2	21 0.75	"	"	"	"	"	n .	
	1.	.1 0.010	"	"	"	"	"	m .	
Manganese	• • • • • • • • • • • • • • • • • • • •								
Manganese Sodium	10	1.5	"	"	"	"	"	"	

Environmental Navigation Services, Inc. Project: Jacumba F. S.

 P.O. Box 231026
 Project Number: [none]
 Reported:

 Encinitas CA, 92024
 Project Manager: Jay Jones
 03/08/24 16:56

Organochlorine Pesticides by EPA Method 8081A Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
TWI-67 (2402460-01) Water	Sampled: 02/26/24 11:35	Received: 02/2	7/24 09:40						
Aldrin	NE	0.020	μg/L	1	B4C0601	03/04/24	03/06/24 11:25	EPA 8081A	
HCH-alpha	NE	0.010	"	"	"	"	"	"	
HCH-beta	NE	0.020	"	"	"	"	"	II .	
HCH-delta	NE	0.010	"	"	"	"	"	"	
HCH-gamma (Lindane)	NE	0.010	"	"	"	"	"	"	
Chlordane	NE	0.050	"	"	"	"	"	"	
4,4´-DDD	NE	0.020	"	"	"	"	"	"	
4,4'-DDE	NE	0.030	"	"	"	"	"	"	
4,4'-DDT	NE	0.030	"	"	"	"	"	"	
Dieldrin	NE	0.010	"	"	"	"	"	"	
Endosulfan I	NE	0.020	"	"	"	"	"	"	
Endosulfan II	NE	0.050	"	"	"	"	"	II .	
Endosulfan sulfate	NE	0.010	"	"	"	"	"	II .	
Endrin	NE	0.060	"	"	"	"	"	"	
Endrin aldehyde	NE	0.010	"	"	"	"	"	"	
Endrin ketone	NE	0.010	"	"	"	"	"	"	
Heptachlor	NE	0.010	"	"	"	"	"	"	
Heptachlor Epoxide	NE	0.010	"	"	"	"	"	"	
Methoxychlor	NE	0.50	"	"	"	"	"	"	
Toxaphene	NE	0.50	"	"	"	"	"	"	
Surrogate: Decachlorobipher	nyl	46.8 %	42-1	47	"	"	"	n .	
Surrogate: Tetrachloro-meta-	-xylene	72.6 %	42-1	47	"	"	"	n .	

Environmental Navigation Services, Inc. Project: Jacumba F. S.

 P.O. Box 231026
 Project Number: [none]
 Reported:

 Encinitas CA, 92024
 Project Manager: Jay Jones
 03/08/24 16:56

Volatile Organic Compounds by EPA Method 8260B Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
TWI-67 (2402460-01) Water	Sampled: 02/26/24 11:35	Received: 02/27	7/24 09:40						
Benzene	ND	1.0	μg/L	1	B4C0101	02/29/24	03/01/24 11:09	EPA 8260B	
Bromobenzene	ND	1.0	"	"	"	"	"	"	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon Tetrachloride	ND	1.0	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chloroethylvinyl ether	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	e ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	u u	"	"	"	"	"	
Dichlorodifluoromethane	ND	1.0	u u	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	u u	"	"	"	"	"	
1,2-Dichloroethane	ND	1.0	u u	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
Ethylbenzene	ND	1.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Methylene Chloride	ND	1.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
4-Methyl-2-pentanone	ND		"	"	"	"	"	"	
Naphthalene	ND		"	"	"	"	"	"	
n-Propylbenzene	ND		"	"	"	"	"	"	
Styrene	ND		"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	

Project: Jacumba F. S.

P.O. Box 231026 Project Number: [none]
Encinitas CA, 92024 Project Manager: Jay Jones

Reported: 03/08/24 16:56

Volatile Organic Compounds by EPA Method 8260B Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
TWI-67 (2402460-01) Water	Sampled: 02/26/24 11:35 Re	eceived: 02/27	7/24 09:40						
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	B4C0101	02/29/24	03/01/24 11:09	EPA 8260B	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
Toluene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
Vinyl Chloride	ND	1.0	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	1.0	"	"	"	"	"	"	
Surrogate: Dibromofluorome	thane	117 %	80-1	20	"	"	"	"	
Surrogate: Toluene-d8		94.2 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorober	nzene	99.0 %	80-1	20	"	"	"	"	

Project: Jacumba F. S.

P.O. Box 231026 Encinitas CA, 92024 Project Number: [none]
Project Manager: Jay Jones

Reported: 03/08/24 16:56

Inductively Coupled Plasma (ICP) Spectroscopy

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit		Dilution	Batch	Prepared	Analyzed	Method	Notes	
TWI-67 (2402460-01) Water	Sampled: 02/26/24 11:35	Received: 02/	27/24 09:40)						
Hardness	16	5 1.25	mg/L	1	B4B2714	02/27/24	02/27/24 20:09	Calculation		
TWI-80 (2402460-02) Water Sampled: 02/26/24 13:05 Received: 02/27/24 09:40										
Hardness	46	9 1.25	mg/L	1	B4B2714	02/27/24	02/27/24 20:09	Calculation		

Project: Jacumba F. S.

P.O. Box 231026 Encinitas CA, 92024 Project Number: [none]
Project Manager: Jay Jones

Reported: 03/08/24 16:56

Metals by EPA 200 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

ND ND ND ND ND ND	0.50 0.030 0.010 0.75 0.010 5.1	mg/L " "	Prepared	: 02/27/24	Analyzed	: 02/28/24	
ND ND ND ND	0.030 0.010 0.75 0.010	"					
ND ND ND ND	0.010 0.75 0.010						
ND ND ND	0.75 0.010						
ND ND	0.010	"					
ND		"					
	5.1						
ND		"					
	1.5	"					
ND	0.020	"					
			Prepared	: 02/27/24	Analyzed	: 02/28/24	
10.9	0.50	mg/L	10.2		107	85-115	
0.198	0.030	"	0.200		98.8	85-115	
0.209	0.010	"	0.200		104	70-130	
10.6	0.75	"	10.2		104	85-115	
0.173	0.010	"	0.200		86.4	85-115	
11.0	5.1	"	10.2		108	85-115	
10.2	1.5	"	10.2		100	85-115	
0.207	0.020	"	0.200		104	85-115	
Sou	rce: 2402453	-03	Prepared	: 02/27/24	Analyzed	: 02/28/24	
109	0.50	mg/L	10.2	114	NR	70-130	C
0.201	0.030	"	0.200	ND	100	70-130	
0.306	0.010	"	0.200	0.124	91.3	70-130	
45.6	0.75	"	10.2	40.4	51.7	70-130	G
0.270	0.010	"	0.200	0.0745	97.5	70-130	
32.5	5.1	"	10.2	24.6	77.5	70-130	
247	1.5	"	10.2	276	NR	70-130	C
0.208	0.020	"	0.200	0.00790	99.9	70-130	
	ND 10.9 0.198 0.209 10.6 0.173 11.0 10.2 0.207 Sou 109 0.201 0.306 45.6 0.270 32.5 247	ND 0.020 10.9 0.50 0.198 0.030 0.209 0.010 10.6 0.75 0.173 0.010 11.0 5.1 10.2 1.5 0.207 0.020 Source: 2402453 109 0.50 0.201 0.030 0.306 0.010 45.6 0.75 0.270 0.010 32.5 5.1 247 1.5	ND 0.020 " 10.9 0.50 mg/L 0.198 0.030 " 0.209 0.010 " 10.6 0.75 " 0.173 0.010 " 11.0 5.1 " 10.2 1.5 " 0.207 0.020 " Source: 2402453-03 109 0.50 mg/L 0.201 0.030 " 0.306 0.010 " 45.6 0.75 " 0.270 0.010 " 32.5 5.1 " 247 1.5 "	ND 0.020 " Prepared 10.9 0.50 mg/L 10.2 0.198 0.030 " 0.200 0.209 0.010 " 0.200 10.6 0.75 " 10.2 0.173 0.010 " 0.200 11.0 5.1 " 10.2 10.2 1.5 " 10.2 0.207 0.020 " 0.200 Source: 2402453-∪3 Prepared 109 0.50 mg/L 10.2 0.201 0.030 " 0.200 0.306 0.010 " 0.200 45.6 0.75 " 10.2 0.270 0.010 " 0.200 32.5 5.1 " 10.2 247 1.5 " 10.2	ND 0.020 " Prepared: 02/27/24 2 10.9 0.50 mg/L 10.2 0.198 0.030 " 0.200 10.6 0.75 " 10.2 0.173 0.010 " 0.200 11.0 5.1 " 10.2 10.2 1.5 " 10.2 0.207 0.020 " 0.200 Source: 2402453-03 Prepared: 02/27/24 2 109 0.50 mg/L 10.2 114 0.201 0.030 " 0.200 ND 0.306 0.010 " 0.200 ND 0.306 0.010 " 0.200 0.124 45.6 0.75 " 10.2 40.4 0.270 0.010 " 0.200 0.0745 32.5 5.1 " 10.2 24.6 247 1.5 " 10.2 276	ND 0.020 " Prepared: 02/27/24 Analyzed 10.9 0.50 mg/L 0.198 0.030 " 0.200 98.8 0.209 0.010 " 0.200 104 10.6 0.75 " 10.2 104 0.173 0.010 " 0.200 86.4 11.0 5.1 " 10.2 108 10.2 1.5 " 10.2 100 0.207 0.020 " 0.200 104 Source: 2402453-03 Prepared: 02/27/24 Analyzed 109 0.50 mg/L 0.201 0.030 " 0.200 ND 100 0.306 0.010 " 0.200 ND 100 0.306 0.010 " 0.200 ND 100 0.306 0.010 " 0.200 0.124 91.3 45.6 0.75 " 10.2 40.4 51.7 0.270 0.010 " 0.200 0.0745 97.5 32.5 5.1 " 10.2 24.6 77.5 247 1.5 " 10.2 276 NR	ND 0.020 " Prepared: 02/27/24 Analyzed: 02/28/24 10.9 0.50 mg/L 10.2 107 85-115 0.198 0.030 " 0.200 98.8 85-115 0.209 0.010 " 0.200 104 70-130 10.6 0.75 " 10.2 104 85-115 0.173 0.010 " 0.200 86.4 85-115 11.0 5.1 " 10.2 108 85-115 10.2 1.5 " 10.2 108 85-115 0.207 0.020 " 0.200 104 85-115 Source: 2402453-03 Prepared: 02/27/24 Analyzed: 02/28/24 109 0.50 mg/L 10.2 114 NR 70-130 0.201 0.030 " 0.200 ND 100 70-130 0.306 0.010 " 0.200 ND 100 70-130 0.306 0.010 " 0.200 0.124 91.3 70-130 45.6 0.75 " 10.2 40.4 51.7 70-130 0.270 0.010 " 0.200 0.0745 97.5 70-130 32.5 5.1 " 10.2 24.6 77.5 70-130 247 1.5 " 10.2 24.6 77.5 70-130

Project: Jacumba F. S.

P.O. Box 231026 Encinitas CA, 92024 Project Number: [none]
Project Manager: Jay Jones

Reported: 03/08/24 16:56

Metals by EPA 200 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

	I	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B4B2713 - EPA 200 Series

Matrix Spike Dup (B4B2713-MSD1)	Soui	Prepared	: 02/27/24	Analyzed						
Calcium	111	0.50	mg/L	10.2	114	NR	70-130	1.20	20	QM-0
Copper	0.201	0.030	"	0.200	ND	101	70-130	0.249	20	
Iron	0.306	0.010	"	0.200	0.124	90.9	70-130	0.229	20	
Magnesium	46.3	0.75	"	10.2	40.4	57.7	70-130	1.35	20	QM-0
Manganese	0.268	0.010	"	0.200	0.0745	96.8	70-130	0.521	20	
Potassium	32.6	5.1	"	10.2	24.6	78.1	70-130	0.215	20	
Sodium	259	1.5	"	10.2	276	NR	70-130	4.98	20	QM-0
Zinc	0.206	0.020	"	0.200	0.00790	99.2	70-130	0.725	20	

Environmental Navigation Services, Inc. Project: Jacumba F. S.

 P.O. Box 231026
 Project Number: [none]
 Reported:

 Encinitas CA, 92024
 Project Manager: Jay Jones
 03/08/24 16:56

Organochlorine Pesticides by EPA Method 8081A - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B4C0601	- EPA 3510C	Sep Funnel
---------------	-------------	------------

Blank (B4C0C04 BLK4)				Droparad: 02/0	04/24 Apolyzod	. 03/06/34	
Blank (B4C0601-BLK1)	ND	0.000	/1	Prepared. 03/0	04/24 Analyzed	. 03/06/24	
4,4′-DDD	ND	0.020	μg/L "				
4,4'-DDE	ND	0.030	"				
4,4´-DDT	ND	0.030					
Aldrin	ND	0.020	"				
Chlordane	ND	0.050	"				
Dieldrin	ND	0.010	"				
Endosulfan I	ND	0.020	"				
Endosulfan II	ND	0.050	"				
Endosulfan sulfate	ND	0.010	"				
Endrin	ND	0.060	"				
Endrin aldehyde	ND	0.010	"				
Endrin ketone	ND	0.010	"				
HCH-alpha	ND	0.010	"				
HCH-beta	ND	0.020	"				
HCH-delta	ND	0.010	"				
HCH-gamma (Lindane)	ND	0.010	"				
Heptachlor	ND	0.010	"				
Heptachlor Epoxide	ND	0.010	"				
Methoxychlor	ND	0.50	"				
Toxaphene	ND	0.50	"				
LCS (B4C0601-BS1)				Prepared: 03/0	04/24 Analyzed	: 03/06/24	
4,4´-DDT	0.417	0.030	μg/L	0.500	83.5	80-120	
Aldrin	0.580	0.020	"	0.500	116	80-120	
Dieldrin	0.522	0.010	"	0.500	104	80-120	
HCH-gamma (Lindane)	0.446	0.010		0.500	89.2	80-120	
Heptachlor	0.543	0.010	"	0.500	109	80-120	

Project: Jacumba F. S.

P.O. Box 231026 Project Number: [none]
Encinitas CA, 92024 Project Manager: Jay Jones

Reported: 03/08/24 16:56

Organochlorine Pesticides by EPA Method 8081A - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B4C0601	- EPA 3510C	Sep Funnel

LCS (B4C0601-BS2)				Prepared: 03/0	04/24 Analyzed	: 03/06/24		
4,4´-DDT	0.497	0.030	μg/L	0.500	99.4	80-120		
Aldrin	0.539	0.020	"	0.500	108	80-120		
Dieldrin	0.554	0.010	"	0.500	111	80-120		
HCH-gamma (Lindane)	0.530	0.010	"	0.500	106	80-120		
Heptachlor	0.590	0.010	"	0.500	118	80-120		
LCS Dup (B4C0601-BSD1)				Prepared: 03/0	04/24 Analyzed	: 03/06/24		
4,4´-DDT	0.455	0.030	μg/L	0.500	91.1	80-120	8.66	30
Aldrin	0.589	0.020	"	0.500	118	80-120	1.61	30
Dieldrin	0.500	0.010	"	0.500	100	80-120	4.39	30
HCH-gamma (Lindane)	0.576	0.010	"	0.500	115	80-120	25.4	30
Heptachlor	0.588	0.010	"	0.500	118	80-120	7.96	30

Environmental Navigation Services, Inc. Project: Jacumba F. S.

 P.O. Box 231026
 Project Number: [none]
 Reported:

 Encinitas CA, 92024
 Project Manager: Jay Jones
 03/08/24 16:56

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B4C0101 - EPA 5030B P & T

Blank (B4C0101-BLK1)				Prepared: 02/29/24 Analyzed: 03/01/24
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	
1,1,1-Trichloroethane	ND	1.0	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	
1,1,2-Trichloroethane	ND	1.0	"	
1,1-Dichloroethane	ND	1.0	"	
1,1-Dichloroethene	ND	1.0	"	
1,2,3-Trichloropropane	ND	1.0	"	
1,2,4-Trichlorobenzene	ND	1.0	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	
1,2-Dichlorobenzene	ND	1.0	"	
1,2-Dichloroethane	ND	1.0	"	
1,2-Dichloropropane	ND	1.0	"	
1,3-Dichlorobenzene	ND	1.0	"	
1,4-Dichlorobenzene	ND	1.0	"	
2-Chloroethylvinyl ether	ND	5.0	"	
4-Chlorotoluene	ND	1.0	"	
4-Methyl-2-pentanone	ND	5.0	"	
Benzene	ND	1.0	"	
Bromobenzene	ND	1.0	"	
Bromochloromethane	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	1.0	"	
Carbon Tetrachloride	ND	1.0	"	
Chlorobenzene	ND	1.0	"	
Chloroethane	ND	1.0	"	
Chloroform	ND	1.0	"	
Chloromethane	ND	1.0	"	
cis-1,2-Dichloroethene	ND	1.0	"	
cis-1,3-Dichloropropene	ND	1.0	"	
Dibromochloromethane	ND	1.0	"	
Dibromomethane	ND	1.0	"	
Dichlorodifluoromethane	ND	1.0	"	
Ethylbenzene	ND	1.0	"	
Hexachlorobutadiene	ND	1.0	"	
m,p-Xylene	ND	1.0	"	

Project: Jacumba F. S.

 P.O. Box 231026
 Project Number: [none]
 Reported:

 Encinitas CA, 92024
 Project Manager: Jay Jones
 03/08/24 16:56

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (B4C0101-BLK1)				Prepared:	02/29/24	Analyzed	I: 03/01/24
Methyl tert-butyl ether	ND	1.0	μg/L				
Methylene Chloride	ND	1.0	"				
Naphthalene	ND	1.0	"				
n-Butylbenzene	ND	1.0	"				
n-Propylbenzene	ND	1.0	"				
o-Xylene	ND	1.0	"				
sec-Butylbenzene	ND	1.0	"				
Styrene	ND	1.0	"				
tert-Butylbenzene	ND	1.0	"				
Tetrachloroethene	ND	1.0	"				
Toluene	ND	1.0	"				
trans-1,2-Dichloroethene	ND	1.0	"				
trans-1,3-Dichloropropene	ND	1.0	"				
Trichloroethene	ND	1.0	"				
Trichlorofluoromethane	ND	1.0	"				
Vinyl Chloride	ND	1.0	"				
LCS (B4C0101-BS1)				Prepared:	02/29/24	Analyzed	I: 03/01/24
1,1-Dichloroethene	48.4	1.0	μg/L	50.0		96.9	80-120
Benzene	54.8	1.0	"	50.0		110	80-120
Chlorobenzene	52.7	1.0	"	50.0		105	80-120
Toluene	56.9	1.0	"	50.0		114	80-120
Trichloroethene	58.6	1.0	"	50.0		117	80-120
Matrix Spike (B4C0101-MS1)	Sourc	e: 2402460	-01	Prepared:	02/29/24	Analyzed	I: 03/01/24
1,1-Dichloroethene	44.2	1.0	μg/L	50.0	ND	88.4	50-150
Benzene	55.8	1.0	"	50.0	ND	112	37-151
Chlorobenzene	56.9	1.0	"	50.0	ND	114	37-160
Toluene	53.2	1.0	"	50.0	ND	106	47-150
Trichloroethene	54.0	1.0	"	50.0	ND	108	71-157

Project: Jacumba F. S.

P.O. Box 231026 Project Number: [none]
Encinitas CA, 92024 Project Manager: Jay Jones

Reported: 03/08/24 16:56

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B4C0101 - EPA 5030B P & T

Matrix Spike Dup (B4C0101-MSD1)	Source: 2402460-01			Prepared: 02/29/24 Analyzed: 03/01/24					
1,1-Dichloroethene	49.1	1.0	μg/L	50.0	ND	98.1	50-150	10.4	30
Benzene	54.5	1.0	"	50.0	ND	109	37-151	2.37	30
Chlorobenzene	53.8	1.0	"	50.0	ND	108	37-160	5.66	30
Toluene	59.1	1.0	"	50.0	ND	118	47-150	10.5	30
Trichloroethene	60.6	1.0	"	50.0	ND	121	71-157	11.5	30

Project: Jacumba F. S.

P.O. Box 231026 Project Number: [none]
Encinitas CA, 92024 Project Manager: Jay Jones

Reported: 03/08/24 16:56

Notes and Definitions

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS

recovery.

H-01 Sample received without sufficient time to complete analysis within recommended holding time.

EC-01 Result Present for Total Coliform, but Absent for E. Coli.

>5700 >5700

P Present

_A Absent

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

CHAIN OF CUSTODY RECORD

2		Environmental
ASS.	Chambers	Environmental .

2401460

	Chambers Environmental S	ervice:	S	423	30 5th	Ave, S	San D	iego,	CA	9210	03 61	9.78	2.96	40								alytic Lagi	al una H	lills,	CA		, ,	_	(-		
	Client Name/Consultant:	Enviro	onmenta	_ I Nav	igatio	n Ser	vices	s, Inc	: .																						
	Address:	PO Bo	PO Box 23106											Dat	:e:	21	126	12	34					-							
	City/State/Zip:	Encin	ncinitas, CA 92024											Report To: Jay Jones																	
	Project Manager:	Jay Jo	ones														_				jwi	ones	4@p	acb	ell.i	<u>net</u>					
	Telephone Number:	(760)	944-9576	i			Fa	x No	o.:_								_ 1	nvo	ice	To:	Sa	me									
	Sampler Name: (Print)	D. Cha	ambers		7	1		()								- , ,	_	Pro	ject	ID:	Jac	umba	F. S								
	Sampler Signature:					<u>L</u>											-		ojec	t #:											
			T	<u> </u>	T	Τ	T		M	latri:	X T T	ı		<u></u>		Ana	lyz∈	e Fo	Γ: -		· · · · · · · · · · · · · · · · · · ·			-	_	_		\blacksquare	$\overline{}$	_	т-
o) 22	Sample ID / Description Tw1-67 Tw1-80	Date Sampled	Lime Sampled	No. of Containers	X X	Composite	X Field Filtered	X X Groundwater	Wastewater Drinking Water	Springs	Soil	Other (specify):		ТРН	X VOC'S Method 8260B	1-4 Dioxane BTEX MTBE	1		X Bacteria, Tot. Coliform		X Het. Plate Count				High Concentrations	,,		1 1	-	X Standard IA1	
	Special Instructions: Call and confirm before analysis.							Met	thod	of	Ship	men	ıt:	(FE	DEX) C	ourri	ier, Cl	ient d			Temp	ory Co peratu s Free	ire L	Jpon	Rec			4,8 Y	″ (_ N	
	Relinquished by:	2/2	ate / 6/24	Ti	me	Rece		у: Д	Ci							Date 27/2		l	Time 94												
,	Relinquished by:	D	ate	Ti	me	Rece	ived b	oy:						\Box		Date			Time	•											

Jacumba

Jay W. Jones <JayWJones@environavigation.com>
To: "Andrew J. Kim" <andrewk@sierralabs.net>

Wed, Feb 28, 2024 at 3:29 PM

yep the lower sample is pretty dirty- sampled from an open borehole...

please let it settle and/or filter out the TSS so its representative of a well. forgot to ask and it may be tool late.

Jay W. Jones
Environmental Navigation Services, Inc.
760.944.9576
JayWJones@environavigation.com

ENSI Confidential Communication

This electronic transmission, and any documents attached hereto,

- (a) are protected by the Electronic Communications Privacy Act (18 USC §§ 2510-2521),
- (b) may contain confidential information protected by attorney-client privilege,
- as attorney work-product, or based on other privileges or provisions of law; and,
- (c) are for the sole use of the intended recipient named above.

If you have received this electronic message in error, please notify the sender and delete the electronic message.

Any disclosure, copying, distribution, or use of the contents of the information received in error is strictly prohibited.

[Quoted text hidden]

Fwd: Report #2402460

Jay W. Jones <JayWJones@environavigation.com>
To: "Andrew J. Kim" <andrewk@sierralabs.net>

Fri, Mar 1, 2024 at 4:42 PM

Andrew,

Please run the TW67 sample for organochlorine pesticides. Don't add TW80 water, we'll accept higher RLs.

thanks, Jay

----- Forwarded Message -----Subject:Report #2402460

Date:Fri, 01 Mar 2024 15:47:56 -0800

From:Sierra Analytical Labs <sierralabs@sierralabs.net>
Reply-To:Sierra Analytical Labs <sierralabs@sierralabs.net>
To:Jay W. Jones <JayWJones@environavigation.com>

Please Note: In order to help reduce our impact on the environment, a hard copy of the report will not be generated unless requested. Sierra will retain the original copy of the chain of custody on file unless otherwise directed by the client.

Sierra Analytical Labs, Inc.

26052 Merit Circle, Suite 104 Laguna Hills, CA 92653 Tel: (949) 348-9389 Fax: (949) 348-9115 www.sierralabs.net

2402460.pdf 282K

ATTACHMENT 2. Jacumba Valley Basin: Aquifer Information from DWR and the JVR Energy Park FEIR (Appendix J)

Jacumba Valley Groundwater Basin

Groundwater Basin Number: 7-47

• County: San Diego

• Surface Area: 6,400 acres (10 square miles)

Basin Boundaries and Hydrology

Jacumba Valley Groundwater Basin lies within the southeastern Peninsular Ranges. The basin is bounded by faults on the east and west, and by the international border with the Republic of Mexico on the south. The remainder of the basin is bounded by crystalline rocks of the Penninsular Ranges. A prominent hill adjacent to the basin is named Dubber Spur (Roff and Franzone 1994). Average annual rainfall ranges from about 14 to 16 inches. Several streams have deposited a thick section of alluvium in the central part of the valley, and several springs, including hot springs are found in the basin (Roff and Franzone 1994).

Hydrogeologic Information Water Bearing Formations

The main water bearing deposits in the basin are alluvium and the Table Mountain Formation.

Alluvium. Holocene age alluvium consists mostly of gravel, sand, and clay. These deposits are estimated to reach 100 (Roff and Franzone 1994) or 150 feet (Swenson 1980) in thickness. Wells completed in these deposits can produce more than 1,000 gpm (Roff and Franzone 1994). Specific yields for this unconfined aquifer have been estimated to range from 5 to 10 percent (Swenson 1980) and from 15 to 25 percent (Roff and Franzone 1994).

Table Mountain Formation. The Table Mountain Formation is comprised of Tertiary age, medium- to coarse-grained sandstone and conglomerate that rests unconformably on crystalline basement. This unit lies below and is separated from the Holocene alluvium by the Jacumba volcanics, creating a semi-confined to confined aquifer (Swenson 1980). The Table Mountain Formation may reach 600 feet thick and has specific yields ranging from 5 to 10 percent (Swenson 1980).

Groundwater Level Trends

Groundwater levels in the basin remained stable into the 1990s with some fluctuations caused by seasonal or climatic factors (Roff and Franzone 1994).

Groundwater Storage

Groundwater Storage Capacity. Total groundwater storage capacity is unknown.

Groundwater in Storage. Groundwater in storage in the alluvial aquifer was estimated to range from 9,600 to 16,000 af (Roff and Franzone 1994), or from 3,200 to 6,400 af (Swenson 1980). Groundwater stored in the Table Mountain Formation aquifer was estimated to range from 84,000 to 169,000 af (Swenson 1980).

Groundwater Budget (Type A)

Recharge from runoff in Boundary Creek was calculated by Roff and Franzone (1994) to be about 982 af/yr. Recharge from runoff in Flat Creek and Boundary Creek was calculated by Swenson (1980) at about 2,700 af/yr. Groundwater usage is approximately 810 af/yr (Roff and Franzone 1994).

Groundwater Quality

Characterization. Water type ranges from sodium chloride to sodium sulfate and calcium chloride to calcium sulfate. TDS content ranges from 296 to 6,100 mg/L and conductivity ranges from 499 to 8,030 μmhos (Roff and Franzone 1994). Water from one public supply well has a TDS concentration of 424 mg/L.

Impairments. Groundwater quality degrades in the basin northward towards Carrizo Gorge where spring water has TDS concentrations ranging from 2,000 to 6,000 mg/L. During the summer and fall, surface flow in Carrizo Gorge is dominated by this poor quality spring water. The Jacumba Valley groundwater basin is recharged from the Boundary Creek drainage and the Flat Creek drainage. Groundwater in the Boundary Creek drainage shows TDS concentrations ranging from 292 to 422 mg/L; whereas, the Flat Creek drainage has TDS concentrations that reach 1,640 mg/L (Roff and Franzone 1994).

Water Quality in Public Supply Wells

Constituent Group ¹	Number of wells sampled ²	Number of wells with a concentration above an MCL ³
Inorganics – Primary	1	0
Radiological	0	0
Nitrates	1	0
Pesticides	0	0
VOCs and SVOCs	0	0
Inorganics – Secondary	1	0

¹ A description of each member in the constituent groups and a generalized discussion of the relevance of these groups are included in *California's Groundwater – Bulletin 118* by DWR (2003).

² Represents distinct number of wells sampled as required under DHS Title 22 program from 1994 through 2000.

Each well reported with a concentration above an MCL was confirmed with a second detection above an MCL. This information is intended as an indicator of the types of activities that cause contamination in a given basin. It represents the water quality at the sample location. It does not indicate the water quality delivered to the consumer. More detailed drinking water quality information can be obtained from the local water purveyor and its annual Consumer Confidence Report.

Well Characteristics

Well yields (gal/min)

Municipal/Irrigation

Total depths (ft)

Domestic

Municipal/Irrigation

Active Monitoring Data

Agency Parameter Number of wells /measurement frequency

Department of Health Services and cooperators Title 22 water quality

Basin Management

Groundwater management:

Water agencies

Public Unknown
Private Unknown

References Cited

Roff, D. F., and J. G. Franzone. 1994. Proposed Final Report, Hydrogeological Investigation, Proposed Jacumba Valley Ranch Development, Jacumba, San Diego County, California. Leighton and Associates Inc. 19 p.

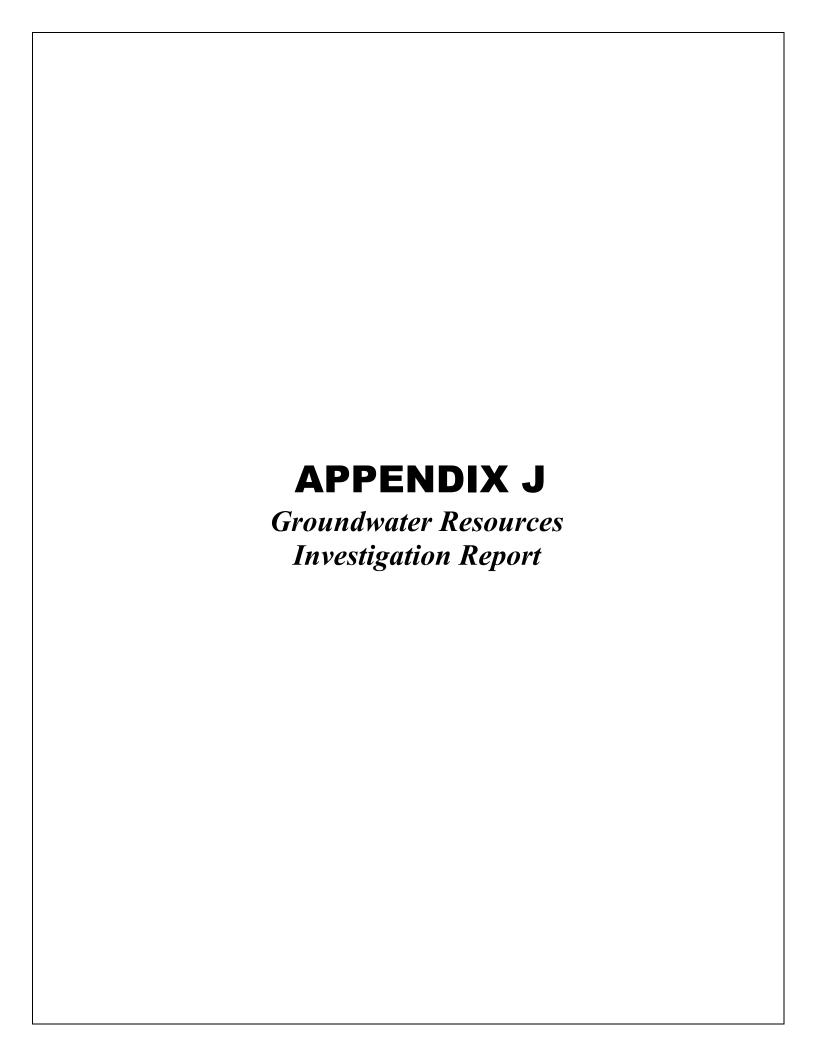
Swenson, G. A. 1980. The Groundwater Hydrology of Jacumba Valley, California and Baja California. Master's Thesis. San Diego State University. 264 p.

Additional References

California Department of Public Works. 1954. Ground Water Occurrence and Quality, Colorado River Basin Region. Water Quality Investigations Report No. 4.

California Department of Water Resources. 1967. Ground Water Occurrence and Quality: San Diego Region. Bulletin No. 106-2. 106 p.

California Department of Water Resources. 1975. California's Ground Water. Bulletin No. 118. 135 p.


Mido, K. W. 1990. Water Supply for Jacumba Valley Ranch. Consultant's Report.

Mido, K. W. 1991. The Use of Water from the Top Aquifer in Jacumba Valley Ranch During Drought Years. Consultant's Report.

Weber, F. J. 1963. Geology and Mineral Resources of San Diego County, California. California Division of Mines and Geology. County Report No. 3. Map.

Errata

Changes made to the basin description will be noted here.

Groundwater Resources Investigation Report JVR Energy Park Project Jacumba Hot Springs, San Diego County, California

Lead Agency:

County of San Diego Planning and Development Services

5510 Overland Avenue San Diego, California 92123 Contact: Bronwyn Brown

Project Proponent:

JVR Energy Park LLC

17901 Van Karman Avenue, Suite 1050 Irvine, California 92614 Contact: Patrick Brown

Prepared by:

DUDEK

605 Third Street Encinitas, California 92024

Trey Driscoll, PG No. 8511, CHG No. 936

Trey Direall

MARCH 2021

TABLE OF CONTENTS

<u>Sec</u>	tion		<u>Page No.</u>
ACR	ONYM	AS AND ABBREVIATIONS	V
EXE	CUTIV	VE SUMMARY	VII
1	INTI	RODUCTION	1
	1.1	Purpose of the Report	
	1.2	Project Location	
	1.3	Project Description	
	1.4	Project Water Demand	3
	1.5	Study Area	5
	1.6	Applicable Groundwater Regulations	5
2	EXIS	STING CONDITIONS	9
	2.1	Topographic and Hydrologic Setting	
	2.2	Climate	
		2.2.1 Precipitation	
		2.2.2 Evapotranspiration	
	2.3	Land Use	
	2.4	Geology and Soils	
		2.4.1 Geology	
		2.4.2 Soils	
	2.5	Hydrogeologic Units	
	2.6	Current Groundwater Demand	
	2.7	Hydrogeologic Inventory and Groundwater Level Trends	
	2.8	Water Quality	
3		FER QUANTITY IMPACTS ANALYSIS	
	3.1	50% Reduction of Groundwater Storage	
		3.1.1 Guidelines for Determination of Significance	
		3.1.2 Methodology	
		3.1.3 Significance of Impacts Prior to Mitigation	
		3.1.4 Mitigation Measures and Design Considerations	
		3.1.5 Conclusions	
	3.2	Well Interference and Groundwater Dependent Habitat	
		3.2.1 Guidelines for Determination of Significance	
		3.2.2 Aquifer Testing	
		3.2.3 Significance of Impacts Prior to Mitigation	44

i

Sect	<u>ion</u>	Page No.
	3.2.4 Mitigation Measures and Design Considerations	45
	3.2.5 Conclusions	45
4	WATER QUALITY IMPACT ANALYSIS	47
5	SUMMARY OF PROJECT IMPACTS AND MITIGATION	49
	5.1 50% Reduction in Groundwater Storage	49
	5.2 Well Interference	49
	5.3 Groundwater-Dependent Habitat	50
	5.4 Mitigation Measures	50
6	REFERENCES	51
7	LIST OF PREPARERS AND PERSONS AND	
,	ORGANIZATIONS CONTACTED	57
APP	ENDICES	
A	Construction and Operational Water Demand Estimates	
<u>B</u>	JVR Energy Park Project Revised Construction Water	
	Demand Memorandum	
<u>B</u> <u>C</u>	Well Completion Information	
$\underline{C}\underline{D}$	Well #2 Aquifer Test AQTESOLV Data	
<u>₽</u> <u>E</u>	Well #3 Aquifer Test Report	
<u>E</u> <u>F</u>	Groundwater Monitoring and Mitigation Report for the JVR Energy Park P	roject
EXH	IBITS	
1 2	Annual Precipitation Data Jacumba Rain Gauge 1963 to 2011	

TABLE OF CONTENTS (CONTINUED)

Page No.

FIGURES

1	Regional Location	59
2	Vicinity Map	61
3	Hydrologic Areas	63
4	Regional Mean Annual Precipitation	65
5	Current General Plan Land Use	67
6	Regional Geologic Map	69
7	Soils Map	71
8	Hydrogeologic Units	73
9	On-Site and Off-Site Wells	75
10	Potential Groundwater-Dependent Habitat	77
11	Well #2 24-Hour Constant Rate Test: Well #2 Drawdown	79
12	Well #2 24-Hour Constant Rate Test: Well #1 Drawdown	81
13	Well #2 24-Hour Constant Rate Test: Well #2 Projected Drawdown	83
14	Well #2 24-Hour Constant Rate Test: Well #1 Projected Drawdown	
15	Well #2 24-Hour Constant Rate Test: Well #2 Recovery	87
16	Well #2 24-Hour Constant Rate Test: Well #1 Recovery	89
17	Well #3 72-Hour Constant Rate Test: Well #3 Drawdown	91
18	Well #3 72-Hour Constant Rate Test: Daley Well Hydrograph	93
19	Well #3 72-Hour Constant Rate Test: Well #3 and Daley Well	
	Projected Drawdown	95
20	Well #3 72-Hour Constant Rate Test: Daley Well Recovery	97
21	Well #3 72-Hour Constant Rate Test: Well #3 Recovery	
TAE	BLES	
1	Estimated Construction Water Demand	3
2	Estimated Operational Water Demand	4
3	Estimated Decommission and Dismantling Water Demand	4
4	Precipitation Data Recorded at Jacumba Rain Gauge	10
5	Rain Gauges in Project Area	11
6	CIMIS Zone 16 Reference Evapotranspiration	13
7	Soil Units within the Contributing Watersheds	15

TABLE OF CONTENTS (CONTINUED)

		<u>Page No.</u>
3	Jacumba Valley Alluvial Aquifer Existing Water Demands	19
)	Jacumba Valley Well Inventory	20
10	Jacumba Valley Alluvial Aquifer Groundwater Demand	30
11	Well Completion Information for Constraining Alluvial Saturated Thickness.	32
12	Jacumba Valley Alluvial Aquifer 2018 Groundwater in Storage Estimate	34
13	Alluvial Aquifer Wells Within 0.5-Mile Radius of On-Site Proposed	
	Project Wells	37
14	Well #2 Aquifer Test – AQTESOLV Estimated Aquifer Hydraulic Properties	40
15	Well #2 Distance Drawdown Calculations	42
16	Well #3 Distance Drawdown Calculations	43

ACRONYMS AND ABBREVIATIONS

Acronym/Abbreviation	Definition
AC	alternating current
afy	acre-feet per year
amsl	above mean sea level
bgs	below ground surface
CIMIS	California Irrigation Management Information System
County	County of San Diego
ET	potential evapotranspiration
ETo	reference evapotranspiration
ft ² /day	square feet per day
GMMP	Groundwater Monitoring and Mitigation Plan
gpm	gallons per minute
JCSD	Jacumba Community Services District
kV	kilovolt
O&M	operations and maintenance
Proposed Project	JVR Energy Park Project
SDG&E	San Diego Gas & Electric
μg/L	micrograms per liter

INTENTIONALLY LEFT BLANK

EXECUTIVE SUMMARY

Dudek has prepared this Groundwater Resources Investigation Report to evaluate the potential impact of groundwater extraction from the construction and operation of the proposed JVR Energy Park Project (Proposed Project) located within Jacumba Hot Springs, California.

The Proposed Project would involve the use of existing on-site wells (Well #2 and Well #3) for groundwater supply. This analysis addresses potential impacts on groundwater resources based on the Proposed Project requiring up to 140 acre-feet during construction (approximately 1 year), 11 acre-feet per year for ongoing operations and maintenance, and 50 acre-feet for decommissioning and dismantling. The significant results of this Groundwater Resource Investigation Report are as follows:

- The water demand from Well #2 and Well #3 is expected to be up to 45.6 million gallons, or 140 acre-feet, for construction to occur over an approximate 1-year period.
- The current groundwater storage in the Jacumba Valley alluvial aquifer, including the
 portion of the alluvial aquifer located in Mexico, is conservatively estimated to be 9,005
 acre-feet based on updated groundwater level data and updated interpreted depth to bedrock
 using additional well logs.
- The volume of groundwater in storage would not be reduced to 50% or less than the current groundwater storage in the aquifer as a result of additional pumping for Proposed Project water supply.
- Estimated drawdown was based on groundwater production for the construction phase from either Well #2 or Well #3 at a rate of 352, 87, and 17 gallons per minute (rounded) for 90 days, 1 year, and 5 years, respectively. These adjusted production rates equal 140 acre-feet for each time period.
- The nearest off-site well to Well #2 is the Highland Center Well, located 1,817 feet (0.34 miles) to the west. The estimated groundwater level drawdown at the Highland Center Well is predicted to be 1.08 feet, 0.34 feet, and 0.08 feet after 90 days, 1 year, and 5 years, respectively.
- No groundwater wells are located within a 0.5-mile radius of Well #3. The nearest off-site well, Well Km, is located 3,548 feet (0.67 miles) from Well #3. The estimated groundwater level drawdown at Well Km is predicted to be 0.15 feet, 0.17 feet, and 0.08 feet after 90 days, 1 year, and 5 years, respectively.
- Based on the County of San Diego well interference threshold guidance for alluvial wells, drawdown from Well #2 and Well #3 groundwater extraction would be less than significant.

DUDEK vii March 2021

- The estimated drawdown at the nearest groundwater-dependent habitat from pumping Well #2 is predicted to be 1.08 feet, 0.34 feet, and 0.08 feet after 90 days, 1 year, and 5 years, respectively.
- The estimated drawdown at the nearest groundwater-dependent habitat from pumping Well #3 is predicted to be 3.66 feet, 1.11 feet, and 0.27 feet after 90 days, 1 year, and 5 years, respectively.
- Based on the County of San Diego groundwater-dependent habitat threshold guidance for alluvial wells, drawdown from Well #2 and Well #3 groundwater extraction would be less than significant. Estimated drawdown at the nearest groundwater-dependent habitat from

pumping Well #2 and Well #3 is temporary and less than 3 feet at 1 year and 5 years.

Furthermore, current groundwater levels in Well #3 are at least 12 feet higher than the

historical low groundwater level recorded in the Jacumba Valley alluvial aquifer (Exhibit

2, Well K3). Therefore, drawdown as a result of Proposed Project groundwater use would

be unlikely to exceed the historical low groundwater level, and impacts to groundwater-

dependent habitat are anticipated to be less than significant.

• Well #2 and Well #3 are proposed to be a non-potable water source; therefore, no water quality analysis was performed for this report.

A separate Groundwater Monitoring and Mitigation Plan (GMMP, Appendix E) has been prepared for the proposed groundwater extraction from Well #2 and Well #3. The GMMP establishes groundwater level thresholds for off-site well interference and groundwater-dependent habitat. Additionally ,the GMMP details requirements for ongoing groundwater level and productionmonitoring and reporting to the County of San Diego

1 INTRODUCTION

1.1 Purpose of the Report

This Groundwater Resources Investigation Report was prepared on behalf of JVR Energy Park LLC by Dudek for submittal to County of San Diego (County) Planning and Development Services to satisfy groundwater resource investigation scoping requirements outlined in Guidelines for Determining Significance and Report Format and Content Requirements: Groundwater Resources (County of San Diego 2007) for the proposed JVR Energy Park Project (Proposed Project). This groundwater resource investigation evaluates the use of up to 140 acre-feet of water during Proposed Project construction, 11 acre-feet per year (afy) for ongoing operations and maintenance (O&M), and 50 acre-feet for decommissioning, which would occur after the Proposed Project has reached its expected lifetime (i.e., approximately 38 years). Proposed Project water would be supplied from two on-site groundwater wells.

The results of this groundwater investigation should not be relied upon for use in any other groundwater proposal subject to County review in Jacumba Hot Springs, California.

1.2 Project Location

The Project site is located within the Jacumba Subregional Group Area of the Mountain Empire Subregional Plan Area in unincorporated San Diego County (Figure 1, Regional Location). The Project site is located on approximately 1,356 acres in southeastern San Diego County. The Proposed Project's solar facilities would be within an approximately 643-acre fenced area south of Interstate 8, east of Jacumba Hot Springs, and immediately north of the U.S./Mexico border. The Major Use Permit boundary is an approximately 643-acre area within the Project site (Figure 2, Vicinity Map).

1.3 Project Description

The Proposed Project would have a rated capacity of up to 90 megawatts of alternating current (AC) generating capacity and would consist of photovoltaic modules fitted on single-axis solar trackers. In addition to the panels and direct current to AC conversion equipment (i.e., inverter and transformer units), the Proposed Project would include the following primary components:

- Approximately 300,000 photovoltaic (PV) modules mounted on support structures (single-axis solar trackers)
- A 1,000- to 1,500-volt direct current (DC) underground collection system linking the modules to the inverters

DUDEK 1 March 2021

- 25 inverter/transformer platforms, located throughout the solar facility, to convert the power generated by the modules into a compatible form for use with the transmission network
- Approximately 5,000 feet of 34.5-kilovolt (kV) underground AC collection system and 50 feet of overhead AC feeders, approximately 30-feet-tall linking the inverters to the on-site collector substation
- An on-site collector substation located within an approximately 27,360-square-foot area (152 feet by 180 feet)
- A 138 kV switchyard adjacent to the on-site collector substation to transfer power from the on-site collector substation to the existing SDG&E 138 kV transmission line
- A 138 kV, 220-foot-long 65-foot-high overhead slack span transmission line to connect the on-site collector substation to the switchyard
- Two 138 kV overhead transmission lines (gen-tie) to loop the switchyard into the existing SDG&E Boulevard – East County 138 kV transmission line on five 70- to 115-foot-tall transmission poles
- A battery energy storage system of up to 90 MW (or 180MWh) comprised of battery storage containers located adjacent to the inverter/transformer pads (up to 3 containers at each location for a total of 75 containers on site)
- Fiber optic line
- Control system
- Five meteorological weather stations
- Site access driveways
- Internal access
- Improvements within SDG&E Transmission Corridor
- Security fencing and signage
- Lighting
- Water tanks (fire protection)
- Fuel modification zones (FMZs)
- Landscaping

The switchyard would be sized to accommodate the full 90-megawatt (AC) solar facility and the proposed battery energy storage system. The Proposed Project would be located entirely on private

DUDEK 2 March 2021

lands within unincorporated San Diego County. Upon completion, the Proposed Project would be monitored and operated off site through a supervisory control and data acquisition (SCADA) system.

Access to the Project site would be provided via five access driveways, including an access driveway off of Old Highway 80 and off Carrizo Gorge Road.

1.4 Project Water Demand

The following discussion includes an estimate of the amount of water required for the Proposed Project during construction, ongoing O&M, and decommissioning. Groundwater demand would be supplied from on-site Well #2 and Well #3 (Figure 2). The Proposed Project would require a maximum water demand of approximately 358,436 gallons per day (approximately 250 gallons per minute [gpm]) for approximately the first 6 weeks during grading activities. The existing onsite wells have the capacity to supply the peak construction water demand. Total construction water demand is expected to be 140 acre-feet over 365 days. Estimated construction water demand by construction activity is provided in Table 1 (a detailed construction water demand estimate is provided in Appendix A, Construction and Operational Water Demand Estimates).

Table 1
Estimated Construction Water Demand

Activity	Description	Total Estimated Water Demand (acre-feet) ¹
Site preparation (clearing, grubbing, grinding, and dust control)	Limited clearing and grubbing will be required for fallowed agricultural land at Jacumba Valley Ranch. Assume pre-weeding od soils with 1-inch of water over 570.5 acres	48
Grading	Grading of 264,000 cubic yards. Uses estimated of on-site moisture and optimum soil of moisture to gain compaction to determine required input of water	39
Concrete	Estimated based on 65 enclosures with concrete pads measuring 14 feet by 44 feet by 1 foot. One substation pad measuring 110 feet by 215 feet by 1.5 feet. Assumes concrete free installation of beams driven into the soil using a pile/vibratory/rotary driving technique. +100% contingency added for uncertainty. Additional 15% added for additional concrete use for fence posts, lighting posts etc.	1
Dust abatement ²	Value used from Jacumba Solar Construction Estimate: (6) 3,000-gallon water trucks per day	37
Other construction needs	Water necessary for other construction needs, such as filling tanks for fire protection; washing stations for vehicles/equipment (noxious weed mitigation); the 1,500-foot gen-tie line; and hydroseeding	15
	Total Construction Water Use	140

¹ acre-foot equals 325,851 gallons.

Dust abatement is included in the estimate for initial site preparation (first 40 days); therefore, general dust abatement was assumed to occur over 104 days (i.e., the remainder of the construction phase).

During operation, the Proposed Project would require water for panel washing up to four times per year. Similar solar photovoltaic operations use approximately 0.3 gallons of water per square yard of panel. Based on the planned 90 MW capacity of the Proposed Project, approximately 300,000 panels at approximately 21 square feet per panel totaling 6,259,500 square feet (695, 500 square yards) may be washed up to 4 times per year. Annual water demand for panel washing is approximately up to 2.6 acre-feet. Irrigation of a landscape buffer is estimated at up to 8.4 acrefeet per year. Total operational water demand is estimated to be up to 11 afy (Table 2). A detailed operational water demand estimate is provided in Appendix A. Actual water use during operation for panel washing may be considerably less based on documented water demand for the nearby active Jacumba Solar project. In 2019, the Jacumba Solar Project used no water for project operation (Dudek 2020a).

Table 2
Estimated Operational Water Demand

Activity	Estimated Water Demand (acre-feet)
Panel washing (up to 4 times per year)	2.6
Landscape buffer	8.4
Total Water Use per Year	11

It is estimated that the amount of water necessary to decommission the Proposed Project would be less than that required for construction, because there would be no need to use water for concrete mixing or to hydrate and compact on-site fills. The activities associated with decommissioning would not include grading, and based on the estimates calculated for construction, water demand for decommissioning dust abatement would be approximately 40 acre-feet of water total. Additional equipment washing and modest compaction needs, if necessary, would require approximately 10 acre-feet.

The total estimated water demand for decommissioning is approximately 50 acre-feet (Table 3).

Table 3
Estimated Decommission and Dismantling Water Demand

Activity	Total Estimated Water Demand (acre-feet)
Decommission Dust Abatement	40
Equipment Washing and Compaction	10
Total Water Use	50

1.5 Study Area

The study area for the purpose of discussions of groundwater storage is the Quaternary alluvium, referred to as the Jacumba Valley alluvial aquifer. The study area for the purpose of discussions of recharge consists of Flat Creek (which includes Blue Angel Peak and an unnamed subwatershed; naming convention adopted from Swenson 1981), Boundary Creek, and a portion of Walker Canyon-Carrizo Creek subwatersheds (referred to in this report as "contributing watersheds"). The study area for the purpose of well interference is the 0.5-mile radius around Well #2 and around Well #3.

1.6 Applicable Groundwater Regulations

The County of San Diego Guidelines for Determining Significance and Report Format and Content Requirements: Groundwater Resources (County Guidelines) contain a series of significance thresholds for groundwater quantity and groundwater quality (County of San Diego 2007). The County Guidelines contain the following guidelines that, if met, would be considered a significant impact to local groundwater resources as a result of Proposed Project implementation.

To evaluate impacts to groundwater resources, a water balance analysis is typically required; the following guideline for determining significance is typically used (County of San Diego 2007):

For proposed projects in fractured rock and sedimentary basins, groundwater impacts will be considered significant if a soil moisture balance, or equivalent analysis, conducted using a minimum of 30 years of precipitation data, including drought periods, concludes that at any time groundwater in storage is reduced to a level of 50% or less as a result of groundwater extraction.

To evaluate off-site well interference in alluvial wells, the following guideline for determining significance is typically used (County of San Diego 2007):

As an initial screening tool, off-site well interference will be considered a significant impact if after a five year projection of drawdown, the results indicate a decrease in water level of 5 feet or more in the off-site wells. If site-specific data indicates alluvium or sedimentary rocks exist which substantiate a saturated thickness greater than 100 feet in off-site wells, a decrease in saturated thickness of 5% or more in the off-site wells would be considered a significant impact.

To evaluate groundwater quality impacts, the following guideline for determining significance is typically used (County of San Diego 2007):

DUDEK 5 March 2021

Groundwater resources for proposed projects requiring a potable water source must not exceed the Primary State or Federal Maximum Contaminant Levels (MCLs) for applicable contaminants. Proposed projects that cannot demonstrate compliance with applicable MCLs will be considered to have a significant impact. In general, projects will be required to sample water supply wells for nitrate, bacteria (fecal and total coliform), and radioactive elements. Projects may be required to sample other contaminants of potential concern depending on the geographical location within the County.

The Proposed Project does not propose to use groundwater as a potable water source, so the above guideline for determining significance does not apply.

To evaluate impacts to groundwater-dependent habitat, the following guideline for determining significance is typically used (County of San Diego 2010a):

The project would draw down the groundwater table to the detriment of groundwater-dependent habitat, typically a drop of 3 feet or more from historical low groundwater levels.¹

The County adopted the San Diego County Groundwater Ordinance in 1991; it was last amended in 2013. The ordinance establishes regulations for the protection, preservation, and maintenance of groundwater resources and is contained within the San Diego County Code of Regulatory Ordinances, Title 6, Division 7 Chapter 7 Groundwater Sections 67.701–67.750 (County of San Diego 2013). The purpose of the ordinance is to ensure that development would not occur in groundwater-dependent areas of the County unless adequate supplies are available to serve both existing and proposed uses. Section 67.722, All Other Projects, regulates all areas within the County outside Borrego Valley and any future groundwater impacted basins. For discretionary permit applications, the following findings must be made: (1) For projects using greater than 20 afy or 20,000 gallons per day, that groundwater resources are adequate to meet the groundwater demands both of the project and the groundwater basin if the basin were developed to the maximum density and intensity permitted by the General Plan, and (2) for all other projects, that groundwater resources are adequate to meet the groundwater demands of the project.

The San Diego Groundwater Ordinance defines a "water intensive use" as, "Any land use that requires a permit listed in Section 67.711 and is not exempt from this ordinance, and that will

DUDEK 6 March 2021

¹ Studies have found that groundwater elevation reductions adversely affect native plant species. Two of the referenced studies (Integrated Urban Forestry 2001 and National Research Council 2002) found that a permanent reduction in groundwater elevation of greater than 3 feet is enough to induce water stress in some riparian trees, particularly willow (*Salix* spp.), cottonwood (*Populus* spp.), and *Baccharis* species.

require more water than 20 afy or more than 20,000 gallons per day." While there is an initial peak water demand required for Proposed Project construction, operational water demands are minimal, and when Proposed Project water demands are amortized over the life of the Proposed Project, do not represent a water intensive use.


Updated (and adopted) in August 2011, the San Diego County General Plan guides future growth in the unincorporated areas of the County and considers projected growth anticipated to occur within various communities. The Land Use Element includes a requirement to encourage sustainable use of groundwater and properly manage groundwater recharge areas (LU-8). Specifically, Goal LU-8 includes the following policies (County of San Diego 2011):

- Policy LU-8.1: Require land use densities in groundwater dependent areas to be consistent with the long-term sustainability of groundwater supplies, except in the Borrego Valley.
- Policy LU-8.2: Require development to identify adequate groundwater resources in groundwater dependent areas, as follows:
 - o In dependent areas within currently identified groundwater overdrafted basins, prohibit new development from exacerbating overdraft conditions, and
 - In areas without current overdraft groundwater conditions, evaluate new groundwaterdependent development to assure a sustainable long-term supply of groundwater is available that will not adversely impact existing groundwater users.
- Policy LU-8.3: Discourage development that would significantly draw down the groundwater table to the detriment of groundwater-dependent habitat.

DUDEK 7 March 2021

INTENTIONALLY LEFT BLANK

8

2 EXISTING CONDITIONS

2.1 Topographic and Hydrologic Setting

Jacumba Hot Springs is located in the southeastern corner of San Diego County and is bordered by Imperial County to the east and Mexico to the south (Figures 1 and 2). The general topography of the Project site within the Jacumba Valley is gently rolling. The Project site has been previously disturbed for agricultural purposes. The elevation range within the Project site is from approximately 2,715 feet to 2,915 feet above mean sea level (amsl).

The contributing watersheds to the Project site cover 70,868 acres (111 square miles), with 76% located in Baja California, Mexico. The contributing watersheds are located in the Upper Carrizo Creek watershed as defined by the U.S. Geological Survey (Figure 3, Hydrologic Areas). The majority of flow from Mexico north into the Jacumba Valley is derived from the Flat Creek subwatershed, which includes Blue Angel Peak and an unnamed subwatershed. The subwatersheds predominantly located in the United States are the Boundary Creek and Walker Canyon-Carrizo Creek subwatersheds. The Jacumba Valley ultimately drains through a narrow constriction north of Jacumba Hot Springs known as the Carrizo Gorge.

The Flat Creek subwatershed consists of approximately 51,052 acres, with 134 acres (0.26%) of the watershed located in the United States. The Flat Creek subwatershed ranges from 4,774 feet amsl at its headwaters along the Sierra Juarez Mountains to 2,800 feet amsl near the international border. The Boundary Creek subwatershed consists of approximately 12,535 acres, with 10,106 acres (81%) of the watershed located in the United States. The Boundary Creek subwatershed ranges from 4,240 feet amsl and its headwaters along the Tecate Divide to 2,788 feet amsl. The Walker Canyon-Carrizo Creek subwatershed consist of approximately 7,281 acres, with 6,927 acres (95%) of the watershed located in the United States. The Walker Canyon-Carrizo Creek subwatershed ranges from 4,097 feet amsl at Table Mountain to 2,713 feet amsl at the north end of the Project site (Google Earth 2015).

2.2 Climate

Jacumba Hot Springs experiences warm summer months and cool winters. Average temperatures vary greatly within the region. Mean maximum temperatures in the summer months reach the high-80s to low-90s degrees Fahrenheit. Temperatures may fall below freezing in the winter, with snow levels occasionally below 2,500 feet (WRCC 2019).

DUDEK 9 March 2021

2.2.1 Precipitation

The precipitation that recharges the Project site falls within the contributing watersheds. Monthly precipitation records were obtained from the County for a rain gauge previously located in Jacumba at 32°37' North latitude, 116°11' West longitude, and an elevation of 2,800 feet. The period of record available is from March 1963 until March 2011. Table 4 provides average monthly precipitation data, as well as the highest and lowest monthly precipitation for the Jacumba rain gauge (Allan 2013).

Table 4
Precipitation Data Recorded at Jacumba Rain Gauge

	Rainfall (inches) for 1963–2011 ^a				
Month	Average	Highest / Year	Lowestb		
January	1.45	5.79 / 1983	0		
February	1.66	10.86 / 1993	0		
March	1.82	6.76 / 1998	0		
April	1.45	7.13 / 1991	0		
May	0.50	2.38 / 1965	0		
June	0.19	2.24 / 1981	0		
July	0.06	0.96 / 1984	0		
August	0.45	3.97 / 1984	0		
September	0.50	3.48 / 1992	0		
October	0.37	4.58 / 1976	0		
November	0.60	4.37 / 2004	0		
December	0.85	3.82 / 1965	0		
Year	9.64	22.16 / 1982–1983	2.26		

Source: Allan 2013.

Notes: Jacumba rain gauge was located at N 32°37', W 116°11', at an elevation of 2,800 feet.

For the period from 1963 through 2011, the average annual precipitation at the Jacumba rain gauge was approximately 9.64 inches, with 85% of the precipitation occurring between October and April. Annual precipitation totals at the Jacumba rain gauge varied from a high of 22.16 inches in the 1982–1983 water year to a low of 2.26 inches in the 2001–2002 water year (Allan 2013) (see Exhibit 1).

Precipitation records from four nearby rain gauges were obtained to determine annual average rainfall within the watersheds. The rain gauges are located in Boulevard (two stations), Tierra del Sol, and Jacumba. The locations, elevations, years of operation, mean annual rainfall, and source of data are provided in Table 5.

Jacumba rain gauge was active from 1963 to 2011.

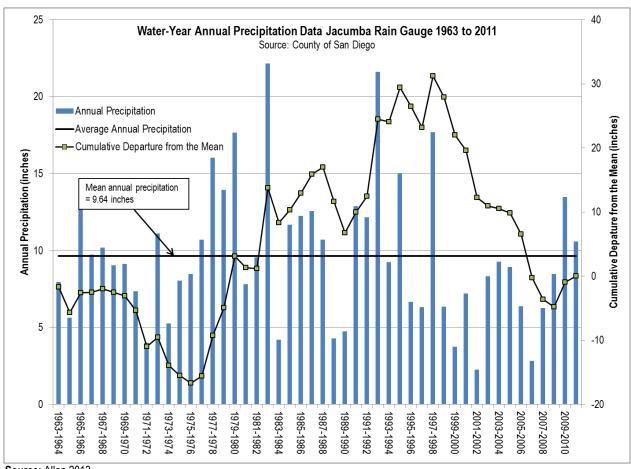
b. Lowest monthly recorded precipitation data is not available due to data gaps.

Table 5
Rain Gauges in Project Area

Station	Location	Elevation (feet amsl)	Years of Operation	Average Annual Rainfall (inches)	Source
Boulevard 1	N 32°40', W 116°17'	3,353	1924 to 1967	14.8	NOAA1
Boulevard 2	N 32°40', W 116°18'	3,600	1969 to 1994	17.0	NOAA
Tierra del Sol	N 32°39', W 116°19'	4,000	1971 to 2017	10.8	County ²
Jacumba	N 32°37', W 116°11'	2,800	1963 to 2011	9.64	County ³

NOAA 2011

amsl = above mean sea level


The isohyetal map of annual precipitation, developed by Swenson (1981), shows that the majority of the Flat Creek subwatershed receives an average of 11 inches of precipitation per year (Figure 4, Regional Mean Annual Precipitation). The lower elevations of the subwatershed receive an average of 9 inches of precipitation per year. Mean annual precipitation, as determined from the County of San Diego map entitled "Groundwater Limitations Map" on file with the Clerk of the Board of Supervisors as Document No. 195172, indicates the Walker Canyon-Carrizo Creek subwatershed receives an average of 9 inches of precipitation per year. The Groundwater Limitations Map indicates that the majority of the Boundary Creek subwatershed receives an average of 14 inches of precipitation per year at its highest elevation, and an average of 9 inches of precipitation per year at its lowest (County of San Diego 2004). The County Groundwater Limitations Map roughly concurs with those developed by Swenson (1981) (Figure 4).

The average annual precipitation of 9 inches at the Project site also roughly agrees with the average precipitation calculated for the Jacumba rain gauge between 1963 and 2011 of 9.64 inches (Allan 2013). The Jacumba rain gauge was located at the lowest elevation in the Flat Creek subwatershed.

² Allan 2014

³ Allan 2013

Exhibit 1 Annual Precipitation Data Jacumba Rain Gauge 1963 to 2011

Source: Allan 2013.

Note: Station located at N 32°37', W 116°11' at an elevation of 2,800 feet

2.2.2 Evapotranspiration

According to the State of California Reference Evapotranspiration Map developed by the California Irrigation Management Information System (CIMIS), the Project site is located in Evapotranspiration Zone 16, with an average of 62.5 inches of reference evapotranspiration (ETo) per year (CIMIS 1999). Table 6 presents ETo by month in CIMIS Zone 16. The annual 62.5 inches of ETo is based on potential evapotranspiration (ET) from turf grass/alfalfa crop, which assumes a continuous source of moisture and does not consider summer plant dormancy. Therefore, ETo is an overestimation of actual ET, which varies with the vegetation type. To account for variations in plant water consumption and more accurately assess ET, a crop coefficient can be applied to ETo. Plants that consume less water have lower crop coefficients. Drought-tolerant plants and native vegetation have a crop coefficient of approximately 0.3 (DWR and UCCE 2000). Using this crop coefficient, the annual estimated ET for the Project site is 62.5 inches x 0.3 = 18.75 inches.

Table 6
CIMIS Zone 16 Reference Evapotranspiration

Month	Reference Evapotranspiration (inches)
January	1.55
February	2.52
March	4.03
April	5.7
May	7.75
June	8.7
July	9.3
August	8.37
September	6.3
October	4.34
November	2.4
December	1.55
Year	62.51

Source: CIMIS 1999

2.3 Land Use

According to the San Diego County General Plan, Jacumba Hot Springs is located within the Mountain Empire Subregional Plan area (County of San Diego 2016). Land use designations within a 0.5-mile radius of Well #2 consist of single-family residential, spaced rural residential, airstrip, communications and utilities, railroad right-of-way, road right-of-way, neighborhood shopping center, religious facility, library, other public services, and open space park or preserve (see Figure 5, Current General Plan Land Use). Land use designations within 0.5-mile radius of

Well #3 consist of spaced rural residential, single-family residential, railroad right-of-way, and open space park or preserve (County of San Diego 2011).

The parcels on which the Project site is located are zoned as single family residential, undeveloped natural area, open space park and preserve, neighborhood shopping center, and railroad right-of-way. Bordering current land uses to the Project site are open space park and preserve, spaced rural residential, single-family residential, freeway, other retail trade and strip commercial, road right-of-way, airstrip, neighborhood shopping center, and library (County of San Diego 2011) (see Figure 5).

Current land use within the contributing watersheds in Mexico was not available for this report, but is mostly undeveloped lands. Current land use on the United States side of the Flat Creek subwatershed consists of open space park or preserve, field crops, and vacant undeveloped land. Current land use on the United States side of the Boundary Creek subwatershed consists of spaced rural residential, single-family detached, single-family multiple-units, single-family residential without units, communications and utilities, railroad right-of-way, road right-of-way, other retail trade and strip commercial, fire/police station, other public services, elementary school, open space park or preserve, field crops, and vacant and undeveloped land. Current land use on the United States side of the Walker Canyon- Carrizo Creek subwatershed consists of spaced rural residential, single-family detached, single-family multiple-units, single-family residential without units, mobile home park, hotel/motel (low-rise), airstrip, freeway, communication and utilities, railroad right-of-way, road right-of-way, other retail trade and strip commercial, library, post office, religious facility, open space park or preserve, field crops, and vacant and undeveloped land (County of San Diego 2011).

2.4 Geology and Soils

2.4.1 Geology

Jacumba Hot Springs is located on the eastern portion of the Peninsular Range geomorphic province, which consists of northwest-oriented mountain ranges separated by northwest-trending fault-produced valleys subparallel to faults branching from the San Andreas Fault. The regional geology is depicted in Figure 6, Regional Geologic Map. Because much of the contributing watershed area is located south of the international border with Mexico, worldwide geologic data was used to depict geology south of the border (Garrity and Soller 2009).

The surface area of the contributing watersheds primarily consists of exposed Cretaceous plutonic rocks of the Peninsular Ranges Batholith. These plutonic rocks consist of the bedrock unit known as the tonalite of La Posta (also referred to as the La Posta Quartz Diorite) (USGS 2004). The Sierra Juarez Mountains, located on the southeastern side of the Flat Creek watershed in Mexico

consist of Mesozoic sedimentary rocks (Garrity and Soller 2009). Quaternary alluvium is present in low-lying areas in portions of the watershed, including the Jacumba Valley (USGS 2004).

The Project site is located within Jacumba Valley. Jacumba Valley contains exposures of the Jacumba Volcanics and the Table Mountain Formation, overlain by Quaternary alluvium (DWR 2004; Swenson 1981). The Quaternary alluvium reaches up to 175 feet in thickness and consists of Holocene-age gravels, sands, and clays (Dudek 2016a; DWR 2004). The alluvium thins toward the sides and ends of the valley (DWR 2004; Swenson 1981). The Jacumba Volcanics are encountered below the Quaternary alluvium, as reported in numerous boring log reports (County of San Diego 2018; CRA 2012; Petra 2006). The Tertiary-age Table Mountain Formation underlies the Jacumba Volcanics in some areas of Jacumba Valley and is described as medium- to coarse-grained sandstone and conglomerate, and may reach up to 600 feet in thickness (Swenson 1981). The migmatitic schist and gneiss of the Stephenson Peak Formation outcrop just west of the valley and underlie the Jacumba Valley (Swenson 1981; USGS 2004).

2.4.2 Soils

The type, areal extent, and key physical and hydrologic characteristics of soils mapped on the United States side of the contributing watersheds were identified based on a review of soil surveys completed by the U.S. Department of Agriculture, Natural Resources Conservation Service (USDA 2015). Swenson (1981) provides a map and description of soil types on the Mexico side of the Flat Creek watershed based on representative soil samples and measurements of their porosity and specific retention. Soils on the Mexico side of the Boundary Creek watershed were digitized based on aerial imagery. Soil units are shown in Figure 7, Soils Map, and are described in Table 7.

Table 7
Soil Units within the Contributing Watersheds

Map Unit, Soil Name	Acres (Percent of the Flat Creek Watershed)	Acres (Percent of the Boundary Creek Watershed	Acres (Percent of the Walker Canyon – Carrizo Creek Watershed)
Soil Ide	entification by the U.S. Depa	rtment of Agriculture	
AcG, Acid Igneous Rock Land	0 (0%)	2,237.66 (15.47%)	2,105.09 (31.49%)
CaB, Calpine coarse sandy loam, 2–5% slope	0 (0%)	14.39 (0.10%)	0 (0%)
CaC, Calpine coarse sandy loam, 5–9% slope	0 (0%)	14.69 (0.10%)	264.68 (3.96%)
CaD2, Calpine coarse sandy loam, 9– 15% slopes, eroded	0 (0%)	41.85 (0.29%)	0 (0%)

Table 7
Soil Units within the Contributing Watersheds

	Acres (Percent of the	Acres (Percent of the Boundary Creek	Acres (Percent of the Walker Canyon – Carrizo
Map Unit, Soil Name	Flat Creek Watershed)	Watershed	Creek Watershed)
CeC, Carrizo very gravelly sand, 0-9%	0	796.85 (5.51%)	0
slope	(0%)		(0%)
InA, Indio silt loam, 0–2% slope	18.10 (30.33%)	0	44.90 (0.67%)
		(0%)	
InB, Indio silt loam, 2–5% slope	0	0	183.72 (2.75%)
	(0%)	(0%)	
IoA, Indio silt loam, saline, 0–2% slope	0	0.02 (0.0001%)	382.58 (5.72%)
1.501.5.1.1	(0%)	4.054.40.(40.000()	
LaE2, La Posta loamy coarse sand, 5–30% slopes, eroded	0	1,854.48 (12.82%)	0
	(0%)	4 040 00 (44 400()	(0%)
LcE2, La Posta rocky loamy coarse sand, 5–30% slope, eroded	0 (0%)	1,649.29 (11.40%)	43.92 (0.66%)
· · · · · · · · · · · · · · · · · · ·	(0 %)	2 220 42 (46 470/)	0
LdE, La Posta-Sheephead complex, 9–30% slopes	(0%)	2,339.43 (16.17%)	(0%)
LdG, La Posta-Sheephead complex,	0	258.21 (1.78%)	0
30–65% slopes	(0%)	250.21 (1.70%)	(0%)
Lu, Loamy alluvial land	0	17.35 (0.12%)	0
Ea, Eodiny and viai faile	(0%)	17.00 (0.1270)	(0%)
MnB, Mecca coarse sandy loam, 2–5%	4.86 (8.14%)	0	62.83 (0.94%)
slopes		(0%)	
MvC, Mottsville loamy coarse sand, 2-	0	948.47 (6.56%)	0
9% slopes	(0%)	,	(0%)
MvD, Mottsville loamy coarse sand, 9-	0	65.60 (0.45%)	0
15% slopes	(0%)		(0%)
RaC, Ramona sandy loam, 5–9%	0	0	168.35 (2.52%)
slopes	(0%)	(0%)	
RaD2, Ramona sandy loam, 9–15%	0	0	26.00 (0.39%)
slopes, eroded	(0%)	(0%)	
RkA, Reiff fine sandy loam, 0-2%	17.31 (29.00%)	0	262.87 (3.93%)
slopes		(0%)	
RsC, Rositas loamy coarse sand, 2–9%	0	152.95 (1.06%)	531.38 (7.95%)
slope	(0%)		0.40.04 (5.400())
RuG, Rough broken land	0	0	342.31 (5.12%)
CrD. Classing availand land	(0%)	(0%)	0
SrD, Sloping gullied land	19.41 (32.53%)	12.55 (0.09%)	0 (0%)
SvE Stony land	0	255.46 (4.770/)	(070)
SvE, Stony land	(0%)	255.46 (1.77%)	933.88 (13.97%)
	(0 /0)		300.00 (13.31 /0)

Table 7
Soil Units within the Contributing Watersheds

Map Unit, Soil Name	Acres (Percent of the Flat Creek Watershed)	Acres (Percent of the Boundary Creek Watershed	Acres (Percent of the Walker Canyon – Carrizo Creek Watershed)
ToE2, Tollhouse rocky coarse sandy	0	3,395.02 (23.47%)	0
loam, 5–30% slopes, eroded	(0%)		(0%)
ToG, Tollhouse rocky coarse sandy	0	413.14 (2.86%)	0
loam, 30-65% slopes	(0%)		(0%)
Subtotal	59.68	14,467.40	6,685.40
	(0.12%)	(100%)	(94.67%)
	Soil Identification by S	wenson	
W, Sandy Alluvium	7,020.04 (13.77%)	0	132.95 (35.35%)
		(0%)	
X, Metamorphic and Plutonic Residuum	43,462.93 (85.27%)	0	93.11 (24.76%)
		(0%)	
Y, Volcanic residuum and fine sand	489.09 (0.96%)	0	150.04 (39.89%)
alluvium		(0%)	
Subtotal	50,972.06	0	376.10
	(99.88%)	(0%)	(5.33%)
Total Acreage	51,031.73	14,467.40	7,061.50

Sources: Swenson 1981; USDA 2015

2.5 Hydrogeologic Units

The Project site is located within the California Department of Water Resources Bulletin 118 defined Jacumba Valley Groundwater Basin, Department of Water Resources Basin No. 7-47 (Figure 8, Hydrogeologic Units) (DWR 2004). The Jacumba Valley Groundwater Basin consists of two primary aquifer units. The upper alluvial aquifer unit reaches up to 175 feet in thickness and consists of Holocene-age gravels, sands, and clays (Dudek 2016a; DWR 2004). In some areas, this aquifer unit is underlain by the Jacumba Volcanics that act as a semi-confining to confining unit to the lower aquifer. The lower aquifer consists of the Tertiary-age Table Mountain Formation described as medium- to coarse-grained sandstone and conglomerate, and may reach up to 600 feet in thickness (Swenson 1981). The Table Mountain Formation lies unconformably on top of crystalline basement (DWR 2004).

On-site Proposed Project groundwater wells produce from the upper alluvial aquifer (referred to in this report as the "Jacumba Valley alluvial aquifer"). This unconfined aquifer has been estimated to have specific yields ranging from 5% to 10% (Swenson 1981) and 15% to 20% (Roff and Franzone 1994). Production wells screened in the Jacumba Valley alluvial aquifer have been reported to produce more than 1,000 gpm (Roff and Franzone 1994). Groundwater in storage has

been estimated to range from 3,200 to 6,400 acre-feet by Swenson (1981) and 9,600 to 16,000 acre-feet by Roff and Franzone (1994).

2.6 Current Groundwater Demand

The current water demand for the Jacumba Valley alluvial aquifer includes potable demand for Jacumba Valley Ranch Water Company (formerly the Ketchum Ranch Water Company), and potable and non-potable demand from the Jacumba Community Services District (JCSD) (Table 8).

The Jacumba Valley Ranch Water Company is classified as a transient non-community water system. According to County Department of Environmental Health Small Drinking Water System files, seven connections—three ranch homes, two gas stations, and two fire hydrants—are part of the Jacumba Valley Ranch water system (McCullough, pers. comm. 2015). Estimated water demands for the Jacumba Valley Ranch Water Company is 5 afy.

JCSD currently supplies potable water to 239 connections from JCSD Well #4 (Devine, pers. comm. 2019). JCSD's current water usage was not made available for this report, but historical water demand and water use calculations were used to estimate current demand. Based on available data from Barrett Consulting Group (Barrett 1996), JCSD produced between 86 and 146 acre-feet annually from 1991 to 1995, averaging 116 afy. More recent production data indicates that JCSD served 27.6 million gallons (85 acre-feet) of water from Well #4 in 2013 and 26.2 million gallons (80.4 acre-feet) from January 2014 through August 2014 to meet the water demands of the potable water system (Troutt, pers. comm. 2015). Based on the number of connections and an estimated 0.5 afy per connection, JCSD potable water demand is estimated to be 119.5 afy. This estimate roughly coincides with average historical water demand from 1991 to 1995, and conservatively overestimates production from more recent data received by the previous JCSD General Manager in 2014 (Troutt, pers. comm. 2015).

JCSD also supplies non-potable water for commercial sale. Historically, JCSD has supplied non-potable water from Well #6, a fractured rock well not screened in the Jacumba Valley alluvium. Beginning in 2016, JCSD began supplying non-potable water from the Highland Center Well and the Park Well, both screened in the Jacumba Valley alluvium. Non-potable water supply from JCSD varied based on customer demand. From February 2017 to February 2018, JCSD supplied 50.1 acre-feet from the Highland Center Well and 3.5 acre-feet from the Park Well. From February 2018 to January 2019, JCSD supplied 4 acre-feet from the Highland Center Well and 0 acre-feet

from the Park Well. Maximum annual groundwater extraction from the Jacumba Valley alluvial aquifer by JCSD for non-potable water is 53.6 afy.²

Based on the County Department of Environmental Health well completion report database, no additional active wells are located within the Jacumba Valley alluvium (County of San Diego 2018). Because there is the potential for active wells to exist without proper County Department of Environmental Health permitting, this report conservatively estimates six potential domestic wells that produce groundwater from the Jacumba Valley alluvial aquifer. Estimated water demands for the potential domestic wells is 3 afy, or 0.5 afy per well.

Agriculture located on the Jacumba Valley Ranch historically extracted the majority of groundwater from the Jacumba Valley alluvial aquifer. Currently no water is being extracted from the Jacumba Valley Ranch for these activities.

Table 8
Jacumba Valley Alluvial Aquifer Existing Water Demands

Groundwater Extraction Sources	Wells Names	Total Water Demand (acre-feet per year)
Jacumba Valley Ranch Water Co.	Well Km	5a
Jacumba Community Services District (JCSD) (potable)	Well 4	119.5 ^b
JCSD (non-potable)	Highland Center Well, Park Well	53.6°
Potential Domestic Wells	Private Domestic Wells	3 d
	Total Water Demand	181.1

a. Jacumba Valley Ranch Water Company has seven connections: three ranch homes, two gas stations, and two fire hydrants. No water demand was assigned to the fire hydrants. Water demand is estimated at approximately 1 acre-foot per connection.

2.7 Hydrogeologic Inventory and Groundwater Level Trends

Published well logs were reviewed to locate wells and refine the thickness of hydrologic units present within the Jacumba Valley alluvial aquifer. Table 9 provides a summary of the information available from driller well logs obtained to date. Well information has been updated based on field reconnaissance and/or historical data.

DUDEK

b. Estimated based on 0.5 afy for 239 potable Jacumba Community Services District connections.

c. Maximum demand based on meter reads from February 2017 to February 2018.

d. Not all domestic wells are currently active or known; however, a consumptive water demand of 0.5 afy has been assigned to up to six potential domestic wells

² Non-potable groundwater extraction from the Highland Center Well and the Park Well is based on totalizer readings collected during routine groundwater monitoring performed by Dudek staff as required for the Jacumba Solar Groundwater Monitoring and Mitigation Plan.

Table 9
Jacumba Valley Well Inventory

	Well Depth (feet		Approximate Production	Alluvium/		
	bgs)/ (Year	Depth to Water	Capability	Residual Soil	Bedrock Depth	
Well Number	Drilled)	(feet btoc)/date	(gpm)	(feet bgs)	(feet bgs)/ (Type)	
	Jacumba Community Services District Wells					
JCSD 1	124 (1956)	43.0; 10/1955	148	120	124 (volcanic)	
JCSD 2	140 (1963)	72.13; 11/1979	<u> </u>	140	_	
JCSD 3	79	_	_	_	_	
JCSD 3A	49	_	_	49	_	
JCSD 4	39	20.66; 6/26/2018	175ª	0-39 ^b	_	
JCSD 5	_	_	_	_	_	
JCSD 6	465 (2003)	5.50; 6/26/2018	600+	_	_	
JCSD 7	518 (2008)	31.20; 6/26/2018	300+	0–10	10–23 (granitic)	
JCSD 8	518 (2009)	31.02; 6/26/2018	275+	0–42	42-55 (granitic)	
MW-3	84.5 (2007)	28.0; 3/2009	Monitor well	0–30	30-80 (granitic)	
Park Well	124 (2005)	59.74; 6/26/2018	80	0–127	127 (volcanic)	
Highland Center	125 (2016)	56.98; 6/26/2018	174	0–175	182 (granitic)	
Well	, ,				,	
		Jacumba Valley	Ranch Wells			
K	102+ (1960s)	_	_	_	_	
K1	110 (1950s)	42.3; 9/6/1980		106	_	
K2	103 (1950s)	41.0; 4/1958	1	103	_	
K3	117 (1950s)	8.5; 2/1996	1,000	_	_	
K4	109 (1950s)	9.9; 3/1994	908	_	_	
Daley Well	150 (Unknown)	36.94; 10/2018	_	_	_	
Well #1	124 (Unknown)d	59.99; 10/2018	148	120	124 (volcanic)	
Well #2	114 (2007)d	46.56; 10/2018	2,000°	113	_	
Well #3	100 (2005)d	38.96; 10/2018	2,000°	112	_	
Central Irrigation						
Well	100 (Unknown)d	46.56; 10/2018	1	_	_	
Mid Valley Well	90.7 (Unknown)d	48.72; 10/2018		_	_	
Carrizo Gorge	_		_		_	
Well		80.22; 7/2018				
Well Km	150 (130 silted)	51.62; 7/2018	33.7	_	_	
Test Well 1 JVR	82 (1990)	2; 5/1990	225	75	_	
P-1	_	_	Monitoring well	_	_	
P-2	23.72 ^d	Dry; 7/30/2018	Monitoring well	_	_	
P-3	30.92 ^d	Dry; 7/30/2018	Monitoring well	_	_	
P-4	33.71 ^d	Dry; 7/30/2018	Monitoring well	_	_	
P-5	27.3 ^d	Dry; 7/30/2018	Monitoring well	_	_	
P-6	32.26 ^d	Dry; 7/30/2018	Monitoring well	_	_	

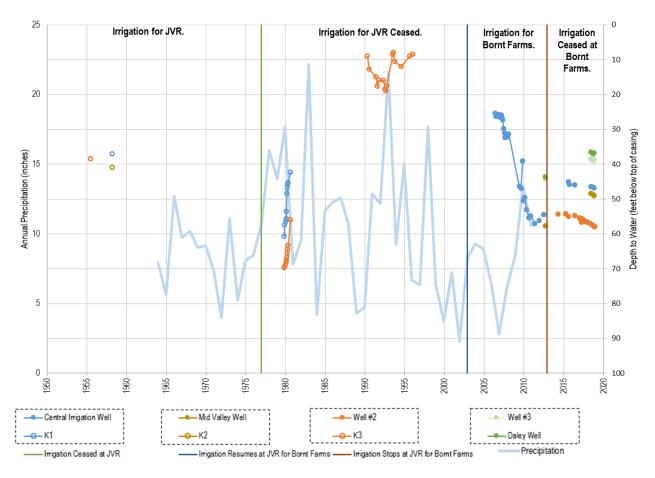
Table 9
Jacumba Valley Well Inventory

Well Number	Well Depth (feet bgs)/ (Year Drilled)	Depth to Water (feet btoc)/date	Approximate Production Capability (gpm)	Alluvium/ Residual Soil (feet bgs)	Bedrock Depth (feet bgs)/ (Type)
P-7	38.8 ^d	Dry; 7/30/2018	Monitoring well	_	_
P-8	39.3 ^d	Dry; 7/30/2018	Monitoring well	_	_
P-9	60.17 ^d	Dry; 7/30/2018	Monitoring well	_	_
		Other \	Vells		
R1	137	_	_	_	_
R2	400	_	_	_	_
(Abandoned Well near R2)	Abandoned (1979)	-	_	_	150–492 (Sandstone)
T5	_	_	_	_	_
T8	_	_	_	_	_
T1	_	_	_	_	_
RM	34	_	_	_	_
Spa Well	200 (1955)	_	_	_	_
Daley Construction Well	230 (N/A)	-	_	_	_
		Former Chevron Serv	ice Station 20-5934		
MW-8S	50 (2007)	_	_	81.5+	_
MW8-D	80 (2007)	_	_	81.5+	_
MW-9S	50 (2007)	_	_	80	80 (Volcanics)
MW-9D	80 (2007)	_	_	80	80 (Volcanics)
MW-10	57 (2007)	_	_	50+	_
MW-11	80 (2007)	_	_	80+	_
MW-12	80 (2012)	_	_	40	40 (DG to 80.5)
MW-13	80 (2012)	_		81+	_
MW-14	81 (2012)	_	_	80.5+	_
B-10	(2012)	_	_	55.5+	_
B-11	(2012)	_		66.5+	_
B-12	(2012)		_	57	57 (DG to 70)

Sources: Barrett 1996; CRA 2012; Pape 2015; Petra 2006; Swenson 1981

bgs = below ground surface; btoc = below top of casing; gpm = gallons per minute; JCSD = Jacumba Community Services District; N/A = not available; DG = decomposed granite

- a. Reported pumping capacity provided by JCSD.
- b. Alluvial depth based on total depth of Well #4.
- Pumping rate based on airlifting by driller.
- d. Based on field reconnaissance conducted in 2018 by Dudek staff.


Groundwater level data were obtained from JCSD from January 2012 through June 2018 (Devine, pers. comm. 2019; Troutt, pers. comm. 2015). Groundwater level data were also obtained from

Barrett Consulting Group (1996), Peterson (2014), and Swenson (1981). Historical groundwater level data were available for Jacumba Valley as far back as 1955, but a continuous water level record was not available. On-site groundwater levels were recently measured by Dudek in July, October, and December 2018.

Fluctuations in water levels in the Jacumba Valley alluvial aquifer result from both groundwater production and cycles of wet and dry climatic periods. Historical groundwater measurements from wells K1, K2, and K3 were used to represent trends associated with previous land use on the Project site (Exhibit 2). Wells K1, K2, and K3 have the closest geographical relationship to the Central Irrigation Well, Mid Valley Well, and Well #2, respectively.

Exhibit 2 Jacumba Valley Alluvial Aquifer Groundwater Level Data July 1955 to December 2018

Sources: Barrett 1996; Pape 2015; Peterson 2014; Swenson 1981.

Note: Boxes outlined by dashes represent wells in similar geographical locations.

Groundwater levels have fluctuated up to 61 feet in Well K3. When Well K3 was initially drilled in 1955, the groundwater level was 38.5 feet below ground surface (bgs). From 1932 to 1977, Jacumba Valley Ranch extracted on average 2,066 afy from the Jacumba Valley alluvial aquifer (Barrett 1996). Jacumba Valley Ranch pumping, in combination with lower than average precipitation in the late 1960s through the mid-1970s (see declining cumulative departure from mean precipitation in Exhibit 1), resulted in a groundwater level decline in the Jacumba Valley alluvial aquifer (Exhibit 2). Irrigation of agricultural lands ceased on Jacumba Valley Ranch in approximately 1977. In 1979, the groundwater level in Well K3 was 69.9 feet bgs (more than 30 feet lower than initial water level recorded in 1955). By 1990, groundwater levels had risen to near the surface in several Jacumba Valley alluvial aquifer wells (9 feet bgs in Well K3) because of higher recharge rates during a period of above-average precipitation in the late 1970s to mid-1980s (see ascending cumulative departure from mean precipitation in Exhibit 1) and low groundwater extraction during this time period.

Groundwater levels from the Central Irrigation Well declined from 2006 to 2011. This decline coincided with a lower than average rainfall period from 1999 to 2008 and the extraction of approximately 741 afy of groundwater by Bornt Farms. Groundwater levels began to rise after Bornt Farms ceased groundwater extraction in 2013. The current gradual declining trend in groundwater levels, shown in Well #2, can be attributed to lower than average rainfall years and recent extraction from JCSD non-potable wells. The groundwater level in Well #2 is currently 11.9 feet above the historic low groundwater level observed in Well K3, located near Well #2.

2.8 Water Quality

Spring water in the northern area of the Jacumba Valley at Carrizo Gorge had measured total dissolved solids concentrations ranging from 2,000 to 6,000 milligrams per liter. Surface water drainage measured from the Flat Creek watershed and the Boundary Creek watershed have had recorded total dissolved solids concentrations at 292 to 422 milligrams per liter and 1,640 milligrams per liter, respectively (Roff and Franzone 1994). Historically, groundwater included sodium chloride, calcium chloride, and calcium sulfate (Roff and Franzone 1994).

JCSD supplies non-potable water from the Park and Highland Center Wells, and potable water from Well #4. A water quality sample collected from the Highland Center Well in 2016 had a measured total dissolved solids concentration of 400 milligrams per liter. A wide range of constituents, including general minerals, inorganic minerals, and volatile organic compounds, were analyzed. Laboratory results indicated that no volatile organic compounds were detected and that groundwater produced from the Highland Center Well is suitable for construction water supply (Dudek 2016a). The Park Well was initially intended for use as a potable water well; however, low concentrations of volatile organic compounds were detected during drilling. Toluene was detected

at concentrations of 291 micrograms per liter (µg/L), 199 µg/L, and 520 µg/L in water quality samples collected from the Park Well in 2006 (Petra 2006). A subsequent water quality sample was collected from the Park Well on November 5, 2015, by Dudek staff. Results from the sample collected on November 5, 2015, indicated no detections above the reporting limits for all constituents analyzed, including toluene, which was previously detected in the Park Well above the drinking water maximum contaminant level of 150 µg/L. It is possible that the toluene was introduced into the Park Well as a result of drilling or from chemicals (ScothchkoteTM) used in splicing the submersible cable for installation of the submersible pump and motor when the well was originally tested. Dudek has previously detected toluene in other water wells after the use of Scothchkote (EnviroMatrix Analytical 2015).

Since the Proposed Project would use groundwater for non-potable use, water quality samples were not collected from on-site wells.

INTENTIONALLY LEFT BLANK

3 WATER QUANTITY IMPACTS ANALYSIS

This section discusses the potential impacts on local groundwater resources in terms of the County Guidelines (County of San Diego 2007).

3.1 50% Reduction of Groundwater Storage

To apply the County methodology for determining a 50% reduction in groundwater storage to a given well, the area of the aquifer that can be accessed by a pumping well must be defined. For this analysis, the 2,061-acre extent and variable thickness of the alluvium underlying the Jacumba Valley as defined by Swenson (1981) was used to perform the 50% reduction in storage analysis.

3.1.1 Guidelines for Determination of Significance

The following requirement is set forth in the County Guidelines (County of San Diego 2007):

For proposed projects in fractured rock and sedimentary basins, groundwater impacts will be considered significant if a soil moisture balance, or equivalent analysis, conducted using a minimum of 30 years of precipitation data, including drought periods, concludes that at any time groundwater in storage is reduced to a level of 50% or less as a result of groundwater extraction.

A Proposed-Project-specific soil-moisture-based water balance was not performed for the Project site. Instead, an updated estimate of groundwater in storage was made based on previous work conducted by Roff and Fanzone (1994) and Swenson (1981). The estimate evaluated whether the water demands for the Proposed Project would maintain at least 50% groundwater in storage over the 2,061-acre Jacumba Valley alluvial aquifer (mapped by Swenson 1981). Additionally, a one-time Proposed Project extraction of up to 112 acre-feet over a 1-year period was compared to historical groundwater extraction rates from the Jacumba Valley alluvial aquifer.

3.1.2 Methodology

3.1.2.1 Groundwater Recharge

Groundwater recharge was not calculated for the contributing watersheds or the Jacumba Valley alluvial aquifer.

3.1.2.2 Groundwater Demand

Historical Demand

The groundwater demands of the Jacumba Valley alluvial aquifer vary with time. Historically, Jacumba Valley Ranch was the primary user of groundwater from the aquifer. Jacumba Valley Ranch produced water for irrigation of agricultural lands. From 1932 through 1977, Jacumba Valley Ranch extracted on average 2,066 afy of groundwater (Barrett 1996). Irrigation ceased on Jacumba Valley Ranch and the agricultural lands were fallowed from about 1977 until 2002. From 2002 until 2013, Bornt Farms resumed irrigation at Jacumba Valley Ranch. The water demand of Bornt Farms was reported to be in excess of 1 million gallons per day (Pape, pers. comm. 2015). To determine the area of active irrigated agricultural land by year, historical aerial photographs were reviewed. Between 2002 and 2013, 187 to 465 acres of the Jacumba Valley Ranch was irrigated to grow predominantly lettuce and spinach (Google Earth 2015). Assuming a crop irrigation rate of 2.14 acre-feet per acre for lettuce, the maximum annual water demand of the lettuce crop at Bornt Farms would be 995 acre-feet (Barrett 1996; UC Davis 2011). Other estimates state that Bornt Farms extracted 7,413 acre-feet over the farm's lifetime, or an average of 741.3 afy.

Other groundwater users include the Jacumba Valley Ranch Water Company, which has historically extracted in excess of 242 afy (Barrett 1996). Groundwater extraction on the Mexican side of the border has historically been estimated to be 24 afy (Barrett 1996).

Since 1985, JCSD has extracted potable water from up to four groundwater wells within its approximately 423-acre boundary (LAFCO 2013). The water system includes storage of up to 638,000 gallons. As discussed in Section 2.6, Current Groundwater Demand, historical potable water demand has been documented to be between 85 and 146 afy (Barret 1996; Trout, pers. comm. 2015).

As discussed in Section 2.6, JCSD has historically supplied non-potable water for commercial sale from Well #6 (a fractured rock well not screened in the Jacumba Valley alluvium) and the Highland Center Well and Park Well (both screened in the Jacumba Valley alluvium). Non-potable water supply from JCSD varies based on customer demand. Based on meter reads by Dudek staff, from February 2017 to February 2018, JCSD supplied 50.1 acre-feet from the Highland Center Well and 3.5 acre-feet from the Park Well. Maximum annual groundwater extraction from the Jacumba Valley alluvial aquifer by JCSD for non-potable water is 53.6 afy.

Current Demand

Current groundwater demand from the Jacumba Valley alluvial aquifer includes extraction by JCSD, Jacumba Valley Ranch Water Company, and a few potential domestic well owners. The

Project site, which was historically produced an excess of 2,000 afy, no long extracts groundwater for agriculture. The Jacumba Valley Ranch Water Company, which has historically extracted an excess of 242 afy, currently supplies approximately 5 afy for three ranch homes, two gas stations, and two fire hydrants (Barrett 1996; McCullough, pers. comm. 2015).

JCSD continues to extract both potable and non-potable groundwater from the Jacumba Valley alluvial aquifer. As discussed in Section 2.6, JCSD is estimated to produce approximately 119.5 afy of potable water for 239 connections from Well #4, and 4 afy of non-potable water during 2018 from the Highland Center Well and Park Well (Devine, pers. comm. 2019).

There may be small volumes of groundwater (less than 3 afy) extracted from domestic wells located in the residential area in Jacumba Hot Springs.

Groundwater extraction is occurring from the fractured rock aquifer by JCSD, Jacumba Hot Springs Resort, and a few domestic well users on the outskirts of town. Since the Proposed Project is proposing to extract groundwater from the Jacumba Valley alluvial aquifer, groundwater extraction from the fractured rock aquifer was not included in this analysis.

Future Demand

Future demand is expected to include JCSD potable and non-potable demand, Jacumba Valley Ranch Water Company, and private domestic users. Potable groundwater use from JCSD, the Jacumba Valley Ranch Water Company, and private domestic users is expected to be similar to current conditions over the long-term. JCSD has the potential to serve non-potable from the Highland Center and the Park Well.

JCSD completed a manganese water treatment system for Wells #7 and #8 that is serving all potable water demands for its customers (Dudek 2016b). This treatment system came online on March 6, 2020. Wells #7 and #8 source water from the fractured rock aquifer rather than the Jacumba Valley alluvial aquifer.

Table 10 provides historical, current, and future water demand from the Proposed Project, other projects, and Proposed Project O&M. The future projected water demand conservatively evaluates the Proposed Project and other projects taking place concurrently.

Table 10
Jacumba Valley Alluvial Aquifer Groundwater Demand

Land Use	Historical Water Demand (afy)	Current Water Demand (afy)	Future Water Demand During Construction (afy)	Future Ongoing Water Demand for O&M (afy)	Future Maximum Demand During Construction (acre-feet)
Project Site (Jacumba Valley Ranch; Bornt Farms)	2,066; 741–995	0	140	11	140
Jacumba Valley Ranch Water Company	242	5	5	5	5
Private Domestica	3	3	3	3	3
JCSD (Potable)	80-146 ^b	119.5	0c	0c	0
JCSD (Non-Potable)	53.6	4 d	4 (ongoing) ^d 290 (one-time use) ^e	4 (ongoing) ^d 7.3 (future O&M)	294 ^e
Total Estimated Water Demand	2,212 ^f	131.5	302	19.3	302
Total Estimated Water Demand With Project	2,212 ^f	131.5	442	30.3	442

Source: Barrett 1996; Dudek 2015; Troutt, pers. comm. 2015

afy = acre-feet per year; O&M = operations and maintenance; JCSD = Jacumba Community Services District

- c. Future JCSD potable water demand is supplied from Wells #7 and #8, completed in the fractured rock aquifer.
- d. Assumes current groundwater demand based on Dudek metered data from 2018.

Historically, groundwater demand from the Jacumba Valley alluvial aquifer has been estimated to be up to 2,066 afy (Barrett 1996). A drastic reduction in groundwater production has occurred since agriculture irrigation ceased on Jacumba Valley Ranch. The current groundwater demand from the Jacumba Valley alluvial aquifer is estimated to be 131.5 afy (Table 10). An additional 112 acre-feet would be extracted during Proposed Project construction, resulting in a 1-year extraction of 243.5 acre-feet from the aquifer, assuming other groundwater users continue their current estimated extraction amounts. However, starting in spring 2019, groundwater extraction from the Jacumba Valley alluvial aquifer for JCSD potable use is expected to cease after the completion of a manganese water treatment system for fractured rock Wells #7 and #8. This will result in a reduction of water demand from the Jacumba Valley alluvial aquifer, taking into account water demand for Proposed Project construction. The total water demand from the Jacumba Valley

30

Not all domestic wells are currently active or known; however, a consumptive water demand of 0.5 afy has been assigned to up to six potential domestic wells

b. JCSD Wells #1 and #2 supplied all potable demands for the town of Jacumba Hot Springs until JCSD Wells #3 and #4 were drilled in the early 1970s. As of March 2020 JCSD is no longer pumping water for potable supply form the alluvial aquifer.

e. Water demand from all reasonably foreseeable projects includes: 50 acre-feet for Boulder Brush, 76 acre-feet for Torrey Wind, 123 acre-feet for Campo Wind, 37 acre-feet for Rugged Solar and 4 acre-feet for Cameron Solar (all values rounded to the nearest acre-foot). O&M water demand is 7 afy for Torrey Wind, 0.25 afy for Campo Wind and 0.03 afy for Cameron Solar.

f. Assumes maximum concurrent water demand from JCSD potable demand and Jacumba Valley Ranch.

alluvial aquifer during Proposed Project construction is expected to be 124 acre-feet, which includes the Proposed Project and ongoing use, minus JCSD potable demand.

After Proposed Project construction, ongoing groundwater productions from the alluvial aquifer is estimated to be 30.3 afy, based on 11 afy of Proposed Project water use for O&M, 11.3 acre-feet of continuous non-potable water use by JCSD and 8 afy for private domestic and Jacumba Valley Ranch Water Company (Table 10). Additionally, the Proposed Project would extract groundwater for decommissioning in the future.

JCSD is proposing the use of the Highland Center Well with potential backup supply provided by the Park Well to serve JCSD non-potable water to commercial customers. Based on foreseeable renewable energy projects, JCSD is proposing to extract up to 290 acre-feet of groundwater from the Highland Center and Park Wells for construction of five renewable energy projects. Water demand from all reasonably foreseeable projects includes: 50 acre-feet for Boulder Brush, 76 acrefeet for Torrey Wind, 123 acre-feet for Campo Wind, 37 acre-feet for Rugged Solar and 4 acrefeet for Cameron Solar (all values rounded to the nearest acre-foot). O&M water demand is 7 afy for Torrey Wind, 0.25 afy for Campo Wind and 0.03 afy for Cameron Solar

3.1.2.3 Groundwater in Storage

Groundwater in storage was calculated using estimates of the saturated aquifer thickness underlying the 2,060-acre area of the Jacumba Valley alluvial aquifer, as mapped by Swenson (1981). Aquifer thickness was updated from the Swenson groundwater storage compartments (A through E) with available well completion information. The estimated saturated thickness is based on recent groundwater levels measured in June and December 2018. The updated well completion information used to constrain aquifer thickness is provided in Table 11 and included in Appendix B, Well Completion Information. For compartments with multiple wells and groundwater level measurements, values were averaged to represent a non-uniform saturated aquifer thickness. In all cases, the average saturated thickness used to define groundwater in storage (Table 12) was less than the measured saturated thickness at each well (Table 11). For compartments in which no wells were located, groundwater levels were extrapolated from the nearest well (Table 12). Groundwater storage compartments and their representative wells are depicted in Figure 8. Specific yield was estimated based on historical and recent aquifer test analyses.

Table 11
Well Completion Information for Constraining Alluvial Saturated Thickness

Common Well Name	Source or County of San Diego Well Record Identification	Aquifer Thickness (feet)	Depth to Groundwater/ (feet below ground surface)	Depth to Groundwater Measurement Date	Saturated Thickness (feet)	Swenson Compartment (Swenson 1981)
JVR – Carrizo Creek	Lwell 6933	55	_	_	_	A
Leighton B- 12	Leighton 1991a	20	_	_	_	А
Well #3	Lwel 16419	89	35.14	12/11/2018	50.26	С
Well #2	Lwel 1815	113	56.21	12/11/2018	55.27	С
Test Hole	Lwel 20450	100	_	_	_	С
Leighton B-2	Leighton 1991a	25	_	_	_	С
Central Irrigation Well	_	_	44.33	12/11/2018	_	С
Mid-Valley Well	_	_	47.42	12/11/2018	_	С
Well #1	_	124	57.87	12/11/2018	_	D
J2	Swenson 1981	120	_	_		D
Test Hole	Lwel 17922	108	_	_	_	D
Southwest Irrigation	Lwel 18031	86	_	_	_	D
Test Hole	Lwel 20411	150	_	_	_	D
Highland Center Well	Lwel 001506	175	56.98	6/26/2018	118.02	E
Park Well	_	_	59.74	6/26/2018	_	E
J3	Swenson 1981	60			<u> </u>	E
J4	Swenson 1981	50				E

^{- =} no information is available

Specific Yield (Storage Coefficient)

Previous estimates of specific yield for the Jacumba Valley alluvial aquifer were made by Swenson (1981) and calculated from aquifer testing performed by Barrett (1996). The specific yield associated with the alluvium was conservatively estimated by Swenson (1981) to be between 5% and 10%. Barrett (1996) estimated specific yield to be 25% based on aquifer testing of Well K4, Test Well No. 1, and Well Km.

Storativity (storage coefficient) was calculated for this report (Section 3.2, Well Interference and Groundwater Dependent Habitat) based on two constant-rate aquifer tests. The storage coefficient from the Well #2 aquifer test, located in compartment D, ranged from 0.008 to 0.028. The storage

coefficient from the Well #3 aquifer test, located in compartment C, was calculated to be 0.2349 (Geosyntec 2012). Since the aquifer tests were conducted in the unconfined aquifer, the calculated storage coefficient is equivalent to the specific yield (Driscoll 1986). Values for the storage coefficient for unconfined aquifers range from 0.01 to 0.30 (Driscoll 1986). The calculated storage coefficients from the Well #2 and Well #3 aquifer tests fall within this range.

Based on recent aquifer test analysis performed on Well #2 and Well #3 within the Jacumba Valley alluvial aquifer, the specific yield ranges from 0.08% to 24%, with a mean value of 12% (Geosyntec 2012). To provide a conservative estimate, a specific yield value of 10% was used for this analysis to calculate groundwater in storage.

Saturated thickness was calculated by subtracting the average alluvial thickness by recent depth to groundwater measurements recorded in 2018. Saturated thickness for each compartment was then multiplied by the compartments acreage and the 10% specific yield value to determine the groundwater in storage by compartment. Based on these calculations, the current groundwater in storage within the Jacumba Valley alluvial aquifer is estimated to be 9,005 acre-feet (Table 12).³

In comparison, groundwater in storage was estimated to range from 9,600 to 16,000 acre-feet by Roff and Fanzone (1994), and from 3,200 to 6,400 acre-feet by Swenson (1981). The 2018 groundwater in storage estimate is based on additional information including borings indicating depth to bedrock and site-specific specific yield values that were not available to Swenson (1981) or Roff and Fanzone (1994).

33

DUDEK

March 2021

³ The estimate of 9,005 acre-feet of groundwater in storage in 2018 for the Jacumba Valley alluvial aquifer is an initial estimate based on available data, including well logs, water levels, and aquifer properties estimated by pump testing. The estimated storage in the Jacumba Valley alluvial aquifer may be revised as additional data is acquired.

Table 12 Jacumba Valley Alluvial Aquifer 2018 Groundwater in Storage Estimate

Alluvial Aquifer Compartments*	Area (acres)	Leighton Alluvial Thickness (1991) (feet)	Average Alluvial Thickness (feet)	Depth to Water 2018 (feet below ground surface)	Average Saturated Thickness (feet)	Specific Yield (unitless)	Storage (acre- feet)
Α	240.94	50+	37.5	35.14	2.36	0.10	56.86
В	104.70	50+	50	35.14	14.86	0.10	155.58
С	439.40	120+	81.75	43.5	38.25	0.10	1,680.71
D	1,082.73	100+	117	57.87	59.13	0.10	6,402.18
Е	193.61	80+	95.0	58.36	36.64	0.10	709.39
Total Groundwater in Storage (rounded acre-feet)						9,005	

* Compartment Details:

- A Aquifer thickness estimated from an average alluvial thickness observed in well log Lwel 6933 and B-12 (Leighton 1991a). Depth to water extrapolated from Well #3 (Lwel 16419)
- B Aquifer thickness defined by Leighton 1991a. Depth to water extrapolated from Well #3 (Lwel 16419)
- C Aquifer thickness estimated from Well #3 (Lwel 16419), Well #2 (Lwel 1814), Test Hole (L well 20450), and Leighton B-7 (Leighton 1991a). Depth to water averaged from Well #3 (Lwel 16419) and Well #2 (Lwel 1814).
- D Aquifer thickness estimated from Well J2 (Swenson 1981), Test Holes (Lwell 17922 and 201411), and the Southwest Irrigation Well (Lwell 18031). Depth to water estimated from Well #1.
- E Aquifer thickness estimated from the Highland Center Well (Lwell 001506), and Wells J3 and J4 (Swenson 1981). Depth to water estimated from an average of the Highland Center Well (Lwell 001506) and the Park Well.

3.1.2.4 Long-Term Groundwater Availability (Sustainability)

Long-term groundwater availability was evaluated in context of the current available groundwater in storage, historical groundwater levels, and water demand. The volume of groundwater in storage varies depending on the rate of recharge and the volume of water pumped from storage (water demand). Sustainable groundwater availability is less than the historical average groundwater production rate of 2,066 afy from 1932 to 1977. This is observed during dry periods when the Jacumba Valley experienced groundwater overdraft, as indicated by declining groundwater levels in the alluvial aquifer wells (Exhibit 2). Pumping by Jacumba Valley Ranch between 2003 and 2013 also resulted in groundwater level declines in the alluvial aquifer. Bornt Farms grew lettuce and spinach on up to 465 acres, year-round, with an estimated maximum extraction rate of 995 acre-feet per year (Barrett 1996; UC Davis 2011). Due to Bornt Farms irrigation and below-average precipitation recorded in the contributing watersheds over the last decade, the water demands exceeded available recharge, resulting in groundwater level decline (Exhibit 2). Several years of drought and limited non-potable extraction by JCSD likely contributed to the current groundwater level decline.

The Proposed Project proposes to extract groundwater for 1 year at a maximum quantity of 140 acre-feet. This one time use of groundwater for construction is approximately 10% of the annual production quantity of Bornt Farms, and 5% of the annual production quantity of Jacumba Valley Ranch. After Proposed Project construction, groundwater extraction for O&M would be 0.9% of the annual production quantity of Bornt Farms and 0.5% of the annual production quantity of Jacumba Valley Ranch for the maximum groundwater historically extracted from the Project site. Groundwater extraction for decommissioning and dismantling would be 5% of the annual production quantity of Bornt Farms and 2% of the annual production quantity of Jacumba Valley Ranch for the maximum groundwater historically extracted from the Project site.

The Proposed Project proposes to use 140 acre-feet during construction for 1 year. Assuming no recharge to the aquifer, the Proposed Project alone would reduce groundwater in storage by 1.6% during construction. The estimated maximum extraction from all known sources during the period of Proposed Project construction is 442 acre-feet. Total reduction of groundwater in storage from all sources during the construction period is estimated to be 4.9%. Assuming a Proposed Project lifetime of 40 years (1 year of construction, 38 years of O&M, and 1 year of decommissioning), the Proposed Project would use 619 acre-feet of water. Other groundwater uses within the basin including reasonably foreseeable projects would use 1,054 acre-feet of water. This equates to a total water demand of 1,673 acre-feet, which results in a 18.6% reduction in storage over 40 years, assuming no recharge to the aquifer.

3.1.3 Significance of Impacts Prior to Mitigation

The total estimated water use for the Proposed Project, other uses, and reasonably foreseeable projects is estimated at 1,673 acre-feet over 40 years, which results in an 18.6% reduction in storage. This demonstrates that groundwater would not be depleted to 50% or less of the estimated basin storage capacity of 9,005 acre-feet.

3.1.4 Mitigation Measures and Design Considerations

Since impacts are considered less than significant, no mitigation is required.

3.1.5 Conclusions

The Proposed Project would have a less-than-significant impact to groundwater in storage, as defined by the County Guidelines (County of San Diego 2007). Proposed Project groundwater extraction, and other groundwater use, including reasonably foreseeable projects for the life of the Proposed Project, assuming a 40-year lifespan would equate to an 18.6% reduction in groundwater storage. This is less than the County's significance criteria of 50%.

3.2 Well Interference and Groundwater Dependent Habitat

3.2.1 Guidelines for Determination of Significance

3.2.1.1 Well Interference

The following significant impact requirements are set forth in the County Guidelines (County of San Diego 2007):

Alluvial Well: As an initial screening tool, off-site well interference will be considered a significant impact if after a five year projection of drawdown, the results indicate a decrease in water level of 5 feet or more in the off-site wells. If site-specific data indicates alluvium or sedimentary rocks exist which substantiate a saturated thickness greater than 100 feet in off-site wells, a decrease in saturated thickness of 5% or more in the off-site wells would be considered asignificant impact.

According to the County Groundwater Geologist, the primary author of the County of San Diego Guidelines, the intent of the above guideline was to cover projects that have continual ongoing water uses that remain static over time (Bennett, pers. comm. 2015). Historically, this has been the case for the majority of groundwater-dependent projects processed by the County. The Proposed Project, however, proposes to use variable quantities of water, with intensive pumping over short periods. The intensive pumping during short periods may cause direct well interference impacts. Therefore, to evaluate potential impacts from short-term pumping of groundwater, the County

Groundwater Geologist has requested a short-term drawdown analysis, in addition to the 5-year projection of drawdown, to evaluate the potential impacts from operating at the highest rate of pumping (Bennett, pers. comm. 2015).

Potential well interference impacts for Well #2 and Well #3 were evaluated over a 0.5-mile radius from each well (Figure 9, On-Site and Off-Site Wells). Table 13 lists known off-site active wells screened in the Jacumba Valley alluvial aquifer that are within a 0.5-mile radius of the on-site Proposed Project production wells.

Table 13
Alluvial Aquifer Wells Within 0.5-Mile Radius of On-Site Proposed Project Wells

		Distance from Well #2	Distance from Well #3			
Well Name	Use	Feet				
Jacumba Valley Ranch Water Company						
Well Km	Public/Potable	2,453	3,548			
Jacumba Community Services District Wells						
Highland Center Well	Public/Non-Potable	1,817	4,835			
Park Well	Public/Non-Potable	2,256	5,025			
Other						
Border Patrol Well	Private/Inactive	1,892	6,235			

Note: Bold = Well is located at a distance greater than 0.5 miles (>2,640 feet).

3.2.1.2 Groundwater-Dependent Habitat

Guideline 4.2.C from the County of San Diego Guidelines for Determining Significance and Report Format and Content Requirements: Biological Resources defines the following threshold for determining a significant impact to riparian habitat or a sensitive natural community (County of San Diego 2010a):

The project would draw down the groundwater table to the detriment of groundwater-dependent habitat, typically a drop of 3 feet or more from historical low groundwater levels.⁴

A biological field survey, including vegetation mapping, was conducted on the Project site by Dudek biologist in 2018 (Dudek 2020b). The biological survey presents the most current and site-specific vegetation on the Project site and was used to identify potential groundwater-dependent habitat for the distance drawdown calculations. Vegetation and potential groundwater-dependent

DUDEK 37 March 2021

⁴ Historical groundwater level hydrographs compiled by the Jacumba Community Sponsor Group –Town Center Well Hydrographs from 1990 to 2008 indicate up to 20 feet of water level decline in one well during this period of measurement (Figure 2-58 in County of San Diego 2010b). Historical groundwater level monitoring for JCSD Well #4 from 1990 to 2008 indicates up to 20 feet of water level decline during the period of measurement.

habitats present on the Project site are depicted in Figure 10, Potential Groundwater-Dependent Habitat. The survey identified two types of groundwater-dependent habitat, desert sink scrub and mesquite bosque.

The dominant species of the desert sink scrub are succulent chenopods, which occurs on fine-textured, poorly drained soils with high alkalinity or salt content. Characteristic species include iodine bush (*Allenrolfea occidentalis*), fourwing saltbush (*Atriplex canescens*), and salt heliotrope (*Heliotropium curassavicum*) (Oberbauer et al. 2008).

The dominant species of the mesquite bosque are mesquite (*Prosopis glandulosa*) with additional characteristic species including carelessweed (*Amaranthus palmeri*), white bursage, fourwing saltbush, and allscale (Oberbauer et al. 2008). Mesquite bosque commonly occur on higher alluvial terraces and near washes, streambanks, alkali sinks, or outwash plains with substantial groundwater (Dudek 2020b).

The Natural Communities Commonly Associated with Groundwater (DWR 2018) and SanGIS (SanGIS 2018) vegetation dataset were also reviewed to verify potential groundwater- dependent habitat.

3.2.2 Aquifer Testing

The following subsections describe the procedures followed during aquifer testing at Well #2 and Well #3, and the analysis of aquifer test data.

3.2.2.1 Aquifer Test Description

A 24-hour constant rate test was performed at Well #2 by Dudek on December 14, 2018, at an average pumping rate of 317 gpm. A 72-hour constant rate test was performed at Well #3 by Geosyntec on November 6, 2012, at an average pumping rate of 350 gpm (Geosyntec 2012). The purpose of the constant rate tests were to obtain approximate long-term production rates, estimate drawdown at off-site wells and groundwater-dependent habitat, and estimate aquifer properties.

3.2.2.2 Aquifer Test Analysis

Aquifer Test Analysis Methodology

Hydraulic aquifer properties (transmissivity and storativity) were estimated using the computer program Aquifer Test Solver Pro, Version 4.50 (AQTESOLV). Projected drawdown was roughly estimated using drawdown data on a log-log plot. Distance drawdown was estimated at select distances from each pumping well using the Theis non-equilibrium well equation (Theis equation).

DUDEK 38 March 2021

Aquifer Properties (Transmissivity and Storativity)

Aquifer transmissivity is the rate at which water flows through a vertical strip of the aquifer 1 foot wide and extending through the fully saturated thickness under a hydraulic gradient of 1, or 100%.

The aquifer coefficient of storage (also called storativity) is the volume of water released from storage per unit decline in hydraulic head in the aquifer per unit area of the aquifer. Due to well loses and inefficiency of the pumping well, an observation well is required to calculate the coefficient of storage.

Transmissivity and storativity were calculated in AQTESOLV by fitting the Cooper-Jacob (Cooper and Jacob 1953), Theis, and Neuman methods to drawdown and recovery data, where applicable.

Projected Drawdown

Groundwater drawdown was projected using the pumping rate for each aquifer test on a log-log plot. The late time trend of the drawdown curve was projected to 90 days, 1 year (365 days), and 5 years (1,825 days).

Distance Drawdown

Groundwater drawdown after 90 days, 1 year, and 5 years was estimated at the nearest off-site wells and groundwater-dependent habitat using the Theis equation (Driscoll 1986):

$$s = \frac{114.6 Q W(u)}{T}$$

Where:

s = predicted drawdown (feet)

Q = pumping rate (gpm)

T = transmissivity (gallons per day per foot)

t = time (days)

W(u) = the well function of u

For the W(u) function, u is equal to:

$$u = \frac{1.87r^2S}{Tt}$$

r = distance from pumping well (feet) S = coefficient of storage (dimensionless)

The W(u) function, known as the Theis well function, is equal to:

$$W(u) = -0.5772 - lnu + u - \frac{u^2}{2 \cdot 2!} + \frac{u^3}{3 \cdot 3!} - \frac{u^4}{4 \cdot 4!} + \cdots$$

The groundwater extraction rate used to predict drawdown was adjusted to equal the Proposed Project demand for 90 days, 1 year, and 5 years.

3.2.2.3 Aquifer Test Results

Well #2 Aquifer Test

Aquifer Properties

After 24 hours of continuous groundwater extraction, the observed groundwater level drawdown was 3.1 feet in Well #2 (pumping well) and approximately 0.5 feet in Well #1 (observation well, located 305 feet away). Drawdown in Wells #2 and #1 are shown in Figures 11 and 12, respectively.

The transmissivity values obtained from the Theis and Neuman equations using AQTESOLV were 36,290 square feet per day (ft²/day) and 26,410 ft²/day in Well #1, and 33,050 ft²/day and 28,310 ft²/day in Well #2. These values were obtained using an aquifer saturated thickness (b) equivalent to 40 feet (the saturated thickness of the screened interval of Well #2). The hydraulic conductivity values calculated by dividing transmissivity by aquifer thickness (K=T/b) ranged from 660 feet per day to 907 feet per day. The storativity values estimated using data collected in Well #1 ranged from 0.028 using Theis and 0.00826 using Neuman. Table 14 shows the range of aquifer parameters and residual statistics obtained from the AQTESOLV curve matching of drawdown and recovery data from Wells #1 and #2. AQTESOLV results from the Well #2 aquifer test are presented in Appendix C, Well #2 Aquifer Test AQTESOLV Data.

Table 14
Well #2 Aquifer Test – AQTESOLV Estimated Aquifer Hydraulic Properties

	Estimated Aq	Residual Statistics							
Solution Method	Transmissivity (square feet per day)	Hydraulic Conductivity (feet per day)	Storativity (dimensionless)	Sum of Squares (square feet)					
Well #1 (Observation)									
Theis	36,290	907	0.02876	3.952					
Neuman	26,410	660	0.00826	0.3775					
Well #2 (Pumping)									
Theis	33,050	826	_	11.52					
Neuman	28,310	708		14.1					

Note: Storativity calculated from the observation well (Well #1).

Aquifer properties estimated by using the Neuman method provided the best fit to the observation well data (see Appendix C). The transmissivity and storativity values estimated by fitting the Neuman method to Well #1 (observation well) drawdown data in AQTESOLV are 26,410 ft²/day and 0.00826, respectively. These aquifer hydraulic properties were used in the Well #2 (pumping well) distance drawdown calculation using the Theis equation.

Projected Drawdown

Projected drawdown was estimated in Wells #2 and #1 after 90 days, 1 year, and 5 years. At a constant pumping rate of 317 gpm, projected drawdown in Well #2 after 90 days, 1 year, and 5 years is 3.6 feet, 3.8 feet, and 4.0 feet, respectively (see Figure 13). Projected drawdown in Well #1 (located 305 feet away from the pumping well) at 90 days, 1 year, and 5 years is 1.49 feet, 1.81 feet, and 2.17 feet, respectively (see Figure 14).

Distance Drawdown

Distance drawdown calculations were performed at select distances from Well #2 to evaluate impacts to off-site well users and groundwater-dependent habitat after 90 days, 1 year, and 5 years of continuous groundwater extraction. The Proposed Project construction groundwater demand was analyzed over 90 days, 1 year, and 5 years. The adjusted extraction rates for distance drawdown after 90 days, 1 year, and 5 years were 352 gpm, 87 gpm, and 17 gpm (rounded), respectively. Transmissivity and storativity values used were from the Well #1 (observation well) AQTESOLV analysis (26,410 ft²/day and 0.00826, respectively).

The closest off-site well to Well #2 is the Highland Center Well located approximately 1,817 feet to the west (Figure 9, On-Site and Off-Site Wells). Projected drawdown at the Highland Center Well after 90 days, 1 year, and 5 years is predicted to be 1.08 feet, 0.34 feet, and 0.08 feet, respectively. The closest groundwater-dependent habitat to Well #2 is mesquite bosque located approximately 1,820 feet south near the international border with Mexico (Figure 10). Projected drawdown at the nearest groundwater-dependent habitat after 90 days, 1 year, and 5 years is predicted to be 1.08 feet, 0.34 feet, and 0.08 feet, respectively. Table 15 summarizes projected drawdown at select distances from Well #2.

Table 15
Well #2 Distance Drawdown Calculations

Nearest Off-Site Well or Groundwater- Dependent Habitat	Distance from Pumping Well #2 (feet)	Drawdown After 90 Days in Feet at a Constant Pumping Rate of 352 gpm	u	Drawdown After 1 Year in Feet at a Constant Pumping Rate of 87 gpm	u	Drawdown After 5 Years in Feet at a Constant Pumping Rate of 17 gpm	u
Highland Center Well	1,817	1.08	0.0029	0.34	0.0007	0.08	0.0001
Mesquite Bosque	1,820	1.08	0.0029	0.34	0.0007	0.08	0.0001
Park Well	2,256	0.99	0.0044	0.31	0.0011	0.08	0.0002
Well KM	2,453	0.96	0.0052	0.31	0.0013	0.08	0.0003

gpm = gallons per minute; u = a ratio of distance and storativity over transmissivity and time. See Section 3.2.2.2, Aquifer Test Analysis, for equation.

Wells #1 and #2 recovery data were evaluated using the plot of residual drawdown versus time since pumping started divided by time since pumping stopped (t/t') to assess impacts to storage from pumping. At t/t' equals to 1 (infinite time), a residual drawdown would indicate permanent dewatering or incomplete dewatering due to limited extent of the aquifer. The projected residual drawdown at infinite time for Wells #1 and #2 is 0.02 and 0.01 feet, respectively (Figures 15 and 16). This negligible residual drawdown indicates no permanent dewatering or limited extent of aquifer.

Well #3 Aquifer Test

Aquifer Properties

Aquifer properties from the Well #3 aquifer test were calculated by Geosyntec (2012). After 72 hours of continuous groundwater extraction, groundwater level drawdown was 7.3 feet in Well #3 (pumping well) and approximately 4.07 feet in the Daley Well (observation well, located 60 feet away). Drawdown in Well #3 and the Daley Well are shown in Figures 17 and 18. Aquifer properties were estimated using AQTESOLV with drawdown and recovery data recorded in Well #3 and the Daley Well (see Appendix D, Well #3 Aquifer Test Report). The transmissivity value estimated by fitting the Cooper-Jacob method (Cooper and Jacob 1953) to drawdown data recorded in the Daley Well was 8,779 ft²/day (65,821 gallons per day per foot). The transmissivity value estimated by fitting the Theis method to recovery data recorded in Well #3 was 12,950 ft²/day (96,872 gallons per day per foot). These values were obtained using an aquifer saturated thickness equivalent to 58 feet (the saturated thickness of the screened interval of Well #3), and equate to hydraulic conductivity values ranging from 151 feet per day to 223 feet per day. The storativity value estimated using data collected in the Daley Well was 0.2349 (Geosyntec 2012).

Projected Drawdown

Projected drawdown was estimated in Well #3 and the Daley Well after 90 days, 1 year, and 5 years of constantly pumping Well #3 at 350 gpm. The projected drawdown in Well #3 after 90 days, 1 year, and 5 years is 11.1 feet, 12.7 feet, and 14.5 feet, respectively (Figure 19). Projected drawdown in the Daley Well after 90 days, 1 year, and 5 years of pumping is 8.0 feet, 9.5 feet, and 11.4 feet, respectively (Figure 19) (Appendix D).

Distance Drawdown

Distance drawdown calculations were performed at select distances from Well #3 to evaluate impacts to off-site well users and groundwater-dependent habitat after 90 days, 1 year, and 5 years of continuous groundwater extraction. The Proposed Project construction groundwater demand was analyzed over 90 days, 1 year, and 5 years. The adjusted extraction rates for distance drawdown after 90 days, 1 year, and 5 years were 352 gpm, 87 gpm, and 17 gpm (rounded), respectively. The transmissivity and storativity values used were 8,779 ft²/day and 0.2349, respectively (Appendix D).

The closest off-site well to Well #3 is Well KM, owned by the Jacumba Valley Ranch Water Company, located greater than 0.5 miles (3,548 feet) to the southwest (Figure 9). Projected drawdown at Well KM after 90 days, 1 year, and 5 years is predicted to be 0.15 feet, 0.17 feet, and 0.08 feet, respectively.

The closest groundwater-dependent habitat to Well #3 is mesquite bosque located 140 feet to the west (Figure 10). Projected drawdown at the nearest groundwater-dependent habitat as a result of pumping Well #3 after 90 days, 1 year, and 5 years is predicted to be 3.66 feet, 1.11 feet, and 0.27 feet, respectively. Table 16 summarizes projected drawdown at select distances from Well #3.

Table 16
Well #3 Distance Drawdown Calculations

Nearest Off-Site Well or Groundwater- Dependent Habitat	Distance from Pumping Well #2 (feet)	Drawdown After 90 Days in Feet at a Constant Pumping Rate of 352 gpm	u	Drawdown After 1 Year in Feet at a Constant Pumping Rate of 87 gpm	=	Drawdown After 5 Years in Feet at a Constant Pumping Rate of 17 gpm	u	
Mesquite Basque	140	3.66	0.0015	1.11	0.0004	0.27	0.0001	
Off-Site Groundwater Production Wells Greater than 0.5 Miles from Well #3								
Well KM	3,548	0.15	0.9356	0.17	0.9356	0.08	0.9356	

Table 16
Well #3 Distance Drawdown Calculations

Nearest Off-Site Well or Groundwater- Dependent Habitat	Distance from Pumping Well #2 (feet)	Drawdown After 90 Days in Feet at a Constant Pumping Rate of 352	u	Drawdown After 1 Year in Feet at a Constant Pumping Rate of 87	u	Drawdown After 5 Years in Feet at a Constant Pumping Rate of 17	u
Dependent Habitat	#Z (IEEL)	gpm	u	gpm	u	gpm	u
Highland Center Well	4,835	0.04	1.7374	0.10	1.7374	0.06	1.7374
Park Well	5,025	0.04	1.8766	0.09	1.8766	0.06	1.8766

gpm = gallons per minute; u = a ratio of distance and storavitivty over transmissivity and time. See Section 3.2.2.2 for equation.

Daley Well and Well #3 recovery data were evaluated using the plot of residual drawdown versus time since pumping started divided by time since pumping stopped (t/t') to assess impacts to storage from pumping. The projected residual drawdown at infinite time for the Daley Well and Well #3 is 0.5 feet (Figures 20 and 21). This residual drawdown is less than the County's standard (County of San Diego 2007) of more than 0.5 feet of residual drawdown that would indicate permeant dewatering or limited aquifer extent.

3.2.3 Significance of Impacts Prior to Mitigation

A pumping rate of 317 gpm from the Well #2 aquifer test and of 350 gpm from the Well #3 aquifer test were used to predict Proposed Project drawdown using each well's maximum pumping rate. These pumping rates equate to maximum annual production of approximately 511 afy from Well #2 and 564 afy from Well #3. The maximum annual production rates calculated for Well #2 and Well #3 are significantly greater than the Proposed Project water demand of 140 acre-feet of water during Proposed Project construction (1 year), 11 afy for ongoing O&M (approximately 38 years), and 50 acre-feet for decommissioning and dismantling (1 year).

To assess the potential for Proposed Project groundwater extraction to draw down the groundwater table to the detriment of nearby groundwater-dependent habitat, or to cause well interference, projected drawdown within a 0.5-mile radius of Wells #2 and #3 was estimated using the Theis equation. Periods of 90 days, 1 year, and 5 years were used to calculate the potential long-term impacts to nearby groundwater-dependent habitats and domestic and public pumping wells. Pumping rates for each well were adjusted to reach total Proposed Project construction demand at the end of 90 days, 1 year, and 5 years.

Based on the drawdown calculations performed, drawdown at the closest off-site groundwater well to Well #2, the Highland Center Well, after 90 days, 1 year, and 5 years of pumping is predicted

to be 1.08 feet, 0.34 feet, and 0.08 feet, respectively. Drawdown at the nearest groundwater-dependent habitat to Well #2 (located approximately 1,820 feet south) after 90 days, 1 year, and 5 years of pumping is predicted to be 1.08 feet, 0.34 feet, and 0.08 feet, respectively.

No groundwater wells are located within a 0.5-mile radius of Well #3. The nearest off-site production well is Well Km, located 3,548 feet (greater than 0.5 miles) southwest of Well #3. The projected drawdown at Well Km from Well #3 pumping after 90 days, 1 year, and 5 years is predicted to be 0.15 feet, 0.17 feet, and 0.08 feet, respectively. Drawdown at the nearest groundwater-dependent habitat to Well #3 (located approximately 140 feet west) after 90 days, 1 year, and 5 years of pumping is predicted to be 3.66 feet, 1.11 feet, and 0.27 feet, respectively.

Current groundwater levels near Well #2 and Well #3 are at least 12 feet higher than the historical low groundwater level recorded in the Jacumba Valley alluvial aquifer (Exhibit 2, Well K3). Well #2 and #3 pumping is not expected to draw down the groundwater table greater than 3 feet from the historical low.

Based on the Theis methods, the effects of Proposed Project pumping on nearby groundwater-dependent vegetation and off-site domestic and public pumping wells is anticipated to be less-than-significant. Proposed Project pumping is not anticipated to adversely impact nearby groundwater-dependent vegetation or cause well interference. Additionally, the analysis performed is a conservative approach, since it likely overestimated predicted drawdown. This is because the calculations assumed no rainfall recharge to occur over the time periods tested. Recharge will offset groundwater-level decline related to groundwater extraction during periods of above-average annual rainfall (non-drought conditions).

3.2.4 Mitigation Measures and Design Considerations

Actual conditions during groundwater extraction for the Proposed Project may vary from the above analysis, so a Groundwater Monitoring and Mitigation Plan (GMMP) has been prepared to ensure that pumping does not significantly impact existing well users and groundwater dependent habitat. The GMMP provides for monitoring the duration and rate of Proposed Project pumping to document the total volume of groundwater extracted. The GMMP also provides for monitoring groundwater levels from Proposed Project pumping and monitoring wells.

3.2.5 Conclusions

The analysis above indicates that the potential for Proposed Project groundwater extraction from Wells #2 and #3 to impact off-site wells or nearby groundwater-dependent habitat is anticipated to be less-than-significant. For safe measure, groundwater-level monitoring would be performed in several wells to record groundwater levels during groundwater extraction. A GMMP detailing groundwater

DUDEK 45 March 2021

thresholds for off-site well interference and groundwater-dependent habitat has been prepared. Annual review of groundwater-level data would be conducted by a Professional Geologist or Certified Hydrogeologist registered in the State of California to evaluate long-term impacts.

4 WATER QUALITY IMPACT ANALYSIS

The Proposed Project does not propose to use groundwater as a potable water source; therefore, no water quality impact analysis was conducted.

5 SUMMARY OF PROJECT IMPACTS AND MITIGATION

5.1 50% Reduction in Groundwater Storage

As discussed in Section 3.1, 50% Reduction of Groundwater Storage, a Proposed-Project-specific soil-moisture-based water balance was not performed for the Project site. Instead, a 1-year Proposed Project construction groundwater extraction volume of 140 acre-feet was compared to historical, ongoing, and future estimated groundwater extraction rates from the Jacumba Valley alluvial aquifer and updated estimates of groundwater in storage originally made by Roff and Franzone (1994) and Swenson (1981). The analysis evaluated whether the water demands for Proposed Project construction, ongoing groundwater extraction, and maximum non-potable extraction by JCSD maintain at least 50% groundwater in storage over the 2,060-acre Jacumba Valley alluvial aguifer. The analysis evaluated groundwater extraction of 140 acre-feet for Proposed Project construction, 8 afy for ongoing domestic and Jacumba Valley Ranch Water Company use, 4 acre-feet for ongoing JCSD non-potable supply and 290 acre-feet for one-time construction supply of reasonably foreseeable renewable energy projects. The total water demand of 442 acre-feet for these projects is 4.9% of the current estimated groundwater storage of the Jacumba Valley Alluvial aquifer. The analysis concluded that groundwater extraction for the Proposed Project and for ongoing and future water demands would maintain at least 50% groundwater in storage.

Total groundwater extraction over the assumed lifetime of the Proposed Project was also analyzed along with groundwater extraction from other users and reasonably foreseeable projects. The total estimated groundwater extraction for the 40-year lifetime (1,673 acre-feet) of the Proposed Project is 18.6% of the current groundwater in storage. Since the Proposed Project would not exceed the 50% reduction in groundwater storage threshold, and other cumulative groundwater demands would be met, groundwater impacts to storage would be less than significant.

5.2 Well Interference

As presented in Section 3.2.2.2, Aquifer Test Analysis, based on the Theis equation, drawdown at the closest off-site groundwater well to Well #2, the Highland Center Well, after 90 days, 1 year, and 5 years of pumping is predicted to be 1.08 feet, 0.34 feet, and 0.08 feet, respectively (Table 15). No groundwater wells are located within a 0.5-mile radius of Well #3. These results indicate that drawdown is not predicted to exceed the County well interference threshold of significance of a decrease in water level of 5 feet or more in off-site alluvial wells (County of San Diego 2007).

DUDEK 49 March 2021

5.3 Groundwater-Dependent Habitat

As presented in Section 3.2.1.2, Groundwater-Dependent Habitat, Mesquite Bosque located approximately 1,820 feet south of Well #2 is potentially groundwater-dependent habitat. Based on the Theis equation, drawdown at the closest groundwater-dependent habitat to Well #2 after 90 days, 1 year, and 5 years is predicted to be 1.08 feet, 0.34 feet, and 0.08 feet, respectively (Table 15).

Mesquite Basque located approximately 410 feet west of Well #3 is potentially groundwater-dependent habitat. Based on the distance drawdown calculations, drawdown at the closest groundwater-dependent habitat to Well #3 after 90 days, 1 year, and 5 years of pumping is predicted to be 3.66 feet, 1.11 feet, and 0.27 feet, respectively. Current groundwater levels in Well #3 are at least 12 feet higher than the historical low groundwater level recorded in the Jacumba Valley alluvial aquifer (Exhibit 2, Well K3). Therefore, the Proposed Project is unlikely to draw down the groundwater table to the detriment of groundwater-dependent habitat, and impacts are anticipated to be less than significant.

5.4 Mitigation Measures

Proposed Project production wells, Well #2 and Well #3, should be fitted with totalizing flow meters to record production during each phase of the Proposed Project. Groundwater wells should also have access for taking groundwater-level measurements. Monitoring would be in place during groundwater production for Well #2 and Well #3 to monitor impacts to groundwater storage, well interference, and groundwater-dependent habitat. A GMMP has been prepared that details groundwater thresholds for off-site well interference and groundwater-dependent habitat.

6 REFERENCES

- Allan, R.B. 2013. Unpublished precipitation data from Jacumba and Tierra del Sol rain gauges. Personal communication from R. Allan (County of San Diego Flood Control). September 13, 2013.
- Allan, R.B. 2014. Unpublished precipitation data from Tierra del Sol rain gauges. Personal communication from R. Allan (County of San Diego Flood Control). September 24, 2014.
- Barrett (Barrett Consulting Group). 1996. *Hydrogeological Investigation, Proposed Jacumba Valley Ranch Development, Jacumba, San Diego County, California*. Prepared for Jacumba Valley Ranch. October 18, 1995.
- Bennett, Jim. 2015. Discussion of *Guidelines for Determining Significance and Report Format and Content Requirements: Groundwater Resources*. Relayed to Trey Driscoll (Dudek).
- CIMIS (California Irrigation Management Information System). 1999. "ETo Zones Map." Accessed August 2013. http://www.cimis.water.ca.gov/cimis/cimiSatEtoZones.jsp.
- Cooper, H.H., Jr., and C.E. Jacob. 1953. *A Generalized Graphical Method of Evaluating Formation Constraints and Summarizing Well Field History*. U.S. Department of the Interior, Geological Survey, Water Resources Division, Groundwater Branch. January 1953.
- County of San Diego. 2004. "Groundwater Limitations Map." On file with the Clerk of the Board of Supervisors as Document No. 195172. April 2, 2004.
- County of San Diego. 2007. County of San Diego, Guidelines for Determining Significance and Report Format and Content Requirements: Groundwater Resources. Land Use and Environment Group, Department of Planning and Land Use, Department of Public Works. March 19, 2007.
- County of San Diego. 2010a. County of San Diego, Guidelines for Determining Significance and Report Format and Content Requirements: Biological Resources. Land Use and Environment Group, Department of Planning and Land Use, Department of Public Works. Fourth Revision. September 15, 2010.
- County of San Diego. 2010b. *General Plan Update Final Groundwater Study*. Department of Planning and Land Use. April 2010.

DUDEK 51 March 2021

- County of San Diego. 2011. San Diego County General Plan: A Plan for Growth, Conservation, and Sustainability, Chapter 3, Land Use Element. August 2011. https://www.sandiegocounty.gov/content/dam/sdc/pds/gpupdate/docs/GP/LandUseElement.pdf.
- County of San Diego. 2013. San Diego County Groundwater Ordinance. An Excerpt from the San Diego County Code of Regulatory Ordnances. Amendments effective March 1, 2013.
- County of San Diego. 2016. *Mountain Empire Subregional Plan; San Diego County General Plan*. Adopted January 3, 1979; adopted August 3, 2011; amended December 14, 2016. https://www.sandiegocounty.gov/content/dam/sdc/pds/docs/CP/MTN_Empire_CP.pdf.
- County of San Diego. 2018. Department of Environmental Health. Environmental Health Document Search. Accessed 2018. https://www.sandiegocounty.gov/content/sdc/deh/doclibrary/.
- CRA (Conestoga-Rovers and Associates). 2012. *Monitoring Well Installation and Soil Boring Report Former Chevron Service Station 44485 Old Highway 80, Jacumba, California*. Case No. H29832-002. May 1, 2012.
- Devine, B. 2019. "Jacumba Community Services District Service Connections." Personal communication from B. Devine (General Manger Jacumba Community Services District).
- Driscoll, Fletcher G. 1986. Groundwater and Wells. St Paul, Minn.: Johnson Division.
- Dudek. 2015. Groundwater Resources Investigation Report Flat Creek Watershed. Jacumba Community Services District. April 2015.
- Dudek. 2016a. *Draft Highland Center Well Completion Report*. Prepared for Jacumba Community Services District. November 2016.
- Dudek. 2016b. Final Preliminary Engineering Report Proposed Domestic Water Supply Project

 Manganese Treatment System Water Supply Wells No. 7 and 8, Photovoltaic Array and
 Pipeline Replacement Prepared for the Jacumba Community Services District and U.S.

 Department of Agriculture Rural Development. August 2016.
- Dudek. 2020a. Jacumba Solar 2019 Annual Groundwater Monitoring Report. January 2020.
- Dudek. 2020b. Draft Biological Resources Technical Report for the JVR Energy Park.
- DWR (California Department of Water Resources). 2004. "Jacumba Valley Groundwater Basin. California's Groundwater." Bulletin 118. February 2004.

DUDEK 52 March 2021

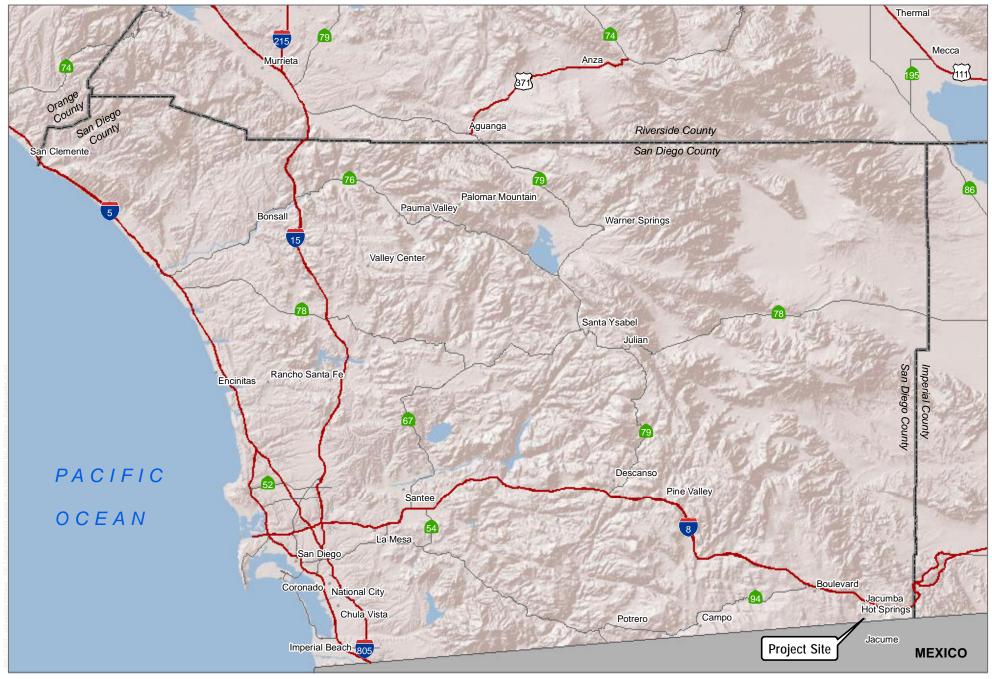
- DWR. 2018. "Natural Communities Commonly Associated with Groundwater Dataset." Accessed November 2018. https://data.ca.gov/dataset/natural-communities-commonly-associated-groundwater.
- DWR and UCCE (University of California Cooperative Extension). 2000. A Guide to Estimating Irrigation Water Needs of Landscape Plantings in California, The Landscape Coefficient Method and WUCOLS III. Accessed August 2013. http://www.water.ca.gov/wateruseefficiency/docs/wucols00.pdf.
- EnviroMatrix Analytical. 2015. "Jacumba Park Monitoring Well." Results of Analysis of Samples. November 18, 2015.
- Garrity, C.P., and D.R. Soller. 2009. "Database of the Geologic Map of North America." Adapted from the map by J.C. Reed, Jr. and others (2005): U.S. Geological Survey Data Series 424. https://pubs.usgs.gov/ds/424/.
- Geosyntec. 2012. *Jacumba Valley Ranch Property Well #3 Aquifer Test Report, Jacumba, CA.*November 2012.
- Google Earth. 2015. Aerial Photography Imagery. August 28, 2015.
- Integrated Urban Forestry. 2001. Adaptability of Native Plant Species to Groundwater Fluctuations for Sycamore Ranch. Laguna Hills, California.
- LAFCO (Local Agency Formation Commission). 2013. "Independent and Dependent Districts. Jacumba Community Services District." Updated September 16, 2013. http://www.sdlafco.org/images/Profiles/Profile_CSD_Jacumba.pdf.
- Leighton (Leighton and Associates Inc.). 1991a. Limited Evaluation of Liquefaction and Consolidation Potential, Phase 1, Jacumba Valley Ranch Development, San Diego County, California. January 21, 1991.
- Leighton. 1991b. Updated Evaluation of Consolidation Potential, Phase 1, Jacumba Valley Ranch Development, San Diego County, California. February 27, 1991.
- McCullough, Jamelle. 2015. "Jacumba Valley Ranch Water Company Connection Information." Personal communication from Jamelle McCullough (County of San Diego Department of Environmental Health, Small Drinking Water Systems). April 8, 2015.

DUDEK 53 March 2021

- National Research Council. 2002. *Riparian Areas Functions and Strategies for Management, Committee on Riparian Zone Functioning and Strategies for Management*. Water Science and Technology Board, Board on Environmental Studies and Toxicology, Division on Earth and Life Studies. National Research Council. National Academy Press, 2002.
- NOAA (National Oceanic and Atmospheric Administration). 2011. National Climatic Data Center (NCDC) Boulevard Surface Data Daily 12/1924 to 12/1967, Surface Data Monthly 1931 to 1967. Boulevard 2 Surface Data Daily 10/1969 to 12/1994, Surface Data Monthly 1969 to 1994. Accessed October 2011. http://www.ncdc.noaa.gov.
- Oberbauer, T., M. Kelly, and J. Buegge. 2008. *Draft Vegetation Communities of San Diego County*. Based on *Preliminary Descriptions of the Terrestrial Natural Communities of California*, by R.F. Holland, PhD, October 1986. March 2008.
- Pape, Bill. 2015. Informal discussion of the historical water demand of Bornt Farms and Jacumba Valley Ranch Water Company. Relayed to T. Driscoll (Dudek).
- Peterson, J. 2014. "Jacumba Valley Ranch Groundwater Level Data." Personal communication from J. Peterson (Peterson Environmental Services).
- Petra (Petra Environmental Division). 2006. Well Installation, Testing and Sampling Report, Jacumba Community Services District, 44465 Old Highway 80, Jacumba, California. June 30, 2006.
- Roff, D.F., and J.G. Franzone. 1994. *Proposed Final Report, Hydrogeological Investigation, Proposed Jacumba Valley Ranch Development, Jacumba, San Diego County, California*. Leighton and Associates Inc. 19 p.
- SanGIS (San Diego Geographic Information Source). 2018. Vegetation Information in the San Diego Region. Shapefile. Accessed 2018.
- Swenson, G.A. 1981. Master's Thesis San Diego State University The Groundwater Hydrology of Jacumba Valley, California and Baja California.
- Troutt, D. 2015. "JCSD Groundwater Production and Water Level Data." Personal communication from D. Troutt (Former General Manger Jacumba Community Services District). January 12, 2015.

DUDEK 54 March 2021

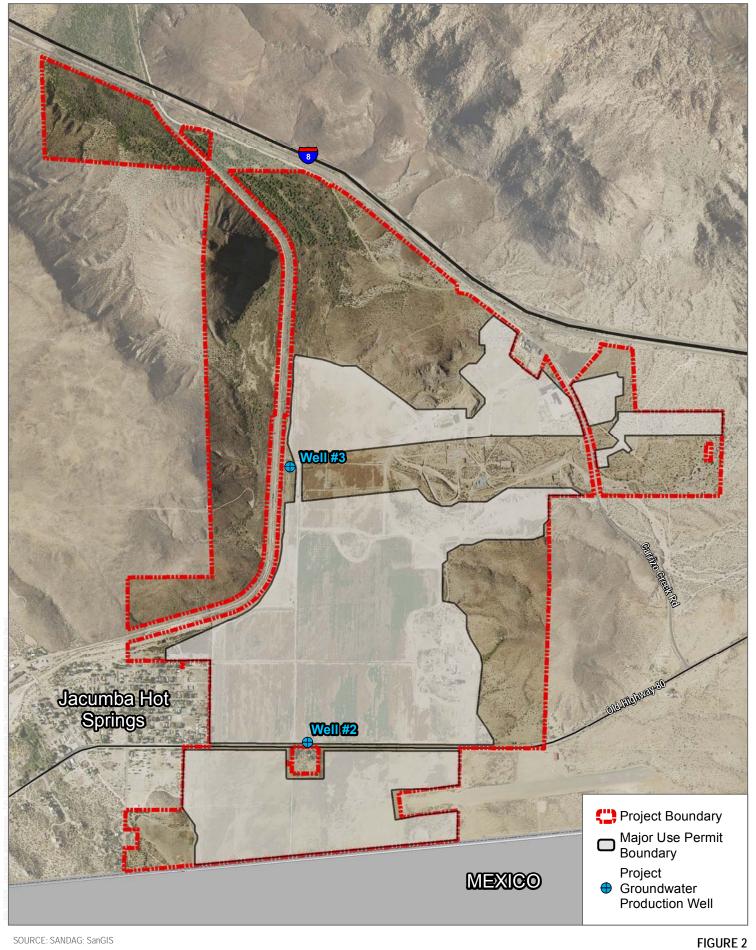
- WRCC (Western Regional Climate Center). 2019. "Period of Record General Climate Summary—Temperature: Campo, California." WRCC. Accessed September 2019. http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?ca1424.
- UC Davis (University of California at Davis, Vegetable Research and Information Center). 2011. "Iceberg Lettuce Production in California." Publication 7215.
- USDA (U.S. Department of Agriculture). 2015. National Resource Conservation Service, Custom Soil Resource Report for San Diego County Area, California, based on San Diego County Survey Area, Version 6, December 17, 2007. Accessed March 2015. http://websoilsurvey.nrcs.usda.gov.
- USGS (U.S. Geological Survey). 2004. "Preliminary Geologic Map of the El Cajon 30' x 60' Quadrangle, Southern California." Version 1.0. 1:100,000. Compiled by V.R. Todd.


7 LIST OF PREPARERS AND PERSONS AND ORGANIZATIONS CONTACTED

This report was prepared by Dudek Hydrogeologist Trey Driscoll, PG, CHG, who is a County of San Diego-approved hydrogeologist. Dudek hydrogeologist Hugh McManus conducted fieldwork, report preparation, graphics, and GIS mapping. Dudek hydrogeologist Devin Pritchard-Peterson performed aquifer test data analysis and preparation of associated graphics, and composed sections of this report. Peer review was provided by Kayvan Ilkhanipour, PG, CHG. This report was prepared in coordination with County Groundwater Geologist Jim Bennett with meteorological input from Rand Allan from the San Diego County Flood Control. Billy Devine, General Manger, Jacumba Community Services District, assisted with background information and data for this report.

7 LIST OF PREPARERS AND PERSONS AND ORGANIZATIONS CONTACTED

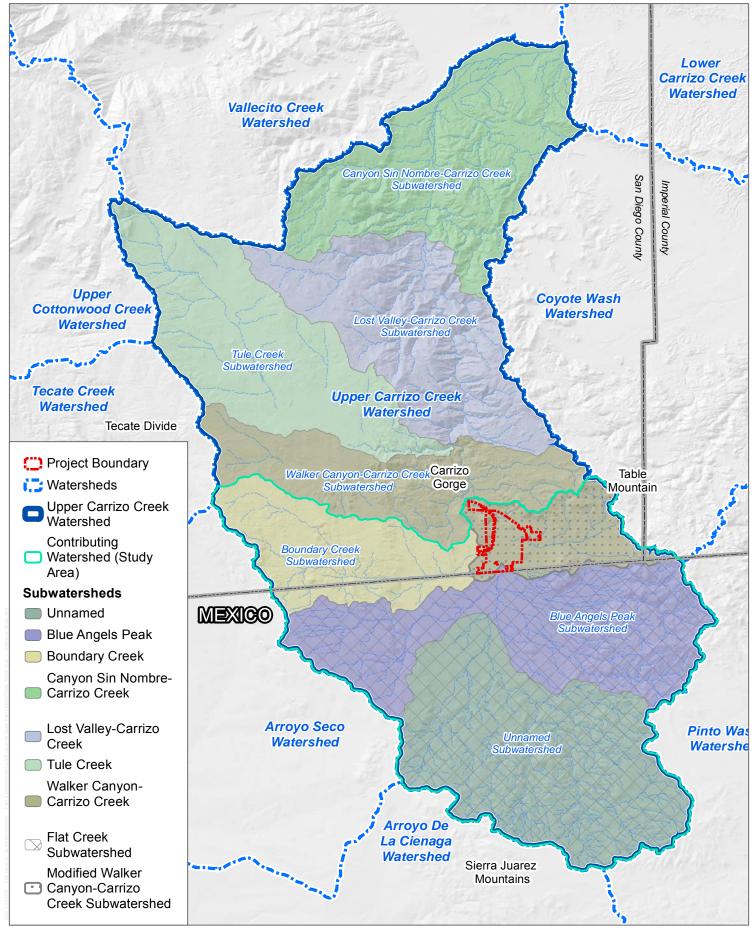
This report was prepared by Dudek Hydrogeologist Trey Driscoll, PG, CHG, who is a County of San Diego-approved hydrogeologist. Dudek hydrogeologist Hugh McManus conducted fieldwork, report preparation, graphics, and GIS mapping. Dudek hydrogeologist Devin Pritchard-Peterson performed aquifer test data analysis and preparation of associated graphics, and composed sections of this report. Peer review was provided by Kayvan Ilkhanipour, PG, CHG. This report was prepared in coordination with County Groundwater Geologist Jim Bennett with meteorological input from Rand Allan from the San Diego County Flood Control. Billy Devine, General Manger, Jacumba Community Services District, assisted with background information and data for this report.



SOURCE: ESRI

Regional Location

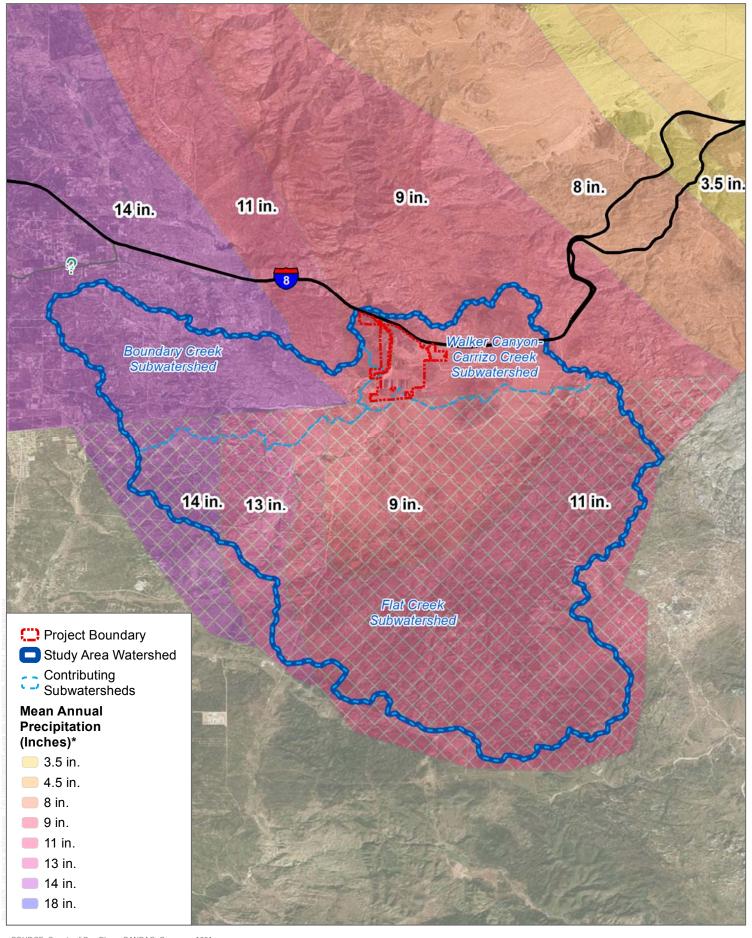
FIGURE 1



SOURCE: SANDAG; SanGIS

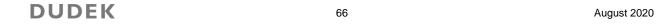
DUDEK &

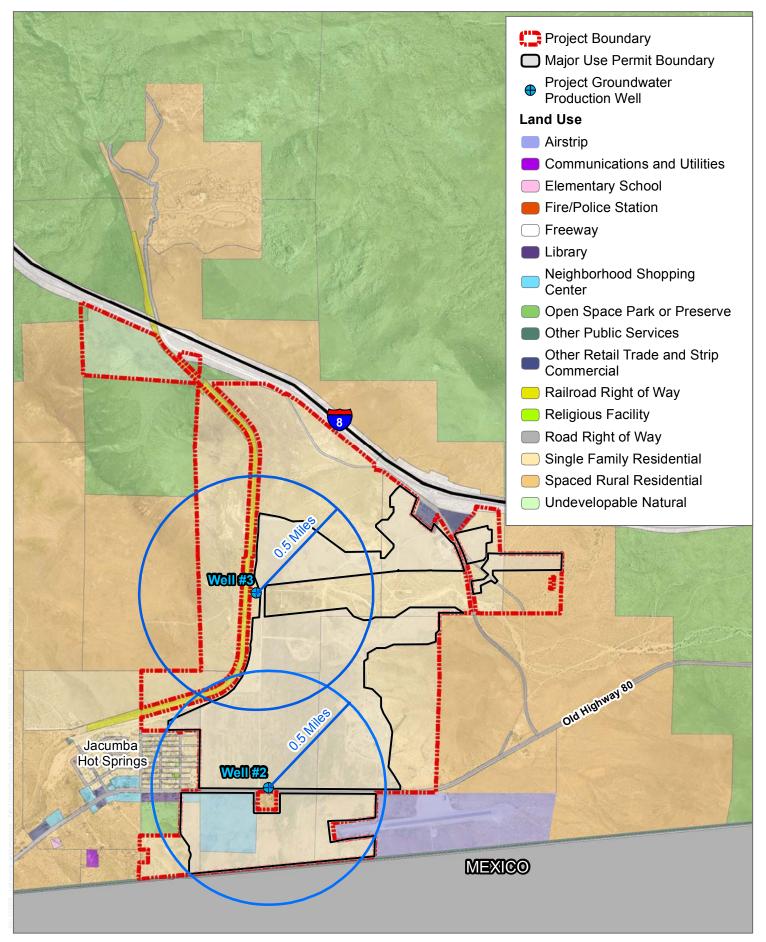
Vicinity Map



SOURCE: USGS

DUDEK & ____

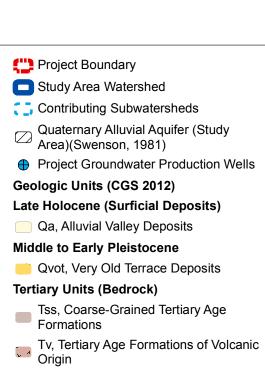




SOURCE: County of San Diego; SANDAG; Swenson, 1981 *Note: Hatched area precipitation data inferred from Swenson, 1981 isohyetal lines

DUDEK

FIGURE 4
Regional Mean Annual Precipitation



SOURCE: SANDAG, SanGIS

DUDEK &

FIGURE 5

Mesozoic and Older Units (Bedrock)

Kss, Coarse-Grained Cretaceous age Formations of Sedimentary Origin

pKm, Cretaceous and Pre-Cretaceous

Metamorphic Formations of Sedimentary
and Volcanic Origin

gr, Granitic and Other Intrusive Crystalline Rocks

Faults and Geologic Contacts (CGS 2012)

__ contact, identity and existence certain, location accurate

_ contact, identity and existence certain, location approximate

reference contact, identity and existence certain, location concealed

_ reference contact, identity or existence questionable, location accurate

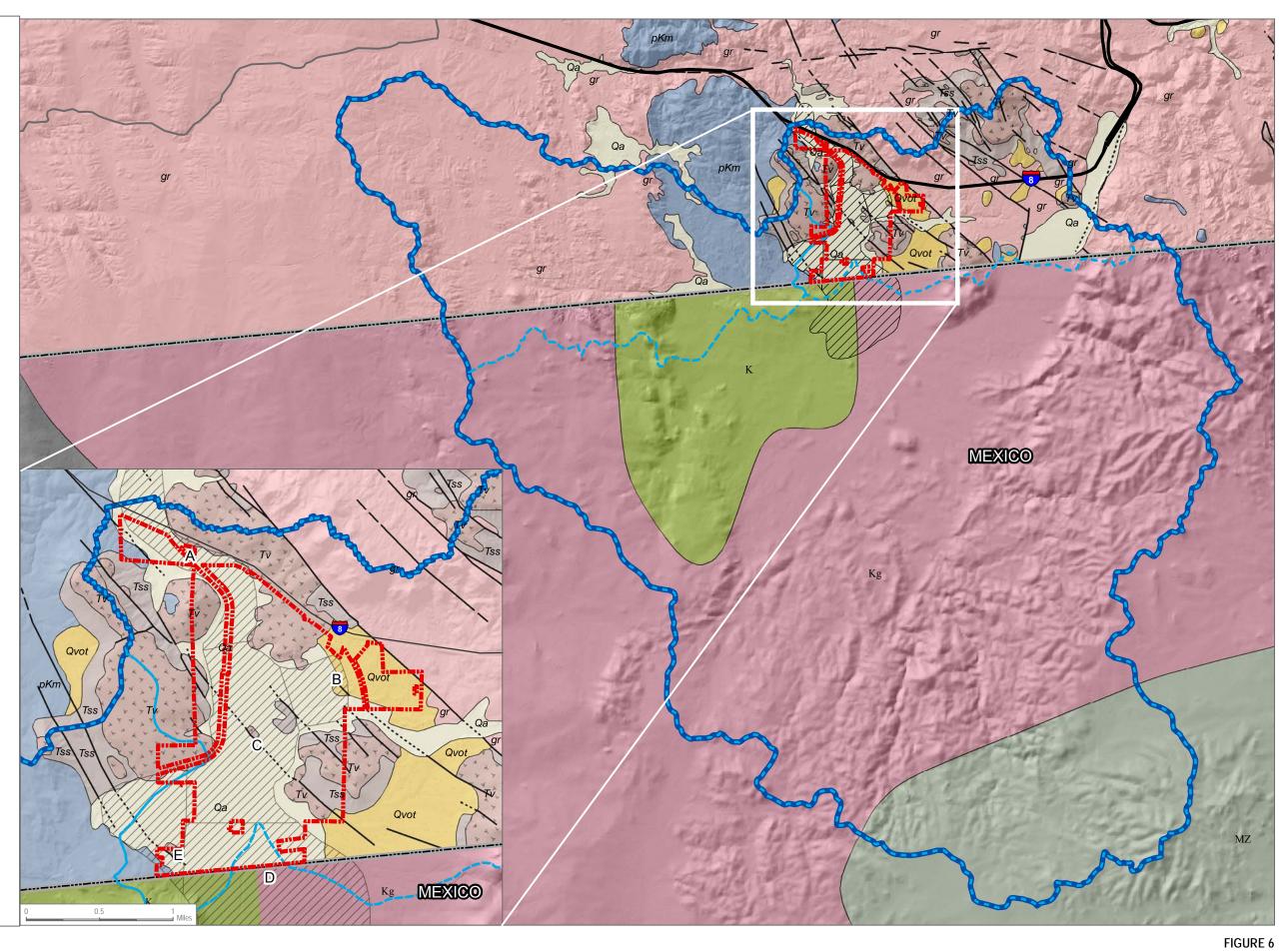
___ fault, identity and existence certain, location accurate

__ - fault, identity and existence certain, location approximate

fault, identity and existence certain, location concealed

fault, identity and existence certain, location inferred

Geologic Units (GSA 2005)

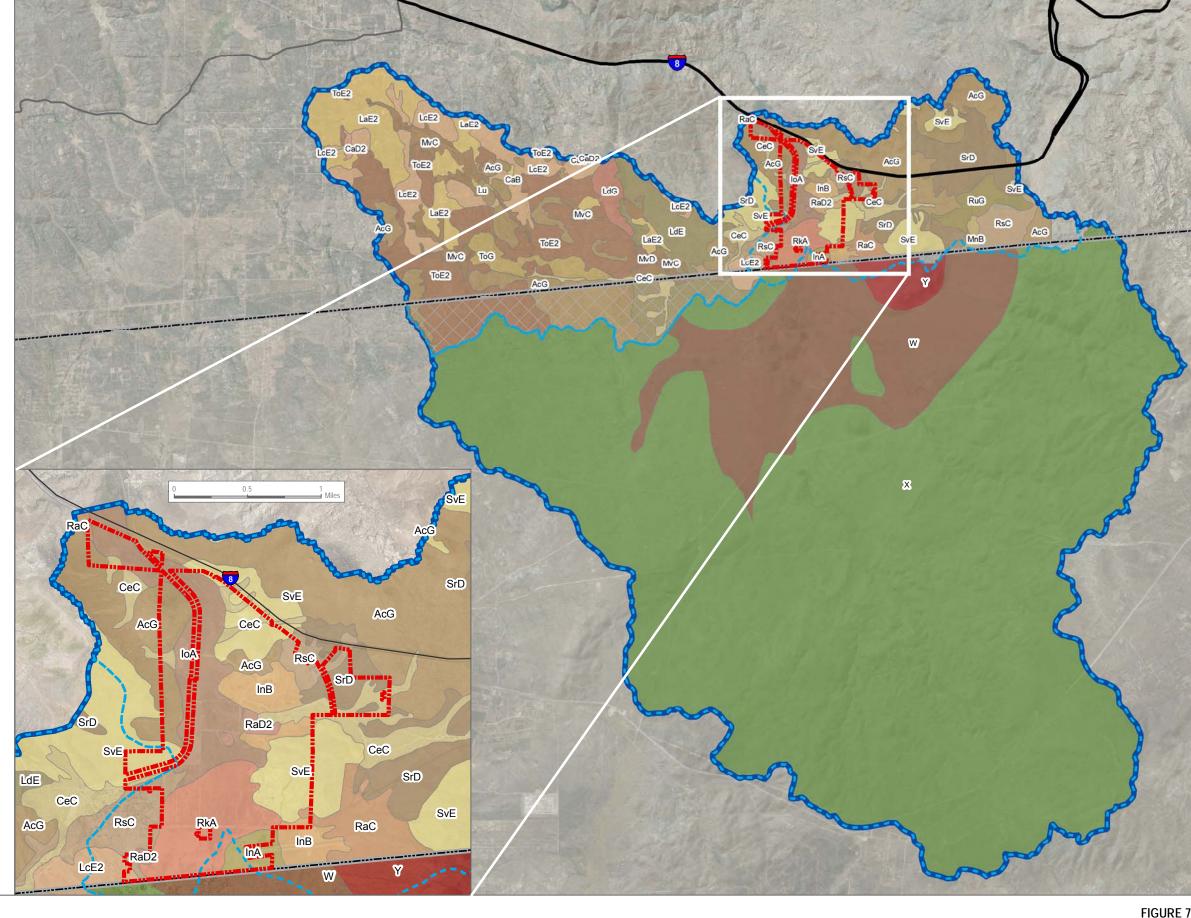

K, Sedimentary, Cretaceous

Kg, Plutonic, undivided grantic rocks, Cretaceous

MZ, Sedimentary, Mesozoic

Geologic Contacts (GSA 2005)

— Location accurate


SOURCE: USGS; GSA; Swenson, 1981

INTENTIONALLY LEFT BLANK

70

SOURCE: Bing Maps; USDA; USGS; Swenson, 1981
*Note: Hatched area soils based on USDA soil classification using aerial photography

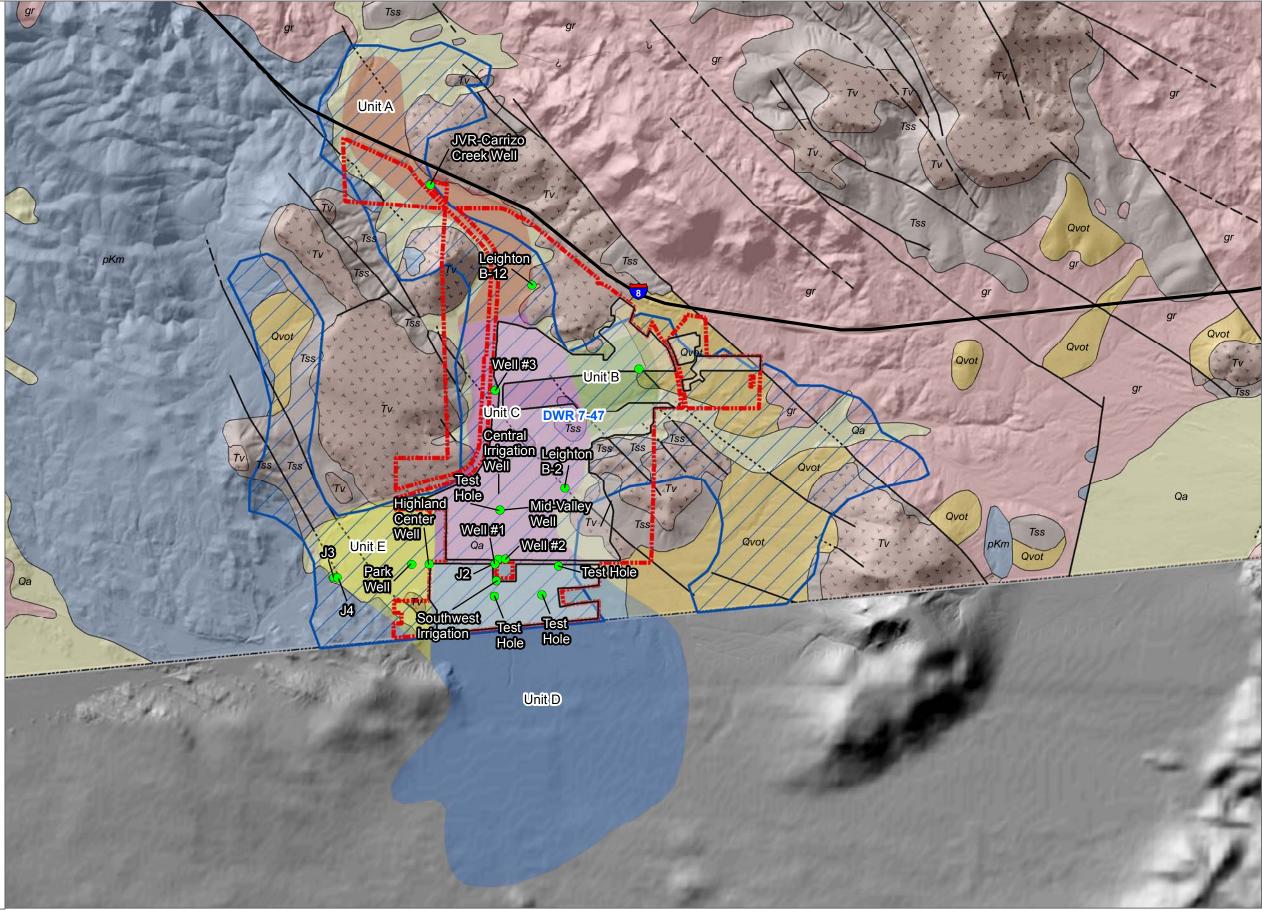
ToG, Tollhouse rocky coarse sandy loam, 30 to 65

ToE2, Tollhouse rocky coarse sandy loam, 5 to 30

percent slop es, eroded

RuG, Rough broken land


SrD, Sloping gullied land


SvE, Stony land

percent slo pes

INTENTIONALLY LEFT BLANK

72

SOURCE: Swenson, 1981; DWR; CGS 2012

location accurate

location approximate

location concealed

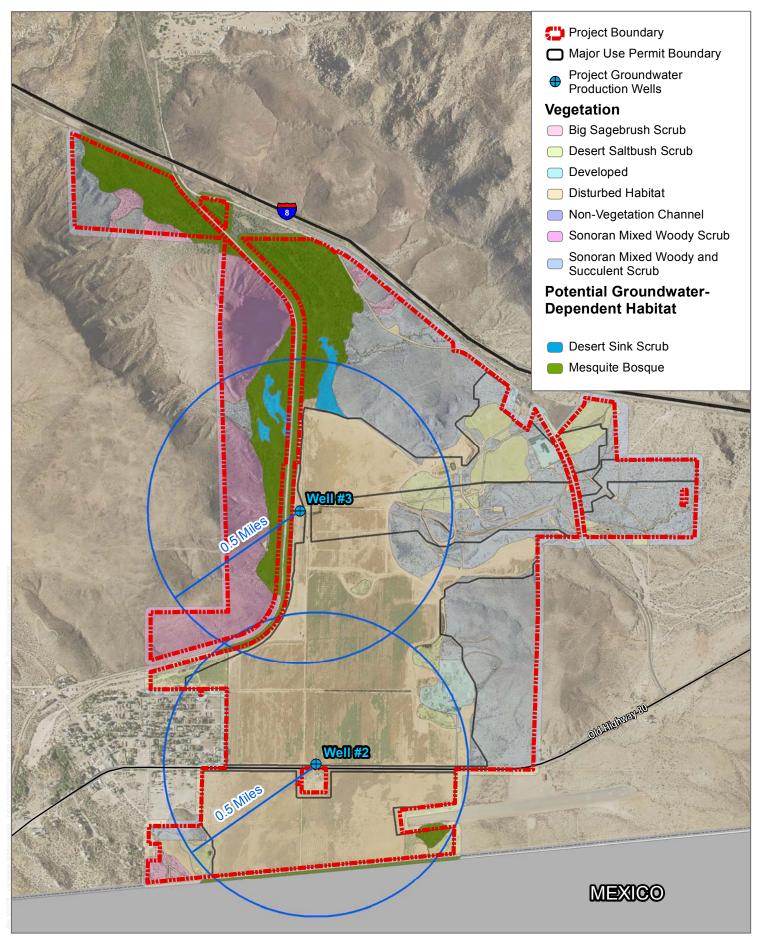
fault, identity and existence certain,

fault, identity and existence certain,


fault, identity and existence certain, location inferred

*Note: Aquifer thickness wells include Swenson, 1981 study wells and wells with available completion information

INTENTIONALLY LEFT BLANK



SOURCE: JCSD; JVR; SanGIS

DUDEK &

FIGURE 9

INTENTIONALLY LEFT BLANK

SOURCE: Dudek 2019

FIGURE 10

IINTENTIONALLY LEFT BLANK

Figure 11. Well #2 24-Hour Constant Rate Test: Well #2 Drawdown 10 Pump Off at 24 Hours Drawdown (Feet) → Drawdown (Feet) Average Pumping Rate = 317 GPM 0.1

Elapsed Time (Minutes)

100

1,000

10

10,000

INTENTIONALLY LEFT BLANK

Figure 12. Well #2 24-Hour Constant Rate Test: Well #1 Drawdown 10 Drawdown (Feet) Pump Off at 24 Hours 0.1 0.01

Elapsed Time (Minutes)

100

1,000

10

0.001

→ Drawdown (Feet)

10,000

INTENTIONALLY LEFT BLANK

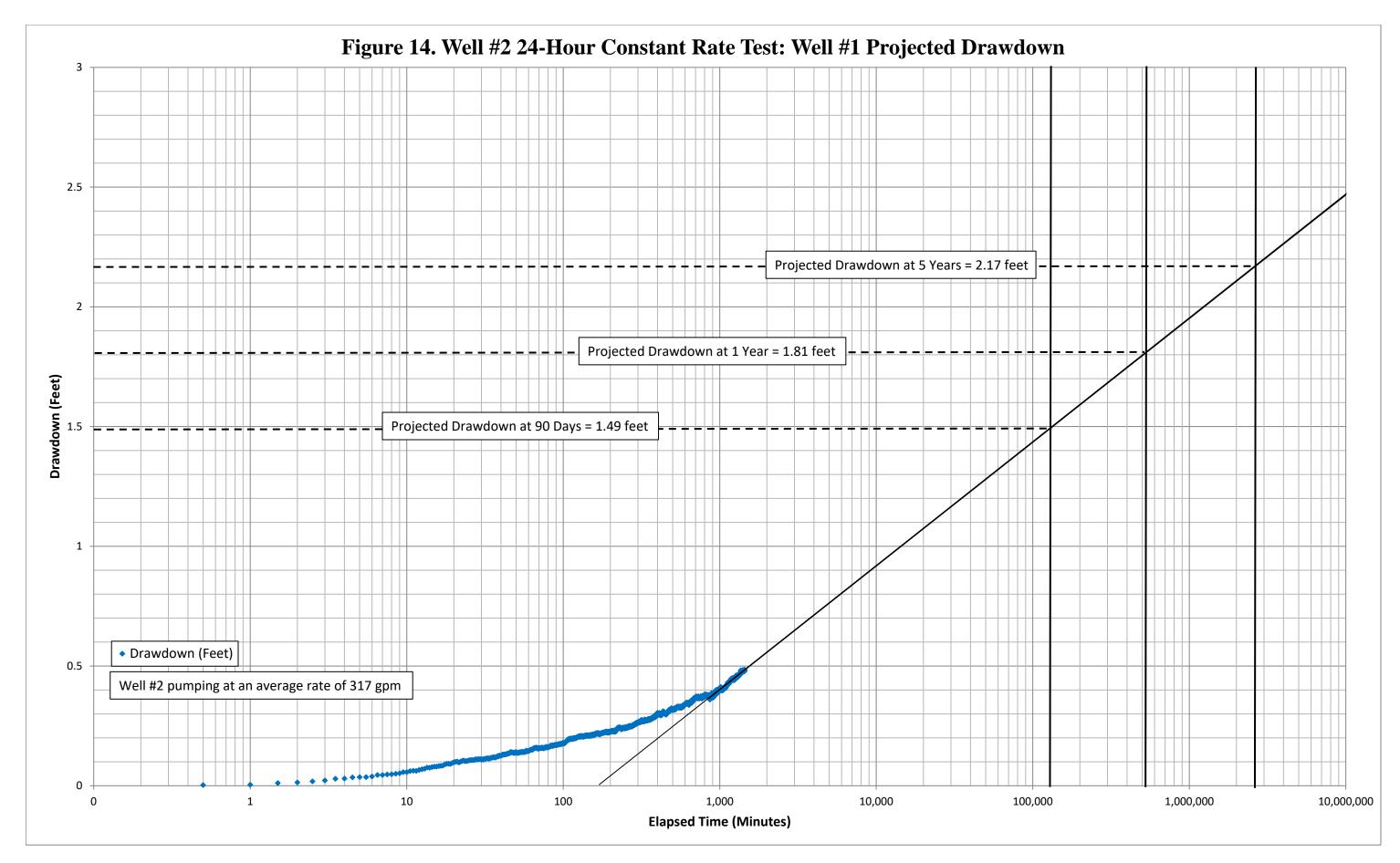

Projected Drawdown at 5 Years = 4.0 feet Projected Drawdown at 1 Year = 3.8 feet Projected Drawdown at 90 Days = 3.6 feet 3 Drawdown (Feet) 1 Drawdown (Feet) Average Pumping Rate = 317 gpm 0 1 10 100 1,000 10,000 100,000 1,000,000 10,000,000 **Elapsed Time (Minutes)**

Figure 13. Well #2 24-Hour Constant Rate Test: Well #2 Projected Drawdown

INTENTIONALLY LEFT BLANK

INTENTIONALLY LEFT BLANK

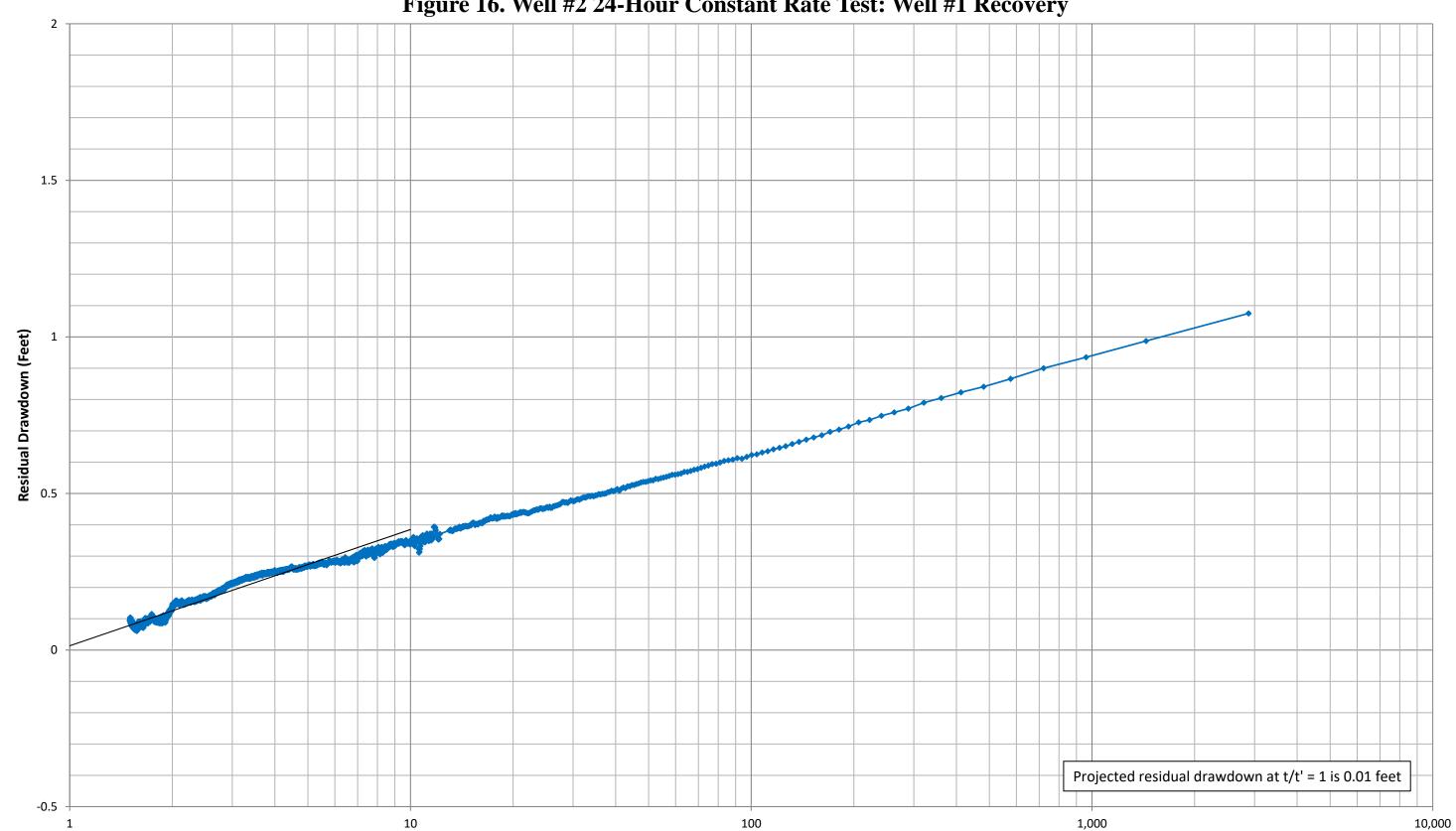

0.8 0.7 0.6 0.5 Residual Drawdown (Feet) 0.3 0.2 0.1 Projected residual drawdown at t/t' = 1 is 0.02 feet 0 10 100 1,000 10,000 Time since pumping started divided by time since pumping stopped (t/t') (Minutes)

Figure 15. Well #2 24-Hour Constant Rate Test: Well #2 Recovery

INTENTIONALLY LEFT BLANK

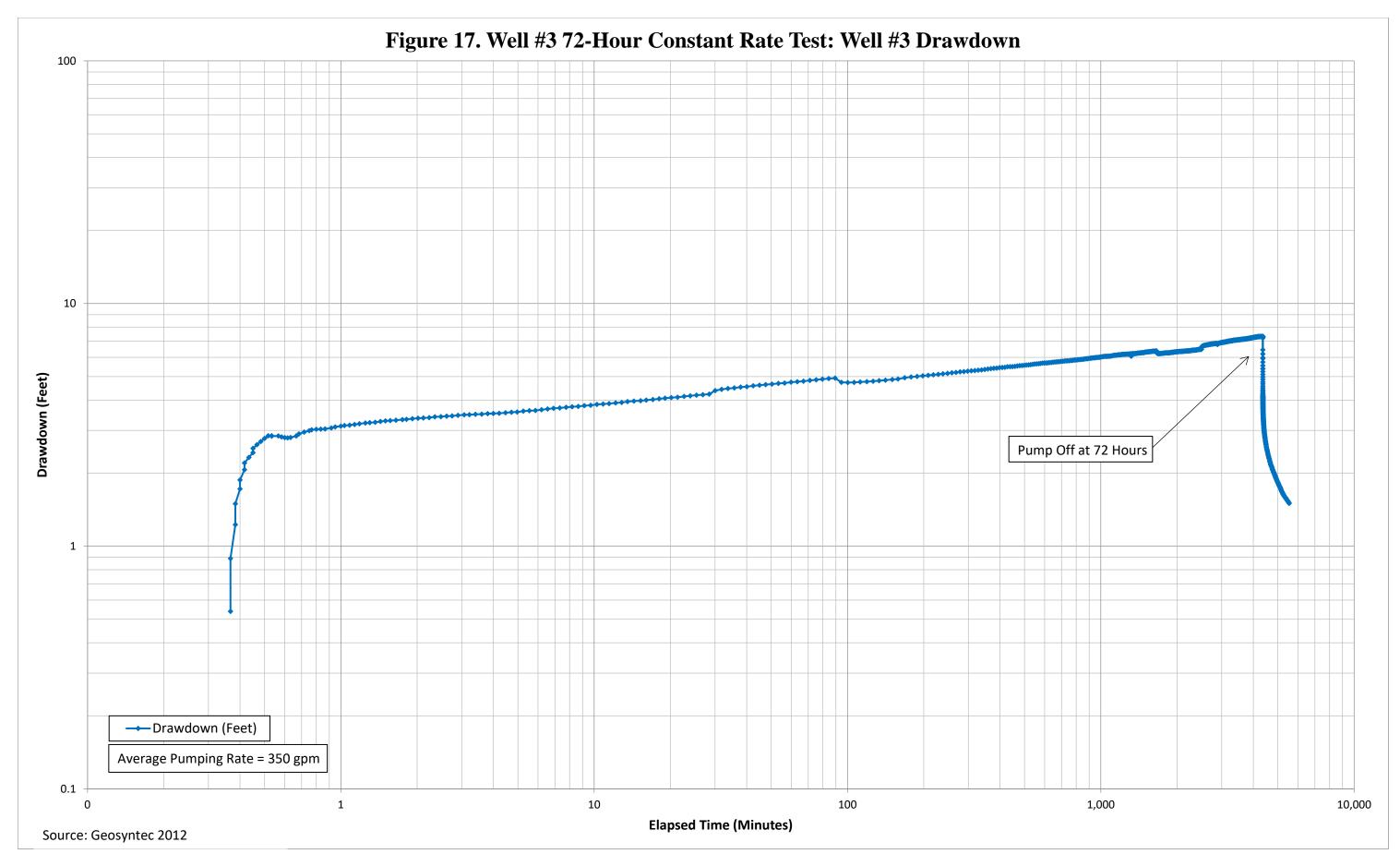
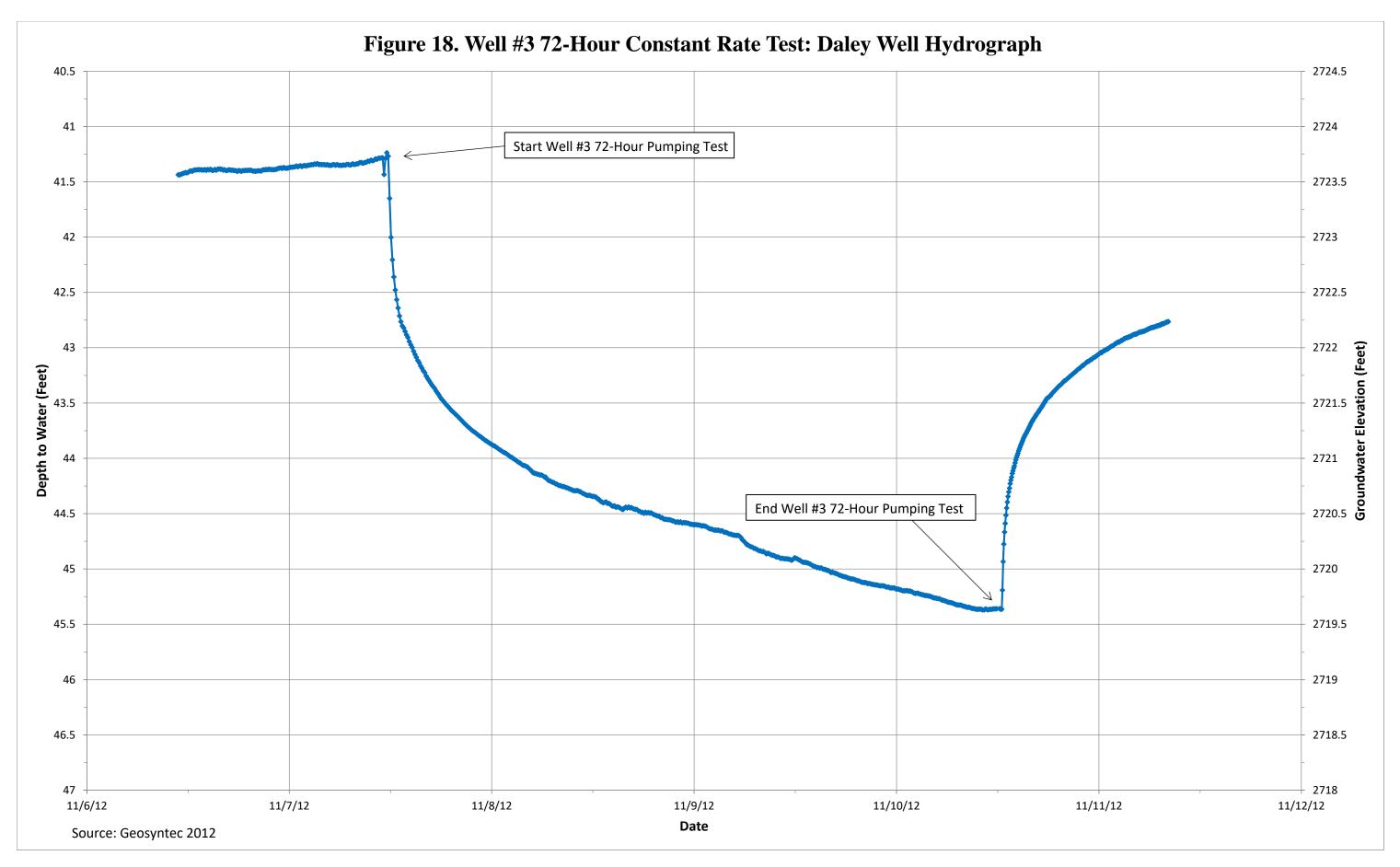
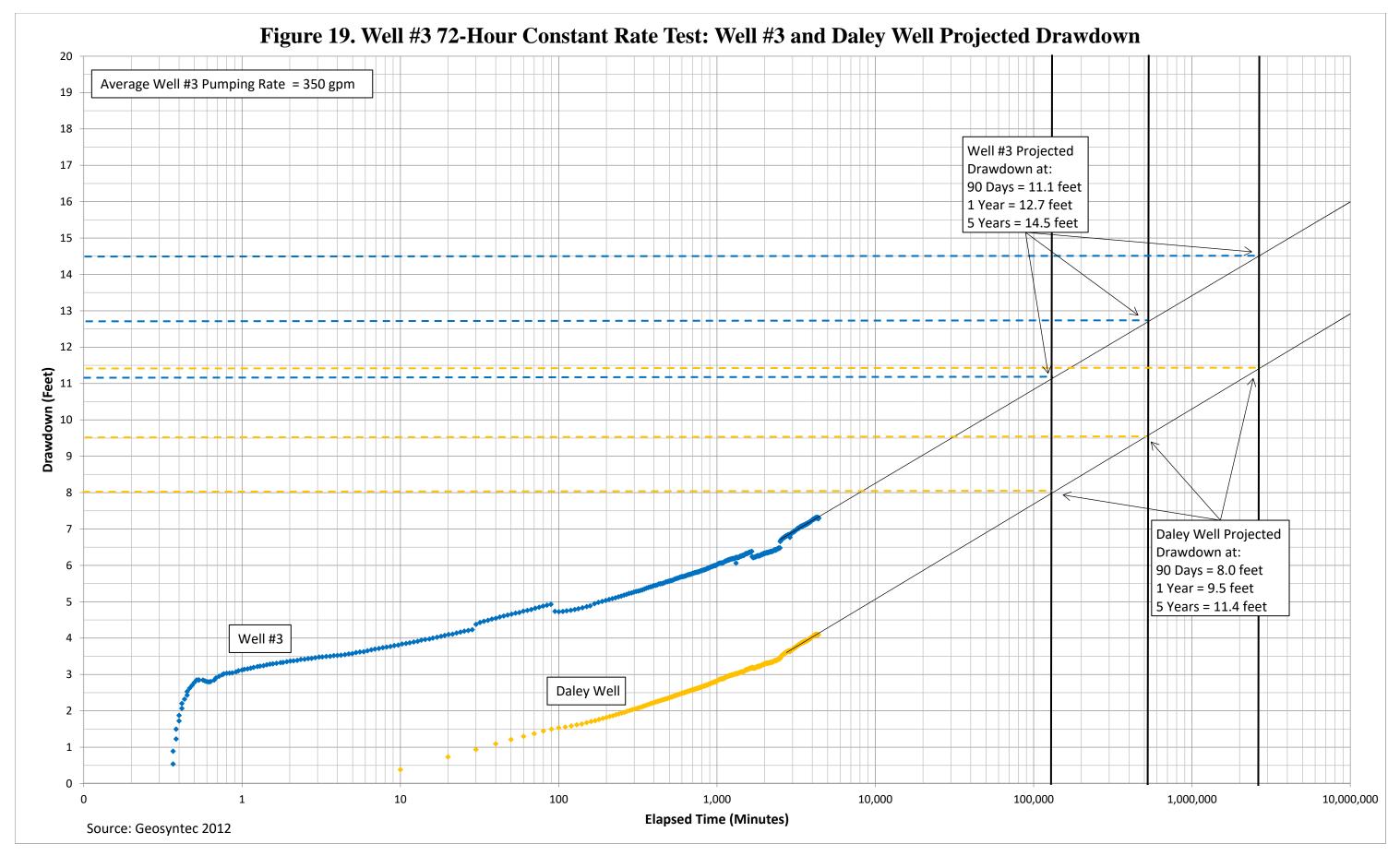
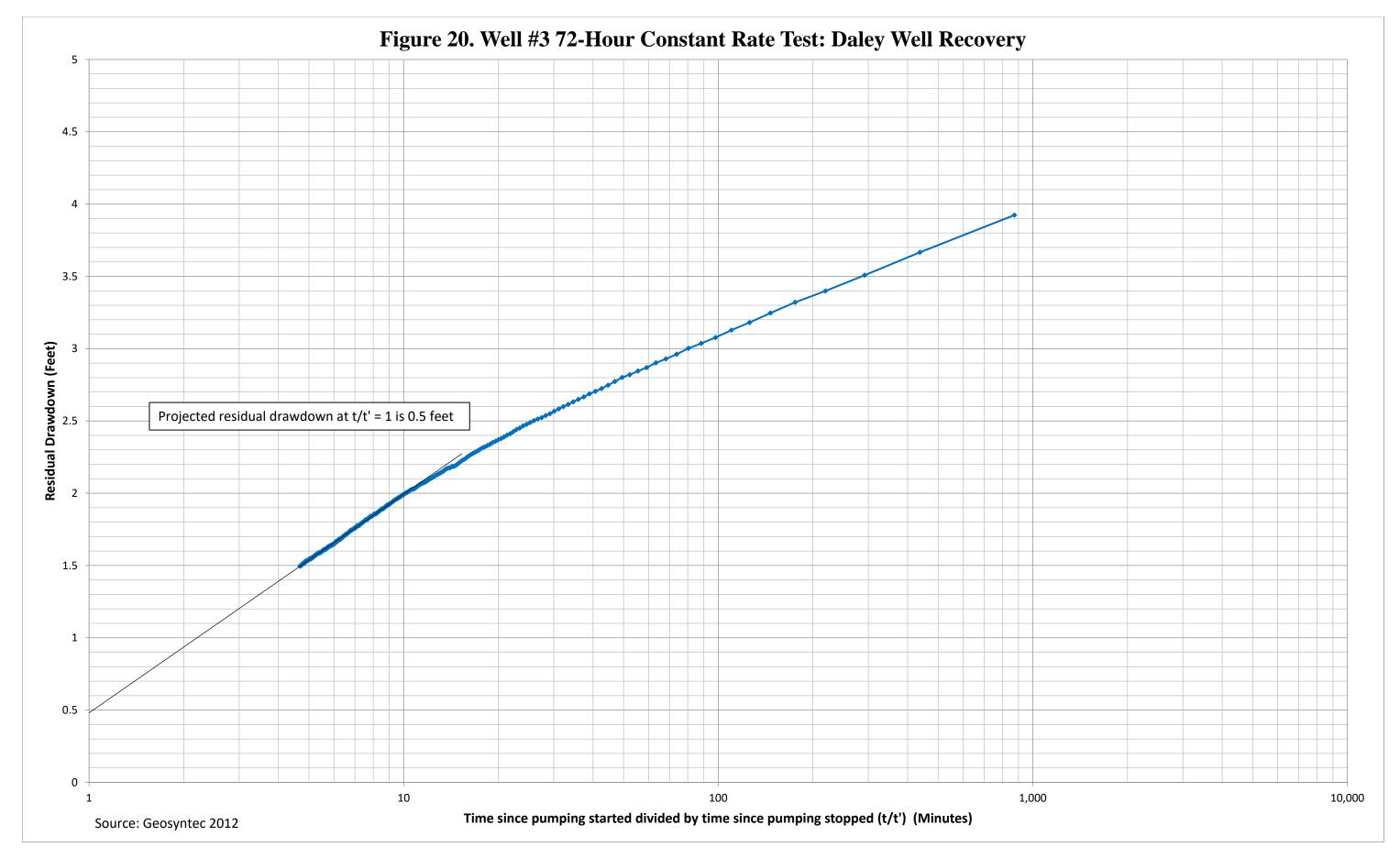

Time since pumping started divided by time since pumping stopped (t/t') (Minutes)

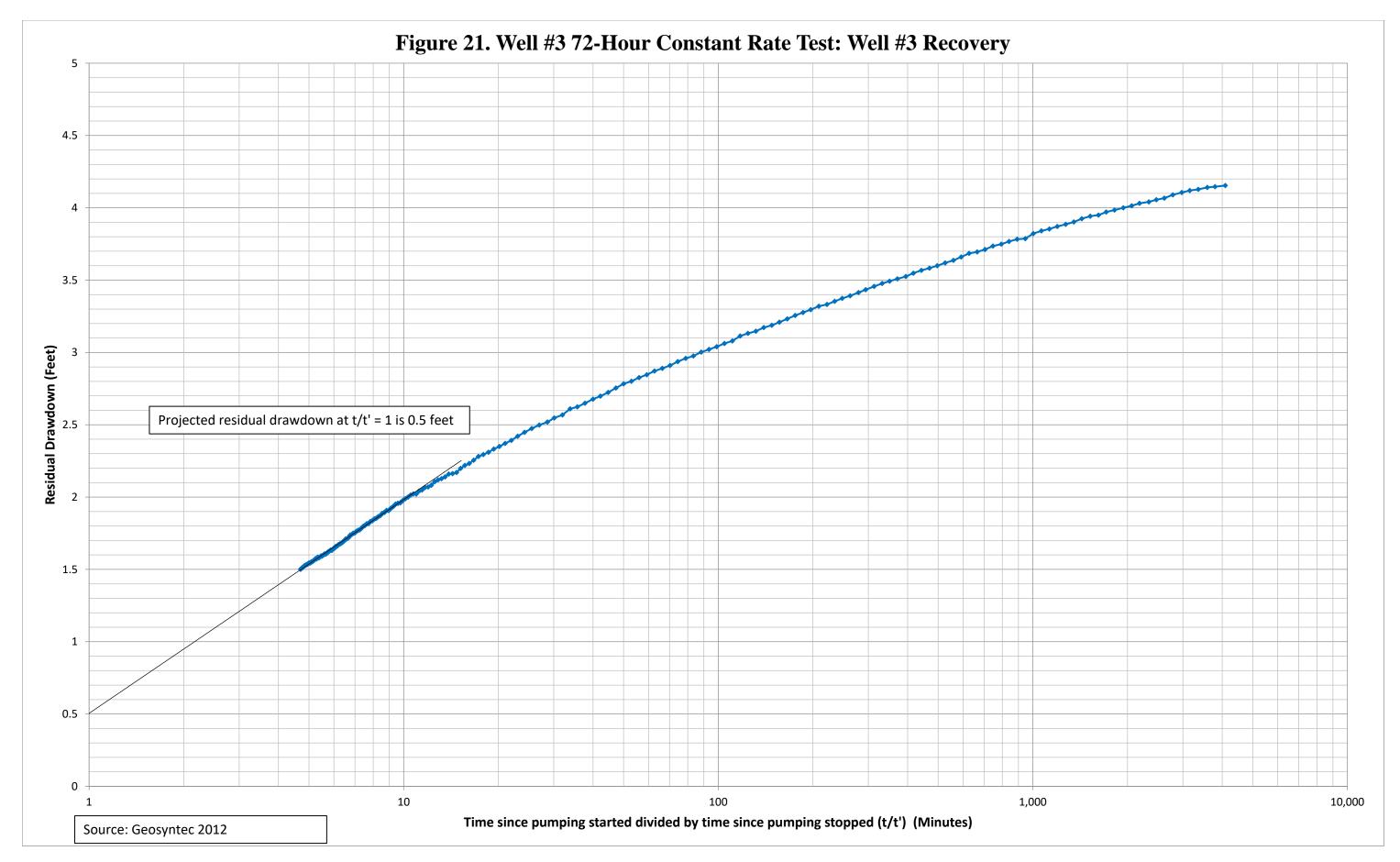
Figure 16. Well #2 24-Hour Constant Rate Test: Well #1 Recovery

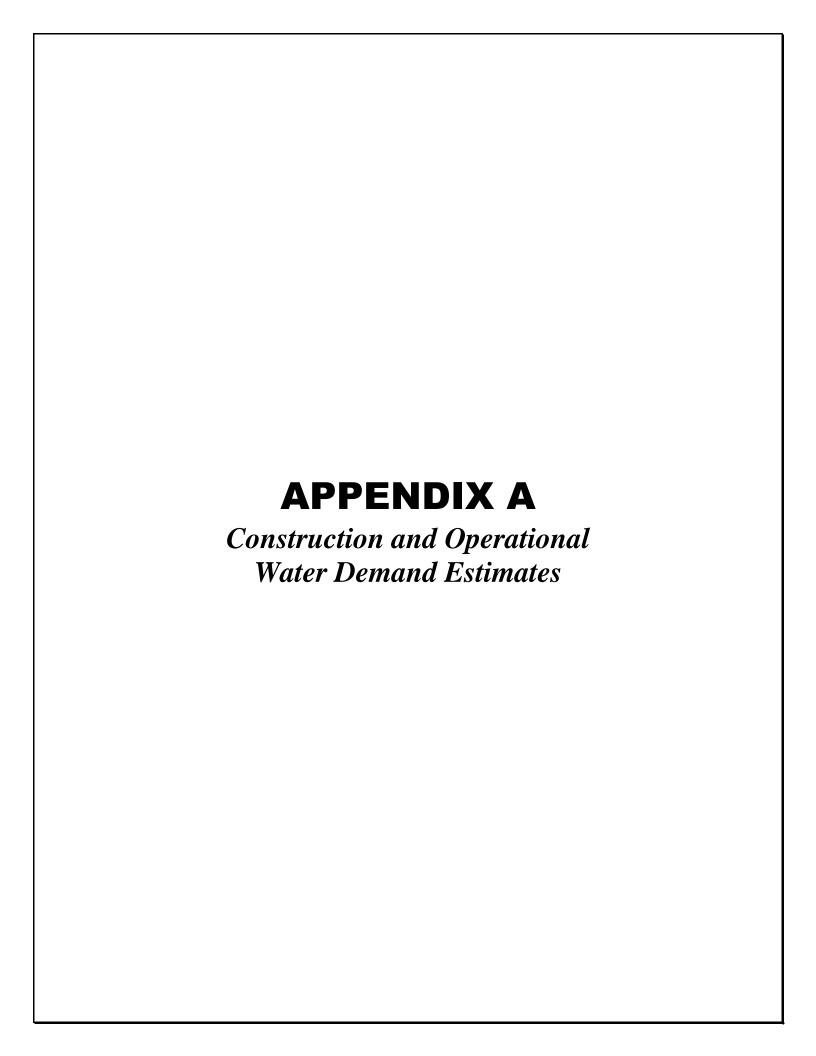
INTENTIONALLY LEFT BLANK




INTENTIONALLY LEFT BLANK


INTENTIONALLY LEFT BLANK


INTENTIONALLY LEFT BLANK


INTENTIONALLY LEFT BLANK

INTENTIONALLY LEFT BLANK

APPENDIX A Construction and Operational Water Demand Estimates

Draft Preliminary Construction Water Demand Estimation Sheet

Project: JVR Energy Park, Jacumba Hot Springs, San Diego County, California		
Subject: PRELIMINARY ESTIMATE Construction Water Demand Prepared May 8, 2	020	
Estimated Water Use Initial Site Preparation (Clearing, Grubbing, Grind	ing and Pre-Wet	ting)
Based on pre-wetting surface with 1-inch of water for clearing, grubbing, and grinding	27,154	GAL/ACRE
Input Total Disturbance	570.54	ACRE
Total water to clear, grub, grind and pre-wet	15,492,586	GAL
Conversion to gallons per acre-foot	325,851	
Total water to clear, grub, grind and pre-wet	48	ACRE-FT
Total water to clear, grub, grind and pre-wet	570.54	ACRES
nput expected duration to clear, grub and grind	90	DAY
Water demand to clear, grub and grind	0.53	ACRE-FT/DAY
Nater demand to clear, grub and grind	172,140	GAL/DAY
Estimated Mass grading		
nput quantity of on-site fill used to balance site	264,000	CY
nput optimum moisture content	9	%
nput observed moisture content	2.0	%
nput dry unit weight of on-site fill	115	PCF
Weight of water to reach saturation	8.050	PCF
Nater required to hydrate and gain compaction	29	GAL/CY
nput contingency to account for evaporation during summer months	1.667	
Water required to hydrate and gain compaction		GAL/CY
Nater for grading	12,785,294	GAL
Conversion to gallons per acre-foot	325,851	
Water required for grading	39.2	ACRE-FT
nput quantity of Scrapers (CAT 627H @ 24 cubic yards per load)	4	EA
Volume per haul		CY/EA
Time per haul		MIN
Hauls per hour	6	EA/HR
Grading Rate	576	CY/HR
Grading Rate for each work day	4,608	CY/DAY
Time to complete grading (work days)	90	DAYS
Nater demand to complete mass grading	0.44	ACRE-FT/DAY
Nater demand to complete mass grading	142,059	GAL/DAY
Estimated Water Use for Concrete		
Quantity of concrete for concrete pad foundations	5594	CY
Rate of water use for concrete hydration	40	GAL/CY
Total water use for concrete pad foundations (Substation + inverters)	225,957	GAL
Total water use for concrete pad foundations (Substation + inverters)	0.7	ACRE-FT
Daily Dust Control		
Number of Construction Days after clearing/grubbing/grinding	365	Days
Typical Rate of Water Use	30,000	GAL/DAY

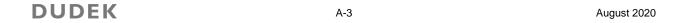
APPENDIX A (Continued)

Draft Preliminary Construction Water Demand Estimation Sheet

Project: JVR Energy Park, Jacumba Hot Springs, San Diego County, California				
Subject: PRELIMINARY ESTIMATE Construction Water Demand Prepared May 8, 2020				
Approx. No. High Wind Days over Period (Based on Boulevard Met Data)	27	High Wind Days		
Rate of Water Use on Windy Days (Average Winds > 15 MPH)		GAL/DAY		
Total water use for high wind days	1,458,000	GAL		
Total Water Use for Daily Dust Control	12,138,000	GAL		
Total Water Use for Daily Dust Control	37.3	ACRE-FT		
Additional Miscellaneous Items				
Fire Protection Requirements	30,000	GAL		
Noxious Weed Mitigation	624,000	GAL		
Quarter-mile underground Gen-Tie Line	13,200	GAL		
Hydroseeding	4,279,050	GAL		
Additional Miscellaneous Items	13.1	ACRE-FT		
Total Estimated Construction Demand				
Total Project Water Usage	45,588,087	Gallons		
	139.9	ACRE-FT		

Draft Preliminary Operation and Maintenance Water Demand Estimation Sheet

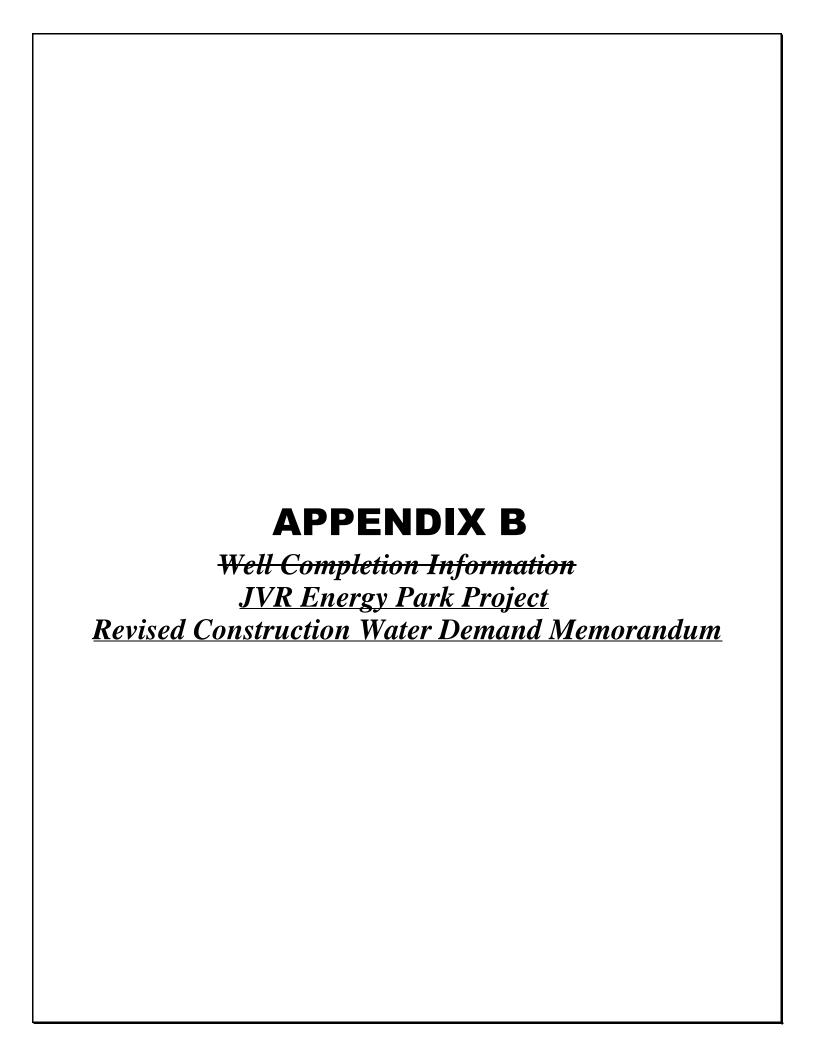
Project: JVR Energy Park, Jacumba Hot Springs, San Diego County, California					
Subject: PRELIMINARY ESTIMATE Construction Water Demand Prepared May 8, 2020					
Panel Washing Water Demand					
Number of panels	300,000	panels			
Panel rating	300	watts			
Project size	90	MW			
Panel type	72	cells per panel			
Panel height	6.42	feet			
Panel width	3.25	feet			
Panel area	21	square feet			
Project panel area	6,259,500	square feet			
Project panel area	695,500	square yards			
Per wash water demand	0.3	gallons per square yard			
Per wash water demand	208,650	gallons			
Washes per year	4	washes per year			
Gallons per year	834,600	gallons			
Panel Washing Water Demand	2.6	acre-feet per year			
Landscape Buffer					
Landscape Buffer	5.39	acres			
CIMIS Zone 16 Reference Evapotranspiration (Eto)1	5.21	feet			
Crop Coefficient (expressed as percentage of Eto)	0.3	percent			
Landscape Buffer Water Demand	8.4	acre-feet per year			



APPENDIX A (Continued)

Draft Preliminary Operation and Maintenance Water Demand Estimation Sheet

Project: JVR Energy Park, Jacumba Hot Springs, San Diego County, California				
Subject: PRELIMINARY ESTIMATE Construction Water Demand Prepared May 8, 2020				
Total Estimated Operational Water Use				
Total Estimated Operational Water Use	11.0	acre-feet per year		


Water requirements of a mixed-species xeriscape with low water demand (WUCOLS 2020). Categories of Water Needs. Univ. Calif. Coop. Ext. https://ucanr.edu/sites/WUCOLS/WUCOLS_IV_User_Manual/Categories_of_Water_Needs/

APPENDIX A (Continued)

INTENTIONALLY LEFT BLANK

DRAFT TECHNICAL MEMORANDUM

To: Patrick Brown, Baywa

From: Trey Driscoll, PG No. 8511, CHG No. 936

Subject: JVR Energy Park Project Revised Construction Water Demand

Date: March 3, 2021

This technical memorandum evaluates revised estimated construction water demand for the JVR Energy Park Project (Proposed Project) located in Jacumba Hot Springs, California. The revised estimated construction water demand is based on an increase in the volume of grading, a decrease in area of the Proposed Project and additional water required to construct the water main replacement for the Ketchum Water Company.

1 Background

Appendix A of the Groundwater Resources Investigation Report included as Appendix J to the Draft Environmental Impact Report (DEIR) for the JVR Energy Park Project provided detailed estimates of construction water demand by activity for the JVR Energy Park Project. The total construction water demand estimated in the DEIR is 139.9 acrefeet.

2 Updated Construction Water Demand Estimate

Based on comments received on the DEIR, and additional evaluation and design of the Proposed Project it has been determined that an additional 16,000 cubic yards (CY) of grading is required for the switchyard component of the Proposed Project. As a result, the estimated volume of mass grading in the construction water demand estimation has been revised from an initial estimate of 264,000 CY to a revised estimate of 280,000 CY. The volume of water required for grading increased by 2.4 acre-feet (AF) from 39.2 AF to 41.6 AF (Table 1).

Due to a series of additional setbacks that have been added to the Project design, the Proposed Project's area of disturbance has been reduced by approximately 3% from 643 acres to approximately 626 acres. This acreage includes a reduction of the MUP area from 643 acres to 623 acres plus approximately 3 acres of disturbance outside the MUP boundary to cover the relocation of the existing water main. The daily dust control rate of water use has been reduced by 3% based on this reduction of Proposed Project area. This result in a reduced water demand estimate of 1 AF for dust control from 36.3 AF of 37.3 AF (Table 1).

It is estimated that up to 500 gallons per 100 feet of linear pipe will be needed to construct the replacement water main for Ketchum Ranch Water Company. This equates to 47,500 gallons (0.15 AF) of water to construct the new alignment that would be approximately 9,500 feet long (Table 1).

Table 1. Draft Preliminary Construction Water Demand Estimation Sheet

Project: JVR Energy Park, Jacumba Hot Springs, San Diego County, California							
Subject: PRELIMINARY ESTIMATE Construction Water Demand Prepared May 8, 2020							
Estimated Water Use Initial Site Preparation (Clearing, Grubbing, Grinding and Pre-Wetting)	na)						
Based on pre-wetting surface with 1-inch of water for clearing, grubbing, and grinding	27,154	GAL/ACRE					
Input Total Disturbance	570.54	ACRE					
Total water to clear, grub, grind and pre-wet	15,492,586	GAL					
Conversion to gallons per acre-foot	325,851						
Total water to clear, grub, grind and pre-wet	48	ACRE-FT					
Total water to clear, grub, grind and pre-wet 570.54 acre	es	l					
Input expected duration to clear, grub and grind	90	DAY					
Water demand to clear, grub and grind	0.53	ACRE-FT/DAY					
Water demand to clear, grub and grind	172,140	GAL/DAY					
Estimated Mass grading							
Input quantity of on-site fill used to balance site	280,000	CY					
Input optimum moisture content	9	%					
Input observed moisture content	2.0	%					
Input dry unit weight of on-site fill	115	PCF					
Weight of water to reach saturation	8.050	PCF					
Water required to hydrate and gain compaction	29	GAL/CY					
Input contingency to account for evaporation during summer months	1.667						
Water required to hydrate and gain compaction	48	GAL/CY					
Water for grading	13,560,160	GAL					
Conversion to gallons per acre-foot	325,851						
Water required for grading	41.6	ACRE-FT					
Input quantity of Scrapers (CAT 627H @ 24 cubic yards per load)	4	EA					
Volume per haul	96	CY/EA					
Time per haul	10	MIN					
Hauls per hour	6	EA/HR					
Grading Rate	576	CY/HR					
Grading Rate for each workday	4,608	CY/DAY					
Time to complete grading (workdays)	90	DAYS					
Water demand to complete mass grading	0.46	ACRE-FT/DAY					
Water demand to complete mass grading	150,668	GAL/DAY					
Estimated Water Use for Concrete							
Quantity of concrete for concrete pad foundations	5594	CY					
Rate of water use for concrete hydration	40	GAL/CY					
Total water use for concrete pad foundations (Substation + inverters)	225,957	GAL					
Total water use for concrete pad foundations (Substation + inverters) 0.7 ACRE-FT							
Daily Dust Control							
Number of Construction Days after clearing/grubbing/grinding	365	Days					

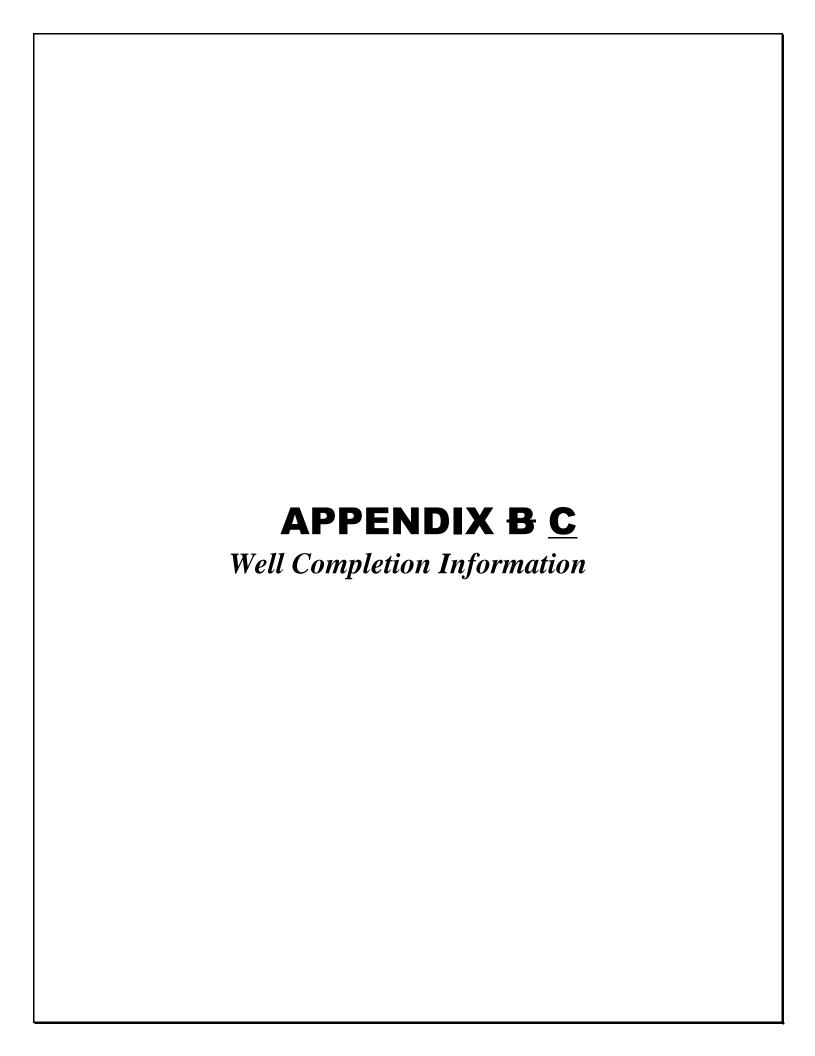


Table 1. Draft Preliminary Construction Water Demand Estimation Sheet

Project: JVR Energy Park, Jacumba Hot Springs, San Diego County, California									
Subject: PRELIMINARY ESTIMATE Construction Water Demand Prepared May 8,	2020								
Typical Rate of Water Use 29,100 GAL/DAY									
Approx. No. High Wind Days over Period (Based on Boulevard Met Data)	27	High Wind Days							
Rate of Water Use on Windy Days (Average Winds > 15 MPH)	54,000	GAL/DAY							
Total water use for high wind days	1,458,000	GAL							
Total Water Use for Daily Dust Control	11,817,600	GAL							
Total Water Use for Daily Dust Control	36.3	ACRE-FT							
Additional Miscellaneous Items									
Fire Protection Requirements	30,000	GAL							
Noxious Weed Mitigation	624,000	GAL							
Quarter-mile underground Gen-Tie Line	13,200	GAL							
Hydroseeding	4,279,050	GAL							
New Ketchum Ranch Water Company Water Main	47,500	GAL							
Additional Miscellaneous Items	15.3	ACRE-FT							
Total Estimated Construction Demand									
Total Project Water Usage	46,090,053.	Gallons							
	141.4	ACRE-FT							

3 Conclusion

The total construction water demand estimated in the DEIR for the Proposed Project is 139.9 acre-feet. The revised total construction water demand for the Proposed Project is 141.4 acre-feet or an increase of 1.1%. An increase in estimated construction water demand of 1.1% does not result in any substantial changes to the findings of the DEIR for the JVR Energy Park Project.

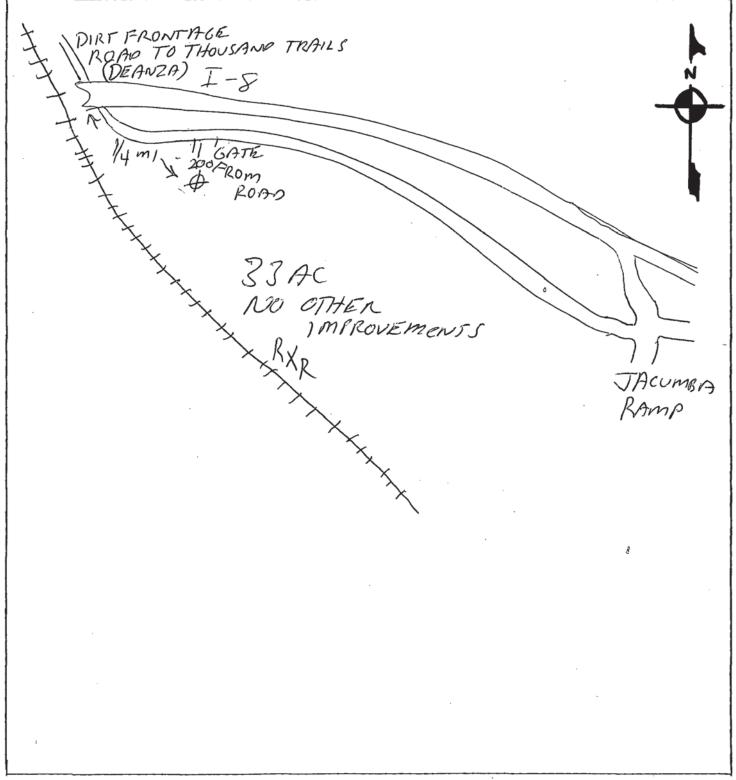
COUNTY OF SAN DIEGO DEPARTMENT OF HEALTH SERVICES

WELL PERMIT 6933

APN 6/4 100 20 Control # W 0 2683

TYPE OF WORK (Check)		EQUIPMENT (C	heck)						
New Well	Individual Domes	itic = dTEST _	1	Rotary MUC					
Repair or Modification	Agricultural	✓ Community	j	Cable Tool					
Time Extension	Industrial	Other		Other					
Destruction									
PROPOSED WELL DEPTH		PROPOSED CASING			-				
Max. 168 Min. 50 (Feet)	Type PVC D	Oepth <u>FULL</u> Diameter <u>6</u>	10 Wal	l or Gage 2	40				
PROPOSED SEALING ZONE(S)		SEALING MATE	RIAL (Chec	k)					
From	Feet	Neat Cement Grout	Bent	onite Clay					
From to	Feet	Sand Cement Grout	Conc	rete					
From to	Feet	Other-Specify:							
PROPOSED PERFORATIONS OR SCRE	EEN		- 1001						
From <u>90</u> to <u>80770</u>	ny Feet	DATE O	F WORK						
From to	Feet	Start MAY	70						
From to	Feet	Completion MA	490		.				
From to	Feet								
NAME OF WELL OWNER		NAME OF WELL DRILLER							
WILLIAM KETCHEM		FRANK MURPHY							
LOCATION OF WELL Interstate 8		COMPANY			-				
SECMAP (JACUMBI	9)	MURPHY5 WELL.	DRILL.	NO					
DISPOSITION OF APPLICATION	DN	BUSINESS ADDRESS							
(FOR HEALTH OFFICERS USE OF		PO 434 TACUMBA 92084							
APPROVED	DENIED	LICENSE NUMBER							
APPROVED WITH CONDITIONS		00000	Cash Depos Bond Poste	-					
Report Reason(s) for Denial or Necessary	Conditions Here:	e: 4/50							
Well INSTALLATION TO	be-	e: 4/50 Fee paid on							
	7								
^	on Diego	-							
County AND STATE Cod	e Test hol	, ,							
is to be dig within 30 da	lys	Department of Health So nances and laws of the							
		the State of California tion, repair, modificati							
		ately upon completion of							
how	ب	Department of Health Services with a complete and accurate log of the well.							
Clary hunk"		I la mi							
HEALTH OFFICER		APPLICANT'S SIGNAEURE							
5/17/20		5-17-90							
DATE			DATE						

COUNTY OF SAN DIEGO
DEPARTMENT OF HEALTH SERVICES


WELL PERMIT APPLICATION

Control # W02683

Assessor's Parcel No. 614-100-20

LOCATION

INDICATE BELOW THE VICINITY AND EXACT LOCATION OF WELL WITH RESPECT TO THE FOLLOWING ITEMS: PROPERTY LINES, WATER BODIES OR WATER COURSES, DRAINAGE PATTERN, ROADS, EXISTING WELLS, SEWERS AND PRIVATE SEWAGE DISPOSAL SYSTEMS AND OTHER POTENTIAL CONTAMINATION SOURCES, INCLUDING DIMENSIONS.

ORIGINAL File with DWR

STATE OF CALIFORNIA
THE RESOURCES AGENCY
DEPARTMENT OF WATER RESOURCES WATER WELL DRILLERS REPORT

Do not fill in

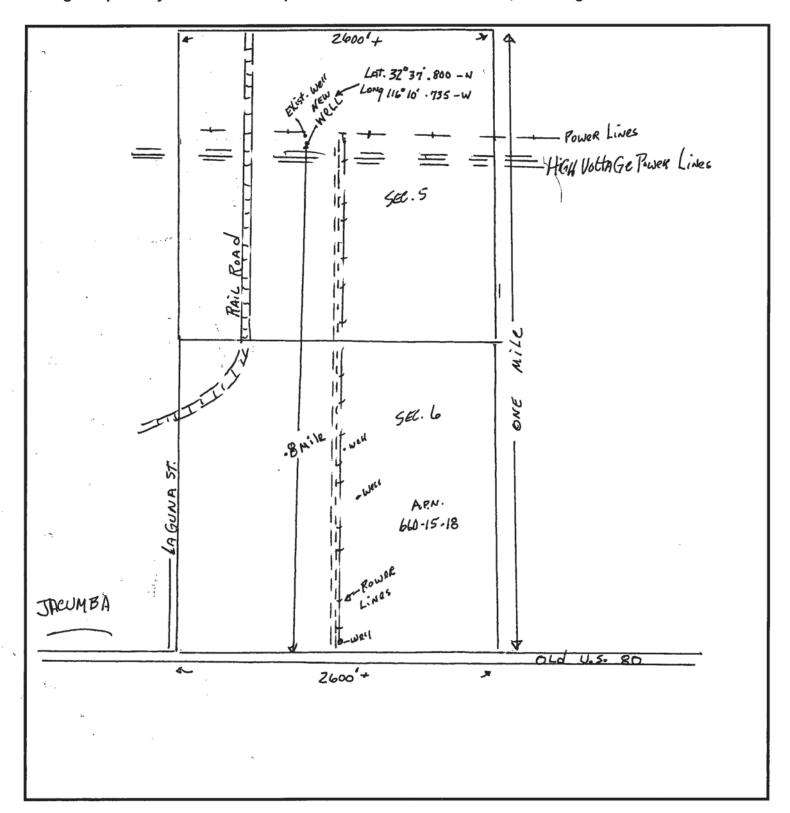
No. 341230

Notice of Intent No.	State Well No.
Local Permit No. or Date W-02683	Other Well No.
he information in this grayed area has been blocked from public ewing pursuant to section 13752 of the Water Code and the	(12) WELL LOC: Total depth 8/ ft. Completed depth 7/5 ft.
iformation Practice Act of 1977, to protect personal information.	from ft. to ft. Formation (Describe by color, character, size or material)
, ,	0 - 241 Clay - Rust Brown
(0) LOCETION OF WELL (Continue)	- 1 (OLO/2
(2) LOCATION OF WELL (See instructions): County SPN DIECO Owner's Well Number	- 202-0/2
Well address if different from above TACUMBA VALLEY RANK	4 24-55 CORSE SAND
Township 17.5 Range 8 E Section 3.2	
Distance from cities, roads, railroads, fences, etc. SEE MAP	
Plate that the state of the sta	55-65 BROKEN IGNAVEI
(3) TYPE OF WORK	65-75 BYACK SAND
New World Deepening	- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Reconstruction Reconditioning Reconditioning Reconditioning Reconditioning Reconditioning Reconditioning Reconditioning Reconditioning Reconditioning Reconstruction Reconditioning Reconstruction Reconstruction Reconstruction Reconstruction Reconstruction Reconstruction Reconstruction Reconstruction Reconstruction Reconditioning Reconstruction Reconditioning Recond	25-18X VOLEDNICKOCK
Horizontal Well	~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Destruction (Describe destruction materials and pro-	
cedures in Item 12)	
200' FROM RD (4) PROPOSED USE	
Domestic	2 - « (O) « (A) »
Irrigation	
Industrial	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Test Well >	((0))
Municipal	- (1)/ × (C,00
Other	0) 0 - (6)
WELL LOCATION SKETCH (Describe)	-60
(5) EQUIPMENT: (6) CRAVEL PACK: SHA	/ ₂ - 2
Rotary Reverse A YAS No Size	
Cable Air Biameter of bore	
Other D Bucket D Rucked from	
(7) CASING INSTALLED: Steel	
From To Dia Gage or Riom To	
ft. ft. Wall the size	
6 20 6' Scu 200 20 80 18X4	
	- Good Sen)
(9) WELL SEAL:	(- (-)
Was surface sanitary seal provided? Yes No I If yes, to depth 20 ft.	- Jung
Were strata sealed against pollution? Yys ☒ No ☐ Intervalft.	5/70/41
Method of scaling CLAY & CENNIST CROUT	Work tarted 5-10 -1970 Completed 5-14 1990
(10) WATER LEVELS: Again	WELD DRILLER'S STATEMENT:
Depth of first water, if known	
Standing level after well completion PPPROX. 4	This well was drilled under my furisdiction and this report is true to the best of my knowledge and belief.
(11) WELL TESTS:	f-10 Marie
Was well test made? Yes No I If yes, by whom?	Signed MILIO QUANTE (Well Driller)
Type of test Pump Bailer Air lift Depth to water at start of test ft. At end of test ft.	NAME (Person, firm, or corporation) (Typed or printed)
Discharge 240 gal/min after 10 hours w Water temperature Colo	
Chemical analysis made? Yes No If yes, by whom?	City TACVINBA CA ZIP 92054
Was also tricker made. Yes . No . If you attach count of this report	Liverson No. 505834 Duta of this report 5-23-90

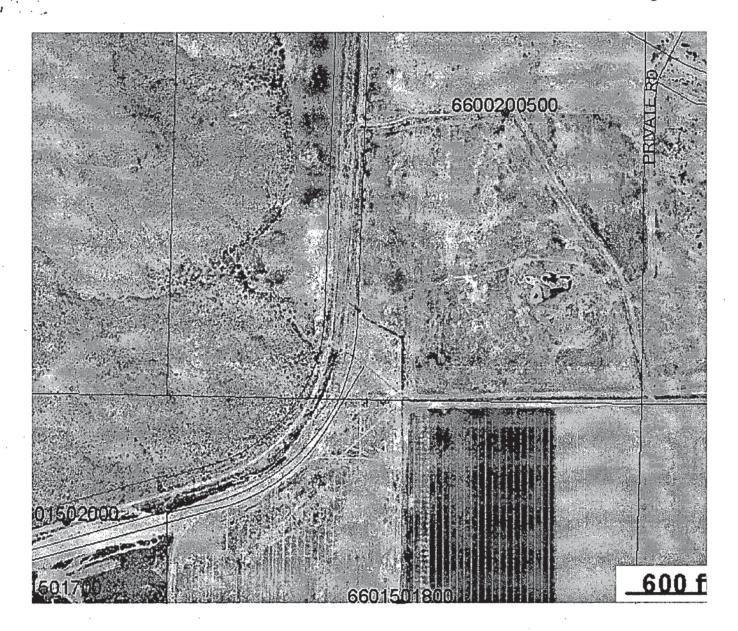
DEH-LU-731a (Rev. 4/02) NCR

COUNTY OF SAN DIEGO DEPARTMENT OF ENVIRONMENTAL HEALTH WELL PERMIT APPLICATION

DEH USE ONLY PERMIT # W LW LL / 164	19
WELL COMPUTER #	
FEE:	
WATER DIST:	


1.	Property Owner: (Lease) BORNT FARMS		Phone: 760 - 356 - 2233
	2307 EAST HWY 98	HOLTVILLE	92250
	Maumg Address	City	Zip
2.	Well Location - Assessors Parcel Number 660 - 6	10 -05	_
	OLd HWI/ 80 Site Address	JACUM B A	91934 Zip
	,	City	
3.	Well Contractor - Well Driller Joe Edwards	Company N	ame: FAIN DRILLING
	12029 OLD CASTIE RD	_ UAITEY CENTE	PE 92087
	Mailing Address	Gity	Zip
		C-57#: <i>3<u>28</u>287_</i> _ □ Cash	\
	V	□ Cathodic □ Other	•
5.	Type of Work:	☐ Destruction Time Ext	ension: 🗆 1st 🗀 2nd
6.	Type of Equipment:		
7.	Depth of Well: Proposed: /OU'		Existing:
	Proposed:		<u> </u>
	Casing Conductor Casing Type: \$\frac{1\ell}{2\ell} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	From: <u>Zo</u> To: <u>/00</u> Type: <u>Pea gvave</u>	Perforations 5.5.304
9.	Annular Seal: Depth: Zo ft. Sealing Materia		
	Borehole diameter: 32 in. Conductor diar		
10	Date of Work: Start: /-21-05	Comple	ete: <u>/-24-05</u>
Cor	On sites served by public water, contact the local of the well. I accept responsibility for all work done as part of supervision.	ent of Environmental Health, and ving to well construction, repair, months artment of Environmental Health with this permit and all work will be perfectly the perfectly t	with all ordinances and laws of dification and destruction. ith a complete and accurate log
CC	DISPOSITION OF APPLICATION (Depart Approved Denied Special Conditions: Grad Instruction, maintenance or destruction of water wells an Diego and/or other agencies.	ing and clearing associated	with access to, or the
	1/2/4	/	/_ 1/ -
S	pecialist:	Date: <i>_/</i> /	7405

Page 1 of 2

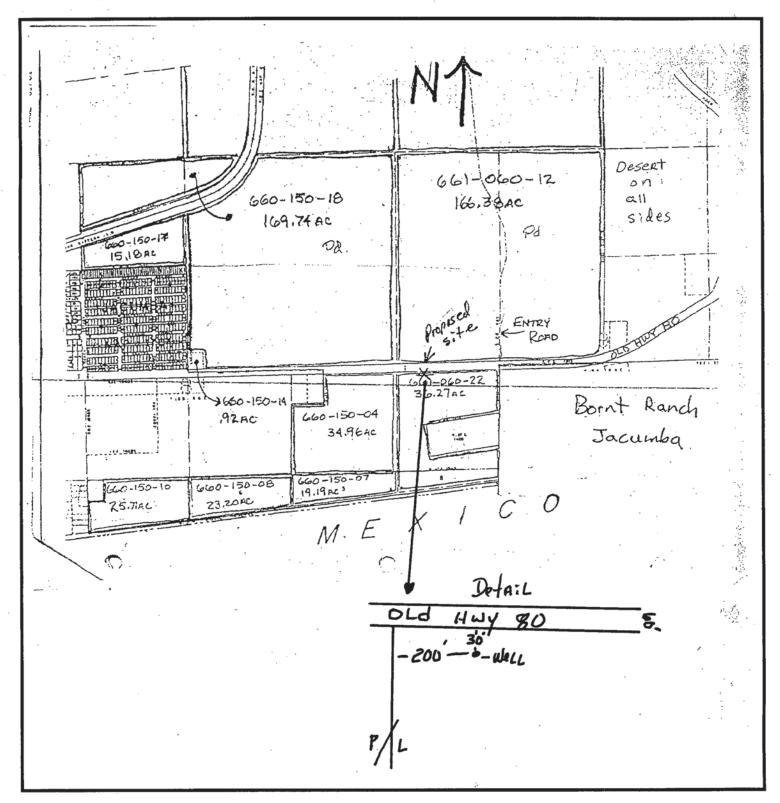

Control #: ಟಟ 16419 Assessor's Parcel Number: <u>660-020-05</u>

LOCATION

Indicate below the vicinity and exact location of well with respect to the following items: Property lines, water bodies or water courses, drainage pattern, easements, roads, existing wells, sewers and private sewage disposal systems and other potential contamination sources, including dimensions.

	UPLICAT al Requir		* -	3		. , \	WELL (F CALIF			ORI	r 🗀					OT FILL IN			
Page _=	of _1							Refer to In									ON NO.				
Owner's	Well No	Case					1 1		-	U J	529	,	.	LATITUDI		L		DNGITUDE			
Date Wo	ork Began.	1/100	105			, Er	nded	125/05	-	1		,		<u> </u>	1 1	1 1	1 1	1 1 1 1			
Perr	Permit Ag nit No. <u> </u>	ency _		De 4-8	ů.		Permit l	Date 1	12510	5	···········	۸.		A	AP	N/TRS/	OTHER				
	1101 = 1	10 V & 2	GE	OL	OGIO	LC	og —			The	informati	on in	thic are	WELL O	OWNE	R —	looko	d from public			
ORIENTA	TION (∠)	X_ VE	RTICA	AL _	H	IORIZ	ONTAL A	NGLE	(SPECIFY)	viev	vina pursi	uant t	to sectio	yeu area n 13752 (of the	Wateı	r Code	e and the			
DEPTH	DEPTH FROM METHODFLUID											viewing pursuant to section 13752 of the Water Code and the Information Practice Act of 1977, to protect personal information.									
SUR	RFACE	. ,	Desc	ribe			CRIPTION l, grain size,	color, etc	: U [[(:											
Ft.	to Ft.								4 1 2 2 2	J. Ad	dress 0	Xo.	90 80	WELL LO	CATIO	ON -98	3				
												Address No Boy 80 & East Buy 93									
11 56 Grey closy sand fine to coarse County San Die																					
	modium grained												APN Book 660 Page 020 Parcel 55 Township 663-5 Range 8-6 Section 5								
	1	· .			<u> </u>	100	1	$\frac{1}{1}$	1	To	wiship 1		Range	<u>~~~</u>	Sectio	n	- C.	60 FX160			
55	175	Coor	EG	1	mel	<u> </u>	1 orabeal	1		(L'à	DEG.	MIM	7 0 7 SE	:U.	Long.	<i>₽₽</i> ©	G.	10 1 0 7 10 W MIN. SEC.			
76	RO	cana	1/2	2	<u>~</u>	1	DESE THE	tib erat	Tel C			LOC	ATION S NORTH	KETCH			TAC	NEW WELL			
7.0	1 33	and)	$\overline{}$	36	Na.	11	11		0)	1	H	٠.		4,				FICATION/REPAIR			
	1	/		11	10	So.	\V (20	~]	ij		"Ting On.			.,		Deepen			
90	132	calab	<u> </u>	102 3	<u> </u>	TRA	i rock	<u> </u>			-	ø.	/	€ Kird	, 14 m², ≪e	٠٠.		Other (Specify)			
<u> </u>	1 /	1	-	<u>) </u>		175	<u> </u>			-	H	4 .0		4	4	·		DESTROY (Describe Procedures and Materials			
	1 1	1.1	~	<u>سمعی</u> ای	- R	$\frac{1}{\sqrt{1}}$	1			-		59K	~	-∰ .	424)	(1°4)	Inder "GEOLOGIC LOG"				
-			10	VIII	Ó	<u>~</u>	740	-		1	į.	1	74 £0	4	1	`	ら(<u>/</u>) R SUPPLY				
	1	1		\tag{\tag{\tag{\tag{\tag{\tag{\tag{		;			,	-27		<i>P V</i>		Commence of Street		C Consumer	<u>-27</u>	Domestic Public rrigation Industrial			
	1		2:	7	3	٦.	790			WEST	N			. Usail	108 2 80 8	AST	MONITORING				
	1		<u> </u>	<u> </u>	\					>	-6 H			Power Trea			TEST WELL				
	 	!								-	4						CATHO	DIC PROTECTION			
	!			$\frac{1}{\sqrt{2}}$						-	H.	.:	0 1	4			DIRECT PUSH				
	1	1		-	<u> </u>	1				1.	, , , , , , , , , , , , , , , , , , ,										
<u> </u>	1		J	-						1	8	1	8 1	4			VAI	POR EXTRACTION			
		ı	7			;	· .			Illustrate or Describe Distance of Well from Roads, Buildings, Fences, Rivers, etc. and attach a map. Use additional paper if necessary. PLEASE BE ACCURATE & COMPLETE.											
<u> </u>	<u> </u>		• .*				•			Fe:	nces, Rivers, e cessary. PLE A	tc. and	attach a m E ACCURA	ap. Úse addit TE & COMI	ional pap PLETE.	ier if		OTHER (SPECIFY)			
<u> </u>	t .	1	·J							WATER LEVEL & YIELD OF COMPLETED WELL											
	!	r 								DEPTH TO FIRST WATER 12 (Ft.) BELOW SURFACE											
	 	1			٠.																
	1	ı						,		DEPTH OF STATIC WATER LEVEL (FL) & DATE MEASURED 1-16-05 ESTIMATED VIELD 2000 (GPM) & TEST TYPE A STATE AT THE ASSET AT TYPE ASSET ASSET AT T											
TOTAL I	DEPTH OF	BORING		12	(I	Feet)	,			TÉ	ST LENGTH	Be	(Hrs.) 7	OTAL DRAW	VDOWN_	90	(Ft.)				
TOTAL D	DEPTH OF	COMPLET	ĖD	WEL	L _	10	(Feet)			*.	May not be	represe	entative oj	a well's lo	ng-term	yield.					
DE	PTH		T				·	ASING (S))	٠.			DE	DTU		ANN	ULAR	MATERIAL			
FROM	SURFACE	BORE- HOLE	T		<u>(<)</u>	T	٠.						FROM	PTH SURFACE			TYPE				
	. 5	DIA. (Inches)	BLANK	SCREEN	DUCTOR FILL PIPE		MATERIAL / GRADE	INTERNAL DIAMETER		LL [SLOT SIZ	▝		·- 5	MENT	BEN- TONITE	FILL	FILTER PACK			
	to Ft.			S) SI E	$\overline{}$		(Inches)	THICKNE		(Inches)		Ft.	to Ft.	(×)	(∠)	(٢)	(TYPE/SIZE)			
	20	32	×		+	$\overline{}$	RL A-53	23.5	-250			\dashv	<u> </u>	20	15 mm		<u> </u>	8/			
	40	22	d	V	-		12 B-139 4 S.S.	13.5	.250	-	× 080	\dashv	0	100	+-			1 1			
4 //	100	G. 4	+		+	130	7 3030	13.5	.7513		> 0 B Q	1		: 	 		<u> </u>				
	i			\vdash	+							\dashv	-	1							
														1							
	ATTAC	HMENTS	(<u>~</u>) –			I the unde	reignod or	artify that	thie r				TEMENT		mir le	2014/20	ge and belief.			
	Geologic										eportis con Purapo (iale lo ine	Dest Of	my Kr		ge and belief.			
' -		nstruction Di	iagra	m		ł					ED OR PRINTED					0000					
-		sical Log(s)	LAss	, bases			1	2029 0	old Ca	stl	e ad. Y	all	ey Ce	nter,	Cay.	ZUS2	•				
	Soil/Wat	diam a		iyses		- 1	ADDRESS	Sar.						CITY			STATE	ZIP			
1	ADDITIONAL	•		FIT	EXIST	 s.	Signed	and I	n. =	-34	Manage .				E SIGNED	05		328284			
			J. +, /				. C-57	LICENSED WAT	ER WELL CON	ITRACTO)R			DA	TE SIGNED)		C-57 LICENSE NUMBER			

DEH USE ONLY	
PERMIT # W Wel 17	422
WELL COMPUTER #	
FEE:	2
WATER DIST:	192


1	Property Owner:	BARNT	FAPUS			Phono:	619-766	- 47
1.	2367 EAS			401	Tville	_Priorie.	9776	, <u> </u>
		Mailing Address		9	City	<u> </u>	1265	Zip
2.	Well Location - Asses		per <u>667 • 06</u>	0.55		_		
	Old Hwy	Site Address		JAC	UMB	<u> </u>		Zin
3	Well Contractor - Well		Edward	c	Company N	lame: /	Ain De	Pilling
0.	12029 01	. /			1 Cent	0.00		
		Mailing Address						
	Phone#: 766-			_ C-57#: 3<u>2</u>828	Z 🗆 Casi	n Deposit	Rond	Posted
	Use: Private		☐ Industrial	□ Cathodic	□ Other		140	## ##
5.	Type of Work:			□ Destruction	Time Ex	tension:	☐ 1st	☐ 2nd
6.	Type of Equipment:	Anna Anna	iky			14 Table 10 Table 1	-	
7.	Depth of Well:	Proposed: _	120'	(0)0013 1-100		Existir	ng.	_
8.	Proposed:							
	Casing Type: <u>Style C</u> Depth: _/20 Diameter _/4" Wall/Gauge: _250	Depth: _ in. Diamete	ZO ft. rin.	Filter/Filler I Yes □ No From: _2.6 Type: Wall/Gauge:	To: <u>/20</u>	From: From:	60 To To	120
9.	Annular Seal: Depth							
	Borehole diameter:							
10	. Date of Work: Start	MAY	26-06		Compl	ete: M	Ay - 31-	06
Cor	I hereby agree to co the County of San I Immediately upon co	mply with all regula Diego and the State Impletion of work, I	ntions of the Departm of California pertain will furnish the Department	water agency for nent of Environmenta ning to well construction artment of Environme of this permit and all v	l Health, and on, repair, mo ental Health w work will be p	with all or odification vith a com performed	dinances and and destruct plete and acc	d laws of tion. curate log rect
001	madici s bignature.					7		
		ATTER ATTER		581	33			
×	DISPOSITIO	N OF APPLIC	CATION (Depart	tment of Enviror	nmental H	ealth U	se only)	
	Approved 🖵 De	nied Special	Conditions: Grad	ling and clearing	associated	l with ac	cess to, or	the
CC	onstruction, maintena							
S	an Diego and/or othe	ragencies	10 ,					
S	pecialist:		- Klew Minte	Da	ate:		3 51	9/06/

Control #: 2 wel 17922

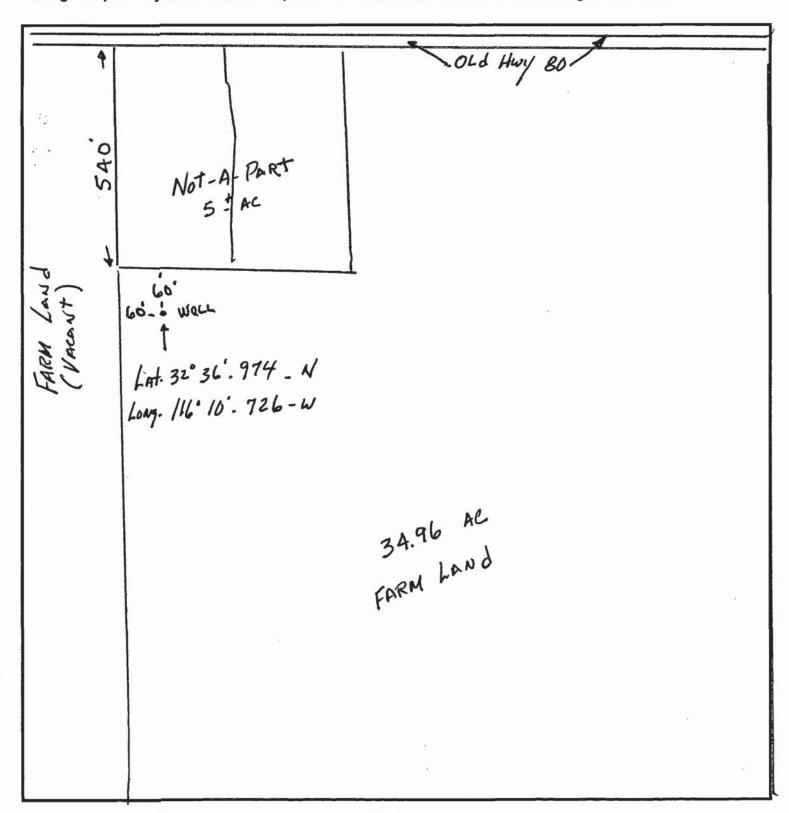
Assessor's Parcel Number: <u>661-060-22</u>

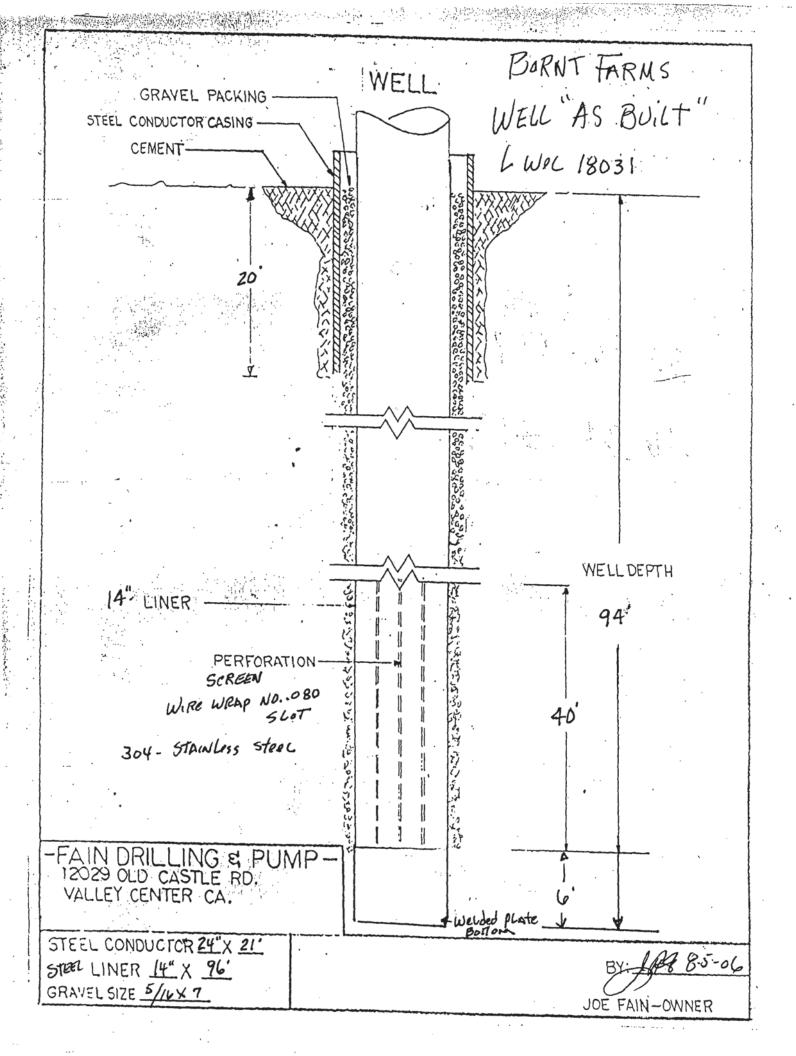
LOCATION

Indicate below the vicinity and exact location of well with respect to the following items: Property lines, water bodies or water courses, drainage pattern, roads, existing wells, sewers and private sewage disposal systems and other potential contamination sources, including dimensions.

	Days on t		٠.	1.		d	1. /		:		b-ud										\Box	
	QUADRUPLICA		Ü	ب اس	In	2	W				F CALIF						DWR US	E ONL		DO N	OT FILL IN	
4	For Local Requ	irements	21	18	W		WE	LL	COM					POR	RT	لـــا		TATE W	ELL NO	/STATI	N NO	
	Page of		1:1		Sale a	77	an Am.	5 - y 1/4"	Rejer to	No.	truction			^			1	TATE W	ELL NO	./STATIC	T I	
	Owner's Well N	1 10.00	i iz	E.I.	£.			-		NO.	TU	Ø.C	05	0			LATITUDE		L.	LO	NGITUDE	
	Date Work Begar	`UD # # 81	10	10		_,	Ended	7	16/06	,			. 1				1	l I	1	1 1		
	Local Permit A			UE		-		n	D.						-			AP	N/TRS/	OTHER		
۲.	Permit No	Lew La	79	73	OC.	TC.	LOC :	Permit	Date_	5/1	19/06	T1.		22h		<	<u> </u>		I. I	· .	1.6	
							200			ŧ							ed area l 13752 o				I from public	
	ORIENTATION (DRIËLING		AL	-	_ HOF	RIZONTAL	. —	ANGLE _		(SPECIFY)										information.	
	DEPTH FROM SURFACE	METHOD)	12	⊝€ .	A TY	ESCRIE	TION	LUID 🖰 😋	CI.	- 1					.00 01		protot	or por	Jorial		
	Ft. to Ft.	- 1	Des	crib	e m				e, color,	etc.	II, 17.		~\~ \			۔ اس						
		1,,			:		,	and you	Track!) ~	A	ddress _	1.1	1	26	VELT LO	CATIC)N —			
	0 8	LOOSE	8 8	AA	ĽУ	Sa	XECH	DE CO	100 /CO	701	\angle	₹Ği	1 /	1	-	OU!	3)			٠.	•	
	1 17	1 127			-7		,	2	12.	Same?	1	Lè.	ounty	acuai		1) "						
	8 1/	Clacy	8	SE III	Œ			150	- Andrews	1	Vingaria.	Al	PN Bog	k – 66	P	age_	.დ <u>ც</u> თ - მბმ -	Parcel	-22			
	12 145	Rediv	erintu.	U- #3	.079.0	(2)		- C	- DXO	7	COLOS	To	ownship		F	lange		Sectio				
	11 45	Hedro	8811	-	€.	near in	26 B	Line	1 pro	77	Character.	Œ	at DE	2 103			N	Long.			w	
	45 75	Redi	((1)	1)	19:2010	36 ×8	ZAVAGA \	NOW S	804mg	1100	7) V DE		MIN. CATI	SEC ON SI	:. КЕТСН -		DE		MIN. SEC. TIVITY (\preceq) —	
	-43 13	aggre	7.10		- 1	1 1	. Y.	~	D-rou	RYCIL	115	╀				ORTH -				<u></u> N	IEW WELL	
	le article	parti		٦.		* 1	7/ /	8	<u> ८०५ फिया</u>	111	1302	-	OL	d H	wy.	80			.		ICATION/REPAIR	
ď	15000000000000000000000000000000000000	COLOR	-	17	400	1	1 2			7.			7		/			7		-	Deepen Other (Specify)	
		-		-\-\-	1/	\rightarrow	125					-	1	-200:	,	D	. A		ı			
	75 108	Claay	7 -8	ana	d ;	ano	S232	B LEE	ggreg	عالة	ea	┨	1			1.2	A AC		1	— F	ESTROY (Describe; rocedures and Matérials	
		Purpl	-	-	- /		7 12		A 12 4	*.:		1			5	G.			- 1		nder "GEOLOGIC LOG"	
			. <	Til.	1 10	1						1			á			i i	.	USES (≚) WATER SUPPLY		
	108 120	hard,	, C	en	en	CGO	agg	rega	res -	·	1		1	a nail	MP.A PORT	4			omestic Public			
		purpt	10	CO	ŢO.	K			•		1.1	WEST	(2)	:	1:	JACO	PORT	3	EAST	<u> </u>	rigation Industrial	
		1, -							<u> </u>	- ,		≥ '	100		6-		And the second s	ľ	. m		TEST WELL X	
į.	V 1	des .						27	5		, ,	Ţ	,					ľ		CATHO	DIC PROTECTION	
	1.1	1		_	1	٠.	7.1	00	<i>)</i>	. 7	100]		1		-	والمتالية والمتالية والمتالية	 B		٠.	HEAT EXCHANGE	
•	.!	1,5%			1.1	9	1							4							INJECTION	
	i	1 .				<u>į</u>		1/2/01					MEXICO							VAF	OR EXTRACTION	
		1				2	7.	101				L				OLITH.					SPARGING	
	1 1	1 191				ب	,. 			•		Ill	ustrate or	Describe	Distan	ce of W	ell from Road	ds, Build	ings,		REMEDIATION OTHER (SPECIFY)	
;	5- 51, 64	 											Fences, Rivers, etc. and attach a map. Use additional paper if necessary. PLEASE BE ACCURATE & COMPLETE.									
	• 1					7						Г		WATE	R LE	VEL 8	YIELD	OF CO	OMPL	ETED	WELL /	
, 1;		;				-						DEPTH TO FIRST WATER										
	2.45.171	1										DEPTH OF STATIC WATER LEVEL										
**	1 1 2 2	1 .					٠.					1	ATER LE								100	
	TOTAL DEPTH OF	BORING		12	ß	_(Fee	et)		1		ESTIMATED YIELD * (GPM) & TEST TYPE (Ft.) TEST LENGTH (Hrs.) TOTAL DRAWDOWN (Ft.)							. :				
	TOTAL DEPTH OF							_(Feet)	•								a well's lon			(FL)	.4.	
		1																1				
	DEPTH FROM SURFACE	BORE-	-	2/05	- / - /	- (-			CASING	(S)					[DEF	TH URFACE	<u></u>	ANNI		MATERIAL	
	THOM SOM AGE	HOLE DIA.	$\overline{}$	YPE			MATE	RIAL /	INTERN	NAL	GAUGI		SLOT	SIZE		IOW 5	OI,II AOL	CE-	BEN-	. TY		
	. Ft. to Ft.	(Inches)	BLANK	CREE	CON- DUCTOR	IL PI		ADE	DIAMET (Inche		OR WA		IF A			Ft. to	Ft.	1	TONITE		FILTER PACK · (TYPE/SIZE)	
	***	· ·	╀	S	-	π.		:	-	-			· ·		 		20	()	(エ)	(∠)		
			+			+				-		<u> </u>	,			_	20	X	**		,	
		1	+				,			\dashv			· · · ·		ll	280	120		X_			
	1	1	+	١.	Н	\top			T	Ť												
	· 1	· .		T	П	\neg			1	\neg												
	. 1		Т			\top				7.		`				1						
	ATTA	CHMENTS	(<) -	_	٠, "	7 [FEMENT					
	Geolog	ic Log			٠.	`.	'	the und	dersigned	i, cer	rtify that t	nis r	eport is	complet	te and	accur	ate to the	best of	my kr	owled	ge and belief.	
	, Well C	onstruction D	iagra	am	:		NA	AME TE	SON, FIRM,	V-1	111100	8-	Puma	Co 3	nc	٠.						
	Geoph	ysical Log(s)																020	22			
		ater Chemica		-			- ADI	DRESS	.049 0	110	Cast.	V@	o CD#4	ANTE	-y (CTI C	CITY	720	02	STATE	ZIP	
	Other	5.41	A	1 5			-	_			2 4	Lie	4.1					2 -	41.			
	ATTACH ADDITIONAL	INFORMATIO	ON,	IF IT	EXI	STS.	_ Sig	gned,	7 LICENSED	WATER		TRACT					DAT	TE SIGNED	01-	<u> </u>	-57 LICENSE NUMBER	
								i.	/													

DEH USE ONLY	7
PERMIT # WWW -180	きノ
WELL COMPUTER #	
FEE:	
WATER DIST:	


1. Property Owner: BORNT FARMS	Phone: 766-4213
2307 EAST HWY 98 HOLTVILLE C	4 97.250
Mailing Address City Well Location - Assessors Parcel Number 660-150 - 04 OLd Hwy 80 Site Address City City	Zip Zip
	ame: FAIN DRILLING 97082 Zip
4. Use: ✓ Private □ Public □ Industrial □ Cathodic □ Other	
. /	ension: 1st 2nd
5. Type of Equipment: R. tale	511010111
7. Depth of Well: Proposed: ///	Existing:
3. Proposed:	
Casing Conductor Casing Filter/Filler Material Type:Stell -A-129	Perforations From: To: From: To: From: To:
	lar Thickness 4 in.
	ete: A46-2006
On sites served by public water, contact the local water agency for meter protect. I hereby agree to comply with all regulations of the Department of Environmental Health, and we the County of San Diego and the State of California pertaining to well construction, repair, more immediately upon completion of work, I will furnish the Department of Environmental Health with of the well. I accept responsibility for all work done as part of this permit and all work will be persupervision. Contractor's Signature:	with all ordinances and laws of dification and destruction. th a complete and accurate log
DISPOSITION OF APPLICATION (Department of Environmental He	ealth Use only)
▲ Approved □ Denied Special Conditions: Grading and clearing associated construction, maintenance or destruction of water wells, may require additional permosan Diego and/or other agencies.	
Specialist: Date: S	4-06

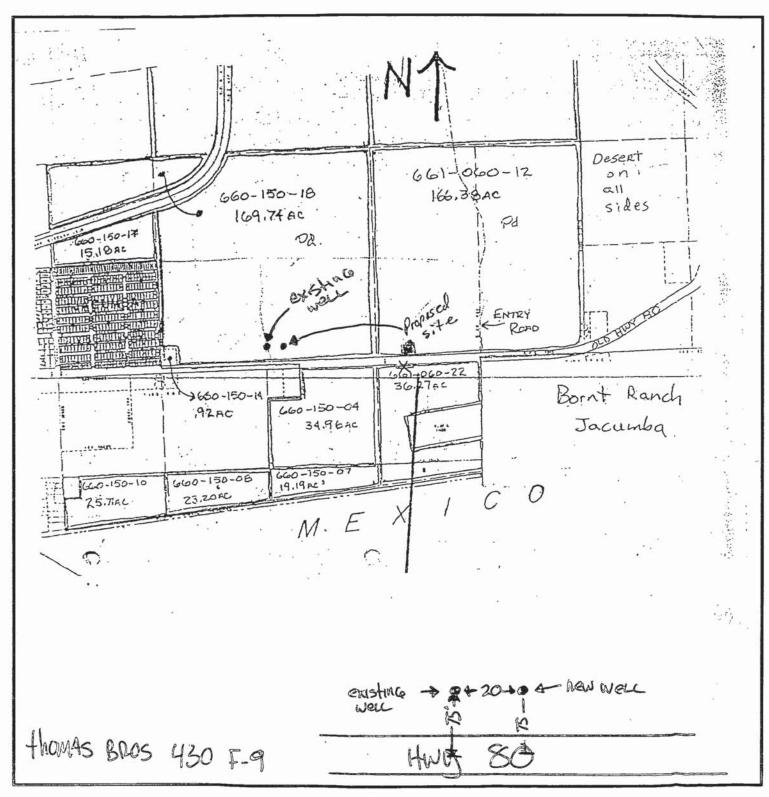

COUNTY OF SAN DIEGO DEPARTMENT OF ENVIRONMENTAL HEALTH

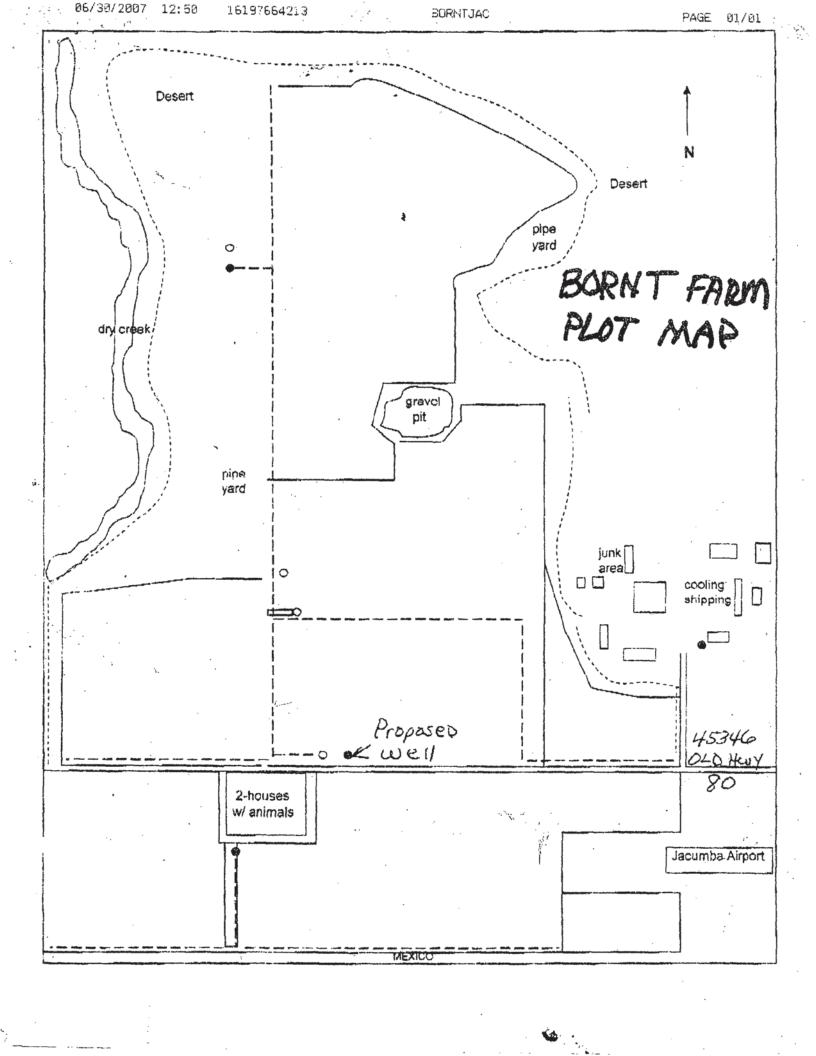
Control #: <u>LWel - 1803 /</u>
Assessor's Parcel Number: <u>660 - 150 - 0</u> 4

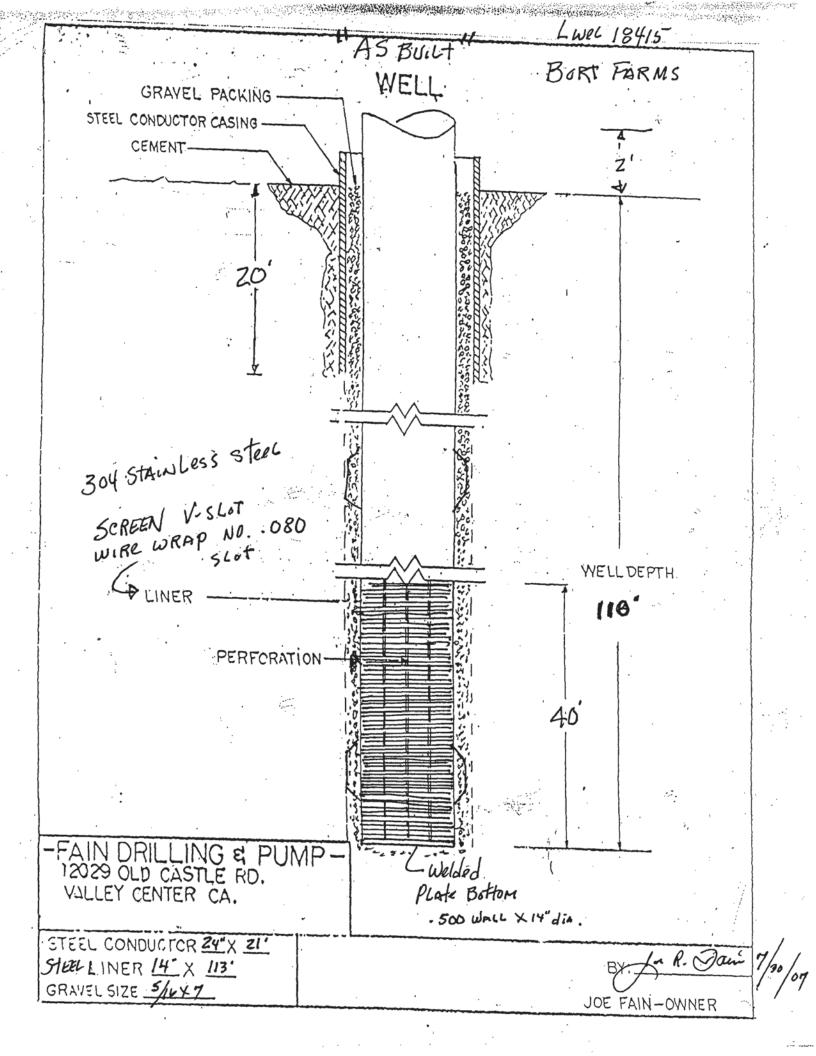
LOCATION

Indicate below the vicinity and exact location of well with respect to the following items: Property lines, water bodies or water courses, drainage pattern, easements, roads, existing wells, sewers and private sewage disposal systems and other potential contamination sources, including dimensions.

ČUADDI	UPLICAT	_		/	o ,	. (, v	CM + MF - O	* :	0000		٠.		- DWB I	ISE ON	· –	00 1	OT FILL IN TO
For Loc			\	ノう	25		WELL C	STATE O				OR	$_{\mathbf{T}}$	1 1		<u> </u>	ı l	1 1 1
Page 1	of	;		0	11	8		Refer to In	struction	Pamp	hlet		^ <u>-</u>		STATE W	ELL NO	./STAT	ON NO.
	Owner's Well No. 2005																	
	Date Work Began 7/27/05, Ended 9/2/05																	
	Permit Age	.*			40	-	. Downit I		21.106	· .			- [_		AF	N/TRS/	OTHER	
Peri	nit No. 1				oG	IC	LOG Permit I	Jate	/4/05	The	:	(2)	- this au	WELL	OWNE	n	laaka	d frame multip
ORIENTA	· TION (∠)	VEF	RTICA	AL .		_ HC	DRIZONTAL AI	ŅGLE	(SPECIFY)									d from public e and the
DEDTI	H FROM	DRÍLLING METHOD		Re	ora	2 727	FLL	JIDGe										information.
SUR	RFACE	,	2000	orih.	a m		ESCRIPTION rial, grain size,		110									
	to Ft.						silty sand	- (37	777	1	dress _	1	100 C	WELL I	COCATI	on—		
90	1		_				own color	ペノナ ナノン	1		y Jac							
	1	1						5 5			unty						-	
_23	56					1	gravel s	and \						150				
	1	brown	C	ole	OK O	1			1		1/2/10/		_	ge <u>8E</u>				10 226 "
56	86	Coare	6	22	n da	927	1th oranel	\\//	-/3	(Liai	DEG.	N		SEC.	Long	OE DE		MIN. SEC.
342	1	(2)	Ti	2)		3	1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	118			LOC	CATION NORT	SKETCH H				CTIVITY (∠) — NEW WELL
86	96	Hearh	er er	<u>ર્જા</u>	Boo	Þď.	rock		<u> </u>		1		014	lwy 86	7			FICATION/REPAIR
	!			1 3	11	1	-11	()		-			() to f	1 80			:	Deepen Other (Specify)
96	105	Black	852	38	1	-	volcanics			1	o- u	JOLL						DEGETORY (See
	1 ((1	_	200	^	4	11/19/			1							F	DESTROY (Describe Procedures and Materials Under "GEOLOGIC LOG"
	1	11.	1	1	111	ĎŽ	V],					- 1		l	S (∠)
<u> </u>	;		ما	711.	D) ¹	726			-								R SUPPLY Domestic Public
-	1		-	7	7		Chi			TS.		,	, a	L AC	-	TS.	. K	rrigation Industrial
	1	-) _(_ •	_	24	-, 774			WEST			34.	6 AC		EAST		MONITORING TEST WELL
	1 '				-,					1							CATHO	DDIC PROTECTION
4	1	i i																HEAT EXCHANGE
	i '	i							:	See ATTACHED HAP See ATTACHED HAP INJECTION _ VAPOR EXTRACTION _ SPARGING _								
	! .	 			-					\cdot	1	المراجع ع	tAil	•			VA	POR EXTRACTION
	 	<u>'</u> 							:	777;			3001	H ————— Well from R	anda Puil	J:		SPARGING REMEDIATION
	I	ı								Fer	nces, Rivers,	, etc. an	d attach a´ı	map. Use add ATE & COM	litional pa			OTHER (SPECIFY)
							:							& YIELI		OMPÍ.	ETED	WELL.
	1	! :								DE	PTH TO F		1	57	BELOW S			
	!	I 									PTH OF S		20					100
	1	i									ATER LEVE			(Ft.) & DA				
TOTAL D	DEPTH OF	BORING .		X.	05	_(Fe	eet)							TOTAL DRA				
TOTAL I	DEPTH OF	COMPLET	ED	WE	LL		94(Feet)			* 1	May not b	e repre	sentative	of a well's l	long-term	ı yield.	,	
	PTH						C	ASING (S)						EPTH		ANN	ULAR	MATERIAL
FROM	SURFACE	BORE- HOLE	Т	YPE	(<	.)]				FROM	SURFACE				YPE
		DIA. (Inches)	BLANK	SCREEN	CON- DUCTOR	PIPE	MATERIAL / GRADE	INTERNAL DIAMETER	OR WA	LL	SLOT S	Y		to 5:	CE- MENT	BEN- TONITE	FILL	FILTER PACK
Ft.	to Ft.		國	SC	٦ğ	근		(Inches)	THICKNE	:SS	(Inches	3)	Ft.	to Ft.	(∠)	(∠)	(∠)	(TYPE/SIZE)
0	20	32	H	1 1		-	Steal	23.5	.250	- 1		-	0	20	W.		-	
50	; 50 ; 90	22	H	¥		\dashv	Steel-SS	13.5	.250			-	-0	96	+		 	5/16w7
1	96	22	¥	1			Steel	13.5	.250									
	1		05				1	2303		\Box				1				
	- ATTAC	HMENTS	(- 2	Ш				<u></u>	<u></u>		CEDT	IEICA	TION 67	TATEMEN	TT -		<u> </u>	
			(~	, -			I, the unde	rsigned, ce	ertify that t	this re						f my k	nowled	lge and belief.
-	₩ Geologic	: Log nstruction Di	anra	am			NAME FA	IN DRI	LLING	&]	PUMP '	o I					,	
		sical Log(s)		1			(PERSO	Old c	CORPORATION)	(TYPE	ED OR PRINTI	ED)	Center	r. Ca	92082			
-	Soil/Wat	er Chemical	Ana	alyse	s		ADDRESS					5					STATE	710
1	X Other _						-	la no	Wa	in		:		CITY	8.5	-01		329287
ATTACH .	ADDITIONAL	INFORMATIO	ON, I					UCENSED WATE							DATE SIGNE			C-57 LICENSE NUMBER
-DWR 188 R	DWR 188 REV. 05-03 IF ADDITIONAL-SPACE IS NEEDED, USE NEXT CONSECUTIVELY NUMBERED FORM																	




DEH USE ONLY BY	تخير
WELL COMPUTER #	
FEE:	
WATER DIST:	

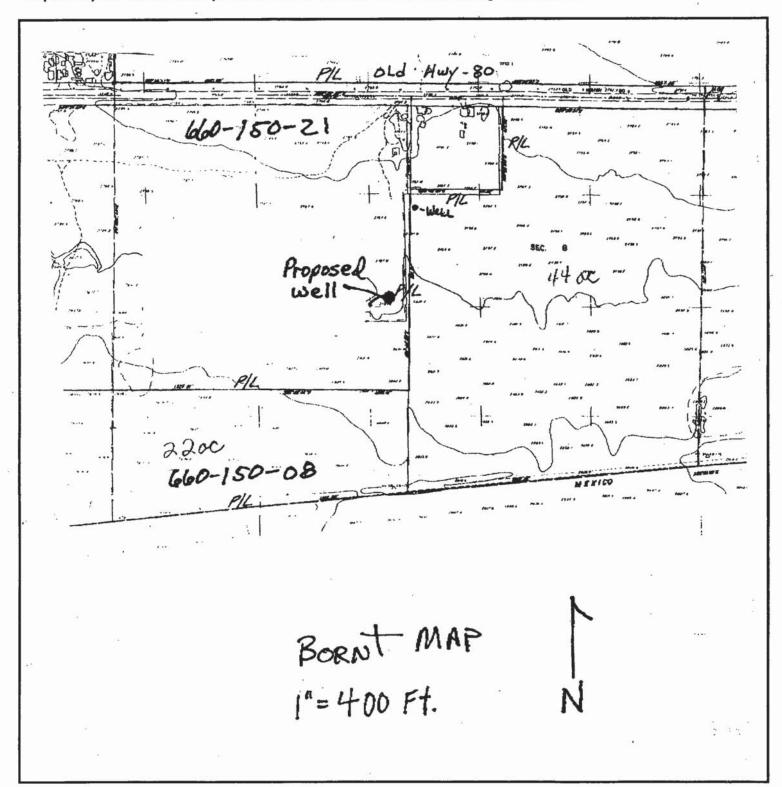

1	Property Owner: BORN FARMS	Phone: 649-766-4213
	2307 PAST HWU 98	HOLYNLE, CA 92250
2	. Well Location - Assessors Parcel Number <u>CCO-15</u> OCO HWY SO Site Address	50-18 Sity Sity
3.	Well Contractor - Well Driller TOE ADWARD 12029 OLD CASTLE DD Mailing Address	Company Name: FAM DULLING VALLEY CENTER 92082
	Phone#: (760) 749-0701	_ C-57#: 328287 □ Cash Deposit Bond Posted
4	. Use: 💆 Private 🗅 Public 🗅 Industrial	□ Cathodic □ Other
5	. Type of Work: New Reconstruction	☐ Destruction Time Extension: ☐ 1st ☐ 2nd
6	. Type of Equipment: RC+ARU	
7	Depth of Well: Proposed:	Existing:
8	. Proposed:	
	Casing Conductor Casing Type: SteeL Yes No Depth: 110 Depth: \$20 ft. Diameter 14 in: Diameter 24" in. Wall/Gauge: ,250 Wall/Gauge: ,250	Filter/Filler Material Perforations Yes No From: 20 To: 120 From: 70 To: 110 Type: From: To: To: To: To: To: To: To: To: To: To
9	. Annular Seal: Depth: 20 ft. Sealing Materia Borehole diameter: 32" in. Conductor diameter	meter: 24 in. Annular Thickness 4 in.
1	0. Date of Work: Start: 7- 9'-07	Complete: 7-24-67
С	the County of San Diego and the State of California pertain	nent of Environmental Health, and with all ordinances and laws of ing to well construction, repair, modification and destruction. For artment of Environmental Health with a complete and accurate log
	DISPOSITION OF APPLICATION (Depart	tment of Environmental Health Use only)
(Approved Denied Special Conditions: Grade construction, maintenance or destruction of water wells San Diego and/or other agencies.	ling and clearing associated with access to, or the , may require additional permits from the County of
1	Specialist:	Date: 7-13-07

LOCATION

Indicate below the vicinity and exact location of well with respect to the following items: Property lines, water bodies or water courses, drainage pattern, easements, roads, existing wells, sewers and private sewage disposal systems and other potential contamination sources, including dimensions.

	,	Rec	Val	24	10	1													
QUA	.DR⊌ Loca	PLICAT	E '	ilin	,			WELL C		F CALIFO		REPOR	т [- DWR US	E ONLY	<u>′ </u>	1	IOT FILL	IN -
Page	3 Nr. 31	of					٠.		Refer to In	struction P	amphle	t		S	TATE W	ELL NO	./STATI	ON NO.	
	Owner's Well No. 2007 No. 1089727							27		1 : 1									
Date	Wor	k Began	7/18	10	7	_	,	Ended 7/	23/07					LATITUDE	<u> </u>	1 .		NGITUDE	
, Lo	cal P	ermit Ag	gency _	- 1	DE	X				<u>·</u>					AP	N/TRS/	OTHER		لــــــــــــــــــــــــــــــــــــــ
	Perm	it No. 4	7.151 7	94 GI	15 OL	.00	CIC	LOG Permit	Date			12		(Derr	Amarie:	n		1.6	L.P.
OBIE	ΤΑΤΜΈ	ON (소)	X v					PRIZONTAL A	NGLE	(SPECIEY) V	he ini viewina	formation	in this gra	ayed area on 13752 (has b	een b Watei	locke r Cod	d from pu e and the	7 NDIIC
			DRILLIN METHOI	G					UIDGe			ation Prac							
. '	DEPTH SURF						Ď	ESCRIPTION		M									
F	t. to	Ft.						rial, grain size,	25" -15"5.	3 7 7 77 17	-5.7	04.4	timber O	WELL LO	CATIO) N			
)	9						rained			Addre City	355 1050	unba 1	VO) (CV					
<u> </u>	- i		1				- 6		5		Gong Grify 7	ty San							
9) !	24	Cla	у .	- I	ax	ck	color		War and a second	APN	Book 660	Page	150	Parcel	18			
							(3/0/2	())		Town	ship 18	S Rang	e 8 E	Sectio	n _8			
2	4	70	San	do	E	DE	g	rained \			Eat 3	DEG.	MIN. S	EC. N	Long.	DE		MIN	W SEC
-	0	113	San		11	<u>(/</u>	1	to coars	d frair	13	(2)	DEG.	CATION	SKETCH ·				MIN. CTIVITY (NEW WELL	(<u>∠</u>) —
—	-	1.1.3						uldeks	S BLAKE		<u> </u>		- NORTH	1		7			
	. ;		1	-	1	1/						<i>]</i> } .	See AH	nefled		1	MODII	FICATION/RE Deepen	
	1		11		1,	11	1	Y (a)	9					dota: L				Other (S	specify)
<u>. </u>	- 1	- /	12/	/_)	<u>_</u>	<u>~</u>	(2)(2)	7		13	.,						DESTROY (De	
	<u>_</u>		1-1	-		n 1	~~	-102	5		1					1	í	Procedures an Inder "GEOLO	d Materials DGIC LOG
	. !			<	hìz	11/1	Tâ	ST VO	1/1		ŀ		169.7	14 AC		1		S (丝) R SUPPLY	
	1	-	1		141	1	Ų	1.2		;								Domestic	
	1.		1			i	-	77,0			EST					EASŢ		MONITO	_ Industria RING
	!		1					20		,	3		,) ú		. TEST V	
			<u> </u>						•		1:		•				CATHO	DIC PROTEC	
)			1															· DIRECT F	
			 					•				EXIS		NEW Well				INJEC	
	- i		.									Will	- 9 4			<u> </u>	· VAI	POR EXTRAC SPAR	
			1					• •			Illustro	ite or Describe	Distance of	Well from Roo	ds Build	ings		REMEDIA	TION
			1				į				Fences	, Rivers, etc. at	nd attach a n	nap. Use addit	ional pap	er if		OTHER (SPE	CIFY)
			1					·				WATE	R LEVEL	& YIELD	OF CO	OMPL	ETED	WELL	
-			1							 .	DEPT	H TO FIRST V	VATER5	0 → (Ft.) B	ELOW S	URFACE	=		
<u> </u>	- 1		1		-			t			DEPT	H OF STATIC	40	(Ft.) & DATI			7/23	/07	
	i		1									R LEVEL IATED YIELD	. 2000	(Ft.) & DATI (GPM) &	E MEASU	DRED _	irli	ft	
·TOT	AL DI	EPTH OF	BORING	1	13			eet)				LENGTH 6		TOTAL DRAW	/DOWN_	60	(Ft.)		
TOT	AL DI	EPTH OF	COMPLE	TED	WE	ĹL	11	.4 (Feet)				y not be repr							
				Т					ASING (S)					EDTU	Τ	ANN	iji.ar	MATERIA	A I.
FR	DEP OM SI	JRFACE	BORE-		TYPE	Ξ (≃	()		101110 (0)		Τ.		FROM	EPTH SURFACE				/PE	
		. ,	DIA. (Inches)	BLANK	SCREEN	CON- DUCTOR	PIPE	MATERIAL / GRADE	INTERNAL DIAMETER	GAUGE OR WALL		SLOT SIZE IF ANY			CE- MENT	BEN- TONITE	FILL	FILTER	
F	t. to	Ft.		_	+	점	글	3.0.00	(Inches)	THICKNES		(inches)	Ft.	to Ft.	(∠)	(∠)	(∠)	(TYPE	/SIZE)
0		20	32	X	-			Steel	23.5	-250			0	20	X		<u> </u>		
0		73	24	X	+	_	$\left \cdot \right $	Steel Co.	13.5	-250		000	20	113	<u> </u>	pea	gra	vel 5/	16x7
—	73	113	24	+	X	-	\vdash	Steel S.:	3.13.5	.250	' '	.080	<u> </u>	+	+-			-	
<u> </u>			 	+	†	-	H	304	-				<u> </u>	 			 -	 	
	- 1									· .				1					
	_	ATTAC	HMENTS	(<u><</u>) .			1 4h	araia	welfur about at		CERTIFICA				may lo	2011	an and bal	liof
		Geologi	-						,		•	rt is comple		urate to the	pest of	my Kr	iowied	ge and bel	iet.
7			onstruction [am		:	NAME TO (PERS	AIN DRI	CORPORATION)	(TYPED O	IMP CO	INC						
, .			sical Log(s)		-1							Rd. Val	ley Ce	nter, (Ca 92	082			
		Soil/Wa Other _	ter Chemica	al Ana MA		es		ADDRESS	1 -)	<i>-</i>)				CITY	. 4		STATE	ZII	P
ATT			INFORMAT		1	EX	ISTS	Signed	for n.	Jan						0-0	<u> </u>	327Z	37_
ļ		V. 05-03		19				C-57	LICENSED WATE			SECUTIVE	/ NUMBER		ATE SIGNED)		C-57 LICENSE	NUMBER
DWK.	100 UE	· . 00-03	-		11	· Al	ווטט	IONAL SPACE I	O INCCUED,	OOF NEX	, JOIN	OFOO LIVET,	INDIVIDER	ILD FORM.					

DEH USE ONLY
PERMIT # W 2041)
WELL COMPUTER #
FEE: 462.
WATER DIST:


1	Property Owner: BORNT FARMS (Lea	see	Phone: 160-356-223
•	2307 E. HWY 98	Holtville	92250
_	Well Location - Assessors Parcel Number 660-15	City	Zip
2.			_
	Old Huy 30 Site Address	JACUMBA City	Zip
3.	Well Contractor - Well Driller Joe EDWAR S	Company N	ame: FAIN DRIllING
	12029 Old castle Rd	VAILEY CENTER	92082
	Phone#: 760-749-070/	C-57#: <i>3<u>2828</u>7</i> □ Cash	Deposit Bond Posted
4.	Use: Private Public Industrial	☐ Cathodic ☐ Other	
5.	Type of Work: ✓ New □ Reconstruction	☐ Destruction Time Ext	
6.	Type of Equipment: Rotaly		
7.	Depth of Well: Proposed: 300		Existing:
8.	Proposed:		
9.	Casing Conductor Casing Type:	Type: # 6 Wall/Gauge:	Perforations From: To: To: From: To:
	Borehole diameter: 32 in. Conductor dia		ılar Thickness $oldsymbol{arphi}$ _in.
10	Date of Work: Start: Oct 26-09	Comple	ete: Nou-8-09
Coi	On sites served by public water, contact the local I hereby agree to comply with all regulations of the Department the County of San Diego and the State of California pertain Immediately upon completion of work, I will furnish the Department of the well. I accept responsibility for all work done as part of supervision. Attractor's Signature:	nent of Environmental Health, and wonder to well construction, repair, mo artment of Environmental Health word this permit and all work will be perfectly the perfect of th	with all ordinances and laws of dification and destruction. ith a complete and accurate log
	DISPOSITION OF APPLICATION (Depart	tment of Environmental He	ealth Use only)
CC		ding and clearing associated	with access to, or the
S	pecialist: Down Araus	Date:	2-09

Control #: LWEL - 2041)

Assessor's Parcel Number: 660-150-21

LOCATION

Indicate below the vicinity and exact location of well with respect to the following items: Property lines, easements, water bodies or water courses, drainage pattern, roads, existing wells, sewers and private sewage disposal systems and other potential contamination sources, including dimensions.

*The free Adobe Reader may be used to view and complete this form. However, software must be purchased to complete, save, and reuse a saved form.

File Original with DWR

State of California

Well Completion Report

Refer to Instruction Pamphlet

No. e0135671

Date Work Began 11/04/2009

Date Work Ended 11/6/2009

Latitude

Longitu

APN/TRS/Other

The information in this grayed area has been blocked viewing pursuant to section 13752 of the Water Code Drilling Method Direct Rotary

Drilling Fluid Bentonite mud

The information Practice Act of 1977 to protect personal information Practice Act of 1977 to protec

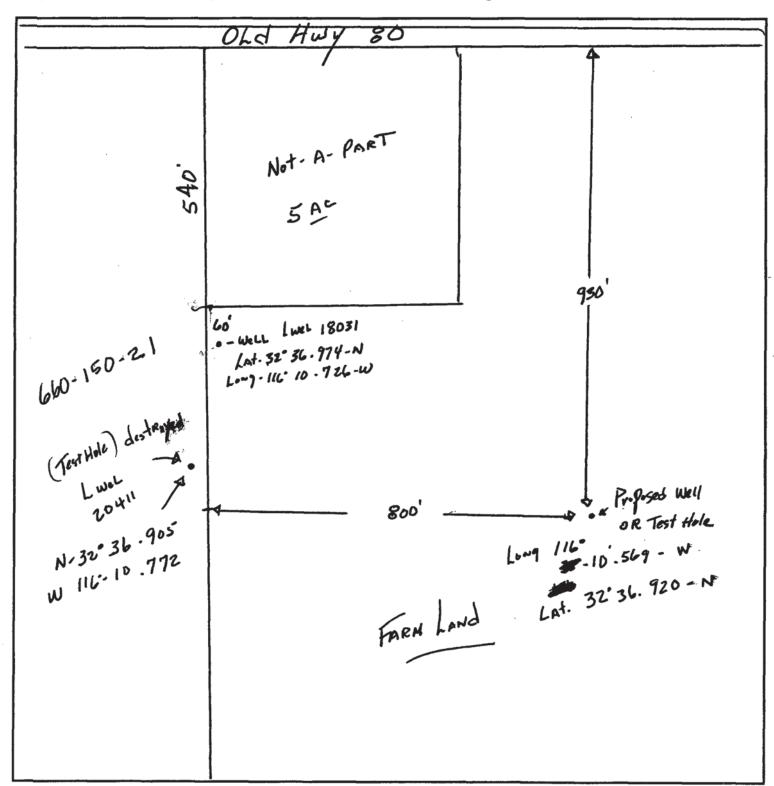
Permit Nui				1	Permit Da	te 11/2	/09			L			APN/T	RS/Othe	er
	Geologic Log The information in this grayed area has been blocked from public								blocked from public						
Orientation Vertical O Horizontal O Angle Specify								viewing pursuant to section 13752 of the Water Code and the							
Drilling Method Direct Rotary Drilling Fluid Bentonite mud Information Practice Act of 1977, to protect personal information								rsonal information.							
	rom Sur			Descr		cription	color etc								
Feet to Feet Describe material, grain size, color, etc Alluvial Fill As Follows: Well Location															
		Address Old Hwy 80													
0	.10		Silty	y Sand						cumba			Cor	inty Sa	an Diego
10	80		Sar	ndy Clay W/	Small Ag	gregate			Latitude	32 3	36 9	05 N	Longitu	de 11	6 10 772 w
80	150		Cla	y W/ Small	lenses of	Aggrega	ate								
150	310		Mul	ti Colored N	Meta Volca	anics									mal Long
										ok <u>660</u>	_				
	-							-	Townshi	p <u>18-s</u>				Section	
									(Sketch r	Locati nust be drawn	on Sket		inted.)	(a) Nic	Activity ew Well
	<u> </u>										North				odification/Repair
	-		les	t Hole Dest	royed				{						Deepen
									┨┠———					O De	Otherestroy
			-	· · · · · · · · · · · · · · · · · · ·					11 04	D H	SON .	80		De un	escribe procedures and materials der "GEOLOGIC LOG"
			_												Planned Uses
	-								11 1	ad)-150	-21			ater Supply
						•			11 5				st •		Domestic Public rrigation Industrial
		٠. [West		2001	partee	East		athodic Protection
					· ·]		4	est J	well		ewatering
								_	11 1		· H	oce	1		eat Exchange
			·						11			-			ection
									11 1					_	onitoring
									∐				1		emediation parging
									-		Cauth				est Well
								·	Illustrate or de	escribe distance o	South of well from roa	ads, buildings,	fences,		apor Extraction
	+								rivers, etc. an Please be ac	d attach a map. curate and com	Use additional plete.	paper if neces	звагу.	0 0	ther
										evel and				/ell	
	1.								Depth to	first water		· · · · · · · · · · · · · · · · · · ·		_ (Fee	t below surface)
									Depth to Water L	evel		(Feet) Date	Measu	red
Total De	pth of Bo	oring		310			Feet		Estimate	ed Yield *		(GPN	l) Test	Туре _	
Total De	pth of Co	omple	ted \	well 0			Feet								own(Feet)
									*May no	t be repres	entative	of a well'			
Depth	from	Boreh	ole			ings	Wall	Outside	Screen	Slot Size	Denth	from	Annul	ar Mat	terial
Surf	ace	Diame	eter	Type	Mate	rial	Thickness	Diameter	Туре	if Any	Sur	face	Fil	I	Description
Feet to	Feet	(Inch	es) T				(Inches)	(Inches)		(Inches)	0	5 Feet	Fill		
			_								5	25	Cement		
		. 7	ON	E							25	75	Bentonite	9	
											75	310	Fill		
										-					
							<u> </u>			<u> </u>	<u></u>				
		Attac	hm	ents		I that	adorei	andif. th		Certificati			the bear	of 'm	knowledge and heliaf
	Seologic Vell Cons		on D	liagram	.	i, the ur Name	ruersigned <u>Fain D</u> rilli	i, certify the	at this report np Co., Inc	is complet	e and ac	curate to	me bes	or my	knowledge and belief
	Seophysi			_		1	Person, F 9 Old Cas	irm or Corpor	ration		ey Cente	ar .	0	A 9	2082
	oil/Wate	r Che	mica	ıl Analyses				Address C	1-	valle	City		St	ate	Zip
	ther Si				· ·	Signed	- AK	_K. \	Yam.			12/2/20		28287	
Attach addit	tach additional information, if it exists. Date Signed C-57 License Number														

DCCCLL DCCCLL

DEH USE ONLY LWELZOUSS PERMIT # W
WELL COMPUTER #
FEE: 460 '
WATER DIST:

(Leasee)		
1. Property Owner: BORN+ FARMS	// / / / / / / / / / / / / / / / / / / /	Phone: 69-766-421
2307 E. Hwy 98	Holtville	92250
2. Well Location - Assessors Parcel Number 660 - 150 - 1	04	Zip
Old Hwy &D	JACUMBA	_
Site Address	City	Zip
3. Well Contractor - Well Driller		ame: MIN Deiling
12029 OIL CASHE RD Mailing Address		72082 7in
Phone#:	C-57#: 🖵 Cash	Denosit D Rond Posted
4. Use: Private □ Public □ Industrial	☐ Cathodic ☐ Other	Deposit a Bona i ostea
5. Type of Work: New \square Reconstruction	-	ension: 🗇 1st 🗇 2nd
	d Destruction Time Ext	ension. d 1st dizind
7 5 11 (14 11 5 1 7 20 34 6	<u>, r</u>	Existing:
 Depth of Well: Proposed:	<u></u>	Existing.
Diameter 14 in. Diameter 24 in. Wall/Gauge: -250 9. Annular Seal: Depth: 20 ft. Sealing Mater Borehole diameter: 32 in. Conductor diameter: 11-4-09	ial: CENEX ameter: ZY in. Annu Comple	From: To:
On sites served by public water, contact the local I hereby agree to comply with all regulations of the Departre the County of San Diego and the State of California pertain Immediately upon completion of work, I will furnish the Deport the well. I accept responsibility for all work done as part supervision.	ment of Environmental Health, and vining to well construction, repair, mo partment of Environmental Health w	with all ordinances and laws of dification and destruction. ith a complete and accurate log
Contractor's Signature: A. R. Dawn	Da	te: 11-6-09
DISPOSITION OF APPLICATION (Depar	rtment of Environmental He	ealth Use only)
Approved Denied Special Conditions: Grade construction, maintenance or destruction of water wells San Diego and/or other agencies.		mits from the County of
Specialist: # M/M/mty	Date:	10109

COUNTY OF SAN DIEGO DEPARTMENT OF ENVIRONMENTAL HEALTH


Control #: 20435

Assessor's Parcel Number: 660-150-04

LOCATION

Indicate below the vicinity and exact location of well with respect to the following items: Property lines, easements, water bodies or water courses, drainage pattern, roads, existing wells, sewers and private sewage disposal systems and other potential contamination sources, including dimensions.

Fire Addise Reader may be used to view and complete this form. However, software must be purchased to complete, save, and reuse a saved form. File Original with DWR State of California DWR Use Only - Do Not Fill In **Well Completion Report** Page one Refer to Instruction Pamphlet State Well Number/Site Number Owner's Well Number Test Hole No. e0135668 L N W Date Work Began 11/10/2009 Date Work Ended 11/12/2009 Local Permit Agency DEH APN/TRS/Other Permit Number <u>LWEL20435</u> Permit Date 11/10/09 Geologic Log Well Owner The information in this grayed area has been blocked from public Orientation

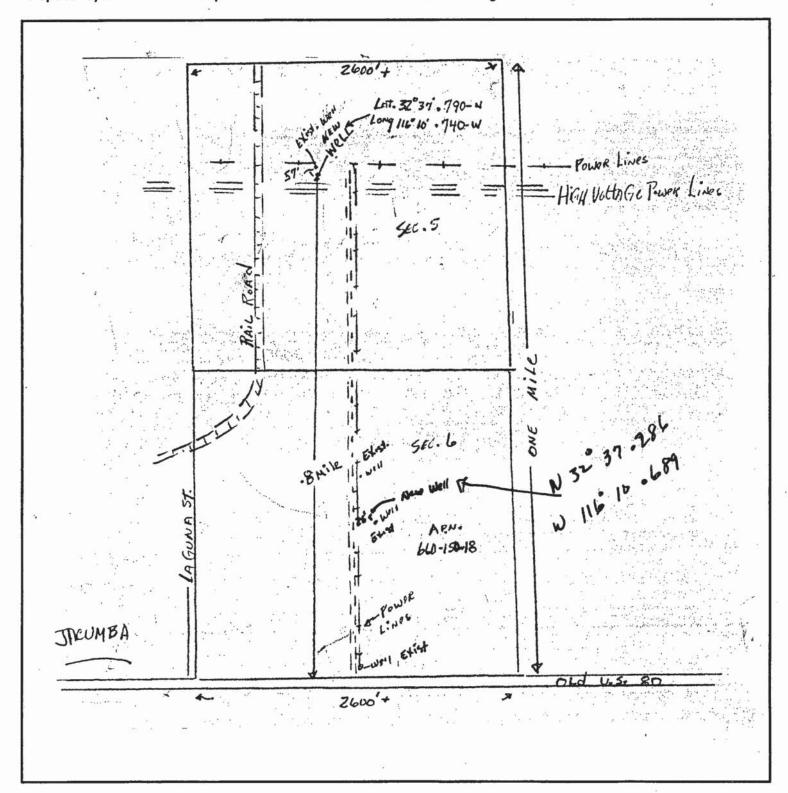
Vertical O Horizontal OAngle Specify viewing pursuant to section 13752 of the Water Code and the Drilling Method Direct Rotary Drilling Fluid Bentonite mud Information Practice Act of 1977, to protect personal information. Depth from Surface . Description Describe material, grain size, color, etc Feet to Feet Alluvial Fill As Follows: Well Location Address Old Hwy 80 Silty Sand City Jacumba County San Diego 68 Cemented Sand Latitude 32 N Longitude <u>116</u> <u>10</u> 68 Fine to Med Sand W/ Lenses of Clay Deg. 81. Decimal Lat. Decimal Long. 81 98 Cemented Sand & Gravel APN Book <u>660</u> Parcel 04 _ Page <u>150</u> 98 138 Sticky Brown Clay __ Range <u>8-e</u> Township 18-s Section 8 138 153 Grey Clay W/ Lenses of Small Aggregate 153 **Location Sketch** 180 Activity Grey Volcanics (Sketch must be drawn by hand after form is printed.) New Well North O Modification/Repair Test Hole Destroyed OLD HWY 80 O Deepen Other_ A ton PARtof O Destroy Describe procedures and materials under "GEOLOGIC LOG" S AC. Planned Uses 2 O Water Supply ☐ Domestic ☐ Public ☐ Irrigation ☐ Industrial O. Cathodic Protection O Dewatering Desteogeo O Heat Exchange O Injection O Monitoring O Remediation O Sparging Test Well O Vapor Extraction Illustrate or describe distance of well from roads, buildings, fences rivers, etc. and attach a map. Use additional paper if necessary. Please be accurate and complete. O Other Water Level and Yield of Completed Well Depth to first water ___ Depth to Static ___ (Feet) Date Measured Water Level Estimated Yield * ___ (GPM) Test Type Total Depth of Boring 180 Feet ____ (Hours) Total Drawdown Test Length ___ Total Depth of Completed Well 0 Feet *May not be representative of a well's long term yield.

Casings **Annular Material** Slot Size Depth from Outside Screen Depth from Borehole Wall Material Fill Thickness Diameter Description Surface Diameter Type if Any Surface Feet to Feet (Inches) (Inches) Feet to Feet (Inches) (Inches) 0 5 Fill 5 25 Cement 25 180 Fill NONE

Attachments	Certification Statement
Geologic Log Well Construction Diagram	I, the undersigned, certify that this report is complete and accurate to the best of my knowledge and belief Name Fain Drilling & Pump Co., Inc. Person, Firm or Corporation
☐ Geophysical Log(s) ☐ Soil/Water Chemical Analyses	12029 Old Castle Rd. Valley Center CA 92082 Address City State Zip
Other Site Map	Signed 12/16/2009 328287
Attach additional information, if it exists.	9.57 Licensed Water Well Contractor Date Signed C-57 License Number
DWR 188 REV. 1/2006	IF A DITIONAL SPACE IS NEEDED, LISE NEXT CONSECUTIVELY NUMBERED FORM

V 11 '
DEH USE ONLY
PERMIT EWEL 20450
WELL COMPUTER #
FEE:
WATER DIST:

	WATER DIST:
1. Property Owner: BORNT FARMS	619 Phone: 766-4213
	92250 Zip
2. Well Location - Assessors Parcel Number 660 - 150 - 18	
M/siF OLd Hwy 8b Site Address City	91934
	ame: Fain Deiling
12029 Old Castle Ad Valley CENTER	92087
Phone#: 160 - 749 - 010/ C-57#:328281 Cash	
4. Use: Private □ Public □ Industrial □ Cathodic □ Other	
5. Type of Work: ☐ Reconstruction ☐ Destruction Time Ext	ension: 1st 2nd
6. Type of Equipment: Ro-MRy	
7. Depth of Well: Proposed: ///	Existing:
8. Proposed:	
Type: STEEC SYes No SYes No Depth: 100 Depth: 20 ft. From: 70 To: 160 Diameter 14 in. Diameter 24 in. Type: Wall/Gauge: Wall/Gauge: -250 Wall/Gauge: -250 Wall/Gauge: Wall/Gauge:	
9. Annular Seal: Depth: 20 ft. Sealing Material: Carles 7	1 1 + ·
Borehole diameter: 32 in. Conductor diameter: 24 in. Annu	
10. Date of Work: Start: Comple	ete: //-/8-09
On sites served by public water, contact the local water agency for meter protect of the local water agency fo	with all ordinances and laws of odification and destruction. with a complete and accurate log
DISPOSITION OF APPLICATION (Department of Environmental He	ealth Use only)
Approved Denied Special Conditions: Grading and clearing associated construction, maintenance or destruction of water wells, may require additional per	
San Diego and/or other agencies.	
Specialist: Date:	11-1309


Control #:

20450

Assessor's Parcel Number: 660 - 150 - 18

LOCATION

Indicate below the vicinity and exact location of well with respect to the following items: Property lines, easements, water bodies or water courses, drainage pattern, roads, existing wells, sewers and private sewage disposal systems and other potential contamination sources, including dimensions.

*The free	Adobe Rea	der may b	e usedio view	/ and complete	this form.	However, s	software mu	ist be purchase	ed to comple	ete, save, a	and reuse	a saved fo	orm.			
File Original with DWR feel State of Cali								fornia DWR Use Only – Do Not Fill In								
Page one of one Well Comple								on Report								
Page one of one Owner's Well Number Test Hole Refer to Instruction No. e01356								State Well Number/Site Number 55								
Date Wor			009	_ Date \		Latitude Longitude										
Local Per							APN/TRS/Other									
Permit No	mber <u>LV</u>	VEL204:		Permit Da	te <u>11/1.</u>	3/09		- ·								
Orio	ntation	@\/ortio		gic Log	OAngle	Specify							blocked from public			
	Method Dir			Zontai	_	luid Bento		viewing pursuant to section 13752 of the Water Code and the Information Practice Act of 1977, to protect personal information.								
	from Sur	face			ription	color etc		Illioinia	lion i rac	iicc Act	01 1377	, to prot	.coi pi	croonar information.		
1.50	eet to Feet Describe material, grain size, color, etc Alluvial Fill As Follows:							Well Location								
					Address Old Hwy 80											
0	. 40		ne to Med G				City Jacumba County San Diego									
40	80		indy Clay W	/ Lenses o	Aggregat	Latitude 32, 37 286 N Longitude 116, 10 689 W										
80	100		indy Clay					_	Deg.	Min.	Sec.		Q,	eq. Min. Sec.		
100	110	Me	eta Volcanic	S		•		Datum_						mal Long		
<u> </u>								APN Book 660 Page 150 Parcel 18 Township 18-s Range 8-e Section 8								
-																
ļ		le	st Hole Des	troyed					(Sketch must be drawn by			ninted.)	① No	Activity ew Well		
<u> </u>	-						•			North			ŎМ	odification/Repair		
								┨	11 26	00' 1 				Deepen Other		
									exist.				O Destroy			
<u> </u>								بـــــال	네 :	1 =			Di ur	escribe procedures and materials inder "GEOLOGIC LOG":		
								Planned Uses O Water Supply								
									Domestic Public Irrigation Industrial O Cathodic Protection							
								O Dewatering								
								ا کا ا	DOVER	es way				eat Exchange		
								O Heat Exchange O Injection O Monitoring								
								Monitoring O Remediation								
<u> </u>								O Sparging								
										South				est Well		
-						Illustrate or describe di				ance of well from roads, buildings, fences.				apor Extraction		
								rivers, etc. and attach a map. Use additional paper if necessary. Please be accurate and complete.								
									evel and							
								Depth to Depth to					_ (Fee	et below surface)		
								Water Le	evel		(Fee	t) Date	Measu	ired		
Total D	Total Depth of Boring 110 Feet								Water Level (Feet) Date Measured Estimated Yield * (GPM) Test Type							
Total D	epth of C	ompleted	Well 0			Feet	Test Length (Hours) Total Drawdown (Feet) *May not be representative of a well's long term yield.									
				200		Annular Material										
Depti	Casings Depth from Borehole Wall Outside									Screen Slot Size Depth from						
Surface Diameter Type Material Thickness Feet to Feet (Inches) (Inches)							Diameter (Inches)	Туре	if Any (Inches)		face to Feet	Fill		Description		
1001	1 001	(menes)				(menes)	(money)	Τ .	(0	5	Fill				
										5	25	Cement				
	NoN	E								25	110	Fill				
		,								ļ						
	· · · · · ·		 				<u> </u>			 	-					
	Attachments									Certification Statement						
	Geologic				I, the ur	ndersigned	, certify th	at this report	is comple			the best	of my	knowledge and belief		
	Well Con					Person, f	irm or Corpo	mp Co., Inc								
	Geophysi Soil/Wate	12029		Valley Center CA 92082 City State Zip												
	Signed	m_														
											gned C	-57 Lic	ense Number			

LEIGHTON AND ASSOCIATES, INC.

Geotechnical and Environmental Engineering Consultants

LIMITED EVALUATION OF
LIQUEFACTION AND CONSOLIDATION
POTENTIAL, PHASE 1,
JACUMBA VALLEY RANCH
DEVELOPMENT, SAN DIEGO COUNTY,
CALIFORNIA

January 21, 1991

UPDATED EVALUATION OF CONSOLIDATION POTENTIAL, PHASE 1, JACUMBA VALLEY RANCH DEVELOPMENT, SAN DIEGO COUNTY, CALIFORNIA

February 27, 1991

Project No. 4900381-05

PREPARED FOR:

JACUMBA VALLEY PARTNERSHIP 2423 Camino Del Rio South, Suite 212 San Diego, California 92108

LEIGHTON AND ASSOCIATES, INC.

Geotechnical and Environmental Engineering Consultants

January 21, 1991

Project No. 4900381-05

To:

Jacumba Valley Ranch

2423 Camino Del Rio South, Suite 212

San Diego, California 92108

Attention:

Mr. Karl Turecek

Subject:

Limited Evaluation of Liquefaction and Consolidation Potential, Phase 1, Jacumba Valley Ranch Development, San Diego County,

California

<u>Introduction</u>

In accordance with your request, we have performed a limited geotechnical evaluation of the liquefaction and consolidation potential in the first phase of the proposed development. Plans for this phase include an 18-hole golf course, waste water treatment plant, hotel, school, congregate care center, and retail and commercial structures, along with associated streets, utilities, and drainage channels. We have concentrated our evaluation principally in areas underlain by alluvium (Qal and Qfn on Plate 1) as these are the areas thought most likely to be subject to liquefaction and consolidation. We understand that a maximum of 4 feet of fill is proposed in some areas. In addition, we have performed a limited evaluation of the soil in the drainage areas for use as structural fill and have evaluated drainage channel slope stability.

Accompanying Maps and Appendices

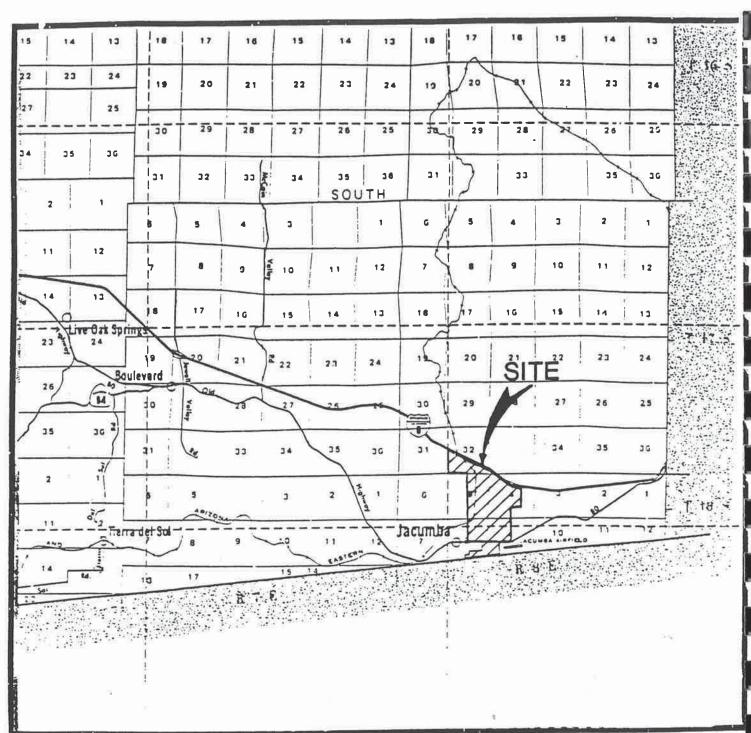
Figure 1 - Site Location Map - Page 2
Plate 1 - Geotechnical Map - In Pocket
Appendix A - References
Appendix B - Boring and Trench Logs
Appendix C - Laboratory Test Results

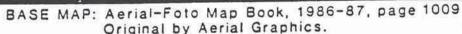
Scope of Services

Our scope of services to date has included:

- · Logging and sampling 13 small-diameter borings and 6 backhoe trenches.
- Field and laboratory testing to evaluate pertinent engineering properties of the soil samples.
- · Geotechnical evaluation of data obtained during our investigation.
- · Preparation of this report presenting the results of our evaluation.

Field Investigation

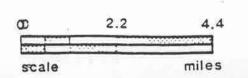

On December 11 through 14, 1990, 13 small-diameter borings were excavated on site. The borings were excavated to a maximum depth of approximately 50 feet or until bedrock was encountered (whichever was shallower) with a truck-mounted Mobil B-61 drill rig with 8-inch hollow stem augers. The borings were sampled and logged by a geologist from our firm. Borings were sampled with a Standard Penetration Test (SPT) split spoon sampler and a Modified California ring sampler. Bulk and relatively undisturbed ring samples were collected for visual classification and laboratory testing. Ground water levels at the time of drilling are recorded on the logs. On December 18, 1990, 6 backhoe trenches were excavated on site by Jacumba Valley Ranch. The trenches were logged and sampled by a geologist from our firm. The approximate locations and logs of the borings and trenches are presented on Plate 1 and in Appendix B, respectively.


Seismicity

As discussed in our Land Use Feasibility Study (Appendix A, Reference 5), the seismic hazard thought most likely to impact the subject site is ground shaking produced by a large earthquake on one of the major active regional faults. A maximum probable event on the Elsinore fault (considered the design earthquake for this site) is expected to produce a peak horizontal bedrock acceleration of 0.30g and a repeatable ground acceleration of 0.20g. The effects of seismic shaking can be reduced by adhering to the Uniform Building Code or state-of-theart design parameters of the Structural Engineers Association of California.

Liquefaction Potential

During an earthquake, ground shaking may cause loss of soil strength (liquefaction) in loose saturated sandy soils, resulting in excessive settlement damage and/or possible failure of surface structures. The likelihood of liquefaction depends on the intensity and duration of the ground shaking, the



JACUMBA VALLEY RANCH

SITE LOCATION MAP

Project No. 4900381-05

soil characteristics, and the depth to ground water. A simplified analytical method, based on empirical correlations, relating the field occurrence of liquefaction to the earthquake magnitude and acceleration, cyclic shear resistance of the soils, and Standard Penetration Test (SPT) results (Appendix A, Reference 7) was used to evaluate the liquefaction potential of the recent alluvium (Qal) and older alluvium (Qfn). The formational materials (Tjl, Tja, Tmg) are not considered to have a significant liquefaction potential. The Geotechnical Map (Plate 1) shows the approximate extent of these units.

The ground water levels we encountered in our borings ranged from approximately 5 to 40 feet below the existing ground surface. We believe that these levels are likely to be significantly lower than historic high ground water conditions due to the ongoing drought. In our evaluation, we have assumed ground water levels 5 feet higher than those actually encountered.

The soils encountered in the upper portions of the alluvium were generally described as medium dense, silty fine to medium sand and stiff, sandy to clayey silt. Standard Penetration Test (SPT) blow count values (in the upper 30 feet) ranged from 19 to 49 with an average blow count of 31 blows per foot. Based on the results of our investigation, the calculated factor of safety against liquefaction is greater than 1.5, indicating a low potential for liquefaction at the site due to the design earthquake. Further, the addition of up to 4 feet of fill soils in selected areas across the site should reduce the potential for liquefaction in those areas receiving fill.

Dynamic Settlement

Dynamic settlement due to earthquake shaking was evaluated in the alluvial areas using the method described by Tokimatsu and Seed (Appendix A, Reference 9). The design earthquake (which has an estimated return period of 100 years) may induce a total settlement at the site on the order of 3/4 to 1 inch. Differential settlement of the alluvium due to earthquake-induced dynamic settlement is estimated to be on the order of 1/4 to 1/2 inch across 100 feet of ground surface. The addition of fill soils should reduce the potential for dynamic settlement.

Consolidation

Consolidation of soils is a relatively long-term process that may occur when pore pressures in soil of relatively low permeability (such as a silty or clayey soil) increase upon loading (due to additional fill placement, structures, etc.). Settlement of granular soils (sands and gravels) is the term used for the process of relatively short-term soil densification due to application of a load. Hydroconsolidation may also occur when a soil undergoes wetting or saturation after a load is applied. Consolidation, settlement, and hydroconsolidation may result in soil densification and ground subsidence.

The potential for long-term consolidation of the soils at the site is considered low due to the relatively high blow counts, the limited quantities of highly clayey materials encountered in our borings and trenches, and the relatively minor fill loads anticipated.

The potential for settlement of the existing granular alluvial soils was evaluated based on consolidation test results (Appendix C) and the assumption that no more than 4 feet of fill soils (above existing grades) will be added at the site. The building loads are assumed to be typical for this type of relatively light construction. Larger loads may be anticipated for the waste water treatment plant.

To reduce the potential for settlement, we recommend that portions of the alluvial soils under the proposed structures be removed and recompacted and that construction be delayed for a period of time after the addition of fill soils so that differential settlement may be reduced to tolerable limits. The following preliminary recommendations are based on a maximum total and differential settlement of 1 inch and 1/2 inch, respectively.

Type of Structure	Estimated Depth of Removal and Recompaction (feet below existing grade)
<pre>1- and 2-Story, School, Hotel Congregate Care, and Residential Structures</pre>	2 - 4
Waste Water Treatment Plant	3 - 5

The above values are preliminary and should be refined based on actual building loads and site-specific geotechnical investigations.

Thickness of Proposed Fill (above existing grade) in feet	Delay of Building Construction after Grading (months)
<u>≤</u> 2	0
≤3	ř 1
<u>≤</u> 4	2

We do not believe these delays should pose significant constraints to construction provided that a phased construction approach can be accomplished.

To reduce the potential for hydroconsolidation of alluvial soils, the base of the removal area should be thoroughly wetted after removal of the existing soils and prior to recompaction. Specific grading recommendations will be provided in the geotechnical investigation reports.

Suitability of Material In Drainages for Use as Fill Soils

Based on our visual evaluation and laboratory testing of samples obtained from the five backhoe trenches located in the existing drainages, (one of the backhoe trenches was located outside of the drainage areas for purposes of evaluating rippability and other properties) this material should be generally suitable as structural fill. Visual evaluation generally indicates a very low expansion potential for the majority of this material. However, laboratory testing (Appendix C) indicates a medium expansion potential for the siltier portions. Soils with a medium expansion potential are generally not desirable within 3 feet of finish grade. The material generally varied from a fine sandy silt to a fine to coarse sand with gravels and cobbles. Scattered roots were noted in some of the near-surface soils. The clean, sandy portions may have a moderate to high erosion potential. This material is anticipated to have an adequate bearing capacity (for lighlty loaded structures) when compacted as fill soils.

Drainage Channel Slope Stability

We understand that unlined drainage channels are proposed to conduct storm water across the site. We further understand the proposed channel walls (up to 5 feet in height) are to be constructed at inclinations of approximately 5:1 (horizontal to vertical). Based on direct shear tests performed on remolded representative soil samples, these slopes should be grossly stable at the proposed inclinations. Channel erosion protection is generally under the purview of the civil engineer as evaluation of erosion and scour is based on water quantity and flow velocity. We have provided grain-size analyses of representative samples (Appendix C) for this evaluation. Clean, fine sand (without a significant portion of silt or clay to act as a binding agent) should be avoided in use as a channel liner unless adequately protected from erosion and scour.

Summary

Based on the results of our limited evaluation, it is our opinion that the proposed development is feasible from a geotechnical standpoint provided that the concerns presented herein are addressed into the project design.

We note that additional geotechnical investigation is recommended to provide site-specific foundation and grading recommendations.

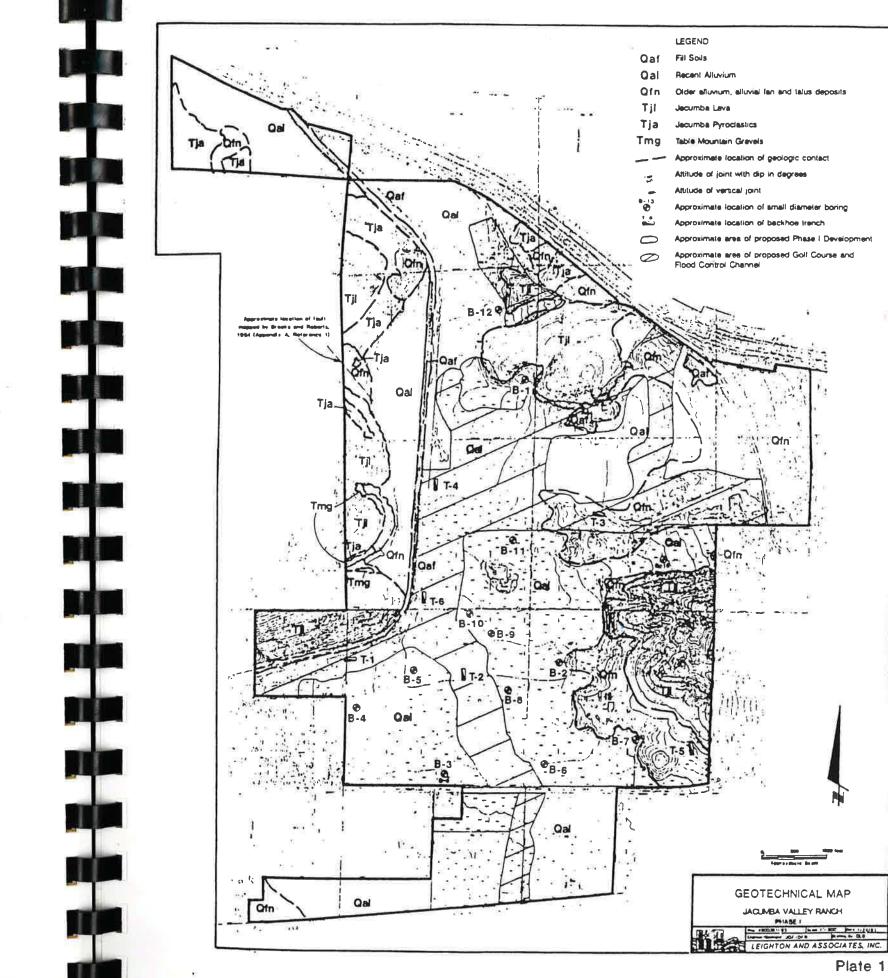
If you have any questions regarding our report, please do not hesitate to contact this office. We appreciate this opportunity to be of service.

Respectfully submitted,

LEAGHTON AND ASSOCIATES, INC.

Douglas F. Roff, Fg 1480 Project Geologist

Gene Custenborder, CEG 1319 Chief Geologist


Joseph G. Franzone, REE 39552

Chief Engineer

DFR/GC/JGF/jss

Distribution: (6) Addressee

(6) Brian F. Mooney Associates Attention: Mr. Brian F. Mooney

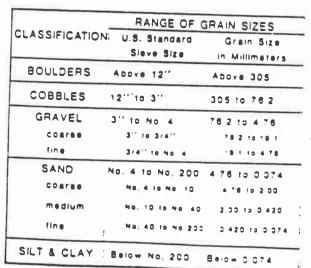
APPENDIX A

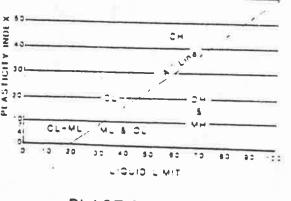
REFERENCES

- Brooks, B. and Roberts, E., 1954, Geology of the Jacumba Area, San Diego and Imperial Counties, California Division of Mines and Geology, Bulletin 170, Map Sheet 23.
- 2. Greensfelder, R.W., 1974, Maximum Credible Rock Acceleration from Earthquakes in California: California Division of Mines and Geology, Map Sheet 23.
- 3. Hart, E.W., 1988, Fault-Rupture Hazard Zones in California: California Division of Mines and Geology, Special Publication 42.
- 4. Jennings, C.W., 1975, Fault Map of California, California Division of Mines and Geology, California Geologic Data Map Series, Map No. 1.
- 5. Leighton and Associates, 1990, Geotechnical Land-Use Feasibility Study, Jacumba Valley Ranch Development, San Diego County, California, Project No. 4900381-01, dated April 27.
- 6. Ploessel, M.R., and Slosson, J.E., 1974, Repeatable High Ground Acceleration from Earthquakes: California Geology, Vol. 27, No. 9, P. 195-199.
- 7. Seed, Idriss, and Arango, 1983, Evaluation of Liquefaction Potential Using Field Performance Data, ASCE, Vol. 109, No. 3, March.
- 8. Strand, R.G. 1962, Geologic Map of California San Diego El Centro Sheet, California Division of Mines and Geology.
- 9. Tokimatsu and Seed, 1987, Evaluation of Settlement in Sands due to Earthquake Shaking, ASCE, Vol. 113, No. 8, August.
- 10. Weber, F.H., 1963, Geology and Mineral Resources of San Diego County.

 California, California Division of Mines and Geology, County
 Report 3.

EXPLANATION OF GEOTECHNICAL TRENCH LOG


			— Bulk Sample	Field Density Test in accordance with ASTM 2937-83	Single relatively undisturbed ring	Attitudes Strike/Dip (B) - Redding	(1) - tortail (3) - Joint (7) - Franture (15) - (1ay Seam	_	H 1	; ;	Tracture o class	T root here	 A sections	
ROPERTIES	Mo:	nsity ompaction isture (%)	4	12.6 118.7 (89)	24.2 115.0						tered 68	11		
INGENIER ING PROPERTIES		mple No.	1		MI/CH J-1 @				N/OH	Total Depth = 1	Seepage encountered ackfilled 8/23/86	E		ř
		GEOLOGIC	Oaf	0	Υ. E				ISM TRENDS	~ · ·	Backfi	\		3-1-
: Logged By: Elevation: TBINGH NO		DATE: DESCRIPTION:	FILL A few desiccation cracks at surface up to 1/4- to 1/2-inch wide	(1) Very fine- to medium grained sand; abundant chunks of light gray silly/very fine-grained sand; abundant chunks of light gray silly/very fine-grained sandy clay, several wood and line roots, porous, several subanoular could.	FOIRT TOWA FORMATION [A4	(3) Light yellowish brown fined grained sandstone, continuous	(4) light joint system, spacing 4 to 6'inches, iron oxide along fractures		N N N	Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+++++++++++++++++++++++++++++++++++++++			
Project Name:	Equipment:	GEOLOG C ATTITUDES			C: Sharp	5 b:NB21/285	M29/35N3E 45	GRAPHIC		h l	+		 10	


Date			DT	ill F	iole N	io		Job No.	
Proje	ct				-		9		
Drill	ing Co	•			Wai al			Type of Rigin.	
Hole	Diamet	er		IIVC	Hergi	Pof	OF D	a film	
Eleva	tion	Top of Ho) le			- 1			
Depth Feet	Graphic Log	Attitudes	Tube Sample No.	Blows Fer Foot	Dry Density pcf	Moisture Content, \$	Soil Class. (U.S.C.S.)	GEOTECHNICAL DESCRIPTION Logged by Sampled by Attitudes: Strike/Dip (b) = Bedding	
0-	10							Attitudes: Strike/Dip	
5—		j:N10W/ 20E b:Hori- zontal c:N80W/ 10N f:N-S/ 65W		14			ML	<pre>(c) = Contact (j) = Joint (f) = Fracture</pre>	
			2	15		15.8	SP	Standard Peretration Test (Split-Spoor Sampler)	
20=		s: N50E/ 40W cs:N30W 20E F: N10E, 70W		18		₽	CL/ CH	Sample not recovered Graphic Log:	
30	A (2/)	77)		Ш		<u>-</u>	ighto	n & Associates	

500A (2/77)

Ĭ	ř v	1	A STATE MAINES
-		GW	Well graded gravels or gravel-sand mixtures, little or no fines
(e.zj	GRAVELS	GP	Poorly graded gravels or gravel-sand mixtures, little or no fines
M.S.	(More than 1/2 of coarse fraction >	GM	Silty gravels, gravel-sand-silt mixtures
JED SC 10. 200	no. 4 sleve size)	GC	Ciayey gravels, gravel-send-clay mixtures
GRAIP	-	sw	Well graded sends or gravelly sands, little or no fines
(More than 1/2 of soil > no. 200 slave size)	SANDS	SP	Poorly graded sands or gravelly sands, little or no fines.
ore the	(More than 1/2 of	SM	Slity sands, sand-slit mixtures
4	no. 4 sleve size)	sc	Clayey sands, sand-clay mixtures
slove stre)	SILTS & CLAYS	ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity
200 slev	LL < 50	CL	inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays
- P		OL	Organic silts and organic silty clays of low plasticity
2 of 904 C n	SILTS & CLAYS	МН	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elestic silts
Mare than 1/2	LL > 50	СН	Inorganic clays of high plasticity, fat clays
1More		ОН	Organic clays of medium to high plasticity, organic silty clays, organic silts
OF	HIGHLY	Pt	Peat and other highly organic so is

CLASSIFICATION CHART (Unified Soil Classification System)

PLASTICITY CHART

GRAIN SIZE CHART

METHOD OF SOIL CLASSIFICATION

LOG OF TRENCH NO: T-1 LOG OF TRENCH NO: I-2 Density Density PROPERTIES (pcf) (pcf) **PROPERTIES** Moisture Moisture (%) (%) ② @ 8'-10' O 6 ENGINEERING 0,-3 Sample ENGINEERING 19-, 6 Sample 6 No. No. 0 N45W ML/SM TREND: N40W FiL/SH U.S.C.S U.S.C.S Ξ M SE S SW S 뒫 TREND: GEOLOGIC UNIT GEOLOGIC (a) 0 TRENCH NO. TRENCH NO. SURFACE SLOPE SLOPE 06'-10'; Becomes fine sandy silt/silty tine sand lotal Depth - 10 feet Ground Water Seepage Encountered at 6 feet at time of trenchin Dark brown and olive-brown, moist, medium dense fine sandy silt/silty fine sand; sparse roots, slightly porous, micaceous Dark brown, moist, medium dense, silty, fine to medium sand; few coarse-grained constituents, micaceous, some pods and discontinuous lenses of very silty, fine to medium sand Dark brown, moist, medium dense, fine to medium it to roots, moist, medium dense, fine to coarse Light brown, moist, medium dense, silty fine sand Mottled olive-brown and orange-brown, moist wet, medium dense, fine sandy silt micaceous, slightly porous Becomes fine sandy silt/silty fine sand Mottled dark olive-brown and brown, moist wet, medium dense, fine sandy silt; few rabundant red-brown stringers (infilled borrows?), abundant caliche stringers coarse SURFACE to very c ly bedded Total Depth = 10 feet No Ground Water Encountered at Time of Trenching Backfilled: 12/18/90 See Plate 1 Gray-white, loose, dry, fine to sand; abundant pebbles, finely See Plate ±2,775 DE. (e) DESCRIPTION: DESCRIPTION: 9 0 9 0 (v) Logged By: Elevation: Θ Logged By: Elevation Location: Location: Dark brown, mois sand; micaceous GRAPHIC REPRESENTATION southwest wallSCALE: sandy silt wal BCALE: Name: Jacumba Valley Ranch Jacumba Valley Ranch Case 680C Backhoe Backline 12/18/90 southwest 01'-1.4': 12/18/90 01.4'-3' @n'-3': (d7'-1U' : , I ~ , 0e) (93,-6; 63,-C, 4900361-05 Project Number: 4900381-05 <u> 2089</u> ALLUVIUM ALLUVIUI GRAPHIC REPRESENTATION DATE: Case **a** 3 3 0 (3) Number: Name: GEOLOGIC ATTITUDES GEOLOGIC ATTITUDES Equipment: Equipment: Project Project 501-A -Leighton & Associates (3/77)501-A (3/77) Leighton & Associates

LOG OF TRENCH NO: T-3 LOG OF TRENCH NO: Density (pcf) Density PROPERTIES (pcf) PROPERTIES Moisture Moisture (%) (%) ENGINEERING ① @ 0'-3' Sample © @ 5'-7' ENGINEERING Sample () (a 1'-3' No. N25W N70W IL/SM U.S.C.S. Ħ $\frac{1}{2}$ SP-SSP U.S.C.S SE SE TREND: TREND: GEOLOGIC UNIT I-4 GEOLOG1C Qa] <u>I-3</u> Qal UNIT 00 TRENCH NO. TRENCH NO. SLOPE SLOPE Dark brown to olive-brown, saturated, medium dense, fine to medium sandy silt; micaceous Dark brown to black, moist to wet, medium dense, fine to medium sandy silt; porous, abundant roots and rootlets, micaceous Gray-brown, dry to damp, loose, fine to very coarse sand; few discontinuous silt layers approximately 1/2 inch thick, some discontinous sandy pebble lenses, rare clasts to 3 inch diameter to very Mottled dark olive-brown and brown, and orange brown, wet to saturated, dense, v silty fine sand/fine sandy silt; porous, few roots, some medium-coarse grained constituents coarse coarse SURFACE SURFACE of Trenching Total Depth : 7 feet Ground Water Seepage Encountered at 4 feet at Time of Trenching Backfilled: 12/18/90 Gray-brown, dry to damp, loose, fine coarse sand; few pebbles very Gray-white, dry, loose, fine to vo sand; some pebbles, finely bedded See Plate 1 Gray-brown, dry to damp, loose, sand; finely bedded _ See Plate 12,755' Time . . . J . . . DIL 12,780 Total Depth = 7 feet No Ground Water Seepage Encountered at Backfilled: 12/18/90 DESCRIPTION: DESCRIPTION: Logged By: Elevation: Location: Elevation: Logged By: SCALE GRAPHIC REPRESENTATIONS OUT HWEST WAT ISCALE: Name: Jacumba_Yalley.Ranch 03.5'-5.5': Jacumba Valley Ranch Case 680C Backhoe (45.5'-7.0': G : PHIC REPRESENTATION LOTTH WAll Case 680C Backhoe DATE: 12/18/90 00,-3.5, 01'-3.5': 12/18/90 (03.5'-6' 66'-7': 4900381-05 @0'-1': Project Number: 4900381-05 ALLUVIUM ALLUVIUM DATE: 3 **(=)** 0 9 (2) 3 Project Number: Name: GEOLOGIC ATTITUDES Equipment: GEOLOGIC ATTITUDES Equipment: Project Project 501-A - (3/77) Leighton & Associates Leighton & Associates

501-A = (3/77)

LOG OF TRENCH NO: T-5 LOG OF TRENCH NO: I-6 Density Density (pcf) PROPERTIES (pcf) PROPERTIES Moisture Moisture (%) (%) ENGINEERING . 5 (2) @ 5'-8' Sample 6 -2 -Sample ENGINEERING No. ⊝ ~ No. N20W N80E SE ML & SM SM & SW U.S.C.S U.S.C.S. S 물 SP ₹ ∞ TREND: GEOLOGIC UNIT GEOLOGIC UNIT 1-6 Topsoil 0) **1-5** Qal Qfn Ljl 00 TRENCH NO. TRENCH NO. SURFACE SLOPE: 1010-4 S. um sand; amount Mottled pinkish white, dry, dense rhyolitic tuff bed; intermixed with volcanic clasts and zones and pods of alluvium; very weathered, slightly desiccated, slightly friable SURFACE SLOPE Gray, dry, loose, fine sand; finely laminated cross bedding, concoidal lenses of fine to coarse sand, manganese lamanae to coarse t layers Dark brown, wet to saturated, medium dense, fine to medium sandy silt, grades to silty, fine sand; slightly porous, minor roothairs . 8 feet Seepage Encountered at 7 feet dense, fine to clay, slightly to brown, damp, medium medium moderate a damp, medium dense, silty fine sand; grades to brown, damp, me fine to 40 dry, loose, f', loose silt; Brown, dry, loose, silty, fine abundant rootlets throughout, m of cobbles to 5-inch diameter, porous, desiccated See Plate Brown, dry, loose to medium medium sandy silt; trace of desiccated 12,820 (D) grades to brov to medium sand Ó Alternating gray, dry, losand and gray, dry, loose 1/4-inch to 1-inch thick DESCRIPTION: DESCRIPTIONS Logged By: Elevation Logged By: Location: Elevation: (0) Location: 0 dense, fine GRAPHIC REPRESENTATION outhwest wall SCALE: SCALE Brown, medium Link Belt LS 5800 Trackhoe Name: Jacumba Valley Ranch Jacumba Valley Ranch wall 12/18/90 OLDER ALLUVIUM (42.5'-5' 5 Depth = 01'-2': 00'-2': : , 8- , Sp 00'-1': JACUMBA LAVA 05.-2 680C Backhoe REPRESENTATION south 4900381-05 4900381-05 (921-2 ALLUVIUM TOPSOIL Total D Ground DATE DATE: 9 (< (3) 3 0 9 Case Project Number: Number: Name: C:Sharp, | horizontal GEOLOGIC ATTITUDES Equipment: GEOLOGIC Equipment: Project GRAPHIC Profeet Leighton & Associates 501-A - (3/77) 501-A - (3/77) Leighton & Associates

Date_	12/1	11/9	0		ri	i11 F	lole !	4o	B-1	Annual State of the Control of the C
	ct									
Drill	ling Co	•	Layn	e En	vi	ronm	ental			Type of Rig Mobile B-61
Hole	Diame	ter_	8"		Dı	rive	Weig!	ht	140) lbs.
Eleva	tion '	Гор	of Ho	ole	±2	2,760)'	Ref.	or D	Detum mean sea level
Bepth Feet	Graphic Log		Attitudes	Tube	Sampro III	Blows Per Foot	Dry Density pcf	Moisture Content, 1	Soil Class. (U.S.C.S.)	GEOTECHNICAL DESCRIPTION Logged by DLL Sampled by DLL
0-					T					ALLUVIUM
5				1		22	7)	23.8	ML	@5': Brown, dry, very stiff, slightly fine sandy silt @7': Becomes clayey @10': Dark brown, moist to wet, very stiff clayey silt slightly micaceous
15—				3		28			SC	 @15': Dark brown, saturated, very stiff, clayey silt; some fine grains, rare pebbles @20': Dark brown, saturated, dense, clayey fine to coarse sand; numerous pebbles @25': Dark brown, saturated, dense, slightly clayey fine to very coase sand; numerous pebbles to 1" diameter
30_										

Date	12	/11/90	D	rill	Hole	No.	В-	Sheet 2 of 2 -
Pro:	ect	Jacumba	Valle	y Rar	nch			Job No. 4000201 05
DT1	lling (0	ayne E	nviro	nment	tal		Type of Rig Mobile P. 61
Hole	Diame	ter8		Drive	Weig	ht_	140	lbs. Drop 30 in.
Elev	ation	Top of H	lole	±2,7	60'	Ref.	07	Detum mean sea level
Depth Feet	- Graphic Log	Attitudes	Tube Sample No.	Blows Per Foot	Dry Density pcf	Moisture Content, 1	Soil Class. (U.S.C.S.)	GEOTECHNICAL DESCRIPTION Logged by DLL Sampled by DLL
35 —			7	38 50/2"			SW SM/ GM	<pre>@30': Brown-gray, wet, dense, fine to coarse sand; numerous red, fine-grained volcanics</pre>
40			' 	30/2				Refusal at 36.5 feet due to bedrock Total depth = 36.5 feet Ground water encountered at 11 feet at time of drilling
								£
				v.				

500A (2:77)

-			D:						
Proje	ct	Jacur	mba Val	ley R	anch			Job No. 4900381-05	
Drill	ling Co	oL	ayne En	viron	menta	1		Type of Rig Mobile B-61	
Hole	Diame	ter	8"	Drive	Weig	ht		140 lbs. Drop 30 in.	
Eleva	ation '	Top of	Hole	±2,77	8'	Ref.	or D	atum mean sea level	الباليا
Depth Feet	Graphic Log	Attitudes	Tube Sample No.	Blows Per Foot	Dry Density pcf		Soil Class. (U.S.C.S.)	GEOTECHNICAL DESCRIPTION Logged by Sampled by	
0 –	2.2							ALLUVIUM	
5			1	17		₹	SM	05': Olive-brown, wet, medium dense, silty fine to medium sand; slightly micaceous	
10			2	24			ML	@10': Olive-brown to light orange-brown, wet, medium dense, fine sandy silt, micaceous	
15 -			3	28			ML/ SM	<pre>@15': Mottled brown, olive-tan and orange brown, wet, medium dense, silty very fine sand/very fine sandy silt; few root hairs, micaceous</pre>	
20 -			4	41			SM	@20': Mottled brown, olive-brown and orange-brown, wet, dense, silty fine sand; contact to brown, saturated, cense sandy gravel	, , ,
25 -	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7	5	90/7				JACUMBA LAVA @25': Mottled pinkish white, wet, very gense volcanic rock Total depth = 27 feet (refusal on because)	1
30 -	1 12/					Lei	ghton	Ground water encountered at 6 feet at time of drilling & Associates	

GEOTECHNICAL BORING LOG

Date	12.	/11/90	D:	rill	Hole	No.	B-3	Sheet 1 of 2
Proj	ect	Jacumb	a Vall	ey R	anch			Job No. 4900381-05
Dril	ling C	0. La	yne En	viro	nmenta	al		Type of Rig Mobile 8-61
Hole	Diame	ter	<u>8" [</u>	Drive	Weig	ht	14	0 lbs. Drop 30 in
Eleva	tion	Top of H	ole ±	2,790	0'	Ref.	or [Datum mean sea level
Depth Feet	L Graphic Log	Attitudes	Tube Sample No.	Blows Per Foot	Dry Density pcf	Moisture Content, \$	Soil Class. (U.S.C.S.)	GEOTECHNICAL DESCRIPTION Logged by DLL Sampled by DLL ALLUVIUM
5				-			SM	<pre>@5': Brown, moist, dense, silty fine sand</pre>
10			2	30	1024	21.2		few rootlets @10': Mottled orange-brown and brown, wet dense, silty fine sand; few rootlets, slightly micaceous
15			3	35		l ^M	IL/ M	@15': Mottled orange-tan and brown, wet, dense, silty very fine sand/very fine sandy silt; some carbon-stained flecks
20-		-	4	51	98.3	31.5	ML	<pre>@20': Mottled orange-brown and brown, wet to saturated, very dense, fine sandy silt</pre>
25			5 3	39	0.000		SM	025': Light brown, wet, dense, silty fine to medium sand; contact to dark brown, wet, dense, silty, fine sand; more silty than above contact
30								

Date_	12/	11/9	3 0		Dr	i11 F	Hole 1	٧٥	В-	3			Sheet 2 of 2 -	
Proje	ct	Jacı	ımba	Val	les	Ran	ch						4900381-05	
Drill	ing Co		Lay	/ne [En∨	iron	menta	1		Type of	Ri	g	Mobile B-61	
										lbs.			Drop 30 in.	
Eleva	tion 1	op	of H	iole		±2,	790'	Ref.	or D	atum	me	an sea	level	
Depth Feet	Graphic Log		Attitudes	Tube	Sample No.	Blows Per Foot	Density pcf	Moisture Content, 1	1 Class. S.C.S.)	Logged Samples	by_		ECHNICAL DESCRIPTION	
_	T		AE		Sam	Pe	Dry	og №	Soi (U.	Sample	l by		DLL	
30 -				6		20	(N.R.)	SM	030	' :	Brown,	saturated, medium dense, sand; slightly micaceous	1
35													8	T = 0
40			*	7	,	70	^		ML/ SM	V 6	erv	dense,	ed brown and orange-brown, some silty fine sandy tly micacous, carbon-staine	
45														14
50 -					6	84	(N.	R.,	SM)': and	Brown,	, saturated, dense, silty f	ine
										Gro	bund	deptn = 1 water of cri	= 51 feet encountered at 12 feet at illing	
55 -			727					l i						
	1	į				A		ĺ						
500	1 (24-	<u>i</u>				4	+	Le	ghtor	a & Asso	ocia	tes	THE THE RESERVE	

5001 (24-1)

GEOTECHNICAL BORING LOG

Date	12	2/12/90	D	rill	Hole	No.	B-4	Sheet 1 of2 -
		Jacumb						Toh No. 4000201 05
Dril	ling C	o. Layn	e Env	iron	mental			Type of Rig Mobile R-61
Hole	Diame	ter8		Drive	Weig	ht	140	0 lbs. Drop 30 in
Eleva	ation	Top of H	ole	±2	,786'	Ref.	or [Datum mean sea level
bepth Feet	Graphic Log	Attitudes	Tube Sample No.	Blows Per Foot	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	GEOTECHNICAL DESCRIPTION Logged by DLL Sampled by DLL
5_							SM	ALLUVIUM
			1	41	98.2	18.6	SM	<pre>@5': Brown, moist, dense, silty fine to coarse sand; micaceous @7': Becomes siltier</pre>
10			2	33			SM & SW	<pre>@10': Dark brown, wet, dense, slightly silty fine to medium sand and gray, wet, fine to coarse sand; micaceous</pre>
15			3	78	106.42	4.5	SM	015': Brown, saturated, very dense, silty, fine to medium sand
20			4	35				020': Gray, wet, dense, slightly silty fine to coarse sand; some interbecs of brown, clayey silt (up to 2" thick)
25			5	36			SW	<pre>@25': Red-brown, wet, very stiff, silty clay/clayey silt; gradational contactit gray, saturated, dense, fine to coarse sand</pre>
001 12	,,					b 4	0	

Leighton & Associates

_			נטני						
Proje	ct	Jacu	mba Val	ley F	Ranch			Job No. 4900381-05	
Drill	ling Co	Lay	ne Envi	ironme	ental			Type of Rig Mobile B-61	
								0 lbs. Drop 30 in.	
Eleva	ation 1	Top of	Hole :	2,786	5'	Ref.	or D	atum mean sea level	T
Depth Feet	— Graphic Log	Attitudes	Tube Sample No.	Blows Per Foot	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	GEOTECHNICAL DESCRIPTION Logged by DLL Sampled by DLL	
30-	H		6	36	N.R.	,			
35-40-40-45-			7	82	N. K.		SW	@40': Gray, saturated, very dense, fine to coarse sand	ATTENDED TO THE PARTY OF THE PA
50-			8	50			SM	dense, slightly silty, fine to medium sand Total depth = 51.5 feet Ground water encountered at 9 feet at time	
55_						0.00		of drilling	
5001	(2/	1				Lei	ghton	& Associates	

GEOTECHNICAL BORING

Date	12/	12/90	D	rill	Hole	No.	B-	-5 Chara 1 . 62
Proje								Job No. 4900381-05
DT11	ling C	0la	yne E	nviro	nment	tal		Type of Rig Mobile D.C.
Hole	Dlame	ter8"		Drive	Weig	tht	1	40 lbs. Drop 20 4-
Eleva	tion	Top of H	ole <u>+</u>	2,777	1	Ref	. or	Datum mean sea level
Bepth Feet	Log Log	Attitudes	Tube Sample No.	Blows Per Foot	Dry Density pcf	Moisture Content.	Class.	GEOTECHNICAL DESCRIPTION
5				*				ALLUVIUM
			1 [24		23.6	SM	<pre>@5': Mottled brown and red-brown, wet, medium dense, very silty fine sand; micaceous</pre>
10-			2	26		Ā	ML	<pre>@9': Becomes clayey @10': Mottled red-brown and brown, wet, very stiff, fine sandy silt; trace of clay, few carbonized flecks</pre>
15			3]	41			CL- SM	015': Mottled red-brown and brown, wet, dense interbedded silty clay/very silty fine sand; some carbonized thin (1/16" thick) beds, silty clay is finely laminated
20-			4	49			SW	920': Brown, wet, dense fine to mecium sand: few coarse grains, micacecus
25			5	28		14	SM/ 1L SW	025': Mottled red-brown, wet, medium cense, fine sandy silt/silty fine sand; trace of clay, some finely laminated clay layers. Sharp contact with brown, fine to medium sand with trace of silt (2 samples obtained

Project Jacumba Valley Ranch Job No. 4900381-05	-
Drilling Co. Layne Environmental Type of Rig Mobile B-61	
Hole Diameter 8" Drive Weight 140 lbs. Drop 30 in.	
Elevation Top of Hole ±2,777' Ref. or Datum mean sea level	
Togethic Log Ceotechnical Description Sample No. DLL Soil Class. Content. 6 Per Foot DTC Soil Class. Content. 6 Per Foot DTC Soil Class. Content. 6 Per Foot DTC MI- 630.: Wottled the sound and prown with the sound and prown and pro	
ML- @30': Mottled red-brown and brown, w	
35 — SM dense, clayey silt to silty fine sa	nd .
SW @40': Brown, saturated, dense, fine medium sand; trace of silt	to I
050': Brown, saturated, very dense, to coarse sand; trace of silt	fine
Total depth = 51.5 feet Ground water encountered at 9 feet at time of drilling	
500 \(\(\(\(\) \) \(\) Leighton & Associates	

GEOTECHNICAL BORING LOG

Date	12/	12/90	D	rill	Hole	No.	B	Sheet 1 of2 -
Proj	ect	Jacumba	Vall	ey Ra	nch			Job No. 4900381-05
Dril	ling C	o. Layn	e Env	ironm	ental		-1515	Type of Rig Mobile B-61
Hole	Diame	ter8	"	Drive	Weig	ht	140	bs. Drop 30 in.
Eleva	ation '	Top of H	ole	±2,7	88'	Ref.	or I	Detum mean sea level
Depth Feet	Graphic Log	Attitudes	Tube Sample No.	Blows Per Foot	y Density pcf	Moisture Content, \$	11 Class. S.C.S.)	GEOTECHNICAL DESCRIPTION Logged by DLL Sampled by DLL
-		«	Sau	۵	Dry	₹ 5	33	Sampled by DLL
				×.				ALLUVIUM
5 _	- : - : -		1	19		8.5	SM	<pre>@5': Light brown, moist, medium dense, silty fine sand; micaceous</pre>
10 —			2	42	105.7	10.8 ⊈		
15 _			3	48			SW	@15': Brown, wet, dense, fine to coarse sand; micaceous, trace of silt
20 —			4	76 (1	N.R.,			
25 -			5	20		C M	L/	<pre>@25': Mottled red-brown and brown, wet, ver stiff, silty clay/clayey silt; trace of fine sand</pre>
30 1			Н					
5003							!_	

Data	12/	12/9	90	0	rill b	iole l	۷o	8-6	6 Sheet 2 of 2 -	
		Jacı	mba	Vall	ev Ran	ch			Job No. 4900381-05	
	: C		1 a	vne	Enviro	nment	:al		Type of Rig Mobile 8-61	
11-1-	Diamet		8"		Drive	Weig	ht	140	lbs. <u>Drop 30 211.</u>	
Eleva	tion 1	Гор	of Ho	le	±2,788	3'	Ref.	or D	Datum mean sea level	17
Depth Feet	Graphic		Attitudes		Blows Per Foot	Dry Density pcf	Moisture Content, t	: _		
30-									@30': Same as at 25'	Ť I
35-				7		(Part	very)	ì	@30': Same as at 25	
45-								CL/	@50': Mottled olive-brown, wet, hard clayey silt/silty clay	
		7		3	4	/		ML		
55									Total depth = 51.5 feet Ground water encountered at 11.5 feet at time of drilling	

Leighton & Associates

5004 (2/77)

GEOTECHNICAL BORING LOG

Date	1	2/13/90	D	rill	Hole	No.	B-1	7 Sheet 1 of2 - Job No. 4900381-05
Proj	ect_J	acumba V	alley	Ranc	h			Job No. 4900381-05
DTII	ling C	oLa	yne E	nviro	nment	al		Type of Rig Mobile R-61
Hole	Diame	ter_3"		Drive	Weig	ht	140	lbs. Drop 30 in.
Eleva	tion	Top of H	ole	±2,	792'	Ref.	or l	Detum mean sea level
bepth Feet	L Graphic Log	Attitudes	Tube Sample No.	Blows Per Foot	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	GEOTECHNICAL DESCRIPTION Logged by DLL Sampled by DLL
10 - 20 - 25 - 25 - 25			2 3	26 22 43 1	97.5	11.8	SM SC/SM	ALLUVIUM 05': Brown, damp to moist, medium dense, very silty, fine to medium sand; micaceous trace of clay, rare pebbles 010': Light reddish brown, moist, medium dense, very silty fine to medium sand; slightly micaceous; trace of clay, mocerate volcanic pebbles 015': Light reddish brown, moist, medium dense, clayey to silty, fine to coarse sand JACUMBA LAVA 020': Mottled red, white and black, saturated, very dense, very weathered volcanic rock
30 1	524		H					

Project Jacumba Valley Ranch Job No. Drilling Co. Layne Environmental Type of Rig Mobil Hole Diameter 8" Drive Weight 140 lbs. Dro Elevation Top of Hole ±2,792' Ref. or Datum mean sea level	e B-61 op30in.
Hole Diameter 8" Drive Weight 140 lbs. Dreweight Elevation Top of Hole ±2,792' Ref. or Datum mean sea level	opin.
Elevation Top of Hole ±2,792' Ref. or Datum mean sea level	
GEOTECHN	ICAL DESCRIPTION OLL OLL
Lepth Graphic Log Log Log Log Log Comple Blows Blows Blows Blows Blows Blows Blows Content, & Conte	
	ghtly weathered basaltic
Total depth = 33 f Ground water encou of drilling	feet untered at 9 feet at time
500X (2777) Leighton & Associates	

GEOTECHNICAL BORING LOG

		/13/90						Sheet 1 of 2-
_	-	acumba V						Job No. 4900381-05
Dril	ling C	oLa	yne Ei	nviro	nment	al		Type of Rig Mobile B-61
								bs. Drop 30 in.
Elev	ation	Top of H	ole	±2,7	81'	Ref.	OF	Datum mean sea level
Depth Feet	Graphic Log	Attitudes	Tube Sample No.	Blows Per Foot	Dry Density pcf	Moisture Content, 1	Soil Class. (U.S.C.S.)	GEOTECHNICAL DESCRIPTION Logged by DLL Sampled by DLL
5			1	28	93.8	27.3	SM	@5': Olive-brown and orange-brown, wet, medium dense, silty fine sand; few rootle
10-			2	50		<u> </u>	ML/ SM	<pre>@10': Mottled orange-brown and olive-brow saturated, dense, silty fine sand/fine sandy silt; some carbonized thin (1/16" thick) layers</pre>
15—			3	28	95.4	30.7	11-/-	@15': Mottled orange-brown and olive- brown, saturated, clayey silt/silty clay; some carbonized flecks and staining, few medium-sized grains
20—			4	48			SM	020': Light brown and olive-brown, wet, dense, silty fine sand; micacecus, some brown, silty/clayey layers up to 1,4" this.
25-			5	34 1	13.9	8.8		@25': Light brown, wet, dense, siigntly silty, fine to coarse sand
30 F								

Leighton & Associates

	12/									
Proje	ct	lacum	ba Va	11	e v	Ranc	:h	-		Job No. 4900381-05
										Type of Rig Mobile B-61
			_		_					0 lbs. Drop 30 in.
Eleva	ation	Top c	f Ho	le	<u>+</u>	2,78	31'	Ref.	or D	Datum mean sea level
Depth Feet	I—Graphic Log	Arritudes		Tube	Sample No.	Per Foot	Dry Density pcf	Moisture Content, 1	Soil Class. (U.S.C.S.)	GEOTECHNICAL DESCRIPTION Logged by DLL Sampled by DLL
35 -				7			.R.)		ML/ MH	@30': Mottled olive, olive-brown, and orange-brown, wet, nard clayey silt, trace of fine sand, micaceous, some thin clay layers
50				8		100			SIH	@50': Brown, wet, very dense, very silty, fine to medium sand; approximately 5 per-
55 _										Total depth = 51.5 feet Ground water encountered at 8.5 feet at time of drilling
5001	() see	· j		-		71		Lei	ghton	& Associates

5001 (2 ***)

GEOTECHNICAL BORING LOG

	12/1				Hole	No.	B-	Sheet 1 of 2 -
_		Jacumb				-		Job No. 4900381-05
Dril	ling C	oLa	yne E	nviro	nment	al		Type of Rig Mobile B-61
Hole	Diame	ter_8"		Drive	Weig	ht		140 lbs. Drop 30 in.
Eleva	ation	Top of H	ole	±2,77	4'	Ref.	or [Datum mean sea level
Depth Feet	Graphic Log	Attitudes	Tube Sample No.	Blows Per Foot	Dry Density pcf	Moisture Content, 1	Soil Class. (U.S.C.S.)	GEOTECHNICAL DESCRIPTION Logged by DLL Sampled by DLL
				**			CL/ ML	ALLUVIUM @O': Dark brown, moist to wet, very stiff, silty clay/clayey silt
5			1	20		<u> </u>	CL/ ML	<pre>@5': Mottled dark olive-brown and orange- brown, wet, very stiff, clayey silt/silty clay; trace of fine sand</pre>
10-			2	24	N.R.	j)		
15			3	72	74.0	36.9	CL	@15': Mottled orange-brown and brown, saturated, very dense, fine sandy clay
20 —			4	32	-		SM CL/ ML	@22': Brown, wet, dense, very silty fine sand; micaceous, sharp contact to rec-brown and brown, silty clay/clayey silt
25			5	21 (N.R.			

	12/1		-	_			No	B-9	Sheet 2 of 2 -
		Jacum							Job No. 4900381-05
									Type of Rig Mobile B-61
		ter							
Eleva	tion '	Top of	Hole		±2,77	4'	Ref.	OF D	mean sea level
Depth Feet	H Graphic Log	Attitudes	T. A.	Sample No.	Blows Per Foot	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	GEOTECHNICAL DESCRIPTION Logged by DLL Sampled by DLL 030': Brown, wet, dense, silty very fine
30 —	_:			6	46	-		ML/	1 330 1 310111, 1111, 1111, 1111, 1111
-					1			SM	sand/very fine sandy silt; micaceous, grades to:
~	: <u>-:-:</u> :			-				CL/	orange-brown and brown, silty clay/clayey
-								ML	silt
35 —			i						
35-	-:								
	7.2.								14
									1-
40—									@40': Mottled olive-brown and orange-brown
		-		7	52	80.1	20.6	100	wet, hard, silty clay/clayey silt
	-:=:	-	1	}	-	8		CL	
-	=:=:-	}		-	4				
	E-:-	1		+	-				
45 —				ŀ	4			1	
-									
		1						İ	
-		1		Ì	1				4
-		8			i				950': Mottled orange-brown and brown, wet,
50 —				8	44	İ		CL/	dense, fine to medium sandy clay/clayey sand
	 = ::::.=		-	_		+-	-	SC	
									Total depth = 51.5 feet Ground water encountered at 7 feet at time
									of drilling
55 -					-				
	-		į.		4		1		
	-	1			\dashv				
	-	i			-		ï	i	
	1	l i			Н		i		
									The state of the s

GEOTECHNICAL BORING LOG

Date	12/1	3/90	D	rill	Hole	No.	B-10	Sheet 1 of 2-
		Jacumba '						Tob No. 4000201 05
Dril	ling C	oLa	yne Ei	nviro	nment.	a l		Type of Rig Mohile R-61
Hole	Diame	ter_ o		Drive	Weig	ht	140	1bs. Prop 30 4m
Elevi	ation	Top of He	ole	±2,/,		Ref.	or	Datum mean sea level
Depth Feet	Graphic Log	Attitudes	Tube Sample No.	Blows Per Foot	Dry Density pcf	Moisture Content, 1	Soil Class. (U.S.C.S.)	GEOTECHNICAL DESCRIPTION Logged by DLL Sampled by DLL
-	11:11:11			e				ALLUVIUM
5			1	23		곡	CL/ ML	<pre>@5': Mottled olive-brown and orange-brown, wet, very stiff silty clay/clayey silt; micaceous trace of fine sand</pre>
10-	1-1-		2	29 5	8.7 3	4.2		
			H H				ML/ SM	<pre>@12': Mottled olive-brown and orange-brown saturated, medium dense, fine sandy silt/ silty fine sand; micaceous</pre>
15			3	37			SM	@15': Mottled olive-brown and orange-brown wet, dense, silty fine sand; sample nad one 3" thick layer of olive-brown and brown, laminated clay and silt
20-			4 1 3	38 87	7.8 34		SC/	<pre>@20': Light brown, saturated, cerse. silty and clayey fine to medium sand; micaceous</pre>
25			5 7 4	3		CI	L/	@25': Mottled olive-brown and rec-brown wet, dense, fine sandy clay to silty clayey sand

Leighton & Associates

Date	12/1	13/90	D:	rill !	Hole	No.	B-1	O Sheet 2 of 2-
			Valley					
								Type of Rig Mobile B-61
								140 lbs. Drop 30 in.
Elev	ation	Top of	Hole	±2,77	0'	Ref.	or [Datum mean sea level
Depth Feet	Graphic Log	Attitudes	Tube.	Blows Per Foot	Density pcf	ture nt, t	Class.	GEOTECHNICAL DESCRIPTION Logged by DLL Sampled by DLL
F. F.	Gr	Itti	Tu	Bl	Dry D	dois onte	J.S.	Logged by DLL
30 -	<u> </u>		S.		ā	- 3	3 2	Sampled by DLL
30 -			6	50/2'	(N.	₹.)		*
35 —								
								*
40 —			7	68	,		ML/ SM	@40': Brown, wet, very dense, very fine sandy silt/silty very fine sand
-								Total depth = 41.5 feet Ground water encountered at 6 feet at time of drilling
45 —								
-								
_								
-								

GEOTECHNICAL BORING LOG

Date	1	2/14/90		rill	Hole	No.	В-	11 Sheet 1 of 2-
Proj	ect	Jacumba	Vall	ey Ra	nch			Job No. 4000201 05
DT11	ling C	o. Lay	me En	Viror	menta			Type of Rig Mobile R-61
Hole	Dlame "ation	Top of H	010	Drive	Weig	ht		140 lbs. Drop 30 in.
		lop of h	T	12,7		Ker.	OF	Detum mean sea level
t t	Graphic Log	Attitudes	ु ह	Iows	sity	0 m	ass. S.)	GEOTECHNICAL DESCRIPTION
Depth Feet	Gra	tit	Tube	Blows r Foot	Dens	istu	20.0	Logged by DLL
	I	AE	Sam	B] Per	Dry	Moisture Content,	Soil (U.S	Sampled by DLL
0-								ALLUVIUM
	_:-:-							1122012011
	:-:-:							
-		b	L					
5			-			프		@5': Mottled olive-brown and orange-brown,
-			1 #	22		-	ML	wet, medium dense, fine sandy silt; micaceous, trace of clay
-			Ħ					areaceds, trace or cray
-	7:-		Н					
١, ١	1:2:5		Н					
10-			2	36 1	12.1	19.1	SM&	@10': Brown, saturated, dense, silty fine to
]	7-1						CL	coarse sand and brown, saturated stiff, slightly sandy clay
4.3		ĺ				ī		
15—		!					CL	015': Mottled olive-brown and orange-brown,
4:	1		3	30			į	wet, very stiff to hard, fine sandy clay:
1			Ħ					micaceous
		1	Н		i		1	
20-			Н		i	j		
207			4	55 (1	i.R.		1	
4-								
4-	. E.:							
4-			Ц					
25			5	20				025': Mottled red-brown and olive-brown,
			, H	32				saturated, hard, slightly silty clay; numerous carbonized flecks, micaceous,
1			Ħ		4			some caliche stringers and pods
			Ī		Í		1	
30						j		
001 0								

Leighton & Associates

Date	12/	14/90	D ₂	ill l	dole	No	B - 1	11		Sheet 2	_	
Proje	ct	Jacumb	a Val	ley R	anch				J	ob No. 4900381-0)5	
Drill	ling C	o. Layr	e Env	ironm	ental			Type of	Rig_	Mobile B-61		
Hole	Diame	ter_8"	[rive	Weig	ht	140	lbs.		Drop 30	in.	100
Eleva	tion	Top of H	ole	±2,76	6'	Ref.	or D	etun	mean	sea level		
Depth Feet	Graphic Log	Attitudes	Tube Sample No.	Blows Per Foot	Dry Density pcf	Moisture Content, 1	Soil Class. (U.S.C.S.)	Logged Sampled	ра— ра	DLL DLL wn, saturated, ha	RIPTION	
30 —			6	70 (N.R.)	777	CL	030':	Brow	vn, saturated, ha	rd, clay	
35			7	50/4	2.		SW	@40 ':	Bro	wnish gray, wet, se sand		ne I
45			8	50/:	3*117	.6 14.	sc	@50': cer	Lig nse, d	nt recaish brown, clayey, fine to co	saturated, ve parse sand	
55 -								Groun	dept d wat drill	h = 51 feet er encountered at ling	:5 feet at tim	

Leighton & Associates

500A (2/--)

GEOTECHNICAL BORING LOG

Date	12/	14/90	D:	rill	Hole	No	B-1	.2 Sheet 1 of 1 -
		Jacumba						
Drill	ling C	Lay	ne En	viron	menta	1		Type of Rig Mobile B-61
								0 lbs. Drop 30 in.
Eleva	tion	Top of H	ole		1		OF D	Mean sea level
Depth Feet	Graphic Log	Attitudes	Tube Sample No.	Blows Per Foot	Dry Density pcf	Moisture Content, \$	Soil Class. (U.S.C.S.)	GEOTECHNICAL DESCRIPTION Logged by DLL Sampled by DLL
5			1	20	Α	8.4	SM/ SW/	ALLUVIUM @0': Brown, damp, medium dense, silty fine to coarse sand @5': Brown, damp, medium dense, trace to slightly silty, fine to medium sanc; few gravels, approximately 5 to 10 percent coarse grains
10-			2	21				@10': Same as at 5" but fine to very coars grained and wet
15 -			3	26		Ž	SW	015: Gray-brown, wet, medium dense, fine to coarse sand
20 —	7,7,7	-	4	50/5				JACUMBA LAVA @20': Red and black, very dense, meathered volcanic rock
25 —								Total depth = 22 feet (Refusal on Becrooks Ground water encountered at 13.5 feet at time of drilling
30								

101 1 1 1 1 -- ;

		/90						
Proje	ct	Jacum	ba Val	lev P	Ranch			Job No. 4900381-05
								Type of Rig Mobile B-61
								40 lbs. <u>Drop</u> 30 in.
Eleva	tion T	op of H	ole	±2,79	91'	Ref.	or D	etum mean sea level
Depth Feet	Graphic Log	Attitudes	Tube Sample No.	Blows Per Foot	Dry Density pcf	Moisture Content, \$	Soil Class. (U.S.C.S.)	GEOTECHNICAL DESCRIPTION Logged by DLL Sampled by DLL
0 -			1					ALLUVIUM
5			1	23		7.0	ML/ SM	@5': Brown, damp, medium dense, fine sandy silty/silty fine sand; few pebbles
10 -	9.0		2	41		4.3	SW	010': Brown, damp, dense, fine to medium sand; few thin (1/4" thick) silt layers, some pebbles More pebbles with depth
15 -	8 3 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		3	75		2.2		@15': Brown, camp, very cense, fine to coarse sand; some pebbles @18': Abundant pebbles to 2" diameter
20 -			4	 150/4 1711-1	п	2.3		
25 -	0 0		5	30/	6)'	2.2	331	028': Becomes silty sand
500	12/==	1				Lei	ghton	& Associates

GEOTECHNICAL BORING LOG

Dat	e 12/	14/90	D	rill	Hole	No.	B-13	Sheet 2 of 2 -
Pro	ject	Jacumb	a Vall	ev Ra	ınch			Job No. 4900381 05
Dri	lling C	o. Lay	ne Env	ironm	ental			Type of Rig Mobile B-61
Ho1	e Diame	ter8		Drive	Weig	ht	140	lbs. Drop 30 in
Elev	vation	Top of h	ole	±2,7	91'	Ref.	or	Datum mean sea level
Depth Feet	Graphic	Attitudes		Blows Per Foot	Dry Density pcf	Moisture Content, 1		GEOTECHNICAL DESCRIPTION
35			6	38		7=	SM	030": Brown, damp, dense, silty fine to medium sand; rare pebbles, one 1/2" thick clay layer 040': Brown, wet, very dense, fine to mediu sand; few pebbles, approximatley 5 to 10 percent coarse grains
50 —			3	4				050': Same as at 40' but dense
55 1 1 1 1 1 1 1 1 1								Total depth = 51.5 feet Ground water encountered at 40 feet at time of drilling
5003			$-\coprod$					

Leighton & Associates

APPENDIX C

LABORATORY TESTING PROCEDURES

Moisture and Density Tests: Moisture content and dry density determinations were performed on relatively undisturbed samples obtained from the test borings and/or trenches. The results of these tests are presented in the boring and/or trench logs. Where applicable, only moisture content was determined from "undisturbed" or disturbed samples.

<u>Classification Tests</u>: Typical materials were subjected to mechanical grain-size analysis by wet sieving from U.S. Standard brass screens (ASTM D422-65). Hydrometer analyses were performed where appreciable quantities of fines were encountered. The data was evaluated in determining the classification of the materials. The grain-size distribution curves are presented in the test data and the Unified Soil Classification is presented in both the test data and the boring and/or trench logs.

Direct Shear Tests: Direct shear tests were performed on selected remolded and/or undisturbed samples which were soaked for a minimum of 24 hours under a surcharge equal to the applied normal force during testing. After transfer of the sample to the shear box, and reloading the sample, pore pressures set up in the sample due to the transfer were allowed to dissipate for a period f approximately 1 hour prior to application of shearing force. The samples were tested under various normal loads, a different specimen being used for each normal load. The samples were sheared in a motor-driven, strain-controlled. direct-shear testing apparatus at a strain rate of 0.05 inch per minute. After a travel of 0.300 inch of the direct shear machine, the motor was stopped and the sample was allowed to "relax" for approximately 15 minutes. The "relaxed" and "peak" shear values were recorded. It is anticipated that, in a majority of samples tested, the 15 minutes relaxing of the sample is sufficient to allow dissipation of pore pressures set up in the samples due to application of shearing force. The relaxed values are therefore judged to be a good estimation of effective strength parameters. The test results were plotted on the "Direct Shear Summary".

Maximum Density Tests: The maximum dry density and optimum moisture content of typical materials were determined in accordance with ASTM D1557-78 (five layers). The results of these tests are presented in the test data.

APPENDIX C (Cont'd.)

Expansion Index Tests: The expansion potential of selected materials was evaluated by the Expansion Index Test, U.B.C. Standard No. 29-2. Specimens are molded under a given compactive energy to approximately the optimum moisture content and approximately 50 percent saturation or approximately 90 percent relative compaction. The prepared 1-inch thick by 4-inch diameter specimens are loaded to an equivalent 144 psf surcharge and are inundated with tap water until volumetric equilibrium is reached. The results of these tests are presented in the test data.

<u>Consolidation Tests</u>: Consolidation tests were performed on selected, relatively undisturbed samples recovered from the sampler. Samples were placed in a consolidomter and loads were applied in geometric progression. The percent consolidation for each load cycle was recorded as the ratio of the amount of vertical compression to the original 1-inch height. The consolidation pressure curves are presented in the test data. Where applicable, time-rates of consolidation were also recorded. A plot of these rates can be used to estimate time of consolidation.

U.S. Standard Mesh Opening - Inches U.S. Standard Sleve Sizes Hydrometer Analysis PERCENT RETAINED BY WEIGHT 1.0 0.5 0.1 0.05 0.01 0.005 GRAIN SIZE IN MILLIMETERS

SAND

Coarse Medium

GRAVEL

Coarse Fine

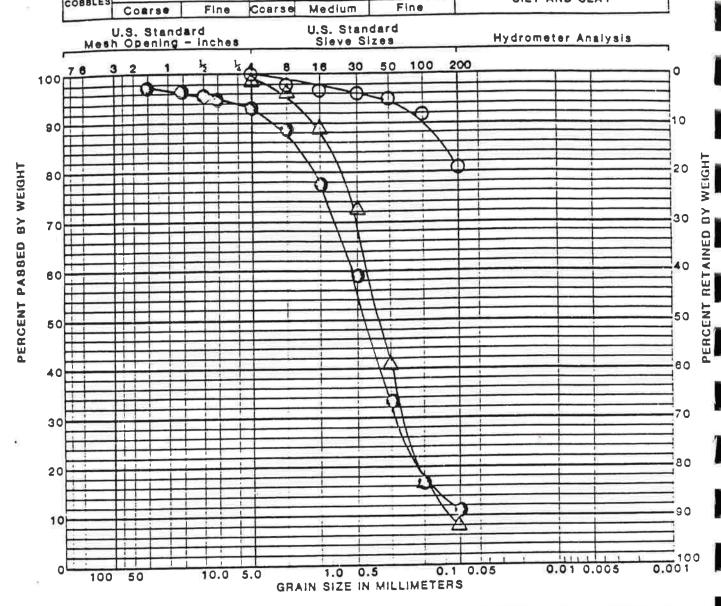
SYMBOL	SAMPLE LOCATION		LL*	PL* PI	* SOIL TYPE	П
0	T-1 1 0 0 - 3'	į	-		I SW	_
6	T-1 20 8' - 10'	T		:	! 10	89
Δ	T-2 0 0 0 - 3'	i		l.	. MI	_
					. 16	
Ü		4				_
- 0		1	1			_
1		İ			ı	-
		1	611		4	-

*LL Liquid Limit

*PL Plastic Limit

*Pl Plasticity Index

Based on ASTM D422-72



Project No. 4900381-35

SILT AND CLAY

JACUMBA VALLEY RANCH

GRAIN SIZE ANALYSIS

SAND

SYMBOL	SAMPLE LOCATION		LL*	İ	PL*		PI*	1	SOIL
0	T-2(2)@ 4' - 6'			1				2	۳L
•	T-3(1)@ 1' - 3'			1		×			SM-SW
$\overline{\wedge}$	T-3(2)@ 5' - 7'	į						07 9	SM-SW
		i			1				11-12
1						11			
1								3	
		i		. 12				ău	
		1		- 6		30		ĕ	

*LL Liquid Limit

*PL Plastic Limit

*PI Plasticity Index

Based on ASTM D422-72

GRAVEL

COBBLES

Project No. 4900381-05

SILT AND CLAY

JACUMBA VALLEY RANCH

GRAIN SIZE ANALYSIS

COBBLE	GRA			SAND				
	Coarse		Coarse Med	dium F	n e	SILT	AND CLAY	
1.0	U.S. Standa h Opening -	Inches	U.S.	Standard		Hydron	neter Analys	ila
100 7 6	3 2	101		30 50	100 200			130
				1				
90					8			
		1	1/3		11			
80								
70					$\pm \pm$			
60			= + A					
		+++		M				^
60				*				
				1 4				5
40				111				
								==
30					- 1			7
					4			
20								8
10					4			
								90

SYMBOL	SAMPLE LOCATION		LE*	i	PL*	1	PI*	i	SOIL
0 13-2	② @ 10'-11.5'	i	_	-				1881	TYPE
● IB-3	4 @ 20'-21.5'	<u>i</u>					-	- 1	ML Mi
△ ! B-7	③ @ 15'-16'	i_		II.		1		'c	112
▲ B-8	(5) @ 25'-26'			-				3	C/SM
1	1								311
		80							
d.	4.5	17						51	
								-	

GRAIN SIZE IN MILLIMETERS

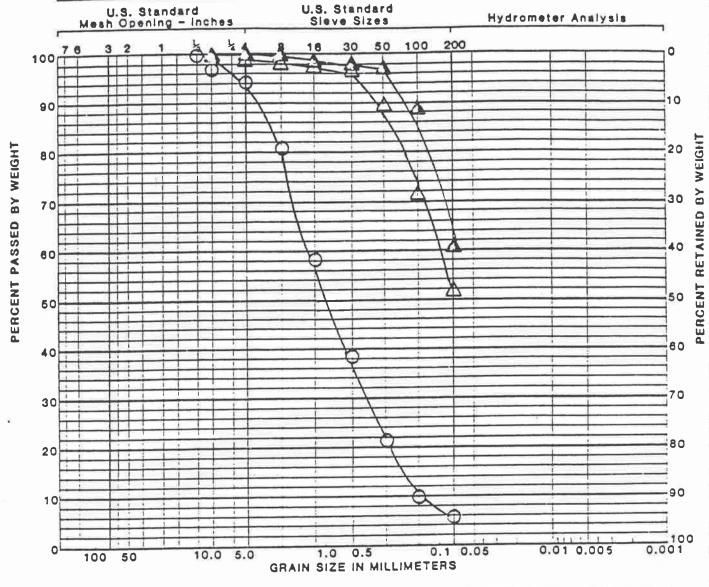
*LL Liquid Limit

*PL Plastic Limit

*PI Plasticity Index

10.0 5.0

Based on ASTM D422-72



Project No. 4900381-05

0.01 0.005

JACUMBA VALLEY RANCH

GRAIN SIZE ANALYSIS

SAND

Coarse Medium

SYMBOL	SAMPLE LOCATION	İ	LL*		PL*	İ	PI*		SOIL TYPE
^ 1	B-9 (4) @ 20'- 21.5'	1				-		#	CL
A	B-11(1) @ 5'-6.5'	1		ě)		Y		i	111
0	8-12 ③ @ 15'-16.5'	30		H.		i		0.	SW
	V AC XXXXX			10	5				
<u></u>		((
i		1		i(160	
						1			

*LL Liquid Limit

*PL Plastic Limit

*PI Plasticity Index

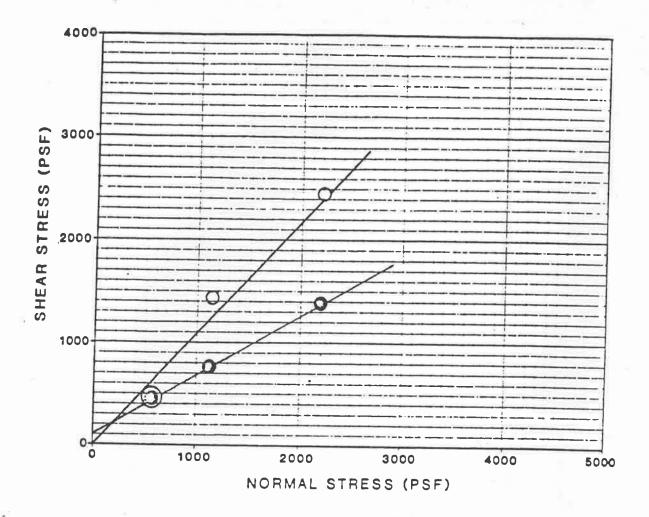
Based on ASTM D422-72

GRAVEL

Coarse

Fine

COBBLES



Project No.4900381-05

JACUMBA VALLEY RANCH

SILT AND CLAY

GRAIN SIZE ANALYSIS

DESCRIPTION	SYMBOL	BORING NUMBER	SAMPLE NUMBER	DEPTH (FEET)	COHESION (PSF)	FRICTION	SOIL
Remolded to 90% of Maximum Dry	0	T-1	1	0 - 3'	0	48°	SW
Density at Opt Moisture Content	0	T-2	ì	0 - 3'	130	30°	SM-ME

Based on ASTM D3080-79

Project No. 4900381-05

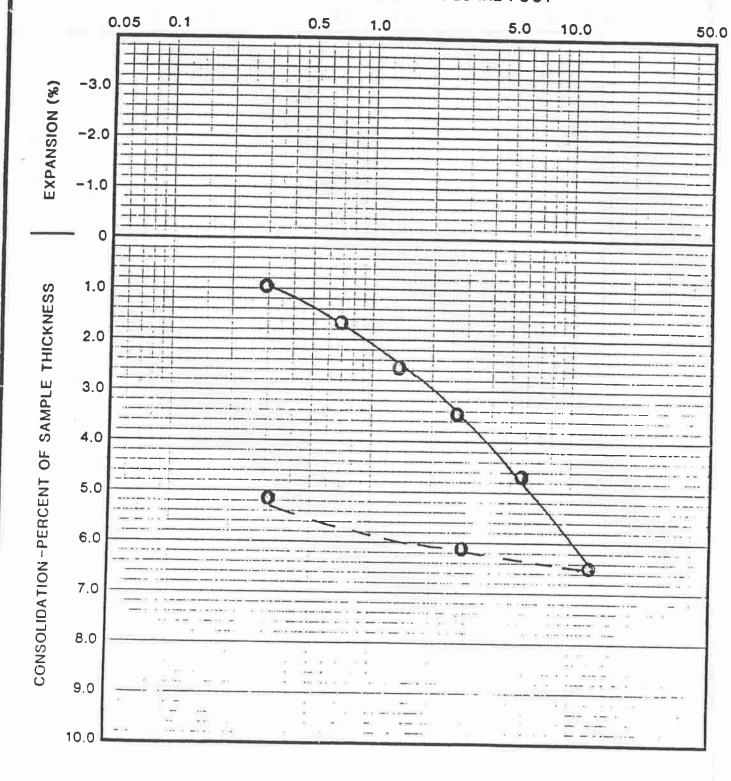
JACUMBA VALLEY RANCH

DIRECT SHEAR TEST RESULTS

EXPANSION INDEX TEST RESULTS

SAMPL NO.	E SAMPLE LOCATION	INITIAL MOISTURE (%)	COMPACTED DRY DENSITY	FINAL MOISTURE (%)	VOLUMETRIC SWELL (%)	EXPANSION INDEX	EXPANSIVE POTENTIAL
			(PCF) 96.6	31.3	6.6	66	Medium
2	T-2 @ 4'-6'	14.0	90.0	31.3			
1	T-4 @ 0'-3'	11.5	104.6	24.0	5.1	51	Medium
		F				8	
1							
1							5
1							
L						I	

MAXIMUM DENSITY TEST RESULTS


SAMPLE NO.	LOCATION	MAXIMUM DRY DENSITY (PCF)	OPTIMUM MOISTURE CONTENT (%)
(1)	T-1 @ 0'-3'	115.5	14.5
Õ	T-2 @ 0'-3'	107.0	20.0
2	T-2 @ 4'-6'	110.0	14.0
		*	

Project Nc.4900381-05 JACUMBA VALLEY RANCH

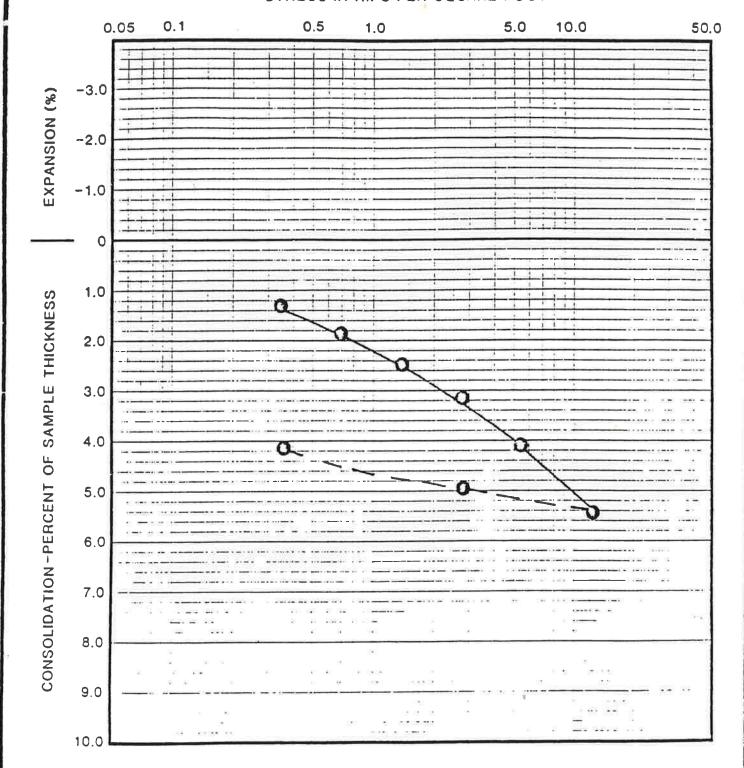
EXPANSION INDEX AND MAXIMUM DENSITY TEST RESULTS

STRESS IN KIPS PER SQUARE FOOT

O FIELD MOISTURE BORING NO.: 3-3

SATURATED SAMPLE NO.: 2

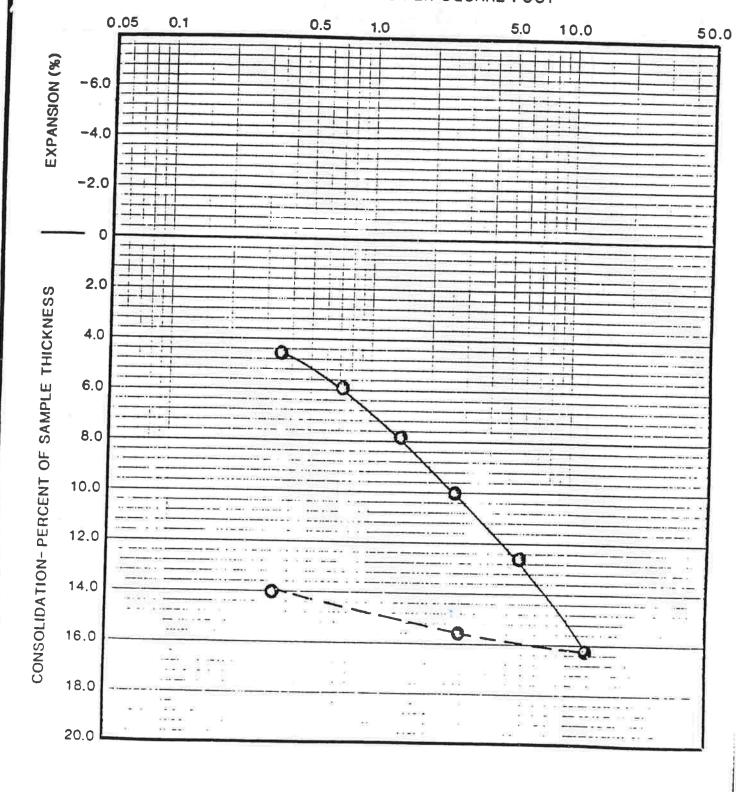
LOADING DEPTH (FT): 10-11


REBOUND SOIL TYPE: 5M

Project No. 4900361-05 JACUMBA VALLEY RANCH

CONSOLIDATION TEST RESULTS

STRESS IN KIPS PER SQUARE FOOT



Project No. 4900381-05 JACUMBA VALLEY RANCH

CONSOLIDATION TEST RESULTS

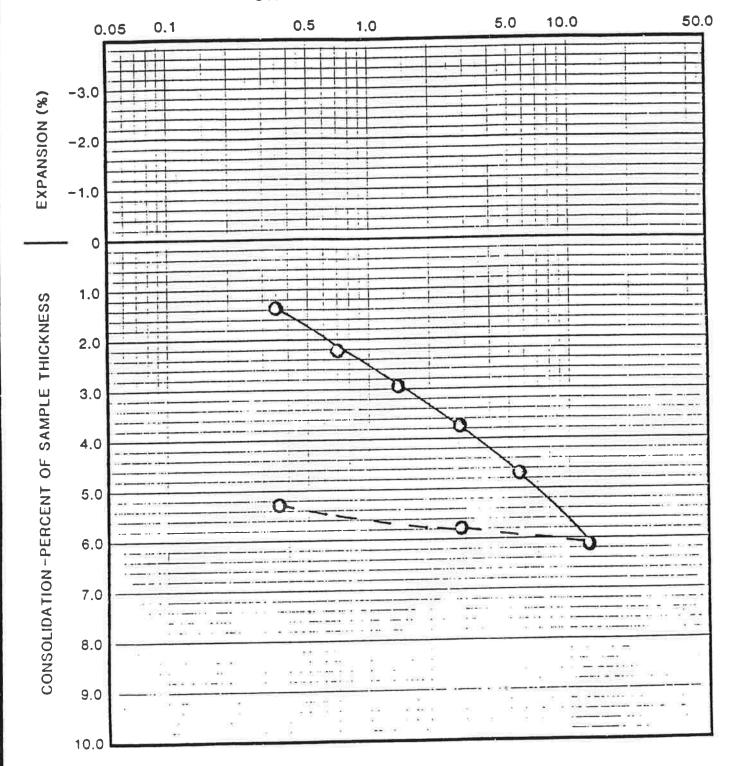
STRESS IN KIPS PER SQUARE FOOT

O FIELD MOISTURE

BORING NO.: 3-10

SATURATED SAMPLE NO.: 2

LOADING DEPTH (FT): 10-11"


THE REBOUND SOIL TYPE: CLIME

Project No. 4900381-08 JACUMBA VALLEY RANCH

CONSOLIDATION TEST RESULTS

STRESS IN KIPS PER SQUARE FOOT

O FIELD MOISTURE BORING NO.: 3-11

SAMPLE NO.: 2

LOADING DEPTH (FT): 10-11

--- REBOUND SOIL TYPE: SM

Project No.4900381-05

JACUMBA VALLEY RANCH

CONSOLIDATION TEST RESULTS

LEIGHTON AND ASSOCIATES, INC.

Geotechnical and Environmental Engineering Consultants

MAR 0 7 1991

February 27, 1991

Project No. 4900381-05

To:

Jacumba Valley Ranch

2423 Camino del Rio South, Suite 212

San Diego, California 92108

Attention:

Mr. Karl Turecek

Subject:

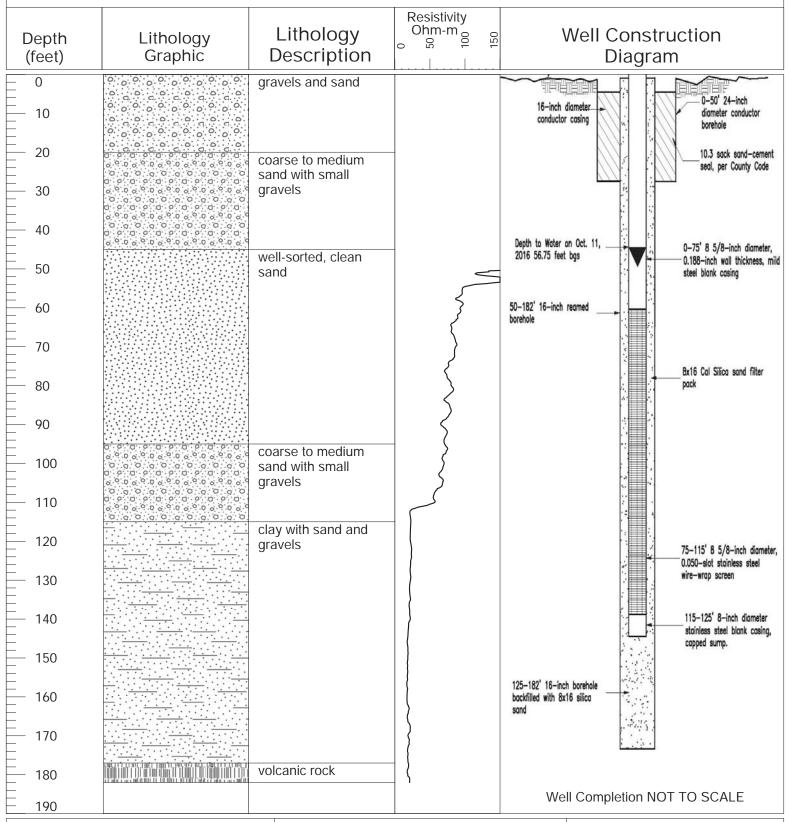
Updated Evaluation of Consolidation Potential, Phase 1, Jacumba

Valley Ranch Development, San Diego County, California

Reference:

Leighton and Associates, Inc., 1991, Limited Evaluation of Liquefaction and Consolidation Potential, Phase I, Jacumba Valley Ranch Development, San Diego County, California, Project

No. 4900381-05, dated January 21


In accordance with your request, we performed an updated evaluation of the consolidation potential at the subject development. We understand that fills in Residential Area A are proposed to be up to approximately 20 feet thick (above existing grades). Our referenced report provided recommendations based on your previous assumption that the thickness of additional fill would be approximately 4 feet. In order to evaluate the consolidation potential due to the weight of the proposed fill soils (up to 20 feet thick), we have performed laboratory time-rate consolidation tests on ring samples collected as part of our previous study. We chose representative samples near the areas of proposed fills as shown on the computer printout prepared by F.J. Willert Contracting Company, Inc. Based on our laboratory data (attached), we recommend the following delays after the completion of grading until the construction of settlement-sensitive structures in order to reduce the total and differential settlement to approximately 1 inch and 1/2 inch, respectively.

Thickness of Proposed Fill Above Existing Grade (feet)	Delay of Construction after <u>Grading (months)</u>
	0 1
≤ 5	3
≤10	4
<u>≤</u> 15	6
≤20	8

Maximum settlement of the existing soils below the areas of thickest proposed fill soils (approximately 20 feet thick) is estimated to range from 4 to 6 inches.

LOG OF JCSD HIGHLAND CENTER WELL

Project Name: Highland Center Well

Project Number: 9286

Drilling Company: Fain Drilling and Pump Company

Drilling Method: Mud Rotary

Drilling Start Date: September 28, 2016 Drilling Finish Date: September 29, 2016 Pilot Borehole Diameter: 15.75-inch Total Borehole Depth: 182 feet Boring Location: Jacumba Hot Springs, CA

Latitude: 32°37'2.94"N

Longitude: 116°11'4.19"W

Surface Elevation (ft msl): 2,805'

Additional Information:

prepared October 2016

Logs from wells that penetrate the alluvium in the center of the valley are presented in Table 3. See Figure 8 (page 28) for the location of the wells.

The alternating layers of clay and gravelly sand in the well logs appear to be lacustrine deposits. Similar deposits, of rhythmic layers of silty-clay and fine to medium sand, occur in the stream cut banks at the north end of Jacumba Valley. There are abundant small gastrapod shells in these deposits. Above the lacustrine sediments the well records generally show a fining upward trend.

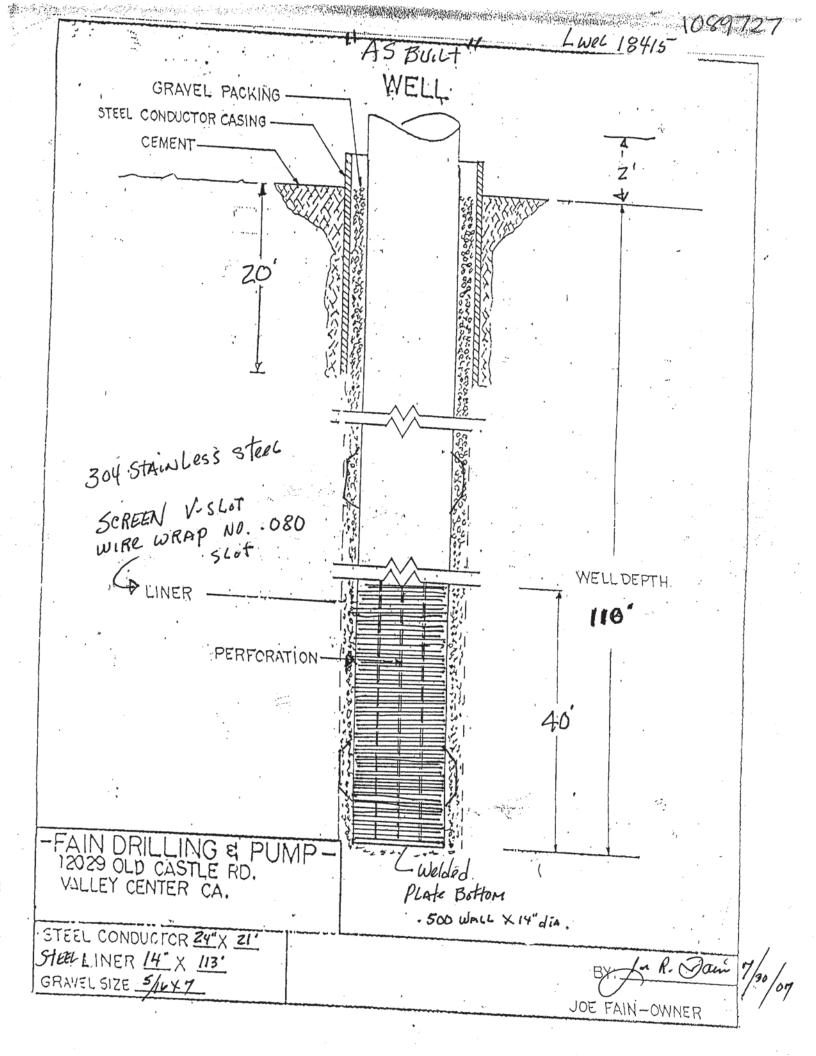
The wells on the western edge of Jacumba penetrate the alluvium to a depth of 18 meters (County of San Diego, Department of Public Health, personal communication, 1980).

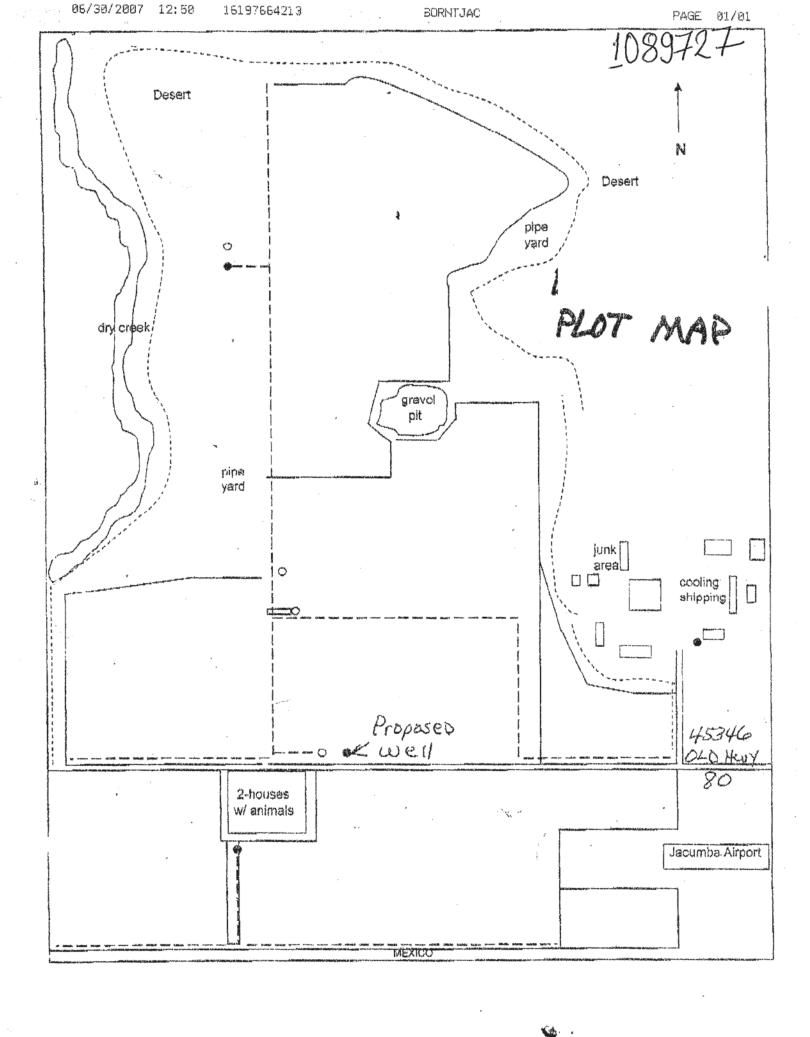
Well J3A			Well J4	
Depth (Meters)	Lithology	Depth (Meters)	Lithology	
- 9.1	Clay and silt	-12.2	Layers of clay and gravel	
-15.2	Coarse sand and gravel	-18.3	Gravel and boulders	

In general, the lithology of the Quaternary alluvium varies both with depth and laterally, as would be expected in an alluviated valley in the arid southwest.

Table 3 $\label{eq:Logs} \mbox{Logs for Wells Jl and J2}^{\mbox{a}} \mbox{ and Wells Kl and K2}^{\mbox{b}}$

Depth (Meters)	Lithology	Depth (Meters)	Lithology
	Well Jl	W	ell J2
0-3.0	Soil and clay	0-3.0	Soil and clay
-11.6	Clay	-11.6	Clay
-12.2	Fine sand	-12.2	Fine sand
-15.2	Medium sand	-15.2	Medium sand
-26.8.	Coarse sand and small gravel	-26.8	Coarse sand and small gravel
-30.5	Coarse sand and coarse gravel	-30.5	Coarse sand and small gravel
-36.6	Layers clay and coarse sand	-36.6	Layers clay and coarse sand
-37.8	Volcanic formation	-42.7	Layers clay and coarse sand
	Well Kl	<u>W</u>	ell K2
0-1.5	Clay and topsoil	0-6.1	Clay and silt
-9.1	Silt and fine sand	-6.4	Cobbles
-12.2	Fine sand	-12.2	Fine sand
-13.7	Sand	-13.7	Sand
-15.2	Boulders and sand	-15.2	Rocks and sand
-19.2	Sand and gravel	-21.3	Sand and gravel
-19.5	Black silt and clay	-28.0	Rocks and sand
-20.7	Sand and gravel	-31.4	Large rocks and sand
-21.3	Black silt and clay		
-29.9	Sand and gravel		

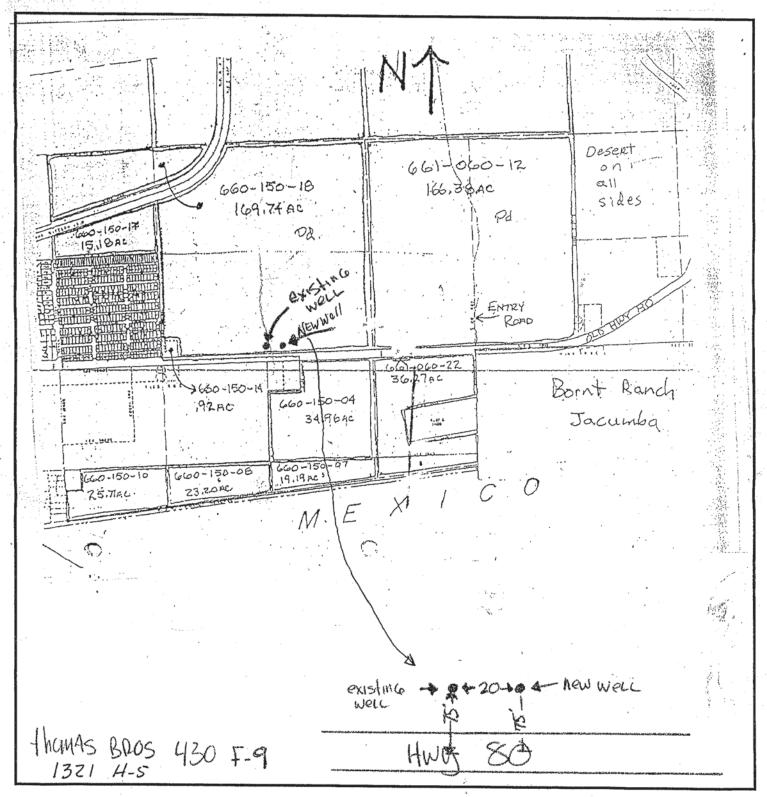

Table 3 (Continued)


Depth (Meters)	Lithology	Depth (Meters)	Lithology
	Well Kl	Wel	.1 K2
-31.4	Boulders and cobbles		
-32.3	Sand and gravel		
-33.5	Red clay		

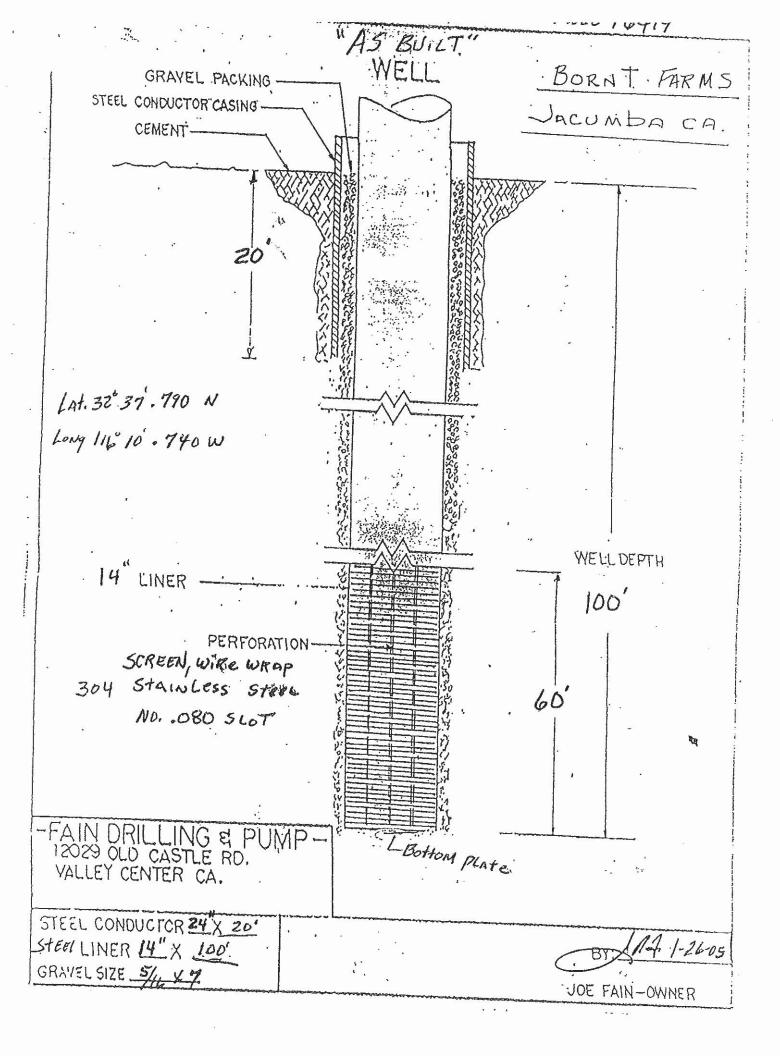
Taken from County of San Diego, Department of Public Health, personal communication, 1980.

 $^{$^{\}rm b}$$ Taken from William Ketchum, personal communication, 1980.

ORIGINAL STATE OF CALIFORNIA File with DWR WELL COMPLETION REPORT Refer to Instruction Pamphlet Page _1__ of __1_ No. 1089727 Owner's Well No. _ One - 2007 LONGITUDE Date Work Began __7/18/07_ Local Permit Agency ____DEH_ APN/TRS/OTHER Permit No. LWEL 18415 GEOLOGIC LOG -WELL OWNER X VERTICAL ____ HORIZONTAL ____ ANGLE ____ (SPECIFY) ORIENTATION (ビ) DRILLING METHOD Rotary FLUID ____ DEPTH FROM DESCRIPTION SURFACE Describe material, grain size, color, etc. to Old Hwy 80 WELL LOCATION ALLUVIAL FILL AS FOLLOWS: Address _ 0 9 Sand, fine grained - brown color Jacumba City _ San Diego County _ APN Book 660 Page 150 9 24 Clay - Dark color Parcel 18 Township 18 S Range 8 E Section 8 24 70 Sand, fine grained Long_ DEG. MIN. MIN. SEC. LOCATION SKETCH ACTIVITY (∠) 70 Sand, medium to coarse grained X NEW WELL - NORTH with some boulders MODIFICATION/REPAIR See Attached ___ Deepen _ Other (Specify) MAP FOR detail DESTROY (Describe Procedures and Materials Under "GEOLOGIC LOG", 169.74 AC USES (∠) WATER SUPPLY _ Domestic ____ Public __ Irrigation ____ Industria MONITORING . TEST WELL CATHODIC PROTECTION HEAT EXCHANGE DIRECT PUSH NEW Well INJECTION Illustrate or Discribe Distance of Well from Roads, Buildings, Fences, Rivers, etc. and attach a map. Use additional paper if necessary. PLEASE BE ACCURATE & COMPLETE. REMEDIATION OTHER (SPECIEY) WATER LEVEL & YIELD OF COMPLETED WELL DEPTH TO FIRST WATER __50+_ (Ft.) BELOW SURFACE DEPTH OF STATIC 40 _(Ft.) & DATE MEASURED 7/23/07 WATER LEVEL ___ ESTIMATED YIELD . 2000 (GPM) & TEST TYPE airlift TOTAL DEPTH OF BORING 113 TEST LENGTH 6 (Hrs.) TOTAL DRAWDOWN 60 TOTAL DEPTH OF COMPLETED WELL 114 * May not be representative of a well's long-term yield. CASING (S) ANNULAR MATERIAL DEPTH BORE-FROM SURFACE FROM SURFACE TYPE (∠) TYPE HOLE CON-DUCTOR FILL PIPE INTERNAL GAUGE SLOT SIZE MATERIAL / SCREEN OR WALL DIAMETER IF ANY FILTER PACK MENT TONITE FILL GRADE Ft. to to Ft. (Inches) (inches) (TYPE/SIZE) (~) (~) (\simeq) 20 32 20 Stee1 23.5 250 X 73 24 Stee1 13.5 .250 113 pea gravel 5/16x7 Steel S.S.13.5 250 080 ATTACHMENTS (≤) CERTIFICATION STATEMENT I, the undersigned, certify that this report is complete and accurate to the best of my knowledge and belief. _ Geologic Log X Well Construction Diagram NAME FAIN DRILLING & PUMP CO INC __ Geophysical Log(s) 12029 Old Castle Rd. Valley Center, Ca 92082 Soil/Water Chemical Analyses STATE Other Site ATTACH ADDITIONAL INFORMATION, IF IT EXISTS. 57 LICENSE NUMBE IF ADDITIONAL SPACE IS NEEDED, USE NEXT CONSECUTIVELY NUMBERED FORM OSP 03 78836 DWR 188 REV. 05-03

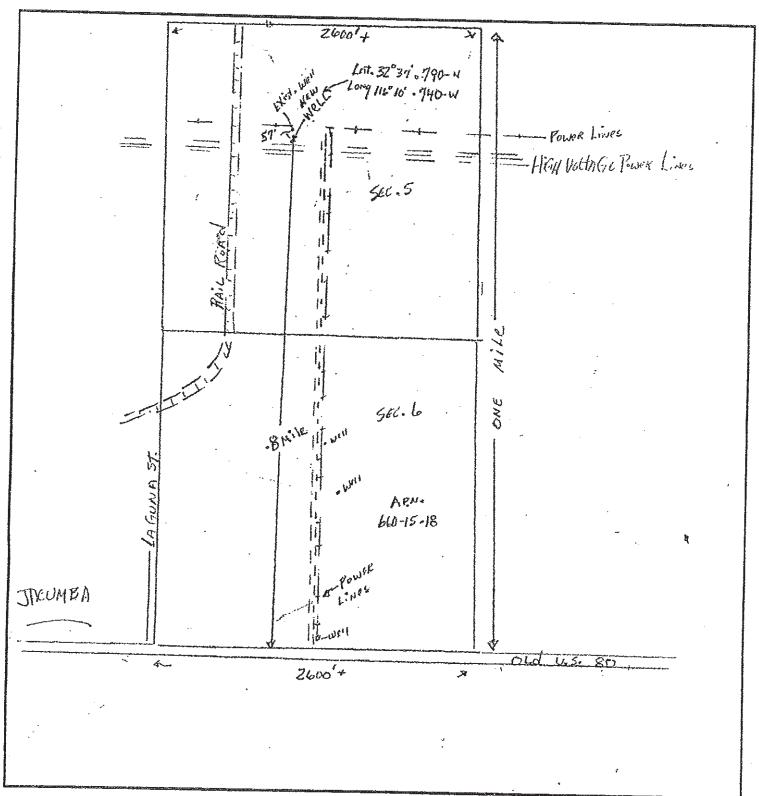

COUNTY OF SAN DIEGO DEPARTMENT OF ENVIRONMENTAL HEALTH

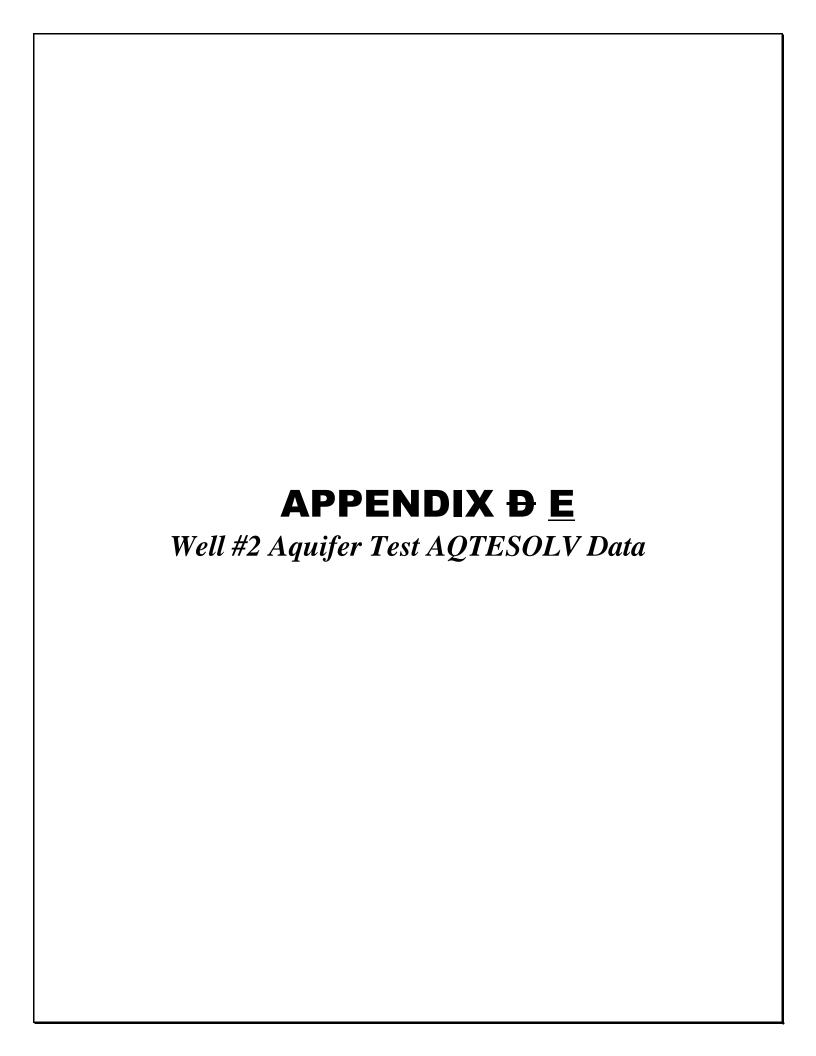
Control #: LWEL- 18415
Assessor's Parcel Number: 660 -150-78

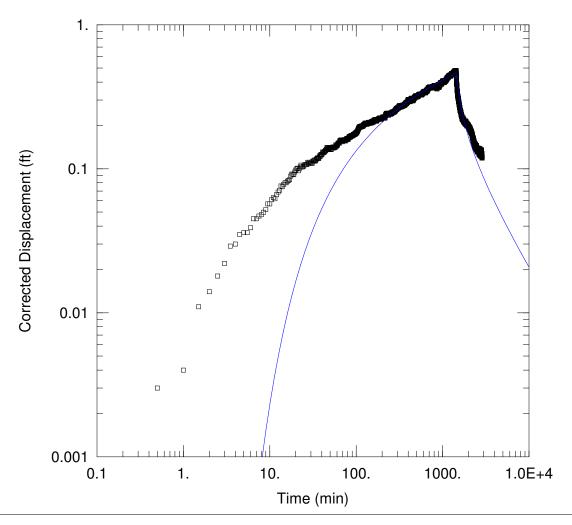

1089727

LOCATION

Indicate below the vicinity and exact location of well with respect to the following items: Property lines, water bodies or water courses, drainage pattern, easements, roads, existing wells, sewers and private sewage disposal systems and other potential contamination sources, including dimensions.




Owner's Co	ру	:		٦.	•	WELL	COM	PLET	TO	MINITE	REPA	рт	Π	1 1	,	NLT .	<u> DO</u>	NOT FILL IN -
Page o	f 					***************************************	Kefer to	Instructio	on Pa	ımphle	t	ΗŢ			STATE	WELL	NO./ST	ATION NO.
Owner's We	ell No	-						No. O	90	95	29							
Date Work I	Segan <u>/:</u>	7 C Z	ر این قر		— , []]	Ended	1/25/	0.7r					lr	LATITU	DE	. 1		LONGITUDE
Permit 1	nit Agency		# %	C) E C		D.,	: D.:		_						لــــــــــــــــــــــــــــــــــــــ	APN/TR	SOTH	
Tornic :	Vo. <u>16419</u>	_ (EO	LOG	IC 1	LOG —	it Date	1/25/	6.5					- West t			0,01,11	
ORIENTATION	(∠) <u>X</u>	VERT				IZONTAL			- 1	Name	Bor	ic F	a icu	- WELL	OWN	EK -		
DEPTH FRO	METU	ING	79	ota	E)			Gel						Lagal.	2 \$\$1\frac{1}{2}	<u> </u>		
SURFACE		Da	ec~tl	ha m		SCRIPTION	v.			<u>- Bol</u>	FAIT		المر					92250~
FL to	R. Pita					ial, grain si			``	cut (<u> </u>	, y , y) <u>.</u> .	-WELL I	OCAT	TON-		STATE ZIP
	1	e the Ar.	54241	8381	20116	i siir i	(1.00. <u>H</u> 1)	ams		Addre	$s = \frac{1}{\sqrt{DX}}$) (Ya)	• f	WELL I	isE]	Jay	98	
13 36	Gya	1 N	- 14	د د <u>و</u> در	53:413	rd friar	in ras	Tan C		(sitya≥ Count) Jack	mpa M. O	<u> </u>			 -		
1	1002	¥ 257	u fr.	<u> </u>	1144		J. P. S. S. S. S. S. S. S. S. S. S. S. S. S.	J. Barrell		APN 1	Book &	20 p	ane one	020	Dovo		سم دس	
					· 7		* 5		47	Lovviis	hip 🐉	P	lang	re <u>8 ¢</u>	_Sect	ion	مين مين مين مين	
5 <u>%</u> 34	1 (103	<u>* </u>		<u> </u>	:)-(म्यं न्यूनियो		1 -	1.4	at 😅	En I	3 7, MIN.	» f	190 N	Long	g <i>///</i>	<u>\$</u>	1101-740
36 140	ca.9787	6.34				Marke 1	de de la company	- 	\$	0) 7	050.	WATELA"	5	SKETCH				MIN. SEC. ACTIVITY (ビ) -
1	1		SEE S.	500		A Section 1		<u>@V&\v:</u>				—— N	ORTI	H ———	<u> </u>		A	NEW WELL
<u> </u>			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	مم وير	S. S. S. S. S. S. S. S. S. S. S. S. S. S	100	1835 J	<u> </u>	7			\mathbf{A}_{i}	N V	14.			MOD	DIFICATION/REPAIR Deepen
135	- 1. Ç\$2	(2.50 <u>-</u>	2. Fr - :	<u>ئة</u> ب ^{مي} ةٍ ع	<u>dre</u>	C COCK	<u> </u>				i.	*		K	15 × 25	30%		Other (Specify)
	<u>)</u> همريه طير <u>کر</u> ک	<u> </u>	and the same	<u> </u>					_			£ ~~	-	_e	ý	<u>ئ</u> پ		DESTROY (Describe
	17 17	- T.		3 13	· · ·				-	:	[4	e kirje	T.		do, i		Procedures and Materia Under "GEOLOGIC LOC
	A ALANA PAR	,	13.6	Š		<u> </u>			-		}	W	7	ş4	3	303		38 (∠) ·
1			3.7						┥,		\$ 100 miles	Age.	F. Second	in i	Talkaran	di G	ł	ER SUPPLY Domestic Public
									WEST				and the same of th		addiningsproper arrown allenge	S	1.25	Irrigation Industria
	i								≥	~~				4 149	vol 4	16 \$		MONITORING TEST WELL
-	1		·						_	7 5/4 c	1		93 2 s		g Wi		CATH	IODIC PROTECTION
									4	Q.	·		ě j	4	A Piz			HEAT EXCHANGE
			_				<u> </u>		_	Dit.			1	å				DIRECT PUSH
	- 								-	Q.			. 1	T .		-	V.	APOR EXTRACTION
;	,								+			— so	เกรา	-	<u></u>			SPARGING
1										llustrate ences, R	or Describe livers, etc. ar	Distance id attach	of V	Vell from Ro ap. Use addi TE & COM	ads, Buil Ional pa	dings, per il		HEMEDIATION OTHER (SPECIFY)
1	i								n	ecessary								
]_		WATE	R LEV	EL .	& YIELD	OF C	OMPL	ETEL) WELL
									1		fo first w Of static	/ATER*	\$ £-	f (Ft.) B	ELOW S	URFAC	E	•
, i	 -					·		<u> </u>	- W	VATER	LEVEL	<u> </u>		E(Ft) & DAT	E MEAS	URED _	1-3	6-050
TOTAL DEPTH	OF BORING	į	12	- (Feet)	· · · · · · · · · · · · · · · · · · ·			-	STIMAT	ED YIELD	204)	(GPM) &	TEST T	YPE	عرب يم	6-05°
TOTAL DEPTH									Ti	EST LE	NGTH	301 (Hr	s.) T	OTAL DRAW	DOWN_	90	(Ft.)	
										Iviay v	ioi az repre	sentativ	ve oj	a well's lo	ng-term	yield.		
DEPTH FROM SURFA	CE BORE-	-	YPE	(V)	1		CASING (S)					DE	PTH		ANN	ULAR	MATERIAL -
	DIA.		图.	(<u>~</u> /	1	MATERIAL /	INTERNAL	GAUG		SLC	T SIZE	FRO	M S	SURFACE	CE-	BEN-	T	YPE.
Fit. to Fi	(inches)	BLANK	SCREEN	PUCTOR FILL PIPE		GRADE	DIAMETER (Inches)	OR WA			ANY nches)	Fl.		o Ft.	MENT	TONITE	FILL	FILTER PACK (TYPE/SIZE)
0 20	32	號		- -	1	TL A-53	23.5	- 250		-		— ,		T	7	(∠)	(六)	(11.20122)
0 40	22	*			1	12 1 -139	13.5	-250				0		120 100	· ·			67
40 100	22		¥		1 -	4 5.5.	13.5	.150		10	80		<u>, </u>	100		-		7 7
		1		_									- 1	1				:
1		\square	-	+-	\vdash								1	ī				
	TACHMENTS	12		<u>_</u>	<u></u>			L		OF	DATEROA		Orm i	i				
	ologic Log		,			I, the und	ersigned, ce	ertify that t	his re	eport is	s complete	and a	STA .ccur	TEMENT	best of	mv kr	owled	ge and belief.
	ll Construction D	lagra	m			NAME	fair Ur	illim	<u>s</u> &	Fus	wp Co.	Exic						a- mio policii
	ophysical Log(s)				ļ	(PERS	SON, FIRM, OR (12029 C	CORPORATION	(TYP)	ED OR P	RIMTEDI				/No. 13	124.00		
	/Water Chemical		lyses		1					× 100	as rela	+ 25 V	2,455	11 & T.E	હાજ છે ——	and the state of	_	
	er <u>5A BA</u>				I	ADDRESS	Kalenane	a* -	<u>.</u>	*				СПҮ			STATE	216
ATTACH ADDITIO	VAL INFORMATIO	ON, II	F IT E	XISTS	ŝ.	Şigned C-57	LICENSED WATE	R WELL COM		.e					E SIGHEO			328227
OWR 188 REV. 05-0;	3		1F	ADDI	TION		e-Xicenen				N. 1441. 1	44544.455		UKI	r ountl	·		C-57 UCENSE NUMBER



LOCATION

Indicate below the vicinity and exact location of well with respect to the following items: Property lines, water bodies or water courses, drainage pattern, easements, roads, existing wells, sewers and private sewage disposal systems and other potential contamination sources, including dimensions.

WELL TEST ANALYSIS

Data Set: P:\...\Well1_CurveMatching.aqt

Date: 01/09/19 Time: 14:59:52

PROJECT INFORMATION

Company: <u>Dudek</u> Location: <u>Jacumba</u> Test Well: <u>Well 2</u> Test Date: <u>12/14/2018</u>

WELL DATA

Pumpir	ig weils		Observation wells			
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)	
Well 2	0	0	□ Well 1	305	0	

SOLUTION

Aquifer Model: Unconfined

Solution Method: Theis

 $T = 3.629E + 4 \text{ ft}^2/\text{day}$

S = 0.02876b = 40. ft

 $Kz/Kr = \overline{1.}$

Diagnostic Statistics

Estimation complete! Parameter change criterion (ETOL) reached.

Aquifer Model: Unconfined Solution Method: Theis

Estimated Parameters

Parameter T	Estimate 3.629E+4	Std. Error 103.2	Approx. C.I. +/- 202.3	t-Ratio 351.5	ft ² /day
Ś	0.02876	0.0001907	+/- 0.0003737	150.8	,,
Kz/Kr	1.	not estimated			
b	40.	not estimated			ft

C.I. is approximate 95% confidence interval for parameter t-ratio = estimate/std. error No estimation window

K = T/b = 907.2 ft/day (0.3201 cm/sec) Ss = S/b = 0.0007189 1/ft

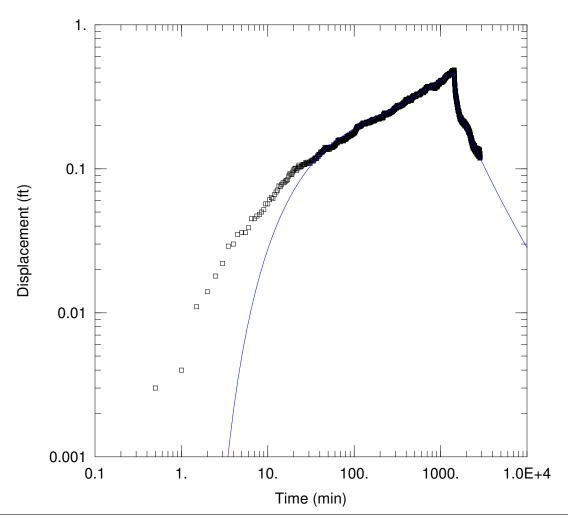
Parameter Correlations

S -0.81 T S 1.00 1.00 -0.81

Residual Statistics

for weighted residuals

 Sum of Squares
 3.952 ft²


 Variance
 0.0006863 ft²

 Std. Deviation
 0.0262 ft

 Mean
 0.008754 ft

 No. of Residuals
 5760

 No. of Estimates
 2

WELL TEST ANALYSIS

Data Set: P:\...\Well1_CurveMatching.aqt

Date: 02/12/19 Time: 09:57:48

PROJECT INFORMATION

Company: <u>Dudek</u> Location: <u>Jacumba</u> Test Well: <u>Well 2</u> Test Date: 12/14/2018

AQUIFER DATA

Saturated Thickness: 40. ft

WELL DATA

Pumpin	g wells		Observa	ition vveiis	
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)
Well 2	0	0	□ Well 1	305	0

SOLUTION

Aquifer Model: Unconfined Solution Method: Neuman

 $T = 2.641E+4 \text{ ft}^2/\text{day}$ S = 0.00826Sy = 0.04672 S = 0.2076

Diagnostic Statistics

Estimation complete! Parameter change criterion (ETOL) reached.

Aquifer Model: Unconfined Solution Method: Neuman

Estimated Parameters

Parameter	Estimate	Std. Error	Approx. C.I.	t-Ratio	0
T	2.641E+4	62.34	+/- 122.2	423.7	ft ² /day
S Sy B	0.00826	6.918E-5	+/- 0.0001356	119.4	,
Sv	0.04672	0.0002334	+/- 0.0004574	200.2	
ß	0.2076	0.0009584	+/- 0.001878	216.6	

C.I. is approximate 95% confidence interval for parameter t-ratio = estimate/std. error No estimation window

K = T/b = 660.4 ft/day (0.233 cm/sec) Ss = S/b = 0.0002065 1/ft

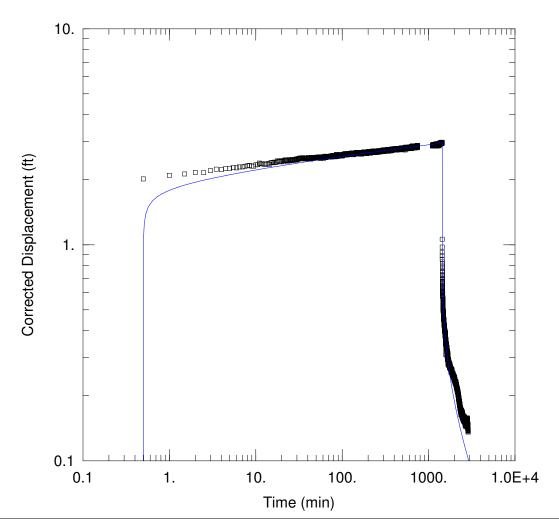
Parameter Correlations

	Τ	S	Sy -0.95	ß
Т	1.00	-0.31	-0. 9 5	0.02
S	-0.31	1.00	0.11	-0.69
Sy	-0.95	0.11	1.00	0.11
ß	0.02	-0.69	0.11	1.00

Residual Statistics

for weighted residuals

 Sum of Squares
 0.3775 ft²


 Variance
 6.558E-5 ft²

 Std. Deviation
 0.008098 ft

 Mean
 -0.0002177 ft

 No. of Residuals
 5760

 No. of Estimates
 4

WELL TEST ANALYSIS

Data Set: P:\...\Well2_CurveMatching.aqt

Date: 01/09/19 Time: 15:02:12

PROJECT INFORMATION

Company: <u>Dudek</u> Location: <u>Jacumba</u> Test Well: <u>Well 2</u> Test Date: 12/14/2018

WELL DATA

Pumping Wells			Observation Wells			
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)	
Well 2	0	0	□ Well 2	0	0	

SOLUTION

Aquifer Model: Unconfined

Solution Method: Theis

 $T = \frac{3.305E+4}{1}$ ft²/day

S = 0.000136b = 40. ft

 $Kz/Kr = \overline{1.}$

Diagnostic Statistics

Estimation complete! RSS criterion (RTOL) reached.

Aquifer Model: Unconfined Solution Method: Theis

Estimated Parameters

Para <u>meter</u>	Estimate	Std. Error	Approx. C.I.	t-Ratio	ri2/.i.
S S	3.305E+4 0.000136	107.4 7.934E-6	+/- 210.6 +/- 1.555E-5	307.6 17.14	ft ² /day
Kz/Kr	1.	not estimated	1, 11000_0		
b	40.	not estimated			ft

C.I. is approximate 95% confidence interval for parameter t-ratio = estimate/std. error No estimation window

K = T/b = 826.3 ft/day (0.2915 cm/sec)Ss = S/b = 3.399E-6 1/ft

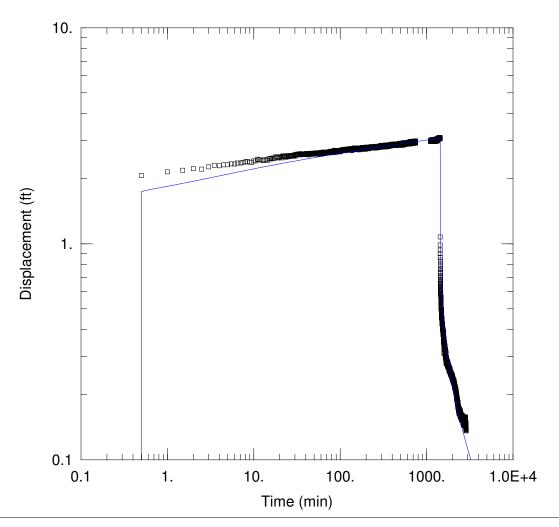
Parameter Correlations

T S T 1.00 -0.99 S -0.99 1.00

Residual Statistics

for weighted residuals

 Sum of Squares
 11.52 ft²


 Variance
 0.002314 ft²

 Std. Deviation
 0.04811 ft

 Mean
 0.01864 ft

 No. of Residuals
 4980

 No. of Estimates
 2

WELL TEST ANALYSIS

Data Set: P:\...\Well2_CurveMatching_Neuman.aqt

Date: 02/13/19 Time: 11:40:44

PROJECT INFORMATION

Company: Dudek Location: Jacumba Test Well: Well 2 Test Date: 12/14/2018

AQUIFER DATA

Saturated Thickness: 40. ft

WELL DATA

Pumpir	g wells		Observa	ion weils	
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)
Well 2	0	0	□ Well 2	0	0

SOLUTION

Aquifer Model: Unconfined

Solution Method: Neuman

 $T = 2.831E+4 \text{ ft}^2/\text{day}$ $Sy = \overline{0.001}$

S = 1.0E-10 $\beta = 1.0E-5$

Diagnostic Statistics

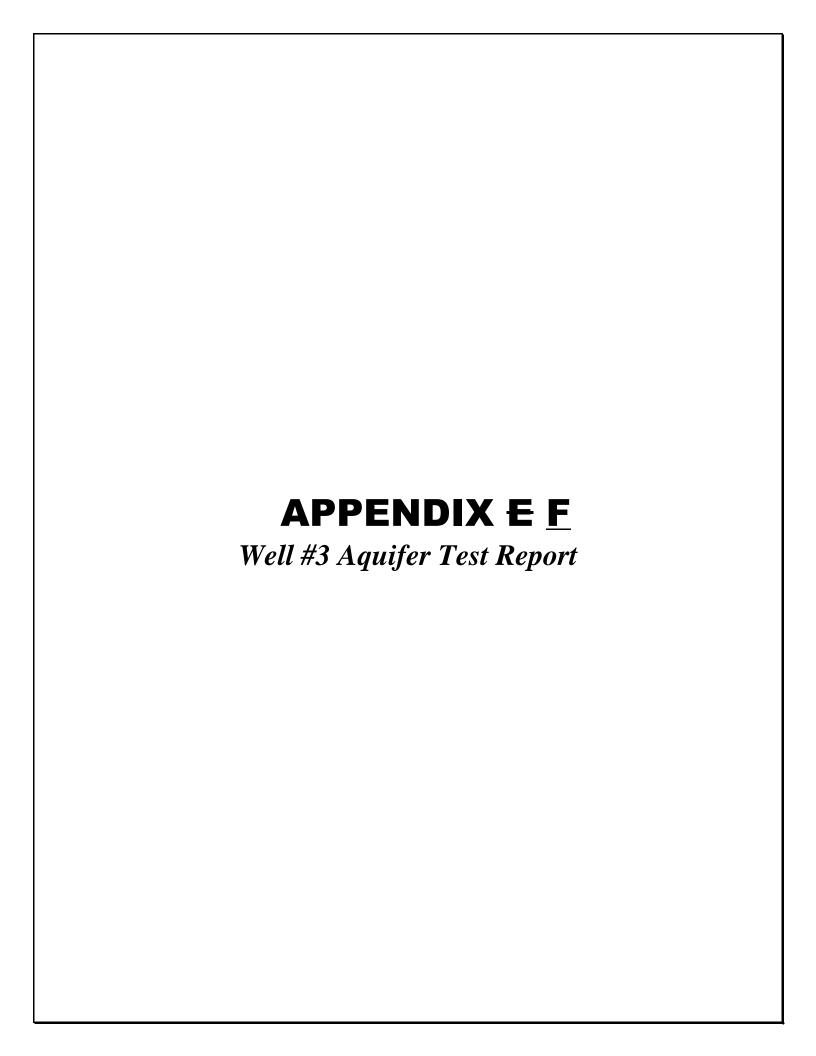
Estimation complete! Parameter change criterion (ETOL) reached.

Aquifer Model: Unconfined Solution Method: Neuman

Estimated Parameters

<u>Parameter</u>	Estimate	Std. Error	Approx. C.I.	t-Ratio	ft ² /day
l	2.831E+4	93.	+/- 182.3	304.4	π∸/day
S	1.0E-10	0.0002303	+/- 0.0004513	4.343E-7	,
Sy ß	0.001	0.0002364	+/- 0.0004633	4.23	
ß	1.0E-5	3.438E-6	+/- 6.739E-6	2.908	

C.I. is approximate 95% confidence interval for parameter t-ratio = estimate/std. error No estimation window


K = T/b = 707.8 ft/day (0.2497 cm/sec) Ss = S/b = 2.5E-12 1/ft

Parameter Correlations

	Τ	S	Sy -0.21	ß
Т	1.00	-0.01	-0. 2 1	0.05
S	-0.01	1.00	-0.98	-0.69
Sv	-0.21	-0.98	1.00	0.67
ß	0.05	-0.69	0.67	1.00

Residual Statistics

for weighted residuals

Prepared for **Jacumba Valley Ranch, LLC** 2423 Camino Del Rio South, #212 San Diego, California 92108

JACUMBA VALLEY RANCH PROPERTY WELL #3 AQUIFER TEST REPORT JACUMBA, CA

November 2012

 $Prepared\ by$

10875 Rancho Bernardo Road, Suite 200 San Diego, California 92127 (858) 674-6559

engineers | scientists | innovators

Project Number: SC0636

Prepared for Jacumba Valley Ranch, LLC 2423 Camino Del Rio South, #212 San Diego, California 92108

JACUMBA VALLEY RANCH PROPERTY WELL #3 AQUIFER TEST REPORT JACUMBA, CA

November 2012

Prepared by
Geosyntec Consultants
10875 Rancho Bernardo Road, Suite 200
San Diego, California 92127
(858) 674-6559

Veryl Wittig

California Professional Geologist No. 7115 California Certified Hydrogeologist No. 723 11/27/2012

Date

Project Number: SC0636

TABLE OF CONTENTS

1.	INTRODUCTION	1
	1.1 Terms of Reference	1
	1.2 Background	1
	1.3 Site Location	1
	1.4 Objectives	2
2.	GEOLOGIC AND HYDROGEOLOGIC CONDITIONS	3
	2.1 General	3
	2.2 Groundwater Elevations and Flow Direction	3
3.	AQUIFER TESTING AND ANALYSIS	4
	3.1 Constant-Rate Discharge Test	4
	3.1.1 Ambient Phase	4
	3.1.2 Pumping Phase	4
	3.1.3 Recovery Phase	5
	3.2 Analysis of Aquifer Test Data	5
	3.2.1 Observed and Projected Drawdown	5
	3.2.2 Aquifer Properties	6
	3.3 Aquifer Impact Analysis	6
4.	SUMMARY AND CONCLUSIONS	8
	4.1 Aquifer Testing	8
	4.2 Aquifer Impact Analysis	8
5.	RECOMMENDATIONS	9
6.	REFERENCES	10
TA	ABLES	
1	Summary of Static Groundwater Depths and Well Details	
2	Summary of Observed and Projected Drawdown Data	
FIC	GURES	
1	Site Vicinity and Location Map	
2	Groundwater Elevations and Flow Direction, 6 November 2012	
3	Observed and Projected Drawdowns	
4	Estimated Limit of 6-Month Drawdown	

TABLE OF CONTENTS (Continued)

APPENDICES

- A Constant-Rate Aquifer Test Data
- B DPLU GP Update Report Excerpts
- C AqtesolvTM Output Reports

1. INTRODUCTION

1.1 Terms of Reference

This report was prepared by Geosyntec Consultants, Inc. (Geosyntec) for Jacumba Valley Ranch, LLC (JVR) based on our understanding of the proposed use of groundwater as a source of construction water for the SDG&E East County Substation Project (ECSP). This report documents the activities performed to conduct a 72-hour constant-rate aquifer test on Well #3 on the JVR property (San Diego Assessor's Parcel No. 660-020-05-00; the site) located in Jacumba, California, to evaluate the use of Well #3 as a source of construction water. This report was prepared by Mr. Ryan Gray, PG and has been reviewed by Mr. Veryl Wittig, PG, CHG, in accordance with the peer review policy of the firm.

1.2 Background

It is our understanding that the site production well (Well #3) is proposed for use during construction. The total estimated Project water demand over the 16 month construction period is approximately 153 acre-feet. Construction activities are projected to require pumping at a rate of up to 350 gpm, 24-hours per day for limited periods over a duration of 6 months to meet the peak water demands during grading construction for the East County (ECO) Substation (up to approximately 500,000 gallons per day). Construction water use will increase during the first month of grading activities to the peak demand that will take place over a period of approximately four months. Water use will taper off to approximately 100,000 gallons per day after about 6 months and will continue at a lower rate for the remaining 12 months of the ECSP. This report conservatively evaluates the effect of groundwater pumping at the peak rate continuously 24 hours per day for a period of 6 months (approximately 276 acre-feet, which exceeds the anticipated total Project demand).

1.3 Site Location

The site is located in southeastern San Diego County in the community of Jacumba, approximately 74 miles east of San Diego (Figure 1). The area immediately surrounding the site consists of open, native land, agricultural, and rural residential properties. The site has historically been used for agricultural purposes, though current operations consist of an aggregate washing facility in the northeastern portion of the site.

Numerous wells exist on the large parcels which comprise the site. The following 4 wells were selected for the constant-rate aquifer test based on their anticipated yield and accessibility (Figure 2): Well #3 (pumping well), Daley Well (observation well; approximately 60 feet north), Mid-Valley Well (observation well; approximately 0.6 miles south), and Well #2 (observation well; approximately 0.85 miles south). Due to the age of the agricultural wells onsite, construction details were only available for Well #3.

This production well was constructed with 14-inch steel casing to a total depth of 100 feet below ground surface (ft bgs), with a 60 foot screened interval reaching the total depth of the well. Based on the total depths measured in the observation wells (Table 1) it is assumed that all wells are hydraulically connected to the unconfined alluvial aquifer within which Well #3 is screened. It is our understanding that no domestic supply water wells (not owned or operated by JVR) exist within 0.5 miles of the groundwater production well proposed for use during construction.

1.4 Objectives

The objectives of the work described herein were to provide JVR with the professional services necessary to prepare a groundwater study to assess the existing condition and proposed use of the underlying groundwater/aquifer and all existing onsite wells (with owner's permission). The objectives of the groundwater study are to:

- Evaluate aquifer properties and aquifer storage;
- Estimate short- and long-term well water supplies from the proposed pumping well;
- Document the proposed pumping well (Well #3) is capable of producing the total amount of water to be supplied for construction;
- Estimate of short- and long-term impacts from the use of Well #3 on local groundwater production (short-term extraction for construction water and ongoing O&M water), and on other wells in the Project area; and
- Assess the potential for subsidence brought on by Project-related water use in the area.

To achieve the project objectives, Geosyntec performed the following scope of work:

- Performed ambient groundwater monitoring;
- Conducted a 72-hour constant-rate aguifer test;
- Performed analysis of aquifer test data; and
- Prepared this Report.

2. GEOLOGIC AND HYDROGEOLOGIC CONDITIONS

2.1 General

The site lies in the Jacumba Valley Groundwater Basin (Basin Number 7-47) located in the southeastern Peninsular Ranges. The average annual rainfall for this area ranges from approximately 14 to 16 inches, with main water bearing deposits located in the alluvium and the Table Mountain Formation (DWR, 2004).

The Holocene alluvium is an unconfined aquifer consisting mostly of gravel, sand, and clay, which are estimated to range from 100 feet to 150 feet thick. Wells completed in these deposits can reportedly produce more than 1,000 gpm with a specific yield estimated to range from 5% up to 25% (DWR, 2004).

The Table Mountain Formation is Tertiary age and consists of medium- to coarse-grained sandstone and conglomerate that unconformably overlies crystalline basement rocks (DWR, 2004). This unit lies below and is separated from the Holocene alluvium by Tertiary age Jacumba volcanics, which creates semi-confined to confined conditions in the lower aquifer (DWR, 2004). The Table Mountain Formation is estimated to be up to 600 feet thick with a specific yield estimated to range from 5% to 10% (DWR, 2004).

Numerous studies indicate the groundwater in storage in the alluvial aquifer ranges from approximately 3,200 to 16,000 acre/feet (DWR, 2004). Groundwater storage in the Table Mountain Formation aquifer has been estimated to range from 84,000 to 169,000 acre/feet (DWR, 2004). In 2009, the County of San Diego, Department of Planning and Land Use (DPLU), prepared a County wide General Plan Update Report which estimated the basin wide storage to be approximately 32,600 acre-feet throughout the approximate 16,000 acres which comprise the basin (DPLU, 2009).

The Jacumba Valley Groundwater Basin is be recharged through infiltration of water from the Boundary Creek and Flat Creek drainages (DWR, 2004). Recharge has been estimated to range from approximately 1,456 acre-feet per year (DPLU, 2009) to 2,700 acre-feet per year (DWR, 2004). Groundwater usage within the basin has been estimated to be 165 acre-feet per year (DPLU, 2009). Based on these data and current conditions, which are substantially similar to those present during the cited studies, the rate of recharge to the Jacumba Valley Groundwater Basin exceeds the use.

2.2 **Groundwater Elevations and Flow Direction**

Groundwater levels were measured in each groundwater well prior to transducer deployment on 6 November 2012 (Table 1). The depth to groundwater in supply wells at the site ranged from 41.44 ft bgs in the Daley Well to 60.24 ft bgs in Well #2. Based on pre-aquifer test groundwater elevations, groundwater flow beneath the site is estimated to be northerly, with a hydraulic gradient ranging from approximately 0.001 to 0.005 feet per foot (ft/ft) (Figure 2).

3. AQUIFER TESTING AND ANALYSIS

3.1 Constant-Rate Discharge Test

From 6 November to 10 November 2012, a constant-rate aquifer test was performed to address the aquifer test objectives. The aquifer test consisted of an ambient phase, pumping phase, and recovery phase. Data obtained from the constant-rate aquifer test are provided electronically in Appendix A. The following procedures for each phase of data collection were used during the constant-rate discharge test.

3.1.1 Ambient Phase

Prior to the start of the pumping test, Geosyntec deployed pressure transducers in the Daley Well and the Mid-Valley Well and measured each well's total depth and depth to groundwater (Table 1). After synchronizing each transducer and confirming the transducers were recording correctly, collection of ambient groundwater level data was performed for an approximate 24-hour period.

Current groundwater uses at the site consist of pumping from Well #3 at approximately 450 gpm for 8 to 10 hours per day, 5 days per week. Pumping in Well #3 was halted 4 days prior to commencing the ambient monitoring phase.

Data collection during the ambient monitoring phase was performed at 10 minute (linear) at the two closest observation wells (Daley Well and Mid-Valley Well). Manual water level measurements were collected at the start and end of the ambient data collection phase and transducer data was downloaded prior to the start of the pumping phase of the test. Manual water level measurements were also obtained in Well #2, where no transducer was deployed. Ambient monitoring of the pumping well (Well #3) was not performed because of ongoing modifications to the depth and configuration of the sounding tube at this location. Based on the proximity to the nearest observation well (Daley well, 60 ft north) it is believed that data from this location were representative of pre-pumping conditions in the vicinity of Well #3.

3.1.2 Pumping Phase

At the conclusion of the ambient monitoring period, Geosyntec deployed a pressure transducer in Well #3, and each transducer was synchronized and re-programmed to begin data collection a few seconds prior to the start of the pump test as follows:

- Pumping well (Well #3): Logarithmic data collection.
- Observation wells (Daley Well and Mid-Valley Well): Linear data collection (10 minute intervals).

During the operation of the constant-rate pumping test, manual measurement of the water levels in the observation wells (including Well #2) were performed at regular intervals and the discharge rates were frequently recorded. Minor adjustments to the pump discharge rate were made to maintain a relatively consistent target discharge rate of 350 gpm.

3.1.3 Recovery Phase

At the end of the 72-hour pumping period final manual water level measurements were obtained and data from each transducer was downloaded. Prior to pump shutdown each transducer was synchronized and re-programmed to begin data collection a few seconds prior to the end the pumping phase as follows:

- Pumping well: Logarithmic data collection.
- Observation wells: Linear data collection.
 - o Daley Well: 5 minute intervals at the Daley well.
 - o Mid-Valley Well: 10 minute intervals.

Manual measurements consistent with the frequencies performed during the pumping phase were conducted until adequate recovery data was collected from each location where drawdown was observed.

3.2 Analysis of Aquifer Test Data

3.2.1 Observed and Projected Drawdown

At the conclusion of the pumping test, measured levels of drawdown ranged from 4.07 feet in the Daley well (northern observation well) to 7.30 feet in Well #3 (pumping well). No groundwater elevation changes outside of diurnal variations were observed in either of the southern observation wells, indicating that the 72-hour aquifer test had no influence on wells outside of 0.5 miles from the pumping well. Following review of the 72-hour drawdown data, the projected 6-month drawdown for the Daley Well and Well #3 are estimated to range from approximately 9 feet to 12 feet, respectively (Figure 3).

Therefore, based on the static groundwater depth in Well #3 (approximately 42 ft bgs), the projected drawdown after 6 months of pumping at a continuous rate of 350 gpm (12 feet), and the reported pump inlet depth (approximately 86 ft bgs) the groundwater depth at 6 months of operation is estimated to be 54 ft bgs. Taking into account the maximum range of historical seasonal groundwater fluctuations (approximately 17 ft; Appendix B) in this area [DPLU, 2009], the total depth to groundwater in Well #3 could reach a levels of 71 ft bgs. Therefore, the available data indicates that Well #3 is capable of providing both short- and long-term water resources for Project construction.

A summary of the 72-hour observed and 6-month projected drawdowns are provided in Table 2. A graphical representation of the drawdown data obtained from Well #3 and the Daley Well, along with their respective 6-month projected drawdowns are provided on Figure 3.

3.2.2 Aquifer Properties

Drawdown data collected from the Daley Well and recovery data collected from Well #3 were analyzed using AqtesolvTM software to calculate the aquifer transmissivity (T) and hydraulic conductivity (K) in the vicinity of the pumping well (Appendix C, Figures C-1 and C-2). Results of drawdown data analysis in the Daley Well using the Cooper-Jacob method estimated a transmissivity value of approximately 8,779 square feet per day (ft²/day). Results of recovery data analysis in Well #3 using the Theis Approximation method estimated a transmissivity of 12,950 ft²/day. These results were calculated using an aquifer thickness equivalent to 58 ft. (the saturated thickness of the screened interval of Well #3 at the start of testing), these transmissivity values equate to hydraulic conductivity (K = T/b) values ranging from approximately 151 feet per day (ft/day) to 223 ft/day, respectively.

Storage in the alluvial aquifer has been estimated to range from 3,200 acre-feet to 16,000 acre-feet (DWR, 2004). Based on the estimated current domestic demand [165 acre-feet per year (DPLU, 2009)], estimated minimal annual basin recharge of approximately 1,456 acre-feet per year (DPLU, 2009), and the projected peak temporary 6-month project demand (276 acre-feet), adequate water storage in the alluvial aquifer is available to meet existing demand and temporary project construction needs without adversely affecting the aquifer conditions in the short- or long-term.

Specific yield was estimated using the late-time drawdown data in the Cooper-Jacob Method (Figure B-3). A specific yield of 0.2349 (23.49 percent) was estimated from the Daley Well drawdown data, consistent with previously calculated values for the alluvial aquifer (DWR, 2004).

3.3 Aquifer Impact Analysis

Based on the aquifer test data and the 6-month projected drawdown data, Well #3 is a viable source for providing the projected water quantities for the 6-month project during construction. Using the projected 6-month drawdown data from Well #3 and the Daley Well (Figure 2), the estimated extent of the 6-month cone of depression resulting from the Project's temporary groundwater pumping activities was plotted (Figure 4).

Based on the projected aquifer drawdown, the temporary drawdown in the alluvial aquifer resulting from pumping to support the maximum construction water use rate over 6 months is expected to be limited to an area less than 300 feet surrounding the Well #3.

The limited extent of anticipated temporary drawdown and the absence of private domestic wells (not under the control of JVR) within this radius indicate that no permanent impacts to the aquifer or adverse effects to offsite domestic supply wells are anticipated to result during the proposed groundwater pumping activities.

Furthermore, the range of drawdown expected occur during the duration of Project activities (approximately 9.0 to 12.0 ft), are within the reported range of historical seasonal groundwater fluctuations in the Jacumba area [DPLU, 2009]. Therefore, pumping activities associated with the project are not expected to promote subsidence outside of any normal ranges that may occur in this area due to seasonal water level fluctuations.

4. SUMMARY AND CONCLUSIONS

4.1 **Aquifer Testing**

Drawdown data collected from the Daley Well and recovery data collected from Well #3 were analyzed using AqtesolvTM software to calculate the aquifer transmissivity (T) and hydraulic conductivity (K) in the vicinity of the pumping well (Figures C-1 and C-2). Results of data analysis estimated transmissivity values of ranging from approximately 8,779 ft²/day in the Daley Well to 12,950 ft²/day in Well #3. These transmissivity values equate to hydraulic conductivity values of approximately 151 feet per day (ft/day) and 223 ft/day, respectively. A specific yield of 0.2349 (23.49 %) was estimated using the late time data in the Cooper-Jacob Method (Figure C-3).

The most recent study for the Jacumba Valley Groundwater Basin estimates groundwater in storage to be approximately 32,600 acre-feet (DPLU, 2009), though studies specific to the alluvial aquifer have estimated groundwater in storage to range from 3,200 acre-feet to 16,000 acre-feet (DWR, 2004), with an estimated minimum recharge of 1,456 acre-feet per year (DPLU, 2009). Based on these data and the estimated cumulative demand during project activities (165 acre-feet per year existing demand and projected 276 acre-feet temporary maximum project demand), there is adequate water storage and recharge in the alluvial aquifer to meet existing demand and temporary project construction needs without adversely affecting the aquifer conditions in the short- or long-term.

4.2 Aquifer Impact Analysis

Based on the data collected during the 72-hour constant-rate aquifer test at JVR production Well #3 and the apparent surplus of groundwater storage, the current pump configuration and aquifer conditions are adequate to support the proposed volume (276-acre-feet), extraction rate (350 gpm), and duration of maximum water use required by the Project (6 months). Following the short period of maximum water demand, lower volumes will be required (approximately 100,000 gallons per day) for Project related activities. These reduced volumes will lessen the horizontal and vertical limits of aquifer drawdown for Project activities to levels similar to those induced by JVRs current operations. Therefore, the groundwater pumping activities are not anticipated to cause adverse short- or long-term impacts to the aquifer, or nearby (within 0.5 miles) supply wells for the duration of the Project. Furthermore, the drawdown induced during the 6-months of maximum demand for Project construction is within reported historical seasonal groundwater fluctuations for the Jacumba area, and is not expected to induce subsidence outside of any normal occurrences.

5. **RECOMMENDATIONS**

This report documents the procedures and results of the 72-hour constant-rate aquifer test performed on Well #3 at the site located in Jacumba, California. The available data indicate that current pump and aquifer conditions are capable of supplying sufficient water and no adverse effects to the aquifer or surrounding supply wells are anticipated to result from the proposed pumping activities. Routine (monthly) monitoring of groundwater levels is recommended during project construction to document water levels in the accessible wells on the JVR property and monitor variations attributable to pumping in support of Project construction and seasonal groundwater fluctuation.

6. REFERENCES

- DPLU (Department of Planning and Land Use), 2009. County of San Diego Department of Planning and Land Use General Plan Update Groundwater Study, Figure 2-58. May 18, 2009.
- DWR (Department of Water Resources). 2004. *Hydrologic Region Colorado River, Jacumba Valley Groundwater Basin; California's Groundwater Bulletin 118.* February 27, 2004. Accessed 14 November 2012, at: http://www.water.ca.gov/pubs/groundwater/bulletin_118/basindescriptions/7-47.pdf

Geosyntec Consultants

Table 1 Summary of Static Groundwater Depths and Well Characteristics Jacumba Valley Ranch Property Jacumba, California

Well	Gauging Date	Approximate Elevation (ft msl)	Height of Reference Point (ft above ground)	Depth to Water (ft toc)	Depth to Water (ft bgs)	Approximate Groundwater Elevation (ft msl)	Total Depth (ft bgs)	Pump Inlet Depth (ft bgs)
Well #3	11/6/2012	2765	2.331	44.24	41.91	2,723.09	100 ²	86.00
Daley Well	11/6/2012	2765	2.21	43.65	41.44	2,723.56	147.99	NA
Mid-Valley Well	11/6/2012	2789	1.71	52.73	51.02	2,737.98	89.99	NA
Well #2	11/6/2012	2800	1.46	61.70	60.24	2,739.76	112.77	NA

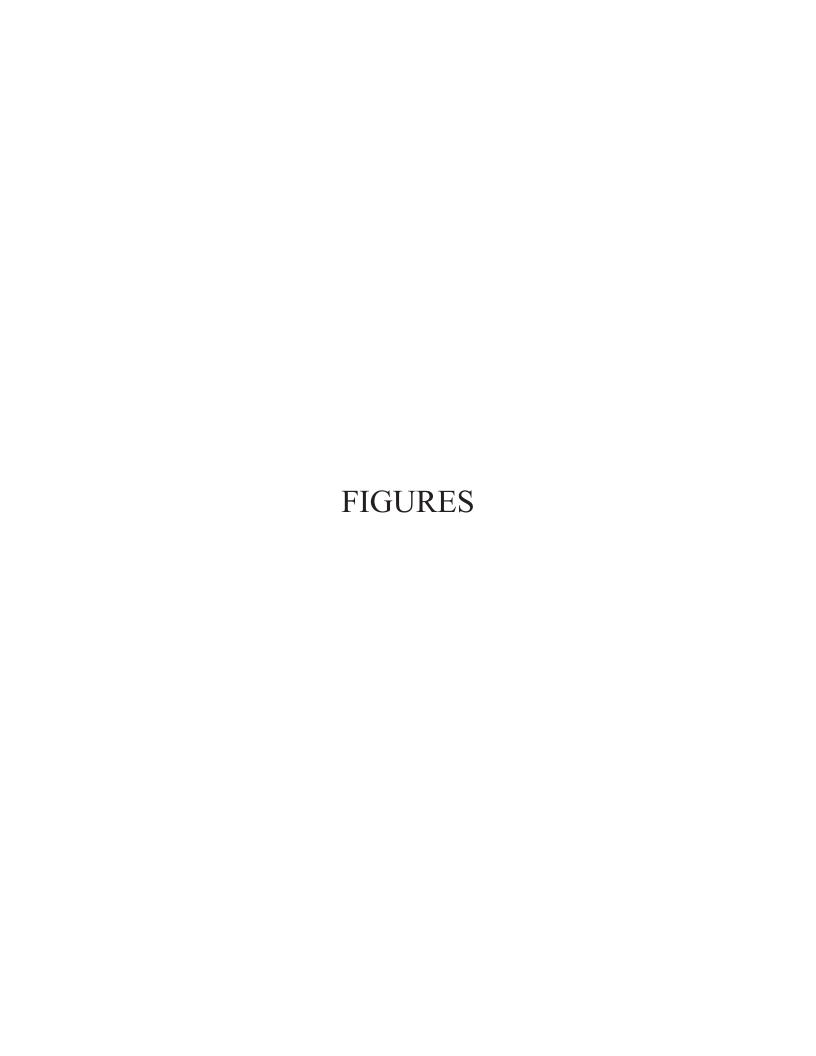
Notes:

- 1 Measured before modifications to sounding tube.
- 2 Obtained from construction log (Appendix A).

ft msl - feet above mean sea level (estimated based on online resources).

ft - feet

ft bgs - feet below ground surface


ft toc - feet below top of casing

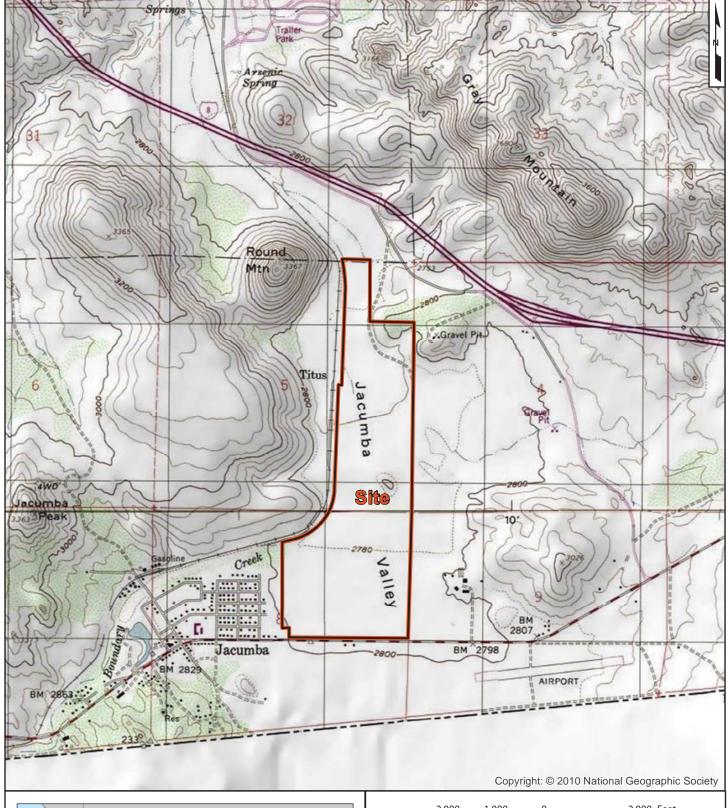
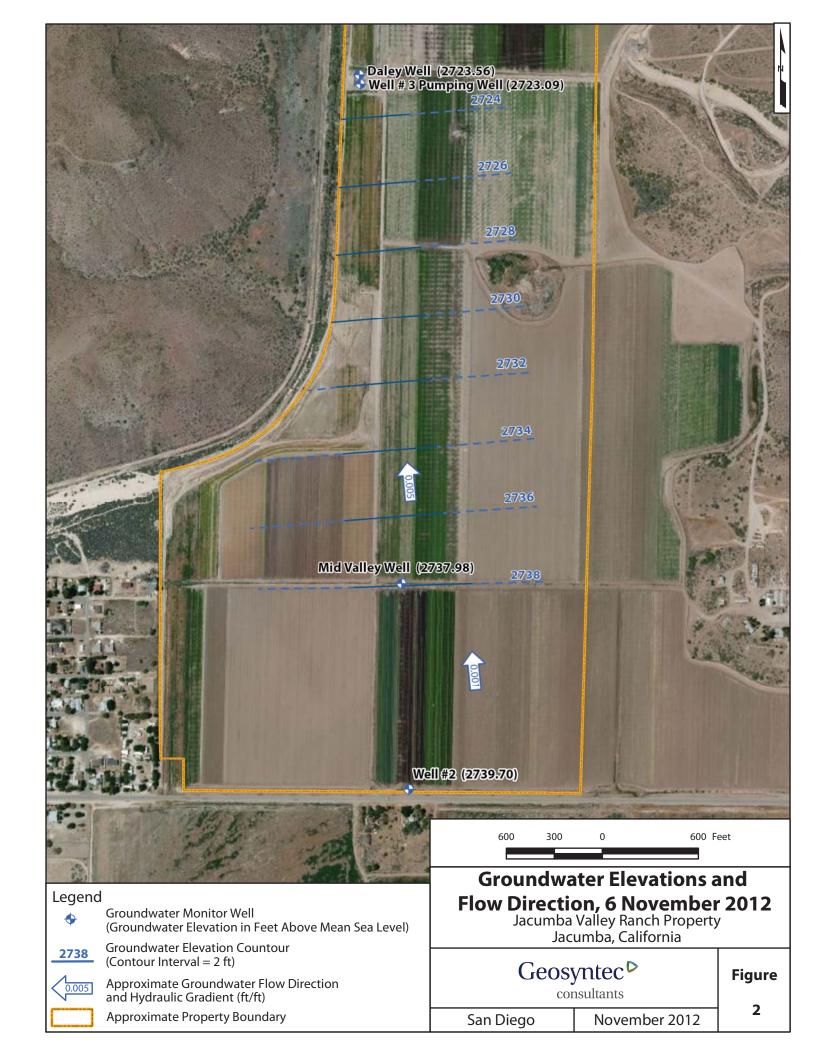
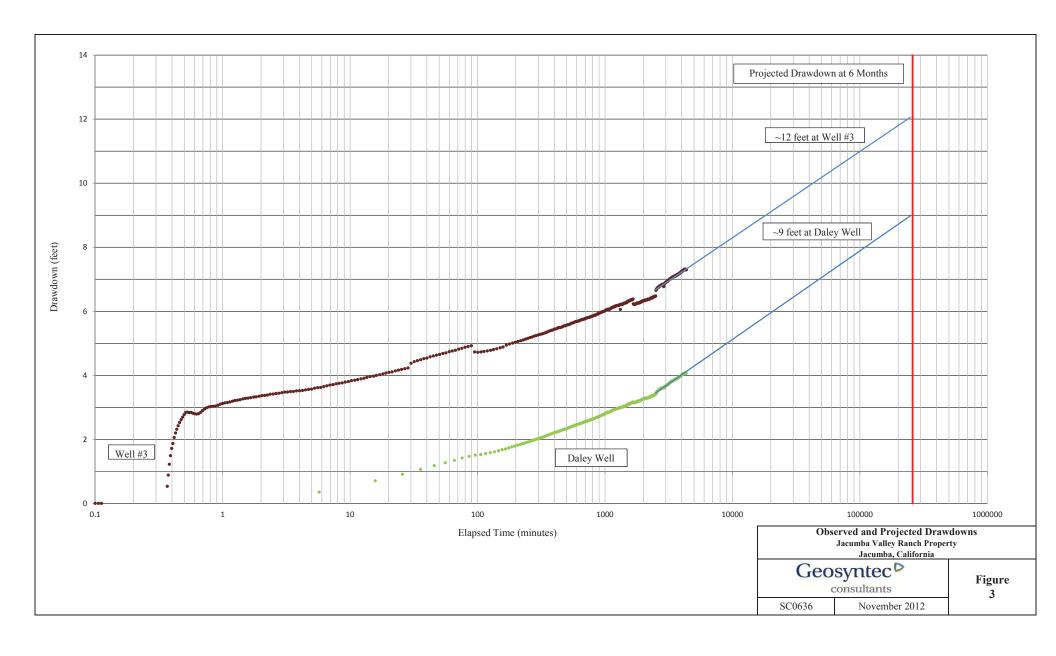

NA - Not Applicable

Table 2 Summary of Observed and Projected Drawdown Data Jacumba Valley Ranch Property Jacumba, California

Constant Rate Discharge Test					
D	Pumping Well	ell			
Parameter	Well #3*	Daley Well	Mid-Valley Well	Well #2	
Maximum Drawdown (ft) (72-Hours)	7.3	4.07	0	0	
Projected Drawdown (ft) (6-Months)	12	9	0	0	
Approx. Distance From Pumping Well	0	60 feet	0.6 Miles	0.85 Miles	

2,000	1,000	0	2,000 Feet


Site Vicinity and Location Map


Jacumba Valley Ranch Property Jacumba, California


Geosyntec [▶]	
consultants	

Figure 1

San Diego November 2012

APPENDIX A Constant-Rate Aquifer Test Data

APPENDIX B DPLU GP Update Report Excerpts

Table C-37 Jacumba Valley Basin Groundwater in Storage Calculations

600 Units were not on GP Update Map for Specific Plan Area - Included additional 300 afy manually in the calculations

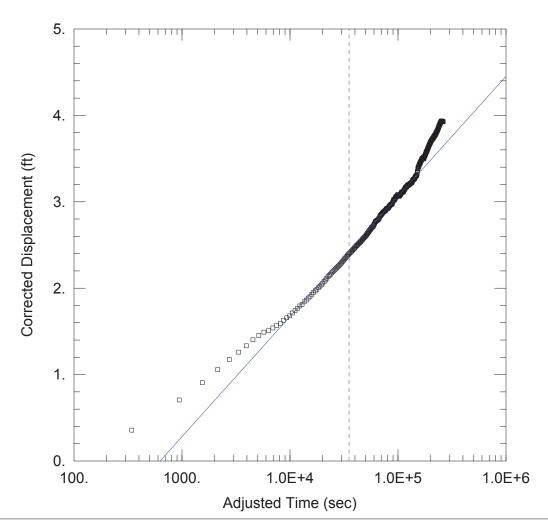
Size (Acres)	16039
Modeled Maximum GW in Storage (AF)	32601
Modeled Average GW Recharge (AFY)	1456

		Estimated	Estimated
	Estimated GW	Average GW in	Minimum GW in
Scenario	Demand (AFY)	Storage	Storage
Existing Conditions	165	100%	99%
Current General Plan Buildout	2295	54%	1%
Referral Map Buildout	1259	91%	74%
Draft Land Use Map Buildout	1258	91%	74%
Hybrid Map Buildout	1258	91%	74%
Environmentally Superior Buildout	1008	93%	81%
Cumulative Impacts Buildout	1258	91%	74%

Note: Future predicted change in the amount of groundwater in storage for scenarios is based upon historical precipitation from July 1971 to June 2005. Scenarios with estimated groundwater in storage at or below 50% at any time are considered to have a potentially significant impact to groundwater resources.

AF - Acre-Feet

AFY- Acre-Feet Per Year


GW - Groundwater

Change of GW in Storage - Referral Map Buildout

Figure 2-58: Jacumba Community Sponsor Group **Town Center Well Hydrographs** 0 -5 Depth (ft below top of casing) -15 → JAC-01 (Active) -20 JAC-02 (Active) -25 Mote: "A" indicates that the well is artesian. May-95 May-96 May-98 May-05 May-97 May-99 May-00 May-01 May-02 May-03 May-04 May-06 May-08 May-07 Date

$\begin{array}{c} \text{APPENDIX C} \\ \text{Aqtesolv}^{\text{TM}} \text{ Output Reports} \end{array}$

FIGURE C-1

Data Set: Q:\SC0636 JVR Aquifer Test\AQTESOLV\Daley Well.Drawdown.Figure C-1.aqt

Date: 11/21/12 Time: 10:35:10

PROJECT INFORMATION

Company: Geosyntec Consultants

Client: JVR
Project: SC0636
Location: Jacumba
Test Well: Well #3
Test Date: 11/7/2012

AQUIFER DATA

Saturated Thickness: 58. ft Anisotropy Ratio (Kz/Kr): 1.174E-5

WELL DATA

 Pumping Wells

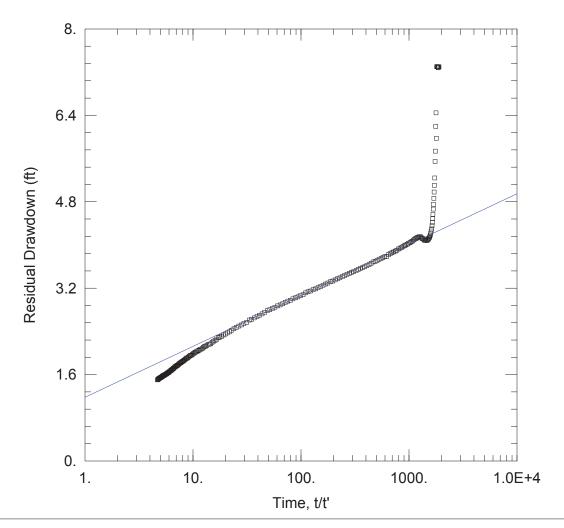
 Well Name
 X (ft)
 Y (ft)

 Well #3
 0
 0

 Daley Well
 60
 0

Well Name	X (ft)	Y (ft)
□ Daley Well	60	0

Observation Wells


SOLUTION

Aquifer Model: Unconfined

Solution Method: Cooper-Jacob

 $T = 8778.5 \text{ ft}^2/\text{day}$

S = 0.03976

FIGURE C-2

Data Set: Q:\SC0636 JVR Aquifer Test\AQTESOLV\Well#3.Figure C-2.aqt

Date: <u>11/21/12</u> Time: <u>10:28:57</u>

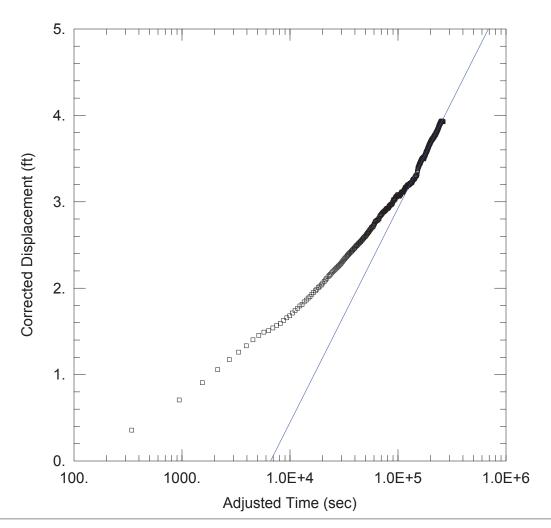
PROJECT INFORMATION

Company: Geosyntec Consultants

Client: JVR
Project: SC0636
Location: Jacumba
Test Well: Well #3
Test Date: 11/7/2012

AQUIFER DATA

Saturated Thickness: 58. ft Anisotropy Ratio (Kz/Kr): 1.


WELL DATA

Pumping Wells			Observation Wells		
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)
Well #3	0	0	□ Well #3	0	0

SOLUTION

Aquifer Model: Confined Solution Method: Theis (Recovery)

 $T = 1.295E+4 \text{ ft}^2/\text{day}$ S/S' = 0.05601

FIGURE C-3

Data Set: Q:\SC0636 JVR Aquifer Test\AQTESOLV\Daley Well.Drawdown.Figure C-3.aqt

Date: 11/21/12 Time: 10:30:35

PROJECT INFORMATION

Company: Geosyntec Consultants

Client: JVR
Project: SC0636
Location: Jacumba
Test Well: Well #3
Test Date: 11/7/2012

AQUIFER DATA

Saturated Thickness: <u>58.</u> ft Anisotropy Ratio (Kz/Kr): <u>1.174E-5</u>

WELL DATA

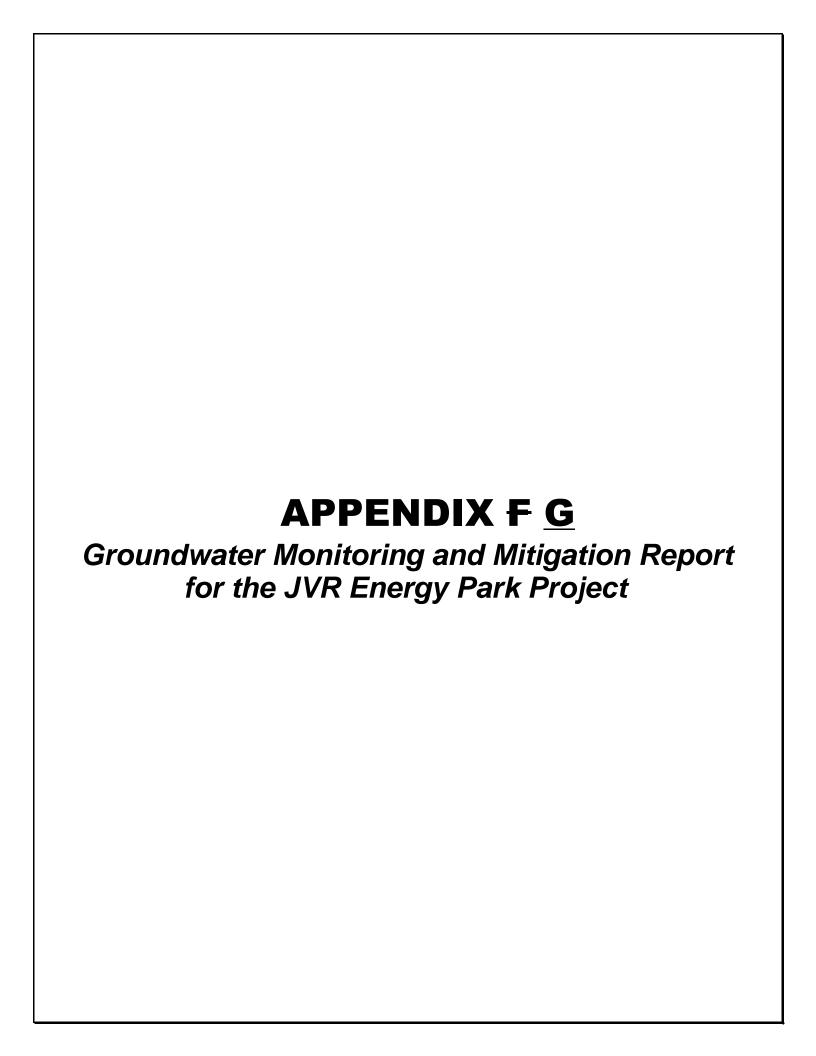
 Pumping Wells

 Well Name
 X (ft)
 Y (ft)

 Well #3
 0
 0

 Daley Well
 60
 0

Observation Wells				
Well Name X (ft) Y (ft)				
□ Daley Well	60	0		


SOLUTION

Aquifer Model: Unconfined

Solution Method: Cooper-Jacob

 $T = 4923.3 \text{ ft}^2/\text{day}$

S = 0.2349

Groundwater Monitoring and Mitigation Plan for the JVR Energy Park Project Jacumba Hot Springs, San Diego County, California

Lead Agency:

County of San Diego Planning and Development Services

5510 Overland Avenue San Diego, California 92123 Contact: Bronwyn Brown

Project Proponent:

JVR Energy Park LLC

17901 Van Karman Avenue, Suite 1050 Irvine, California 92614 Contact: Patrick Brown

Prepared by:

DUDEK

605 Third Street
Encinitas, California 92024
Contact: Trey Driscoll

July 2020

SIGNATURE PAGE

This draft Groundwater Monitoring and Mitigation Plan for the JVR Energy Park Project has been prepared under the direction of a professional geologist licensed in the State of California in accordance with Business and Professions Code Sections 6735, 7835, and 7835.1, and consistent with professional standards of practice.

ARTHUR DRISCOLL
No. 8511

OF CALIFORNIA

Athus

A. Daise

Arthur Storer Driscoll, III (Trey) PG No. 85 I I, CHG No. 936

TABLE OF CONTENTS

<u>Se</u>	<u>ction</u>	Page No.
1	INTRODUCTION	1
2	ESTABLISHMENT OF GROUNDWATER THRESHOLDS	3
	2.1 Potential Off-Site Well Interference	
	2.2 Groundwater-Dependent Habitat	6
3	MONITORING PROCEDURES AND MITIGATION CRITERIA	7
	3.1 Groundwater Production and Groundwater Level Monitoring	
	3.2 Groundwater-Dependent Habitat Monitoring	
	3.2.1 Monitoring	
	3.3 Groundwater Mitigation Criteria	
4	REPORTING REQUIREMENTS	11
5	REFERENCES	13
6	LIST OF PREPARERS	15
AP	PENDIX	
A	Groundwater Level Hydrographs	
FIG	GURE	
1	Well Interference and Potential Groundwater-Dependent Habitat	17
TA	BLES	
1	Alluvial Aquifer Wells Within 0.5-Mile Radius of Extraction Wells	4
2	Baseline Conditions, Groundwater Level Threshold, and Current	
	Groundwater Levels	5

1 INTRODUCTION

The proposed JVR Energy Park Project (Proposed Project) is proposing the use of two on-site groundwater wells to supply water for construction, operations and maintenance, and decommissioning and dismantling of a 90-megawatt photovoltaic solar facility and 20-megawatt battery energy storage system. Dudek has prepared this Groundwater Monitoring and Mitigation Plan to provide protection of nearby groundwater-dependent habitat and to limit groundwater level decline in off-site groundwater wells caused by groundwater extraction by the Proposed Project.

As described in the Groundwater Resources Investigation Report for JVR Energy Park (Groundwater Investigation) (Dudek 2020), the Proposed Project is proposing to extract 140 acrefeet of groundwater for approximately 1 year of construction, 11 acre-feet per year for ongoing operations and maintenance, and 50 acre-feet for decommissioning and dismantling from on-site Well #2 and Well #3 (Figure 1, Well Interference and Potential Groundwater-Dependent Habitat).

Well #2 is located within Assessor's Parcel Number 660-150-18, located on the north side of Old Highway 80. Well #3 is located on the adjacent parcel to the north on Assessor's Parcel Number 660-020-02 (Figure 1). Both wells are located within the Project site.

The results of the Groundwater Investigation indicate that short-term pumping of Well #2 and Well #3 would result in a less-than-significant impact to groundwater storage. Additionally, the Groundwater Investigation analyzed the effects of Proposed Project pumping over a 90-day, 1-year, and 5-year period. Under the most conservative scenario (90 days of continuous groundwater extraction at a pumping rate of 352 gallons per minute), drawdown from Proposed Project pumping at the nearest off-site well and groundwater-dependent habitat would be 1.08 feet from pumping Well #2 and 3.66 feet from pumping Well #3 (Dudek 2020). Based on the findings of the Groundwater Investigation, the Proposed Project is unlikely to draw down the groundwater table to the detriment of groundwater-dependent habitat, which is typically a drop of 3 feet or more from historical low groundwater levels, or cause a significant impact to off-site groundwater users, which is typically a drop of 5 feet or more. \(^1\)

This Groundwater Monitoring and Mitigation Plan establishes protective groundwater drawdown thresholds for off-site well interference and groundwater-dependent habitat. This Groundwater Monitoring and Mitigation Plan also describes the monitoring, mitigation, and reporting procedures by which the County of San Diego Planning and Development Services (PDS) can validate that the conditions and criteria for the Proposed Project's groundwater extraction activities are continually being upheld. A 5-year monitoring period is proposed to assess the impact of groundwater extractions.

-

Current groundwater levels near Well #2 and Well #3 are at least 12 feet higher than the historical low groundwater level recorded in the Jacumba Valley alluvial aquifer. Well #2 and Well #3 pumping for the Proposed Project is not expected to draw down the groundwater table greater than 3 feet from the historical low.

2 ESTABLISHMENT OF GROUNDWATER THRESHOLDS

According to the County of San Diego Guidelines for Determining Significance and Report Format Content Requirements – Groundwater Resources, Proposed-Project-related groundwater extraction would incur a significant well interference impact if, after a 5-year projection of drawdown, the results indicate a decrease in water level of 5 feet or more in the off-site wells (County of San Diego 2007). If site-specific data indicates alluvium or sedimentary rocks exist, which substantiate a saturated thickness greater than 100 feet in off-site wells, a decrease in saturated thickness of 5% or more in the off-site wells would be considered a significant impact (County of San Diego 2007). The County of San Diego's Guidelines for Determining Significance and Report Format and Content Requirements – Biological Resources defines a project-related drawdown of 3 feet below historical low groundwater levels as causing a significant impact to riparian habitat of a groundwater-sensitive natural community (County of San Diego 2010). The thresholds established below incorporate these guidelines and represent a basis for monitoring and mitigating potential groundwater impacts related to the Proposed Project.

2.1 Potential Off-Site Well Interference

As described in the Groundwater Investigation, alluvial aquifer production wells identified near Well #2 and Well #3 include Well Km, the Highland Center Well, the Park Well, and the Border Patrol Well (Figure 1). Additionally, monitoring wells identified near Well #2 and Well #3 include the Daley Well and the Central Irrigation Well.² These four production wells, Well #2 and Well #3, and two monitoring wells should be included in the groundwater-monitoring network.

The Highland Center Well, the Park Well, and Well #2 are already included in a groundwater-monitoring network for Jacumba Solar operations and maintenance groundwater extraction, and are equipped with pressure transducers. Pressure transducer data from these wells and manual measurements will be included in the Groundwater Monitoring and Mitigation Plan (Appendix A). The pressure transducers record the groundwater level in the wells at sub-daily, 15-minute intervals; the level is confirmed periodically through manual groundwater-level measurements recorded with a sounder.

Well Km is operated by the Jacumba Valley Ranch Water Company, which operates as a transient non-community water system. The Border Patrol Well, an inactive well with unknown condition, is enclosed in a locked pump house. The Proposed Project should identify and contact the owners of Well Km and the Border Patrol Well to attempt to gain access for ongoing groundwater level monitoring. If access is granted to monitor these wells, a pressure transducer should be installed

-

Additional groundwater monitoring wells are identified in the Groundwater Investigation near Well #2 and #3, but these have been properly destroyed in accordance with County of San Diego and state requirements by the Jacumba Community Services District (JCSD) as part of its Domestic Water Supply System Improvements project. JCSD Wells #1, #2, #3, and #5 were properly destroyed.

in both wells. Manual measurements should be recorded periodically to confirm groundwater level measurement accuracy.

Groundwater wells that should be included in the groundwater-monitoring network and their distance to Well #2 and Well #3 are indicated in Table 1 and depicted in Figure 1.

Table 1
Alluvial Aquifer Wells Within 0.5-Mile Radius of Extraction Wells

Well Name	Owner/Status	Owner/Status Distance from Well #2 (feet)				
	Production					
Well Km ^a	Small Water System/Active	2,453	3,548			
Highland Center Well	JCSD/Active	1,817	4,835			
Park Well	JCSD/Active	2,256	5,025			
Border Patrol Wella	Federal/Inactive	1,892	6,235			
Monitoring						
Daley Well	JVR/NA	4,460	60			
Central Irrigation Well	JVR/NA	2,692	2,713			

NA = Not applicable; JCSD = Jacumba Community Services District; JVR = Jacumba Valley Ranch

Static groundwater-level measurements should be collected at each of the wells in the groundwater-monitoring network, if accessible, prior to the start of construction. Baseline groundwater levels should be established for Well Km, the Border Patrol Well, the Daley Well, and the Central Irrigation Well, provided the wells are accessible for monitoring.

Pre-construction baseline conditions for the Jacumba Valley alluvial aquifer were determined on January 18, 2017, which consisted of manually measuring groundwater levels and installing new pressure transducers into monitoring network wells. The County of San Diego PDS has requested that the baseline conditions established in January 2017 for the Highland Center Well, Park Monitoring Well, and JVR Well 2 be carried over to future projects. Baseline conditions from January 2017 for groundwater level threshold and current groundwater levels are presented in Table 2. Jacumba Community Services District Well 4 is not used as part of the mitigation plan for this Proposed Project due to its distance from the Project site.

Well Km and the Border Patrol Well are privately owned wells that will need access granted by their respective well owners before monitoring can occur.

Table 2
Baseline Conditions, Groundwater Level Threshold, and Current Groundwater Levels

Well ID	Baseline Groundwater Level Measurement (Feet BTOC) ^a	Threshold Condition (Drawdown, Feet)	Groundwater Level Threshold (Feet BTOC)	Current Groundwater Level Measurement (Feet BTOC / Date)
Highland Center Well	55.05	N/A	N/A	56.75 / May 12, 2020
Park Monitoring Well	57.71	N/A	N/A	59.18 / May 12, 2020
Gas Station Well	64.25	N/A	N/A	65.67 / May 12, 2020
JVR Well 2	55.40	N/A	N/A	59.27 / May 12, 2020
Central Irrigation Well	48.09	52.89	4.80 feet below baseline condition	48.09 / May 12, 2020

Source: Dudek 2020

Major Use Permit (MUP) established threshold conditions per MUP PDS2014-MUP-14-041 Sections 15, 29, and 30

BTOC = below top of casing; N/A = not applicable (no water level thresholds identified in the MUP)

To protect off-site well users and comply with County of San Diego Guidelines, a maximum drawdown of 5 feet below the baseline groundwater levels will be allowed in accessible production wells. The nearest off-site production well is Well Km. If Well Km is not accessible for groundwater level monitoring, a maximum drawdown of 4.80 feet at the Central Irrigation Well below the groundwater level baseline will be allowed.³

If Well Km is accessible, a maximum drawdown of 5 feet at off-site production wells, Well Km, the Highland Center Well, the Park Well, and the Border Patrol Well, if accessible, should be established from the baseline groundwater level measurements.⁴ Baseline groundwater level measurements and groundwater level thresholds for the Gas Station Well were established in January 2017 and are provided in Table 2.

Results of the off-site well interference analysis detailed in the Groundwater Investigation conclude that well interference is not anticipated to result in a significant impact. A groundwater-monitoring program will be implemented to establish a groundwater level baseline in the nearest off-site production wells or monitoring wells where applicable, and characterize change in groundwater levels due to Proposed Project groundwater extraction.

5

_

^a Measured on January 18, 2017

Maximum drawdown measurements below baseline groundwater levels for monitoring wells in the absence of accessibility to Well Km were calculated based on groundwater extraction from Well #2 at a pumping rate of 1,850 gallons per minute for 90 days using the Theis drawdown equation (Driscoll 1986) with a transmissivity value of 26,410 square feet per day and a storativity value of 0.00826; equivalent to 5 feet of estimated drawdown at Well Km.

The Jacumba Community Services District may supply groundwater for commercial sale to various renewable energy projects. If groundwater extraction for these projects occurs at the same time as Proposed Project groundwater extraction, thresholds at the Highland Center Well and the Park Well should not be applied to the Proposed Project because declining groundwater levels will be caused by pumping Jacumba Community Services District extraction wells, not from Proposed Project pumping.

2.2 Groundwater-Dependent Habitat

Groundwater-dependent vegetation habitat, mapped as mesquite bosque, is located approximately 1,820 feet from Well #2 and 140 feet from Well #3 (Figure 1). According to the Groundwater Investigation, the estimated drawdown at the nearest groundwater-dependent habitat after 90 days of Proposed Project groundwater extraction is 1.08 feet from pumping Well #2 and 3.66 feet from pumping Well #3. Current groundwater levels near Well #2 and Well #3 are at least 12 feet higher than the historical low groundwater level recorded in the Jacumba Valley alluvial aquifer. Based on this analysis, the Proposed Project is unlikely to draw down the groundwater table to the detriment of groundwater-dependent habitat, typically a drop of 3 feet or more from historical low groundwater levels.

Since historical groundwater-level measurements are available for groundwater wells on the Project site, a groundwater-dependent threshold can be applied in select wells. Historical well K1, located near the Central Irrigation Well, had a recorded historic low groundwater level of 60.7 feet below ground surface (bgs) in 1979 (Swenson 1981). Historical well K3, located near Well #2, had a recorded historical low groundwater level of 69.9 feet bgs in 1979 (Swenson 1981). Monitoring of the groundwater-dependent habitat would be required in the event that static groundwater levels in the Central Irrigation Well and Well #2 drop 3 feet below historical low groundwater levels, equivalent to 63.7 feet bgs and 72.9 feet bgs, respectively. Groundwater-dependent habitat procedures are described in Section 3.2, Groundwater-Dependent Habitat Monitoring.

-

Well #2 may be used as a groundwater extraction well for the Proposed Project. If Well #2 is regularly pumped, groundwater-level measurements may not be representative of static conditions. If a static groundwater-level measurement cannot be collected, the threshold for groundwater-dependent habitat should not be applied to Well #2.

3 MONITORING PROCEDURES AND MITIGATION CRITERIA

The groundwater-level monitoring, and if necessary groundwater-dependent habitat monitoring, procedures and mitigation criteria are outlined below and will be followed during pumping at Well #2 and Well #3. The groundwater monitoring program defined herein will be carried out under the direction of a Professional Geologist or Professional Engineer licensed in the State of California.

3.1 Groundwater Production and Groundwater Level Monitoring

Pressure transducers will be maintained in a network of four groundwater wells (the Daley Well, the Central Irrigation Well, the Highland Center Well, and the Park Well), as well as both Proposed Project production wells (Well #2 and Well #3). Additionally, Well Km and the Border Patrol Well will be included if property access is granted. The pressure transducers will be programed to record the water level sub-daily at 15-minute intervals. In addition, ambient barometric pressure and temperature will be recorded at 15-minute intervals with a barometric logger. Manual groundwater-level measurements may be required for Well Km and the Border Patrol Well if pressure transducers cannot be fitted in the wells due to lack of appropriately sized port or sounding tube.

Transducer data will be downloaded at all the instrumented wells for 1 month prior to the onset of Proposed-Project-related groundwater extraction. Transducer data will also be downloaded monthly during periods of pumping for construction water supply to the Proposed Project. Cumulative groundwater usage will be monitored at Well #2 and Well #3 using an instantaneous flow meter. Flow rate and volume measurements will be recorded daily during pumping for the Proposed Project.

3.2 Groundwater-Dependent Habitat Monitoring

The following monitoring program will be carried out for groundwater-dependent habitat if static groundwater levels in the Central Irrigation Well or Well #2 drop below the established threshold. The goal would be to determine if the Proposed Project's use of groundwater is affecting groundwater-dependent habitat.

3.2.1 Monitoring

Baseline data will be collected within a 0.5-mile radius of Well #2 and Well #3 (study area) (Figure 1). Potentially affected native trees within the study area will be evaluated for overall physical condition and attributes. The trees will be inventoried by an International Society of Arboriculture—Certified Arborist or Registered Professional Forester with specific experience evaluating riparian dominant species.

The baseline monitoring evaluations will include the following:

- Establishment of 18 equidistant plots or transects within the mesquite bosque and desert sink scrub habitat within 0.5 miles of Well #2 and Well #3. Sample plots/transects will include the range of existing habitat conditions, including elevation, slope and aspect, and proximity to roads and other land uses.
- Tagging of trees and recording species, tag number, trunk diameter at breast height (inches), height (feet), and dominance (i.e., whether the tree is under the canopy of another tree or forms the uppermost canopy) will occur. Slope, aspect, and elevation of each tree location, existing understory species (including proportion of natives to exotics); presence of debris and litter; and soil type, depth, and parent material will be noted for each tree or plot/transect.
- Assessment of tree status will occur, including documentation of the following:
 - Diameter at breast height measured at 4.5 feet aboveground (according to standard practices)
 - Number of stems
 - Overall tree height (based on ocular estimates)
 - o Tree crown spread (measurement in each cardinal direction, based on ocular estimate)
 - o Overall tree health condition (good, fair, poor, dead)
 - o Overall tree structural condition (good, fair, poor, dead)
 - o Pest presence (type, extent—minimal, moderate, high)
 - o Disease presence (type, extent—minimal, moderate, high)
 - Other specific comments
- Assessment of seedling establishment and sapling tree densities and conditions.
- The data collection procedure will include full data collection at each plot/transect so that consistency is maintained among sampling plots.
- Creation of database using GIS or similar application.

3.3 Groundwater Mitigation Criteria

The following mitigation criteria will be established to protect groundwater resources and groundwater-dependent habitat in the Project area:

- If the groundwater levels in Well Km, the Highland Center Well, the Park Well, and the Border Patrol Well drop 5 feet below the baseline groundwater level as a result of pumping Well #2 or Well #3, groundwater extraction at from Well #2 and Well #3 will cease for Proposed Project water supply until the groundwater level at the well that experienced the threshold exceedance has increased above the threshold and remained there for at least 30 continuous days. Additionally, written permission from County of San Diego PDS must be obtained before production for the Proposed Project may be resumed. If Well Km is not accessible, than the well interference threshold will be 4.80 feet at the Central Irrigation Well below baseline groundwater level measurements to not exceed the maximum drawdown of 5 feet at Well Km.
- If static groundwater levels drops more than 63.7 feet below ground surface in the Central Irrigation Well or 72.9 feet below ground surface in Well #2, then monitoring of the groundwater-dependent habitat will be triggered.
- If the groundwater levels exceed 3 feet below historical low groundwater levels (63.7 feet bgs in the Central Irrigation Well and 72.9 feet bgs in Well #2) and the arborist or forester finds evidence of deteriorating riparian habitat health, there may be a temporary or permanent cessation of pumping at the Well #2 and/or Well #3.

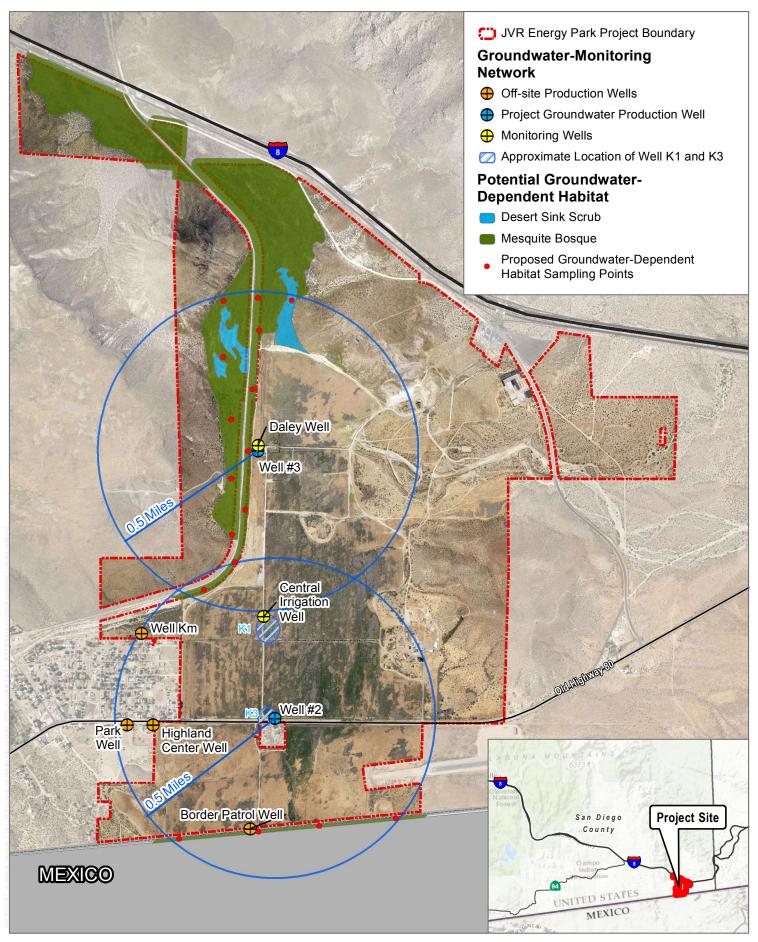
4 REPORTING REQUIREMENTS

A groundwater monitoring report will be completed by a Professional Geologist or Professional Engineer licensed in the State of California and will be submitted to County of San Diego PDS annually no later than 28 days following the end of the calendar year. Groundwater monitoring reports should be submitted for 5 years after Proposed Project construction has commenced. After 5 years, County of San Diego PDS should determine if continuous reporting is required based on the effects of groundwater extraction from the previous 5 years. The annual reports will include the following information:

- Groundwater level hydrographs and tabulated groundwater level data for each accessible well in the groundwater-monitoring network.
- Tabulated groundwater production volumes from Well #2 and Well #3.
- Documentation of any changes in well pumping or groundwater well conditions for wells in the groundwater-monitoring network.
- Documentation of groundwater-dependent habitat monitoring, if necessary, as described in Section 3.2.

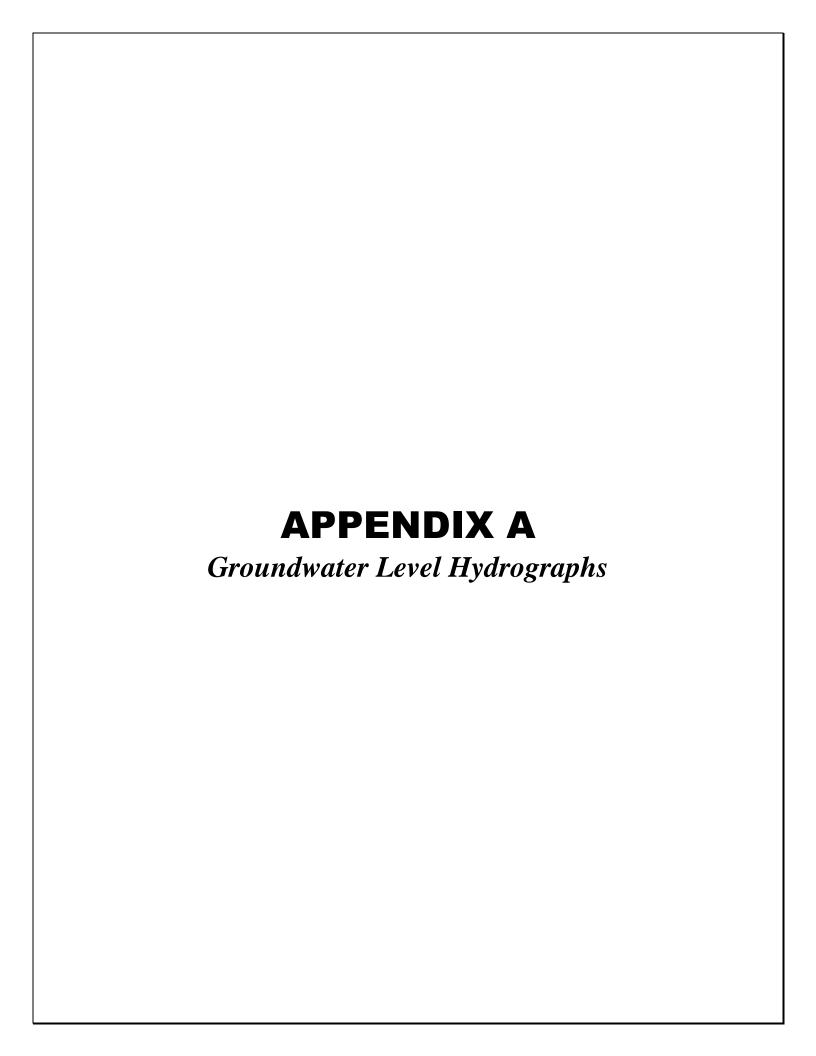
If the baseline groundwater levels at the wells included in the groundwater monitoring network are exceeded by 5 feet, County of San Diego PDS will be notified via letter and email within 1 working day of the exceedance, or immediately after the exceedance is recognized. Additionally, if groundwater level thresholds at the off-site wells are exceeded by their respective thresholds, pumping of Well #2 and Well #3 will cease and County of San Diego PDS will be notified via letter and email within 1 working day, or immediately after the exceedance is recognized.

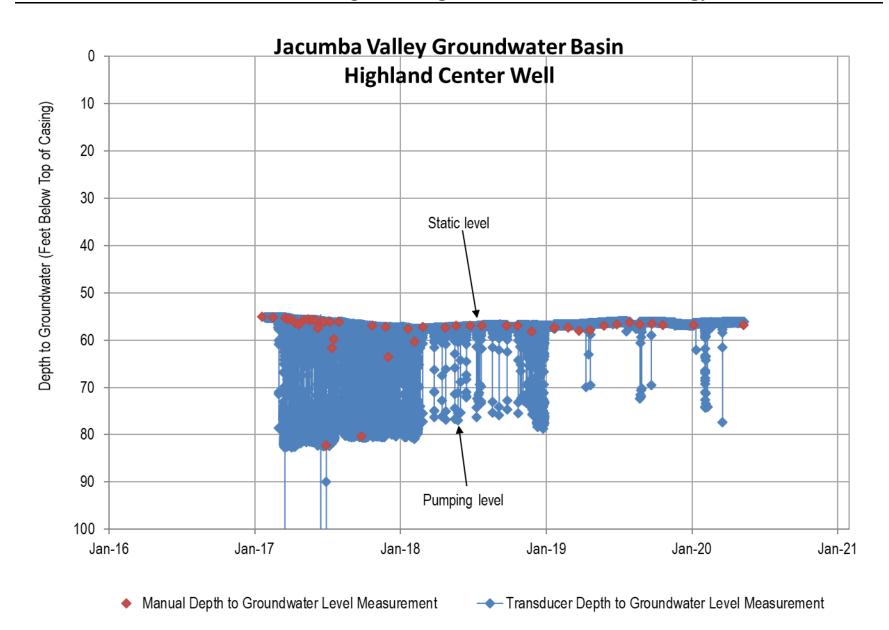
5 REFERENCES


- County of San Diego. 2007. County of San Diego, Guidelines for Determining Significance and Report Format and Content Requirements: Groundwater Resources. Land Use and Environment Group, Department of Planning and Land Use, Department of Public Works. March 19, 2007.
- County of San Diego. 2010. *County of San Diego, Guidelines for Determining Significance: Biological Resources*. Land Use and Environment Group, Department of Planning and Land Use, Department of Public Works. Fourth Revision. September 15, 2010.
- Driscoll, Fletcher G. 1986. Groundwater and Wells. St Paul, Minn: Johnson Division.
- Dudek. 2020. *Draft Groundwater Resources Investigation Report JVR Energy Park*. Prepared for JVR Energy Park LLC. February 2019.
- Swenson, G.A. 1981. Master's Thesis San Diego State University The Groundwater Hydrology of Jacumba Valley, California and Baja California.

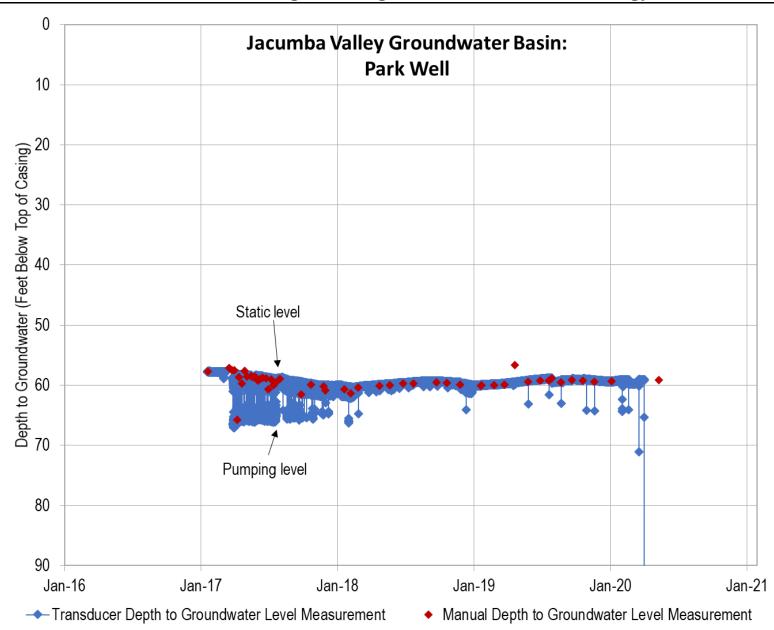
6 LIST OF PREPARERS

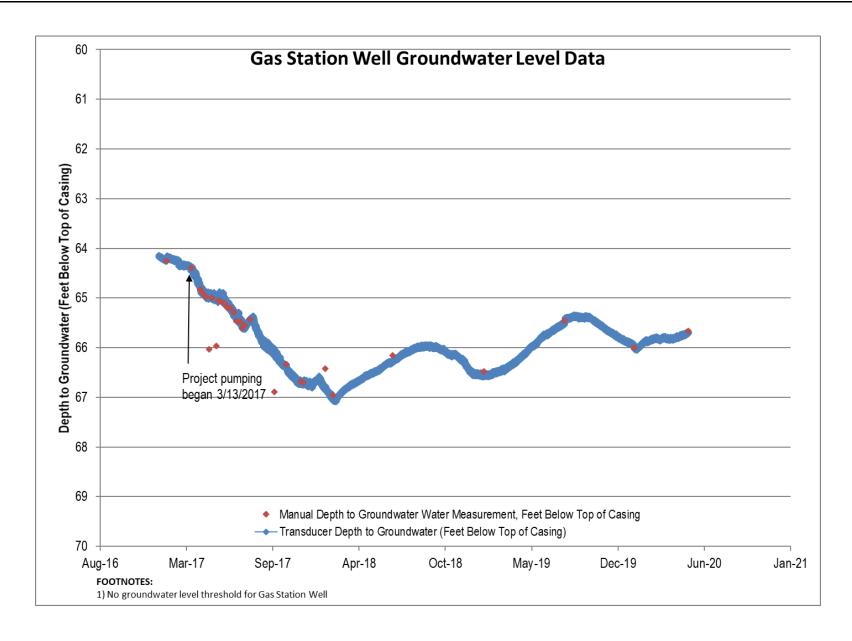
This Groundwater Monitoring and Mitigation Plan was prepared Dudek Hydrogeologist Trey Driscoll, PG, CHG, a County-approved hydrogeologist, and Dudek Hydrogeologist Hugh McManus. Dudek Arborist Michael S. Huff prepared the monitoring program for the groundwater-dependent habitat.

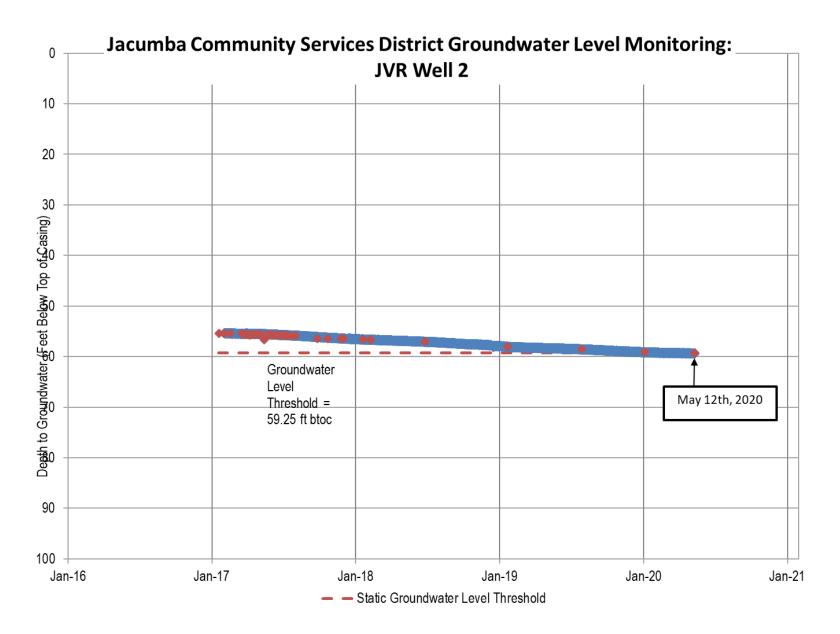


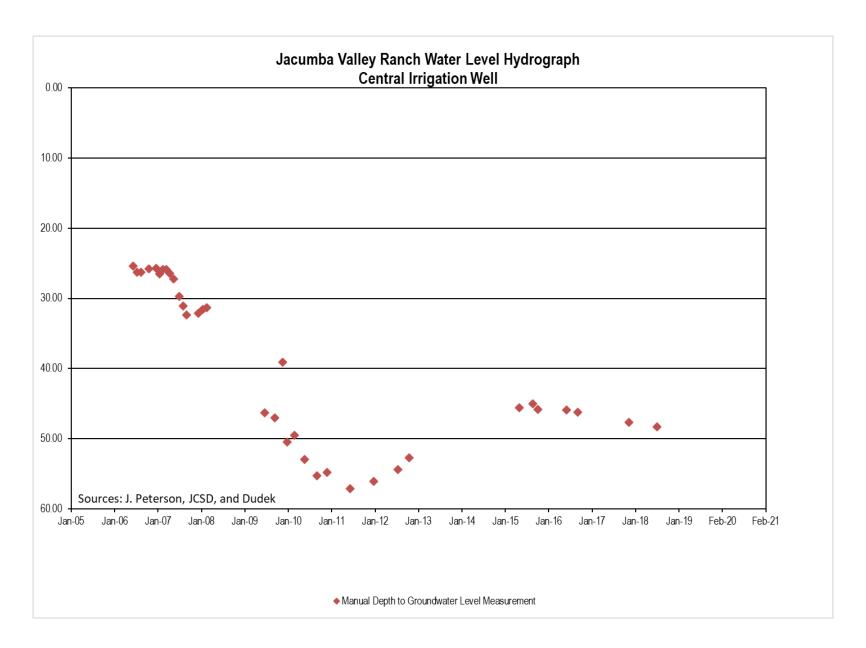

SOURCE: Dudek 2019

DUDEK


FIGURE 1







INTENTIONALLY LEFT BLANK

ATTACHMENT 3. Sieve Test Results (UES)

1441 Montiel Road, Suite 115 Escondido, CA 92026 p. 760.746.4955 | TeamUES.com LEA NO. 008

11			Conort of C	oil Ciovo Ano	lvoio	
		<u>'</u>	report of S	oil Sieve Ana	iysis	
Project Name:			re Station #43			Sample Location: TW-1 @ 55'
Project Number:						Sample Description:
Sampled By: Tested By:			te Sampled: Date Tested			Grey (SW)
rested by.	Е. І .	•	Date Testeu	3/12/2024		
					Specifications	s:
Total Wet Wt:	693.9				N/A	
Total Dry Wt:	681.2					
Sieve Size	Wt. (Grams)	% Retained	% Passing		Specifications	Remarks
2 inch (50.8 mm)	0.0	0	100			
1-1/2 inch (38.1 mm)	0.0	0	100			
1 inch (25.4 mm)	0.0	0	100			
3/4 inch (19.1 mm)	0.0	0	100			
1/2 inch (12.7 mm)	3.5	1	99			
3/8 inch (9.5 mm)	3.5	1	99			
#4 (4.75 mm)	17.8	3	97			
#8 (2.36 mm)	151.6	22	78			
#16 (1.18 mm)	270.0	40	60			
#30 (0.6 mm)	366.4	54	46			
#50 (0.3 mm)	429.5	63	37			
#100 (0.15 mm)	485.3	71	29			
#200 (0.075 mm)	545.1	80.0	20.0			
Tested in Accordance with AS	TM D1140, D6913					

1441 Montiel Road, Suite 115 Escondido, CA 92026 p. 760.746.4955 | TeamUES.com LEA NO. 008

			Conort of C	oil Sieve Ana	lveie	
			report of S	oui Sieve Ana	iyələ	T
Project Name:		Jacumba Fi	3		Sample Location: TW-1 @ 58'	
Project Number:	4830.2400003.0000	L	ab Number:	35558		Sample Description:
Sampled By:		Da	te Sampled:	2/20/2024		Grey (SC)
Tested By:	E.T.	•	Date Tested	3/12/2024		
	T	ı			Specification	S:
Total Wet Wt:	398.0				N/A	
Total Dry Wt:	392.3					
Sieve Size	Wt. (Grams)	% Retained	% Passing		Specifications	Remarks
2 inch (50.8 mm)	0.0	0	100			
1-1/2 inch (38.1 mm)	0.0	0	100			
1 inch (25.4 mm)	0.0	0	100			
3/4 inch (19.1 mm)	0.0	0	100			
1/2 inch (12.7 mm)	0.0	0	100			
3/8 inch (9.5 mm)	0.0	0	100			
#4 (4.75 mm)	0.0	0	100			
#8 (2.36 mm)	1.4	0	100			
#16 (1.18 mm)	6.5	2	98			
#30 (0.6 mm)	18.2	5	95			
#50 (0.3 mm)	29.8	8	92			
#100 (0.15 mm)	53.3	14	86			
#200 (0.075 mm)	157.3	40.1	59.9			
Tested in Accordance with AS	TM D1140, D6913					

1441 Montiel Road, Suite 115 Escondido, CA 92026 p. 760.746.4955 | TeamUES.com LEA NO. 008

			Poport of S	coil Siove And	veie	
			report of S	oil Sieve Ana	iyəis	T
Project Name:		Jacumba Fi		Sample Location: TW-1 @ 61'		
Project Number:	4830.2400003.0000		ab Number:			Sample Description:
Sampled By:			te Sampled:			Grey (SC)
Tested By:			Date Tested			
					lorrr.	
Total Wet Wt:	383.6				Specification: N/A	S:
					14/7	
Total Dry Wt:	376.9					
Sieve Size	Wt. (Grams)	% Retained	% Passing		Specifications	Remarks
2 inch (50.8 mm)	0.0	0	100			
1-1/2 inch (38.1 mm)	0.0	0	100			
1 inch (25.4 mm)	0.0	0	100			
3/4 inch (19.1 mm)	0.0	0	100			
1/2 inch (12.7 mm)	0.0	0	100			
3/8 inch (9.5 mm)	0.0	0	100			
#4 (4.75 mm)	0.2	0	100			
#8 (2.36 mm)	10.0	3	97			
#16 (1.18 mm)	23.4	6	94			
#30 (0.6 mm)	37.1	10	90			
#50 (0.3 mm)	53.2	14	86			
#100 (0.15 mm)	96.9	26	74			
#200 (0.075 mm)	190.2	50.5	49.5			
Tested in Accordance with AS	TM D1140, D6913					

1441 Montiel Road, Suite 115 Escondido, CA 92026 p. 760.746.4955 | TeamUES.com LEA NO. 008

		Į.	Report of S	oil Sieve Ana	alveie	
Project Name: Project Number: 4830.2400003.0000 Sampled By: D.D. Tested By: E.T.		Jacumba Fire Station #43			Sample Location: TW-1 @ 64' Sample Description: Grey (SM/SC)	
Total Wet Wt: Total Dry Wt:	542.5 514.4				Specifications N/A	s:
Sieve Size	Wt. (Grams)	% Retained	% Passing		Specifications	Remarks
2 inch (50.8 mm)	0.0	0	100			
1-1/2 inch (38.1 mm)	0.0	0	100			
1 inch (25.4 mm)	0.0	0	100			
3/4 inch (19.1 mm)	0.0	0	100			
1/2 inch (12.7 mm)	0.0	0	100			
3/8 inch (9.5 mm)	0.0	0	100			
#4 (4.75 mm)	0.0	0	100			
#8 (2.36 mm)	24.2	5	95			
#16 (1.18 mm)	70.3	14	86			
#30 (0.6 mm)	139.6	27	73			
#50 (0.3 mm)	206.6	40	60			
#100 (0.15 mm)	292.1	57	43			
#200 (0.075 mm)	375.5	73.0	27.0			
Tested in Accordance with AST	FM D1140 D6913					

1441 Montiel Road, Suite 115 Escondido, CA 92026 p. 760.746.4955 | TeamUES.com LEA NO. 008

Report of Soil Sieve Analysis								
Project Name: Project Number: Sampled By: Tested By:	D.D.	Jacumba Fi L Da	re Station #43 ab Number: te Sampled: Date Tested	3 35558 2/20/2024		Sample Location: TW-1 @ 67' Sample Description: Grey (SM/SW)		
Total Wet Wt: Total Dry Wt:	517.4 516.8				Specifications N/A	s:		
Sieve Size	Wt. (Grams)	% Retained	% Passing		Specifications	Remarks		
2 inch (50.8 mm)	0.0	0	100					
1-1/2 inch (38.1 mm)	0.0	0	100					
1 inch (25.4 mm)	0.0	0	100					
3/4 inch (19.1 mm)	0.0	0	100					
1/2 inch (12.7 mm)	0.0	0	100					
3/8 inch (9.5 mm)	7.4	1	99					
#4 (4.75 mm)	42.9	8	92					
#8 (2.36 mm)	208.6	40	60					
#16 (1.18 mm)	350.8	68	32					
#30 (0.6 mm)	434.6	84	16					
#50 (0.3 mm)	477.2	92	8					
#100 (0.15 mm)	498.4	96	4					
#200 (0.075 mm)	507.3	98.2	1.8					
Tested in Accordance with AS	TM D1140 D6913		•					

1441 Montiel Road, Suite 115 Escondido, CA 92026 p. 760.746.4955 | TeamUES.com LEA NO. 008

11			Conort of C	oil Ciovo Anal	vois	
			report of S	oil Sieve Anal	ysis	
Project Name: Project Number: Sampled By: Tested By:	D.D.	Date Sai		lumber: 35558 ampled: 2/20/2024 3/12/2024		Sample Location: TW-1 @ 70' Sample Description: Grey (SM)
					Specification	<u> </u> s:
Total Wet Wt:	Total Wet Wt: 539.2		· N/A		N/A	
Total Dry Wt:	535.9					
Sieve Size	Wt. (Grams)	% Retained	% Passing		Specifications	Remarks
2 inch (50.8 mm)	0.0	0	100			
1-1/2 inch (38.1 mm)	0.0	0	100			
1 inch (25.4 mm)	0.0	0	100			
3/4 inch (19.1 mm)	0.0	0	100			
1/2 inch (12.7 mm)	0.0	0	100			
3/8 inch (9.5 mm)	0.0	0	100			
#4 (4.75 mm)	11.0	2	98			
#8 (2.36 mm)	115.0	21	79			
#16 (1.18 mm)	246.8	46	54			
#30 (0.6 mm)	343.7	64	36			
#50 (0.3 mm)	399.2	74	26			
#100 (0.15 mm)	445.7	83	17			
#200 (0.075 mm)	484.5	90.4	9.6			
Tested in Accordance with AS	IM D1140, D6913					

1441 Montiel Road, Suite 115 Escondido, CA 92026 p. 760.746.4955 | TeamUES.com LEA NO. 008

		r	report of S	Soil Sieve Ana	iyəis	<u></u>
Project Name: Project Number: 4830.2400003.0000 Sampled By: D.D. Tested By: E.T.		Jacumba Fire Station #43 Lab Number: 35558 Date Sampled: 2/20/2024 Date Tested 3/12/2024			Sample Location: TW-1 @ 73' Sample Description: Grey (SC/ML))	
					Specifications	s:
Total Wet Wt:	390.8				N/A	
Total Dry Wt:	381.3					
Sieve Size	Wt. (Grams)	% Retained	% Passing		Specifications	Remarks
2 inch (50.8 mm)	0.0	0	100			
1-1/2 inch (38.1 mm)	0.0	0	100			
1 inch (25.4 mm)	0.0	0	100			
3/4 inch (19.1 mm)	0.0	0	100			
1/2 inch (12.7 mm)	0.0	0	100			
3/8 inch (9.5 mm)	0.0	0	100			
#4 (4.75 mm)	3.0	1	99			
#8 (2.36 mm)	25.8	7	93			
#16 (1.18 mm)	59.1	16	84			
#30 (0.6 mm)	115.1	30	70			
#50 (0.3 mm)	161.8	42	58			
#100 (0.15 mm)	194.7	51	49			
#200 (0.075 mm)	227.4	59.7	40.3			
Tested in Accordance with ASTI	M D4440 D0040					