Valley Center Road Corridor Concept Plan

Appendix A: Vehicular, Pedestrian, Bicycle, and Transit Analysis

1 Vehicular Analysis

Through various outreach and coordination efforts, the project team considered stakeholder input and additional analysis in developing the Valley Center Road Corridor Concept Plan (VCRCCP). The following explains the vehicular analysis process, including the evaluation of the VCRCCP per Level of Service (LOS) analysis guidelines. These analyses were conducted to look at existing traffic count data and forecasted traffic for a potential buildout year of 2035. Looking at those two timeframes, analysis outputs are provided based on the existing configuration of the corridor and per the VCRCCP, for comparison. LOS thresholds for road segments are established through the County of San Diego *Public Road Standards*. The *Public Road Standards* do not yet differentiate road segment LOS capacity based on the intersection control type (roundabout, traffic signal, or stop sign-controlled). Intersection LOS was analyzed using Sidra Intersection, which is a software package commonly used for transportation analysis, including intersection capacity.

1.1 METHODOLOGY

Vehicle Miles Traveled

As part of the California Environmental Quality Act (CEQA), Senate Bill (SB) 743 requires transportation impacts be evaluated based on vehicle miles traveled (VMT). Based on the County of San Diego's *Transportation Study Guidelines* (September 2022) certain types of projects do not require VMT analysis including, but not limited to, the following:

- Rehabilitation, maintenance, replacement, safety, and repair projects designed to improve the condition of existing transportation assets and that do not add additional motor vehicle capacity;
- Installation of roundabouts or traffic circles;
- Installation or reconfiguration of traffic calming devices;
- Addition of new or enhanced bike or pedestrian facilities on existing streets/highways or within existing public right-of-way;
- Addition of Class I bike paths, trails, or multi-use paths, or other off-road facilities that serve non-motorized travel.

Therefore, a VMT analysis has not been included in this assessment.

Roadway Segment Analysis Methodology

The basis for roadway segment analysis is the ratio of daily volumes to LOS thresholds according to roadway classifications. The analysis results provide a planning-level assessment of whether a segment is under, approaching, or over capacity. **Table 1** presents the roadway segment capacity and LOS standards contained in the County of San Diego *Public Road Standards*. ADT in the table stands for Average Daily Traffic.

Table 1: Level of Service Criteria for Roadway Segments

	Mobility Element Roads	. Road	Levels of Service (in ADT)							
		Travel								
	Road Classification	Lanes	Α	В	С	D	E			
	Expressway (6.1)	6	<36,000	<54,000	<70,000	<86,000	<108,000			
	Prime Arterial (6.2)	6	<22,200	<37,000	<44,600	<50,000	<57,000			
Major	w/ Raised Median (4.1A)		<14,800	<24,700	<29,600	<33,400	<37,000			
Road	w/ Intermittent Turn Lanes (4.1B)	4	<13,700	<22,800	<27,400	<30,800	<34,200			
	w/ Raised Median (4.2A)		<18,000	<21,000	<24,000	<27,000	<30,000			
Boulevard	w/ Intermittent Turn Lanes (4.2B)	4	<16,800	<19,600	<22,500	<25,000	<28,000			
	w/ Raised Median (2.1A)		<10,000	<11,700	<13,400	<15,000	<19,000			
Company	w/ Continuous Left Turn Lane (2.1B)		<3,000	<6,000	<9,500	<13,500	<19,000			
Community Collector	w/ Intermittent Turn Lanes (2.1C)	2	<3,000	<6,000	<9,500	<13,500	<19,000			
	W/ Passing Lane (2.1D)		<3,000	<6,000	<9,500	<13,500	<19,000			
	No Median (2.1E)		<1,900	<4,100	<7,100	<10,900	<16,200			
	w/ Raised Median (2.2A)		<3,000	<6,000	<9,500	<13,500	<19,000			
	w/ Continuous Left Turn Lane (2.2B)		<3,000	<6,000	<9,500	<13,500	<19,000			
Light Collector	w/ Intermittent Turn Lanes (2.2C)	2	<3,000	<6,000	<9,500	<13,500	<19,000			
	W/ Passing Lane (2.2D)		<3,000	<6,000	<9,500	<13,500	<19,000			
	No Median (2.2E)		<1,900	<4,100	<7,100	<10,900	<16,200			
	w/ Reduced Shoulder (2.2F)		<5,800	<6,800	<7,800	<8,700	<9,700			
	w/ Raised Median (2.3A)		<3,000	<6,000	<7,000	<8,000	<9,000			
Minor Collector	w/ Intermittent Turn Lanes (2.3B)	2	<3,000	<6,000	<7,000	<8,000	<9,000			
	No Median (2.3C)		<1,900	<4,100	<6,000	<7,000	<8,000			
No	on-Mobility Element Road	s		Levels o	f Service	(in ADT)				
R	Road Classification La			В	С	D	Ε			
F	Residential Collector	2	-	-	<4,500	-	-			
Rur	al Residential Collector	2	-	-	<4,500	-	-			
	Residential Road	2	-	-	<1,500	-	-			
Ru	ural Residential Road	2	-	-	<1,500	-	-			
Resident	ial Cul-de-Sac or Loop Road	2	-	-	<200	-	-			

Source: County of San Diego, Public Roads Standards (March 2012).

Intersection Analysis Methodology

LOS is commonly used as a qualitative description of intersection operation. The intersection analysis conforms to the operational analysis methodology outlined the $Highway\ Capacity\ Manual\ (HCM)\ 6^{th}\ Edition$ and performed utilizing the $Synchro\ 10$ and $Sidra\ 9$ traffic analysis software.

The HCM analysis methodology describes the operation of an intersection using a range of level of service from LOS A (free-flow conditions) to LOS F (severely congested conditions), based on the corresponding stopped delay, in terms of seconds per vehicle (sec/veh). The criteria for the LOS grade designations are provided in **Table 2**.

Synchro reports average delays for a signalized intersection, which correspond to a particular LOS, to describe the overall operation of an intersection. Unsignalized intersection LOS for all-way stops is based on the average delay for all approaches. Delay for one-way or two-way stop-controlled intersections is based on available gaps in traffic flow on the non-controlled approach and LOS is based on the approach with the worst delay. Sidra reports average delays to determine LOS for roundabouts.

Table 2: Level of Service Criteria for Intersections

	Control (seconds)	•	
LOS	Signalized Intersections	Unsignalized & Roundabouts	Description
Α	<10	<10	Operations with very low delay and most vehicles do not stop.
В	>10 and <u><</u> 20	>10 and <u><</u> 15	Operations with good progression but with some restricted movements.
С	>20 and <u><</u> 35	>15 and <u><</u> 25	Operations where a significant number of vehicles are stopping with some backup and light congestion.
D	>35 and <u><</u> 55	>25 and <u><</u> 35	Operations where congestion is noticeable, longer delays occur, and many vehicles stop. The proportion of vehicles not stopping declines.
Е	>55 and <u><</u> 80	>35 and <u><</u> 50	Operations where there is significant delay, extensive queuing, and poor progression.
F	>80	>50	Operations that are unacceptable to most drivers, when the arrival rates exceed the capacity of the intersection.

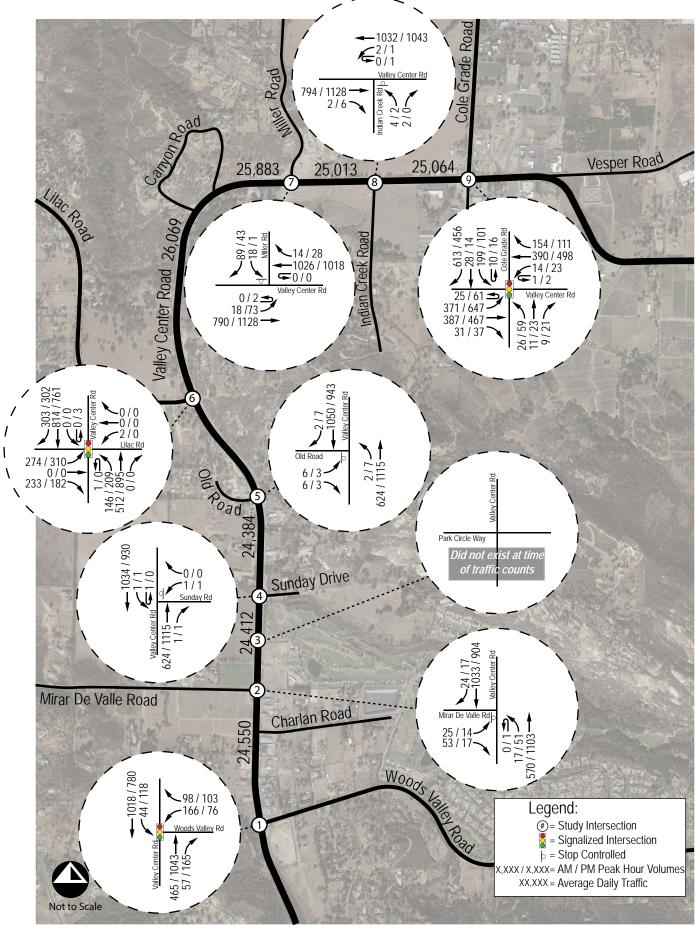
Source: Highway Capacity Manual, 6th Edition

Traffic Volumes

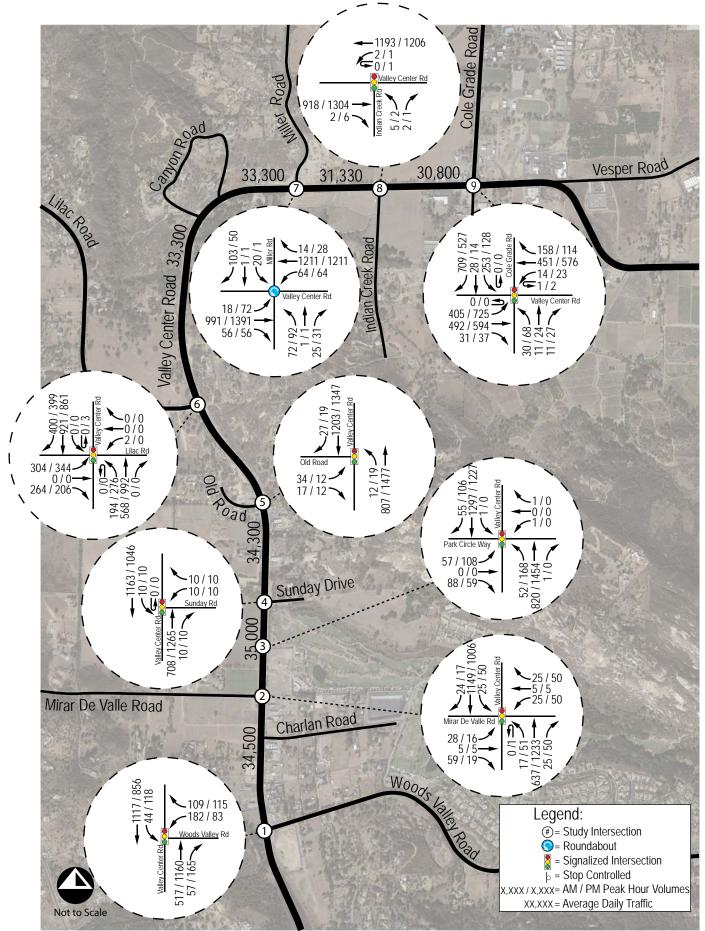
Existing Conditions

Traffic count data was collected in 2019. This data was used to establish a baseline operating condition for the corridor. **Figure 1** illustrates the existing conditions daily and peak hour volumes used in this analysis.

Future Conditions


In order to derive baseline future year 2035 traffic volumes, the daily traffic volumes from the SANDAG Series 14 regional travel demand forecasting model (Series 14 model) used for the regional transportation plan were provided by SANDAG. This data was used to establish a forecast growth rate that was applied to existing traffic volumes for each roadway segment and study intersection along the Valley Center Road corridor.

In addition, traffic associated with two approved developments that take access from Valley Center Road in the South Village were added to the forecast model traffic volumes based on trip generation and assignment information available from their respective traffic studies.


The following is a description of the projects added to the forecast growth along the corridor:

- Park Circle (Darnell & Associates, TIA dated December 2016)
 - Mixed use development with 33,700 square feet of neighborhood commercial,
 232 multi-family dwelling units, and 101 single family dwelling units
 - o Located on the west side of Valley Center Road north Mirar De Valle Road
 - Estimated trip generation of 6,188 daily trips with 419 AM peak hour trips &
 550 PM peak hour trips
- Liberty Bell Plaza (Linscott, Law & Greenspan, TIA dated July 2019)
 - o 85,000 square feet neighborhood shopping center
 - o Located on the northeast corner of Valley Center Road and Mirar De Valle Road
 - Estimated trip generation of 7,956 daily trips with 318 AM peak hour trips &
 612 PM peak hour trips

Future year 2035 traffic volumes calculated for the corridor and used to evaluate future operating conditions are provided in **Figure 2**.

Existing AM/PM Peak Hour Volumes, Daily Traffic Volumes with Existing Geometry and Traffic Control

Future Forecast 2035 AM/PM Peak Hour Volumes, Daily Traffic Volumes with VCRCCP Geometry and Traffic Control

1.2 ROADWAY SEGMENT ANALYSIS

Improvements proposed as part of the VCRCCP can primarily be constructed within the existing right-of-way. The existing curb-to-curb width of Valley Center Road will not be changed with the exception the additional right-of-way that would be obtained to construct the roundabout. Adding a raised median to the roadway segments that are currently constructed with a striped center median, would support the anticipated future capacity needs of the corridor. The addition of the raised median would change the "as constructed" classification from Boulevard with Intermittent Turn Lanes (2.4B) to Boulevard with Raised Median (4.2A), with an increased capacity from 27,000 vehicles per day to 30,000 vehicles per day. **Table 3** summarizes the roadway segment level of service for existing and future forecast year 2035 without and with the improvements proposed in the VCRCCP.

Table 3: Roadway Segment Level of Service Summary

	Table 5. Roadway Segitter	No.	Median	Roadway	LOS E	Exist	ing	Future Ye	ar 2035
Roadway	Segment	Lanes	Туре	Classification ¹	Capacity	ADT	LOS	ADT	LOS
	•	Exist	ing Roadw	ay Classification				•	•
	Woods Valley Road to Mirar de Valle Road	4	Undivided	Boulevard - 4.2B (w/ intermittent turn lanes)	28,000	24,550	D	34,500	F
Valley Center Road	Mirar De Valle Road to Sunday Drive	4	Divided	Boulevard - 4.2B (w/ intermittent turn lanes)	28,000	24,412	D	35,000	F
	Sunday Drive to Lilac Road	4	Divided	Boulevard - 4.2B (w/ intermittent turn lanes)	28,000	24,384	D	34,300	F
	Lilac Road to Canyon Road	4	Divided	Major Road - 4.1A (w/ raised median)	37,000	26,069	С	33,300	D
	Canyon Road to Miller Road	4	Divided	Major Road - 4.1A (w/ raised median)	37,000	25,883	С	33,300	D
	Miller Road to Indian Creek Road	4	Divided	Boulevard - 4.2A (w/ raised median)	30,000	25,013	D	31,300	F
	Indian Creek Road to Cole Grade Road	4	Divided	Boulevard - 4.2A (w/ raised median)	30,000	25,064	D	30,800	F
			With \	/CRCCP					
	Woods Valley Road to Mirar de Valle Road	4	Undivided	Boulevard - 4.2A (w/ raised median)	30,000	24,550	D	34,500	F
	Mirar De Valle Road to Sunday Drive	4	Divided	Boulevard - 4.2A (w/ raised median)	30,000	24,412	D	35,000	F
Valley	Sunday Drive to Lilac Road	4	Divided	Boulevard - 4.2A (w/ raised median)	30,000	24,384	D	34,300	F
Center	Lilac Road to Canyon Road	4	Divided	Major Road - 4.1A (w/ raised median)	37,000	26,069	С	33,300	D
Road	Canyon Road to Miller Road	4	Divided	Major Road - 4.1A (w/ raised median)	37,000	25,883	С	33,300	D
	Miller Road to Indian Creek Road	4	Divided	Boulevard - 4.2A (w/ raised median)	30,000	25,013	D	31,300	F
	Indian Creek Road to Cole Grade Road	4	Divided	Boulevard - 4.2A (w/ raised median)	30,000	25,064	D	30,800	F

Notes:

¹Based on San Diego County General Plan, Valley Center Mobility Element Network Appendix. The Woods Valley Road to Mirar De Valle Road segment and the Sunday Drive to Lilac Road segment are currently built as Boulevard with intermittent turn lanes (4.2B), but the VCRCCP would bring these segments in line with the current Mobility Element Network planned classification of Boulevard with raised median (4.2A). ADT = Average Daily Traffic

LOS = Level of Service

While the addition of the raised median does provide additional capacity along the corridor, the forecast traffic volume will exceed the capacity of the Boulevard classification. The future year 2035 condition results in LOS F conditions along all segments classified as Boulevard with Raised Median (4.2A), which includes the segments from Woods Valley Road to Lilac Road and Miller Road to Cole Grade Road). The capacity thresholds are set by the *County Public Road Standards*, which do not currently consider the positive effects of certain intersection controls (such as roundabouts) on traffic delay. The roundabout proposed would allow the North Village to avoid traffic congestion conditions typically associated with failing LOS.

Note that roadway segment LOS is generally used as a long-range planning guideline to determine the roadway capacity and classifications and are not always an accurate indicator of roadway performance. Typically, the performance and level of service of a roadway segment is heavily influenced by the ability of signalized intersections to accommodate peak hour flow. Therefore, peak hour operating conditions along the Valley Center Road corridor were evaluated.

1.3 INTERSECTION ANALYSIS

In April 2019, an *Existing Conditions Technical Memorandum* (found in Appendix I) was completed. As part of the analysis of the VCRCCP, the study area was expanded to include two additional intersections shown below in **bold**.

- 1. Valley Center Road / Woods Valley Road
- 2. Valley Center Road / Mirar De Valle Road
- 3. Valley Center Road / Park Circle Way
- 4. Valley Center Road / Sunday Drive
- 5. Valley Center Road / Old Road
- 6. Valley Center Road / Lilac Road
- 7. Valley Center Road / Miller Road
- 8. Valley Center Road / Indian Creek Road
- 9. Valley Center Road / Cole Grade Road

In order to determine the intersection operating conditions with the VCRCCP, the existing traffic volumes were evaluated with the intersection control included in the VCRCCP. **Table 4** summarizes the results of the existing conditions intersection analysis without and with the VCRCCP.

Under existing conditions, the intersection analysis showed all the study locations operate at acceptable LOS in the AM peak hour and two of the 9 study locations operate at LOS E or F during the PM peak hour with the signals and stop control that was in place at the time the traffic count data was collected. These include the unsignalized intersections of Valley Center Road / Mirar De Valle Road and Valley Center Road / Sunday Drive. With the VCRCCP and the existing traffic volumes, all the study locations are shown to operate at LOS C or better in the AM and PM peak hours.

Table 4: Modeled Intersection Performance Comparison of Existing Traffic Control and Final Valley Center Road Corridor Concept Plan – Based on Existing Traffic

Study Intersection	With	Existing Geometr	•	With Draft Final CCP					
	Traffic	AM	PM	Traffic	AM	PM			
	Control	Delay ^{2 -} LOS	Delay ² - LOS	Control	Delay ^{2 -} LOS	Delay ² - LOS			
1- Valley Center Road / Woods Valley Road		7.5 - A	9.0 - A		7.5 - A	9.0 - A			
2- Valley Center Road / Mirar De Valle Road	STOP	29.7 - D	45.2 - E		11.4 - B	13.2 - B			
3- Valley Center Road / Park Circle Way ³		3.4 - A	3.7 - A		3.4 A	3.7 A			
4- Valley Center Road / Sunday Drive	STOP	26.7 - D	51.7 - F	•	4.2 - A	4.7 - A			
5- Valley Center Road / Old Road	STOP	26.1 - D	30.1 - D	•	5.4 - A	5.6 - A			
6- Valley Center Road / Lilac Road		17.5 - B	13.5 - B		18.2 - B	14.0 - B			
7- Valley Center Road / Miller Road	STOP	27.3 - D	15.2 - C		7.8 - A	10.0 - A			
8- Valley Center Road / Indian Creek Road	STOP	16.9 - C	26.1 - D	B	6.4 - A	6.6 - A			
9- Valley Center Road / Cole Grade Road	•	31.3 - C	33.5 - C		27.1 - C	34.5 - C			

Note: Deficient intersection operation indicated in **bold**.

Traffic Signal (existing or proposed with CCP)

Traffic Signal (condition of private development)

Signal warrants will be conducted at the time signals are considered for installation. Signal warrants should be met prior to installation.

Minor Street Stop Control, worst approach delay and LOS reported. Traffic along Valley Center Road does not stop.

Table 5 summarizes the results of the intersection analysis under future year 2035 without and with the VCRCCP conditions. As shown, the following locations are shown to operate at deficient levels of service by year 2035 with the existing intersection traffic control (signal and stop signs):

- Int 2 Valley Center Road / Mirar De Valle Road (LOS E during AM peak hour; LOS F during PM peak hour)
- Int 4 Valley Center Road / Sunday Drive (LOS F during the PM peak hour only)
- Int 5 Valley Center Road / Old Road (LOS F during the AM & PM peak hours)
- Int 7 Valley Center Road / Miller Road (LOS E during the AM peak hour only)

With the VCRCCP, intersection delays are reduced such that all study intersections are forecast to operate at LOS D or better in year 2035.

¹ Existing conditions data was collected for the corridor prior to the buildout of Park Circle and Liberty Bell Plaza developments.

² Average seconds of delay per vehicle. The lower the number, the better the anticipated intersection performance.

³ The Park Circle Way intersection did not exist at the time of the 2019 analysis of existing conditions.

Table 5: Modeled Intersection Performance Comparison of Existing Traffic Control and Final Valley Center Road Corridor Concept Plan - Based on Future Year 2035 Traffic

	Study Intersection		Existing Geometr	y and Traffic	With Draft Final CCP				
		Traffic	AM	PM	Traffic	AM	PM		
			Delay ^{2 -} LOS	Delay ² - LOS	Control	Delay ² - LOS	Delay ² - LOS		
1-	Valley Center Road / Woods Valley Road		7.8 - A	10.0 - A		7.8 - A	10.0 - A		
2-	Valley Center Road / Mirar De Valle Road	STOP	42.5 - E	70.8 - F		15.1 - B	15.2 - B		
3-	Valley Center Road / Park Circle Way ³		12.8 - B	18.4 - B		12.8 - B	6.7 - A		
4-	Valley Center Road / Sunday Drive	STOP	32.7 - D	72.9 - F		5.6 - A	5.1 - A		
5-	Valley Center Road / Old Road	STOP	1338.7 - F	214.2 - F		8.6 - A	6.3 - A		
6-	Valley Center Road / Lilac Road		26.7 - C	20.5 - C		26.7 - C	19.4 - B		
7-	Valley Center Road / Miller Road	STOP	45.3 - E	17.4 - C		9.0 - A	11.6 - B		
8-	Valley Center Road / Indian Creek Road	STOP	19.8 - C	32.0 - D		6.5 - A	8.5 - A		
9-	Valley Center Road / Cole Grade Road		42.2 - D	47.7 - D		40.2 - D	47.3 - D		

Note: Deficient intersection operation indicated in **bold**.

Traffic Signal (existing or proposed with CCP)

Traffic Signal (condition of private development)

Signal warrants will be conducted at the time signals are considered for installation. Signal warrants should be met prior to installation.

STOR

Minor Street Stop Control, worst approach delay and LOS reported. Traffic along Valley Center Road does not stop.

1.4 TRAFFIC SIGNAL WARRANTS

Traffic signal warrants provide criteria to determine whether installation of a traffic signal is justified at a particular location using methodology outlined in the *MUTCD-CA*. Although a traffic signal warrant provides justification for installation of a traffic signal, other factors may also be considered including access, circulation, and connectivity in the community. Therefore, it is possible that a traffic signal may be installed that does not meet the *MUTCD-CA* warrants if the traffic signal improves safety, improves access, or serves as part of a corridor-wide traffic control strategy.

The MUTCD-CA provides several detailed warrants by which an intersection can be evaluated. Since this VCRCCP is a planning document, the detailed warrant analysis was not conducted but rather the planning level warrant was evaluated. The planning level warrant is based on daily traffic thresholds and used to provide a high level assessment whether the signals could meet the detailed warrants based on the existing or future daily traffic volumes through the intersection.

As shown in **Table 6**, none of the traffic signals identified in the VCRCCP meet the planning level warrant as outlined in the *MUTCD-CA* under existing conditions. Only the signals for the Old Road and Sunday Drive intersections are newly proposed with the VCRCCP. Under future year 2035 conditions, the planning level warrant is met for the intersection of Valley Center Road / Mirar De Valle Road. As mentioned in this report, the traffic count data was collected prior to the buildout

¹ Existing conditions data was collected for the corridor prior to the buildout of Park Circle and Liberty Bell Plaza developments.

² Average seconds of delay per vehicle. The lower the number, the better the anticipated intersection performance.

³ The Park Circle Way intersection did not exist at the time of the 2019 analysis of existing conditions.

of the Park Circle development and did not include the traffic signal constructed in 2021 at the Park Circle Way intersection.

During final design of the corridor, new traffic count data should be collected for the corridor and detailed warrants should be conducted prior to installing the signals.

Table 6: Traffic Signal Warrants

		Planning Warrant								
Study Intersection		Existing C	onditions	Forecast Year 2035 Conditions						
		Major/Minor ADT Volume	Warrant Met?	Major/Minor ADT Volume	Warrant Met?					
2-	Valley Center Road / Mirar De Valle Road ^{1, 2}	24,400 / 780	No	35,000 / 870	YES					
3-	Valley Center Road / Park Circle Way ¹		Constructe	ed in 2021						
4-	Valley Center Road / Sunday Drive ¹	24,400 / 600	No	35,000 / 700	No					
5-	Valley Center Road / Old Road ¹	24,800 / 100	No	34,300 / 120	No					
8-	Valley Center Road / Indian Creek Road	25,000 / 100	No	31,300 / 120	No					

¹ The existing conditions data collection occurred prior to the buildout of the Park Circle.

2 Pedestrian Analysis

The project team analyzed pedestrian conditions along the corridor as part of the existing conditions phase of analysis. This section references that analysis of existing conditions and provides an analysis of pedestrian conditions that would be assumed upon implementation of the VCRCCP.

2.1 METHODOLOGY

A Pedestrian Gap Analysis (PGA) was included in the *Existing Conditions Technical Memorandum* (found in Appendix I) which analyzed the pedestrian facilities within the study area using the methodology outlined in the <u>County of San Diego Active Transportation Plan (ATP)</u>. A PGA is a qualitative pedestrian survey that assesses the quality of the walking environment along roadway segments and intersections. Pedestrian facilities are assigned a "Pedestrian Quality" grade based on the point system developed in the PGA. The PGA Criteria includes:

- The condition of sidewalk/pathway and associated characteristics such as obstructions, slope, grade, and curb ramp configuration (25 percent = 1,000 points);
- Distance from pedestrian generators (25 percent = 1,000 points);
- Health data supplied by the County Health and Human Services Agency (25 percent = 1,000 points);
- Socioeconomic data supplied by County Health and Human Services Agency (10 percent = 400 points);
- County Public Works / Capital Improvement Program project list (10 percent = 400 points); and
- Proximity to schools (5 percent = 200 points).

² At the time of this analysis, the Mirar De Valle signal was not constructed, but was expected to be constructed by the end of 2024.

The evaluation of the existing condition of the sidewalk and paths was refined to focus on the critical conditions along the corridor including obstructions, sidewalk condition, driveway

conditions, presence of curb ramps, and other factors. The physical conditions evaluated are clearly described in the *Existing Conditions Technical Memorandum*. The total points of individual street segments within the study area provide a comparison ranking utilizing weight allocation based on the six ranking factors stated above. Each street segment's points scored are displayed in color brackets based on the color-coding point brackets displayed in the PGA. The color bracket point ranges are presented on **Table 7**.

Table 7: Pedestrian Gap Analysis Point Ranges

Color Code	Pedestrian	Point
Code	Quality	Range
	Very Good	215 - 627
	Good	628 - 1191
	Average	1192 - 1535
	Poor	1536 - 1824

2.2 ANALYSIS RESULTS

Out of the 28 segments analyzed along Valley Center Road summarized in **Table 8**, The PGA rates seven segments as very good, eight segments as good, 10 segments as average, and three segments as poor. The three segments that were rated poor include the east side of Valley Center Road from Charlan Road to Mirar De Valle Road, from Indian Creek Road to Old Town Center Plaza western boundary, and from Old Town Center Plaza eastern boundary to Cole Grade Road in the eastbound direction. There are no existing sidewalks, trails, or pedestrian facilities on these segments.

The quality of the existing marked crossings along and across Valley Center Road was evaluated by reviewing crosswalk amenities, design type and type of markings as shown in **Table 9** per the PGA methodology in the *ATP*. Marked crosswalks along the corridor are only provided at signalized intersections and at a limited number of side street stop-controlled intersections. As shown, the signalized intersection crosswalk locations are rated strong and the four unsignalized locations are rated as needs improvement due to the lack of crosswalks along side streets. Marked crossings across Valley Center Road are more than half a mile apart making crossing Valley Center Road challenging for pedestrians.

The VCRCCP includes elements that will improve pedestrian access, visibility and connectivity including connecting the numerous gaps in the sidewalk, constructing curb extensions to reduce the crossing distance, and striping continental crosswalks. New traffic signals will include improved pedestrian crossing amenities such as count-down timers, ADA pedestrian ramps with truncated domes, and oversized pedestrian push buttons. The existing Heritage Trail will remain on the north and west sides of the road through the corridor.

Table 8: Pedestrian Conditions without and with Concept Plan

			Existing C	onditions		With VCRCCP					
	Segment	of Valle	outh Side ey Center Rd.	Side o	/ North f Valley er Rd.	of Valle	outh Side by Center Rd.	Side of	North Valley er Rd.		
		Total Score	Rating	Total Score	Rating	Total Score	Rating	Total Score	Rating		
	Woods Valley Road to Charlan Road	1150	Good	901	Good	1139	Good	897	Good		
	Charlan Road to Mirar De Valle Road	1646	Poor	1286	Average	1441	Average	1221	Average		
	Mirar De Valle Road to 27634 Valley Center Road Driveway	1269	Average	1242	Average	1205	Average	1179	Good		
	27634 Valley Center Road Driveway to Sunday Drive	601	Very Good	286	Very Good	312	Very Good	221	Very Good		
	Sunday Drive to Old Road	685	Good	375	Very Good	441	Very Good	307	Very Good		
	Old Road to Lilac Road	879	Good	769	Good	709	Good	769	Good		
Valley Center	Lilac Road to Valley Center Road bridge (S)	667	Good	1043	Good	488	Very Good	1020	Good		
Road	Valley Center Road bridge(S) to Valley Center Road bridge(N)	392	Very Good	177	Very Good	288	Very Good	175	Very Good		
	Valley Center Road bridge (N) to Canyon Road (N)	464	Very Good	376	Very Good	288	Very Good	360	Very Good		
	Canyon Road (N) to Miller Road	596	Very Good	1127	Good	360	Very Good	1127	Good		
	Miller Road to Indian Creek Road	552	Very Good	707	Good	383	Very Good	629	Good		
	Indian Creek Road to Old Town Center Plaza west boundary	1596	Poor	1375	Average	1355	Average	1307	Average		
	Old Town Center Plaza west boundary to east boundary	1338	Average	1398	Average	1203	Average	1245	Average		
	Old Town Center Plaza east boundary to Cole Grade Road	1712	Poor	1424	Average	1409	Average	1409	Average		

Note: Scores were derived from existing conditions observed in December 2018.

Table 9: Existing Intersection Crosswalk Evaluation

		Ex	cisting C	onditions	With VCRCCP				
	Study Intersection	Traffic Score Rating		Traffic Control	Score	Rating			
1 -	Valley Center Road / Woods Valley Road	Signal	4	Strong	Signal	4	Strong		
2 -	Valley Center Road / Mirar De Valle Road	OWSC	74	Needs Improvement	Signal	4	Strong		
3 -	Valley Center Road / Sunday Drive	OWSC	74	Needs Improvement	Signal	4	Strong		
4 -	Valley Center Road / Lilac Road	Signal	4	Strong	Signal	4	Strong		
5 -	Valley Center Road / Miller Road	OWSC	74	Needs Improvement	Roundabout	9	Strong		
6 -	Valley Center Road / Indian Creek Road	OWSC	74	Needs Improvement	Signal	4	Strong		
7 -	Valley Center Road / Cole Grade Road	Signal	4	Strong	Signal	4	Strong		

Note: Scores were derived from existing conditions observed in December 2018.

OWSC = One Way Stop Control

3 Bicycle Analysis

Like the preceding analysis of pedestrian conditions, this section summarizes existing conditions analysis for bicycle facilities along the corridor and connects that to bicycle facility conditions that would be assumed upon implementation of the VCRCCP.

3.1 METHODOLOGY

Existing bicycle facilities were examined in the *Existing Conditions Technical Memorandum* using a level of traffic stress (LTS) analysis, which is a qualitative measure that assesses a bicyclist's level of discomfort or stress based on the quality of the bicycle environment and provided facilities. The LTS scoring criteria range from LTS 1 (most comfortable, least stressful) to LTS 4 (least comfortable, most stressful) and is consistent with the methodology outlined in the *ATP*. The four types of cyclists range from "no way no how," representing individuals who are not interested in biking, to "strong and fearless," which represents the most active and confident cyclists. People in the "interested but concerned" category, which represents approximately 60% of all bicycling activity, typically prefer to ride along facilities classified as LTS 1 or LTS 2. These facilities are physically separated from vehicular traffic with dedicated lanes for bicycling and minimal conflict points.

People in the "enthused and confident" category, representing 7% of all bicycling activity, feel comfortable bicycling along a facility with an LTS 3 or better. People in the "strong and fearless" category represent less than 1% of bicycling activity who may tolerate bicycling along an LTS 4 facility, as they are the most experienced and confident. These bicyclists are generally seasoned bicycle commuters or recreational cyclists. Those in the "no way no how" population segment will not ride a bicycle no matter how comfortable the facility is.

LTS analysis traditionally considers existing facilities—such as bike lanes, bike paths, bike routes, and any provided separation from vehicles. The data used included the number of lanes in each direction, presence and type of bicycle facility, presence and type of median, speed, and functional class of the roadway. **Table 10** summarizes the criteria for roadways with a Class I or Class II bike facility as defined in the *ATP*.

Table 10: Level of Traffic Stress Criteria for Roadways with Bicycle Facilities

	LTS ≥ 1	LTS ≥ 2	LTS ≥ 3	LTS ≥ 4
Street Width (through lanes per direction)	1-2	2 if directions are separated by a raised/striped median	More than 2 or 2 without a raised/striped median	(no effect)
Bike Facility Type	Class I	Class II	(no effect)	(no effect)
Speed	<35 mph (unless Class I or Class IV)	(no effect)	35 mph	40 mph or more

3.2 ANALYSIS RESULTS

As shown in **Table 11**, the existing bicycle facilities along Valley Center Road result in a high level of bicycle stress (LTS 4) primarily attributed to the high vehicle speeds along the corridor. LTS 4 indicates that most confident bicyclists (categorized as the "strong and fearless") would likely use the facility and less experienced or less confident bicyclists may not feel comfortable riding along Valley Center Road.

The VCRCCP will include elements that will improve the bicycle facilities within the corridor for all levels of bike user (LTS1 - LTS4) including the addition of a Class IV separated bikeway along the entire length of the corridor, adding green conflict striping (dashed green) across driveways and approaching intersections to raise awareness of potential cyclists, and adding transitional striping (solid green) in advance of intersections and driveways to indicate potential bicyclevehicle conflict areas. At the roundabout, bike ramps will allow cyclists who do not feel comfortable traveling with vehicles through the roundabout to exit the roadway onto a multi-use path and ride around the perimeter of the roundabout outside of the vehicular travel lanes. Bicyclists can then re-enter the Class IV separated bikeway on the other side of the roundabout.

Table 11: Level of Traffic Stress (LTS) Summary

				Doodyyay	Posted		Existir	ng Conditions		With \	/CRCCP
Roadway	Segment	No. Lanes	Facility Type	Roadway Classification	Speed Limit (mph)	Dir.	LTS Score	Suitable for	Prop. Facility Type	LTS Score	Suitable for
	Woods Valley Road to Mirar	4	Class II	Boulevard - 4.2A	45	NB	4	Strong and Fearless	Class IV	1	Interested but Concerned Enthused and Confident
	De Valle Road	4	Class II	(w/ rasied median) ¹	40	SB	4	Strong and Fearless	Class IV	1	Interested but Concerned Enthused and Confident
	Mirar De Valle Road to	4	Class II	Boulevard - 4.2A	45 NI		4	Strong and Fearless	Class IV	1	Interested but Concerned Enthused and Confident
	Sunday Drive	4	Class II	(w/ raised median) ¹	45	SB	4	Strong and Fearless	Class IV	1	Interested but Concerned Enthused and Confident
	Sunday Drive to Lilac Road	4	Class II	Boulevard - 4.2A	45	NB	4	Strong and Fearless	Class IV	1	Interested but Concerned Enthused and Confident
		4	Class II	(w/ raised median) ¹	45	SB	4	Strong and Fearless	Class IV	1	Interested but Concerned Enthused and Confident
Valley	Lilac Road to	4	Class II	Major Road - 4.1A	45	NB	4	Strong and Fearless	Class IV	1	Interested but Concerned Enthused and Confident
Center Road	Canyon Road	4	Class II	(w/ raised median)	43	SB	4	Strong and Fearless	Class IV	1	Interested but Concerned Enthused and Confident
	Canyon Road	4	4	Major Road - 4.1A	45	EB	4	Strong and Fearless	Class IV	1	Interested but Concerned Enthused and Confident
	to Miller Road	4	Class II	(w/ raised median)	45	WB	4	Strong and Fearless	Class IV	1	Interested but Concerned Enthused and Confident
	Miller Road to Indian Creek	4	Class II	Boulevard - 4.2A	45	EB	4	Strong and Fearless	Class IV	1	Interested but Concerned Enthused and Confident
	Road	4	Class II	(w/ raised median)	40	WB	4	Strong and Fearless	Class IV	1	Interested but Concerned Enthused and Confident
	Indian Creek Road to Cole		4 Class II	Boulevard - 4.2A	45	EB	4	Strong and Fearless	Class IV	1	Interested but Concerned Enthused and Confident
	Grade Road	4	Class II	(w/ raised median)	40	WB	4	Strong and Fearless	Class IV	1	Interested but Concerned Enthused and Confident

Notes:

¹ Based on San Diego County General Plan, Valley Center Mobility Element Network Appendix. The Woods Valley Road to Mirar De Valle Road segment and the Sunday Drive to Lilac Road segment are currently built as Boulevard with intermittent turn lanes (4.2B), but the VCRCCP would bring these segments in line with the current Mobility Element Network planned classification of Boulevard with raised median (4.2A).

4 Transit Assessment

North County Transit District (NCTD) operates the local bus service along Valley Center Road. As shown in **Figure 3**, NCTD's Route 388 travels along Valley Center Road between the Pala Casino and the Escondido Transit Center, connecting Pala, Rincon, Valley Center and Escondido. The Escondido Transit Center provides regional connections to ten other transit services, four FLEX routes, two MTS routes, SPRINTER, Greyhound, and Riverside Transit Authority (RTA).

Table 12 shows the existing amenities at the 11 bus stops within the study area.

A complete assessment of the existing amenities at the bus stop locations within the study area was included in the *Existing Conditions Technical Memorandum*.

Suggestions for improvements at bus stops include:

- New shelters
- New benches
- Additional trash receptacles
- Better safety lighting



Figure 3: NCTD Route 388; Effective April 4, 2021

Table 12 also summarizes the opportunity areas for improving the available amenities and the bus stops to be relocated. These potential relocations are in consideration of best practices under ideal implementation circumstances (e.g., a County-initiated implementation project). The bus stop relocations are not required for VCRCCP consistency but may be considered during implementation coordination with the North County Transit District (NCTD), the operator of a bus route along the corridor.

Table 12: Suggestions for Bus Stop Amenities and Relocation

Stop Location (Direction)	Relocate Bus Stop?	Shelter	Bench	Trash Receptacle	Sign	Мар	Lighting	Currently ADA Compliant
Woods Valley Road (NB)	Existing Location OK. Stop curb adjacent along curb extension. Bikes travel behind curb extension in Class IV separated bikeway.	✓	R	✓	R	✓	✓	Yes
Mirar De Valle Road (NB)	Move from south to north side of intersection. Stop curb adjacent along curb extension. Bikes travel behind curb extension in Class IV separated bikeway.	ection. Stop curb adjacent along curb extension.		✓	Yes			
Old Road (NB)	Existing location OK Stop curb adjacent along curb extension. Bikes travel behind curb		✓	✓	R	N	✓	No
Lilac Road (NB)	Move from south of intersection to north of intersection. Stop curb adjacent along curb extension. Bikes travel behind curb extension in Class IV separated bikeway.		✓	✓	R	✓	✓	Yes
Miller Road (EB)	Existing location OK. Stop curb adjacent along multi-use path approaching roundabout. Bikes travel on multiuse path.	✓	✓	✓	R	✓	✓	No
Cole Grade Road (WB)	Existing location OK. Construct curb extension for bus to stop curb adjacent. Bikes travel behind curb extension on Class IV separated bikeway.	R	R	N	R	N	✓	No
Miller Road (WB)	Existing location OK. Stop curb adjacent along multi-use path on exit to roundabout. Bicycles travel along multiuse path.	✓	✓	✓	R	N	✓	No
Lilac Road (SB)	Existing Location OK. Stop curb adjacent along curb extension. Bikes travel behind curb extension in Class IV separated bikeway.	✓	R	R	R	✓	✓	Yes
Old Road (SB)	Existing location OK. Construct curb extension for bus to stop curb adjacent. Bikes travel behind curb extension in Class IV separated bikeway.		R	✓	✓	No		
Mirar De Valle Road (SB)	Existing location OK. Stop curb adjacent along curb extension. Bikes travel behind curb extension in Class IV separated bikeway.	✓	R	R	R	√	✓	No
Woods Valley Road (SB)	Existing location OK. Stop curb adjacent along curb extension. Bikes travel behind curb extension in Class IV separated bikeway.	✓	R	✓	R	√	✓	Yes

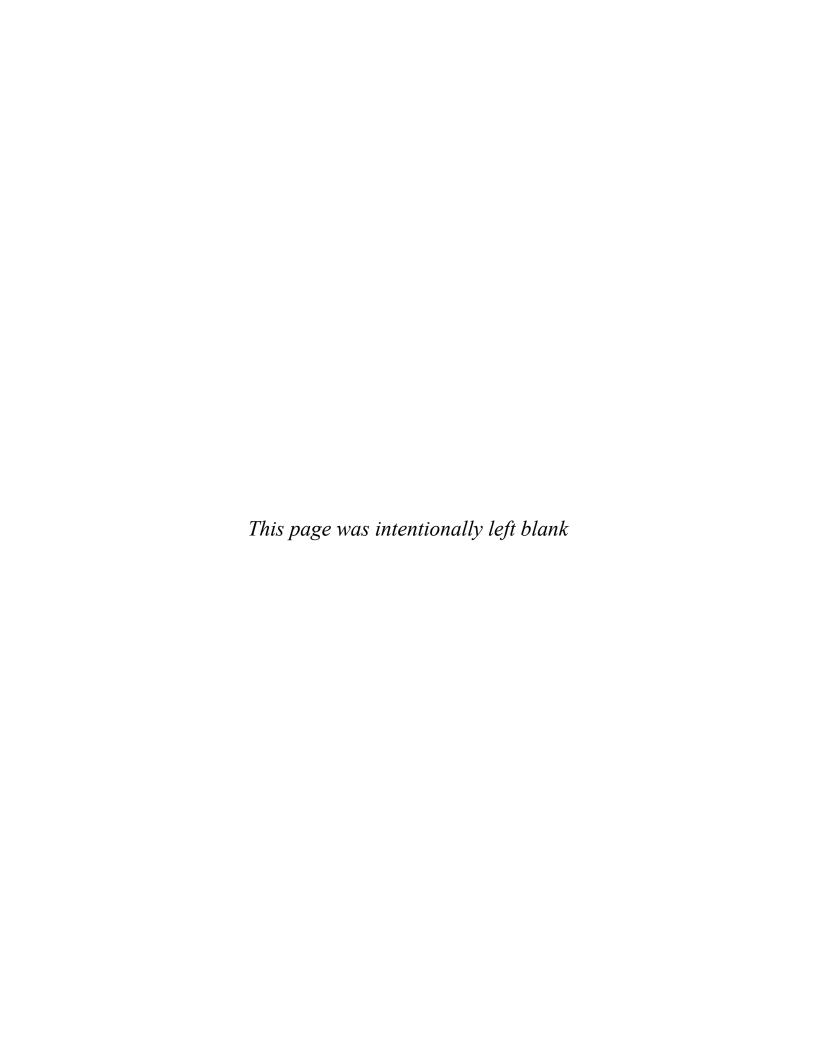
Note: Bus stop locations are illustrated in Figure 3 and Figure 4 of the Final VCRCCP.

Bus stops to be potentially relocated Amenity improvement opportunity

R – reuse existing bench or sign; N – replace existing bench or sign; $\sqrt{}$ – does not exist, needs new bench, sign, map, lighting, etc.

Valley Center Road Corridor Concept Plan

Appendix B: 2023 Citygate Report on Emergency Response and Evacuation


SEPTEMBER 26, 2023

WWW.CITYGATEASSOCIATES.COM

600 COOLIDGE DRIVE, SUITE 150 PHONE: (916) 458-5100 FOLSOM, CA 95630

FAX: (916) 983-2090

September 26, 2023

RE: REVIEW OF EMERGENCY RESPONSE CONSIDERATIONS FOR THE VALLEY CENTER ROAD CORRIDOR CONCEPT PLAN DESIGN OPTIONS

This report and companion technical exhibits identify the key elements of the requested review regarding the potential impacts of the proposed traffic control options on fire and EMS response times associated with Valley Center Road Corridor Concept Plan (CCP) options.

The research work included:

- Review of the impacts of roundabouts on both emergency response times and disaster evacuation routes.
- Review of the 2022 Draft Corridor Concept Plan Report prepared by Michael Baker International (MBI).
- Comparison and contrast of the use of intersection controls on emergency response times and disaster evacuation routes, including traffic signals and roundabouts.
- ◆ Comparison of historical fire unit travel time records to CCP design traffic control models.
- Review of published practices regarding roundabouts and emergency responses.

CAPSTONE RECOMMENDATION

Based on the six findings included in this report and Citygate's research and professional experience in fire unit travel time planning, we find that fire and EMS unit response times will not be materially lengthened by either Option A or Option B CCP design concepts (Exhibits 1 and 2). Further, Citygate recommends the use of roundabouts as designed within CCP Options A and B, as they will slow response times the least compared to other design choices and will provide for smoother evacuation routing in comparison to traffic signals.

BACKGROUND AND BASELINE RESEARCH CONDUCTED

Citygate's review began with an understanding of the Draft Valley Center Road Corridor Concept Plan—the June 2022 Analysis Report; not the current, proposed project. We took note that the CCP is intended to "create a sense of place within Valley Center and support a safer, more accessible roadway through the implementation of traffic calming measures and other multi-modal opportunities for all users, including pedestrians, cyclists, equestrians, and vehicles."

The Plan work begins with the as-is condition of the roadway between Cole Grade Road and Woods Valley Road. Current 85th percentile speeds along the corridor exceed the posted speed limit of 45 miles per hour, and there were 300 collisions with three fatalities over an eight-year period, as noted in MBI Exhibit 3. The collision data indicated that most of the collisions were attributable to unsafe speeds, right-of-way violations, and improper turning. The deep planning effort also looked at growth in the area and the likely increase of traffic volumes on the corridor through the Forecast Year 2035. The planning documents reviewed by Citygate were consistent with what we commonly review from other agencies regarding vehicle and pedestrian safety planning.

Citygate also understands that, as is typical throughout California, current and future speed limits are determined in a rigorous process based on state laws outlined in the California Manual on Uniform Traffic Control Devices. The current posted speed limit of 45 mph along the subject roadway may change in the future. With the implementation of roadway safety treatments for vehicle and pedestrian safety considering the local driveways spaced along the corridor, the current 45 mph speed limit may be re-evaluated for a potential decrease.

The Valley Center Fire Protection District covers 84.5 square miles and serves a population of over 23,000 people by providing fire, emergency medical, and community risk reduction services along with responding to approximately 1,300 calls for service per year.² The District operates from two fire stations, with the primary station (Fire Station 1) location on Lilac Road, approximately 450 feet west of Valley Center Road. Citygate's analysis was to determine the impact of traffic control devices on fire and ambulance unit response times from Fire Station 1 along the CCP project's geographic scope—from the Woods Valley Road intersection to the Cole Grade Road intersection.

As of June 2023, the County was considering new options for traffic signals and roundabouts in addition to addressing other CCP components for road user safety. Both Option A and Option B—Exhibits 1 and 2 to this report—include the use of seven traffic signals (including two associated with private development requirements and two newly proposed), one pedestrian signal, and two

² https://www.valleycenterfire.com/about-us/

-

¹ https://www.sandiegocounty.gov/content/dam/sdc/pds/advance/VCRoadStudy/DCCP-report.pdf

Review of Emergency Response Considerations for the Valley Center Road Corridor Concept Plan Design Options Page 3

dual-lane roundabouts. Both options feature roundabouts at Woods Valley Road. Option A has a roundabout at Miller Road and a signal at Cole Grade Road. Option B has a signal at Miller Road and a roundabout at Cole Grade Road.

To understand the affect the traffic control devices would have on emergency response time, Citygate first needed to establish a baseline understanding of current fire unit travel times. The measures were from Fire Station 1 on Lilac Road to both the north and south ends of the CCP's geographic scope from Cole Grade Road to Woods Valley Road. Citygate, the Valley Center Fire Protection District, and their dispatch center identified incidents where a fire unit responded from Station 1 to an emergency occurring past the end of the CCP project's limits. The fire units have a GPS transponder, so the dispatch center knows to send the closest unit. This technology can also measure response travel time at intervals along a given route. Citygate / Fire District-provided Exhibits 10 and 11 are the result of these incident measures.

The incident data was used to compare to the modeling of intersection performance delay per CCP Options A and B (Exhibits 7 through 9 to this report). The fire unit travel time data was representative of other incidents the Fire District provided to Citygate between 2021 and 2023.

- ♦ The northern fire unit response travel time inside the CCP's geographic scope—from Fire Station 1 to the fire unit GPS waypoint just onto Cole Grade Road (approximately 1.5 miles)—was 3:32 minutes/seconds.
- ♦ The southern fire unit response travel time inside the CCP's geographic scope—from Fire Station 1 to the fire unit GPS waypoint just off Valley Center Road on Woods Valley Road (approximately 1.4 miles)—was 2:27 minutes/seconds.

The MBI model shows the present baseline travel times³ to Cole Grade Road are 4:31 minutes/seconds and to Woods Valley, 2:49 minutes/seconds. Both times are close to the fire unit times, but not the same, being reflective of civilian traffic patterns. In Citygate's experience, these fire unit times are typical in an urban/suburban road network given the distances involved and a minimum number of controls such as stop signs and traffic lights. These fire unit speeds within the corridor are currently ranging from 17–60 mph.

Finding #1: In Citygate's experience, the existing emergency response travel times for fire units are typical for suburban business districts as found within the corridor. The fire unit speeds reflect the existing four-lane boulevard design with intermittent medians and controls.

³ See footnotes in Exhibit 9 for additional information regarding the baseline travel time calibration process, which was needed to isolate differences based on intersection controls.

In the United States, there are no staffing or response time requirements in federal or state law. It is a local policy choice made by cities, counties, and fire districts to fund the fire unit response coverage to match the risks to be protected within available funding. Many communities cannot fund the services necessary to guarantee optimum response times. Within nationally published best practice advice, and in Citygate's experience, fire/EMS travel time for the first-due unit in an urban environment is ideally planned for 4:00 to 5:00 minutes. In suburban areas, an 8:00-minute travel time for fire and/or paramedics to arrive is common. For rural communities, travel time can range up to 12:00 minutes or more.

In the Fire Department's data related to existing travel times on the unmodified roadway within the corridor, fire unit speeds are materially faster than a controlled roadway in an urban/suburban setting. Normally, fire units do not drive 5–10 mph faster than the posted speed limits on surface (not freeway) streets.

ROUNDABOUT AND TRAFFIC SIGNAL RESEARCH

The Valley Center Road Corridor Concept Plan utilizes several traffic safety improvements, two of which are a combination of traffic signals and roundabouts. The conceptual design by MBI for the roundabouts uses typical engineered "turn templates." The CCP's layout of the roundabouts includes two circulating lanes, wide entry lanes, a truck apron on the innermost lane, and other features that will ensure large vehicles—including fire aerial ladder trucks, pumper trucks, and large commercial vehicles including tractor trailers or smaller, towed trailers—can easily and safely navigate the roundabouts mixed with the passenger vehicles. In reviewing the proposed roundabout design (MBI Exhibits 1 and 2), Citygate observes three key features of the roundabouts that provide easy access for large vehicles:

- 1. Wider entry lanes
- 2. An inside apron that can be driven over by rear wheels (as opposed to a high-sided curb with a planter bed)
- 3. Two wide lanes fully encircling each roundabout.

Turn templates have been provided (Exhibits 4, 5, and 6 to this report) to show how large vehicles will be able to navigate the roundabouts, including addressing the dimensions of the largest VCFPD vehicle (aerial ladder truck) and a Cal Fire truck with bulldozer trailer. In reviewing the current literature on roundabouts, Citygate determined the proposed roundabout design to represent best practice for both larger vehicles and higher-volume traffic throughput. Roundabouts may not be as common in the United States as they are abroad, but they are also not rare. Along with our legacy experience with traffic safety design impacts on emergency services, Citygate researched the most recent findings related to roundabouts both in the United States and abroad.

Review of Emergency Response Considerations for the Valley Center Road Corridor Concept Plan Design Options Page 5

The articles and data reviewed by Citygate found that roundabouts moved higher volumes of traffic more efficiently than a standard signalized intersection. We did not find any research or professional journal articles stating that roundabouts slowed or hampered emergency unit travel. In fact, we did find relevant positive articles/media about the use of roundabouts for emergency evacuations. Two of them are provided by Citygate as Exhibits 12 and 13 to this report.

Further, in Citygate's review of relevant research, roundabout design was, in fact, perceived as safer, given that it eliminates "T-bone" intersection accidents with emergency vehicles. In a signalized intersection, even with traffic light preemption in the emergency unit's direction of travel, it can occur (and has occurred) that a driver does not notice their green light changing to red sooner than expected, or the driver is otherwise impaired or distracted and runs a red light, hitting the side of a fire or ambulance unit. Because of this, all fire and ambulance drivers are trained to *decrease* speed when traveling through intersections—even with a green light—until they can ensure that cross traffic has seen them and will stop. Thus, the basic premise of the California Vehicle Code for use of red lights / sirens is that these devices allow the emergency unit to "request the right-of-way" safely as to not endanger members of the public, who may not see or hear the red lights and sirens when the public otherwise has the right-of-way.

By comparison, where roundabouts are utilized, traffic is continually flowing and, as an emergency vehicle approaches a roundabout, cars that have not yet entered can normally pull over to the right. Vehicles inside the roundabout can exit and then also pull over to the right. The emergency unit flows through without coming to a complete stop, as could occur when requesting access through a stop sign or red light. While vehicles should clear the intersection when an emergency vehicle is approaching, it is possible that a car in the two-lane roundabout could stop in the outermost (right) lane and the emergency unit would still have the inside lane to use.

In traffic engineering flow models, data does exist which measures the lag time delay of a signalized intersection versus a roundabout. MBI Exhibits 7 and 8 of this report summarize the average delay per vehicle during AM and PM peak hours for all approaches at each of the studied intersections. These tables compare the existing traffic control to design Options A and B at high-demand traffic during AM and PM peak hours. As the table shows, the safety improvements' impact on travel times for non-emergency traffic—in order from what causes the most delay to what causes the least delay—are stop signs, traffic signals, and roundabouts. An option without roundabouts creates the greatest intersection delay of the options to consider.

The intersection performance tables shown in Exhibits 7 and 8 factored into the modeling of VCFPD travel times per Options A and B and a "no roundabout" option. MBI Exhibit 9 provides this modeling of VCFPD travel times. Citygate then compared the traffic safety control measure time delays to the overall impact on fire and ambulance response times.

Citygate observes that, northbound from the fire station on Lilac Road to Cole Grade Road, Option A, with a single roundabout in addition to the other proposed safety controls, is 0:24 seconds slower. Option B is 0:36 seconds slower. A "no roundabout" option is 1:00 minute slower.

As for fire unit travel southbound from the fire station, at Woods Valley Road and Valley Center Road, a traffic signal already exists. Under either design (Option A or Option B), a single roundabout delay in addition to the other proposed safety controls is just 0:14 seconds slower by comparison. A "no roundabout" option is 0:17 seconds slower.

Finding #2: The two roundabouts proposed in Option A and Option B are consistent with best practices and will impact fire unit travel times less than traffic signals while being safer for the motoring public and firefighters requesting emergency right-of-way. For both Options A and B, there are only two roundabouts proposed for the CCP—one north of Lilac Road, and one south of Lilac Road. Based on the location of Station 1 (Lilac Road), a Valley Center Fire unit would typically only encounter one roundabout during a response. The lag factor for multiple added traffic signals will be far greater than it will be for the one roundabout.

Given (1) the expected increase in traffic volume due to future development, and (2) the understanding that implementing any CCP safety design options will result in the addition of intersection controls, it is Citygate's experience that, after all envisioned safety improvements are made, the roadway will no longer facilitate emergency vehicles traveling materially faster (regularly and for long distances) above the posted speed limits. The question, then, is how much of a delay will be caused *in total* to either end of the corridor (CCP's geographic scope, extending from the Woods Valley Road intersection to the Cole Grade Road intersection) from Valley Center Fire Station 1, and will the resulting lag be significant enough to materially matter?

CCP CHANGES MODELED ON FIRE/EMS RESPONSE TIMES

Citygate used the historical Fire Department travel time data for comparison to the CCP traffic control modeling software outputs from MBI. Their computer software (Synchro v11) utilizes the Highway Capacity Manual (6th Edition) methodology, which is a widely accepted approach and is consistent with the County's requirements for intersection analysis as outlined in the County of San Diego Transportation Study Guidelines (September 2022). The software calculations consider many factors such as volume, speed, and intersection control designs. As of this writing, there are three options being analyzed in this modeling for the Valley Center Road Corridor Concept Plan—Option A, Option B, and a "no roundabout" option.

Review of Emergency Response Considerations for the Valley Center Road Corridor Concept Plan Design Options Page 7

Fire/EMS unit travel time is a combination of the travel speeds along a given roadway segment and the delay at an intersection (i.e., red light at a traffic signal). The following travel time summary table from MBI is a "baseline (calibrated)" output. This is needed as prior uncontrolled, open road Fire/EMS travel times cannot be compared to the effort of just one CCP option change, be it a change in speed limit or intersection design. There must be an "apples to apples" model that accounts for what all the *collective* CCP changes will create, including different intersection types such as signals or roundabouts.

The baseline model uses a "ceiling cap" on all travel speeds of the (posted) 45 mph speed limit in all sections. Everything less than 45 mph remained the same as the raw data received from the historical fire Automatic Vehicle Location (AVL) maps. In practical terms, this means that the emergency vehicle is travelling with the flow of traffic, but no more than the posted speed limit. Added to this, the baseline traffic safety improvements are the primary delay variable from the intersection control modifications for both Option A, Option B, and the "no roundabout" option. Therefore, the comparisons for this emergency unit travel time study are the delay associated with the three intersection control design choices. The following comparison table (and in the attached MBI Exhibit 9) also forecast 2035 traffic as an additional variable contributing to future travel time delay.

Table 1—MBI Exhibit 9 – Valley Center Road Modeled VCFPD Travel Time Comparison

Scenario		Northbound / Eastbound	Southbound
		Lilac Road to Cole Grade	Lilac Road to Woods
		Road	Valley Road
Based on Existing Traffic Volumes			
Baseline (Calibrated)	Travel Time	4:31	2:49
Option A	Travel Time	4:55	3:03
	Difference	+0:24	+0:14
Option B	Travel Time	5:07	3:03
	Difference	+0:36	+0:14
No Roundabouts	Travel Time	5:31	3:06
	Difference	+1:00	+0:17
Based on Future Year 2035 Traffic Volumes			
Baseline (Calibrated)	Travel Time	4:55	2:51
Option A	Travel Time	5:23	3:07
	Difference	+0:28	+0:16
Option B	Travel Time	5:40	3:07
	Difference	+0:45	+0:16
No Roundabouts	Travel Time	6:17	3:11
	Difference	+1:22	+0:20
Difference between Existing and Future Year 2035			
Baseline (Calibrated)		+0:24	+0:02
Option A		+0:28	+0:04
Option B		+0:33	+0:04
No Roundabouts		+0:46	+0:05

All times are shown in minutes: seconds

Notes:

- Baseline (Calibrated) scenario utilizes actual speeds provided by automatic vehicle location (AVL) data. For segments that were greater than the posted speed limit (45 mph), a ceiling cap of 45 mph was applied. For speeds lower than 45 mph, actual speeds were used.
- > Options A and B assume the same segment speeds as the Baseline condition and only consider the change in delay associated with the intersection control modifications.
- > South of Lilac Road, Option A and Option B have the same intersection controls and geometry. Therefore, the estimated travel times in the southbound direction are assumed to be identical.
- All travel time estimates utilize PM Peak-Hour intersection delays as this scenario is shown to be the worst-case study scenario.
- > All travel time estimates utilize the approach delay for the direction of travel (i.e., northbound/eastbound or southbound approaches to the intersection).

The result from the integrated travel time model <u>intersection</u> controls on the *north* section of the corridor ranges from a 0:24-second to 0:36-second travel time *increase* from <u>all</u> intersection controls (one of which is a roundabout). The "no roundabout" option increases travel time by 1:00

minute. In the *south* section of the corridor, there is a 0:14-second increase (again, one control is a roundabout) and a "no roundabout" increase of 0:17 seconds. The Fire District's travel times from Fire Station 1 to incidents well past the corridor are typical of longer travel times to edge suburban and rural areas. The traffic safety plan control small increases of less than a maximum of 0:36 seconds is not long enough to materially change current Fire District customer service delivery.

Finding #3: In Citygate's experience, increased traffic and added development along the corridor will result in the need for additional intersection control requirements at some point in the near term—even without a Corridor Concept Plan. Therefore, response times will be affected by congestion, an increased number and use of side streets/driveways, and controls such as traffic signals.

Finding #4: Increasing traffic and resultant required traffic controls will lengthen emergency unit travel time. The current CCP strategies only lengthen travel times by 0:14 to 0:36 seconds compared to longer anticipated delays with other options.

Finding #5: The least traffic safety impact to response times will be the options with roundabouts proposed as part the CCP. The small roadway design impact on fire or ambulance unit travel time must be contrasted with the overall improvements in traffic and pedestrian safety.

ROUNDABOUTS AND EVACUATION ROUTE USE

Citygate reviewed the available professional publications in the United States and abroad and found *nothing* professionally published in fire service or traffic engineering literature citing that roundabouts would harm evacuation routing and thus should be banned where formal evacuation routes are planned. Valley Center Road is a formal evacuation route in either direction depending on the emergency. Should an evacuation or emergency event occur, Valley Center will need to evacuate while allowing mutual aid emergency responders into the community. Thus, corridor evacuation planning must include two options: (1) using standard road design to allow movement both in and out, or (2) "contra-flow" design where all lanes are used for outbound traffic only. The CCP roundabout design in Options A and B, with two lanes, provides for either flow option. In the event of any evacuation, human traffic control guidance is required at both traffic signals and roundabouts. In the event of a power failure, an officer may be required to direct traffic at signalized intersections. In the power failure situation, roundabouts still work and do not require

Review of Emergency Response Considerations for the Valley Center Road Corridor Concept Plan Design Options Page 10

signal controls while also maintaining a smoother flow than a four-way stop without a traffic control officer.

Citygate found two sources regarding roundabouts in evacuation scenarios, and they also require human control with a handheld sign and traffic cones to restrict movement inside the roundabout to only one in to one out. There is an excellent video from Australia of a working roundabout during an evacuation (see the video web link in the footnote and screenshot image in Exhibit 12) and it shows that a roundabout has the capacity to move a large volume of traffic smoothly.⁴

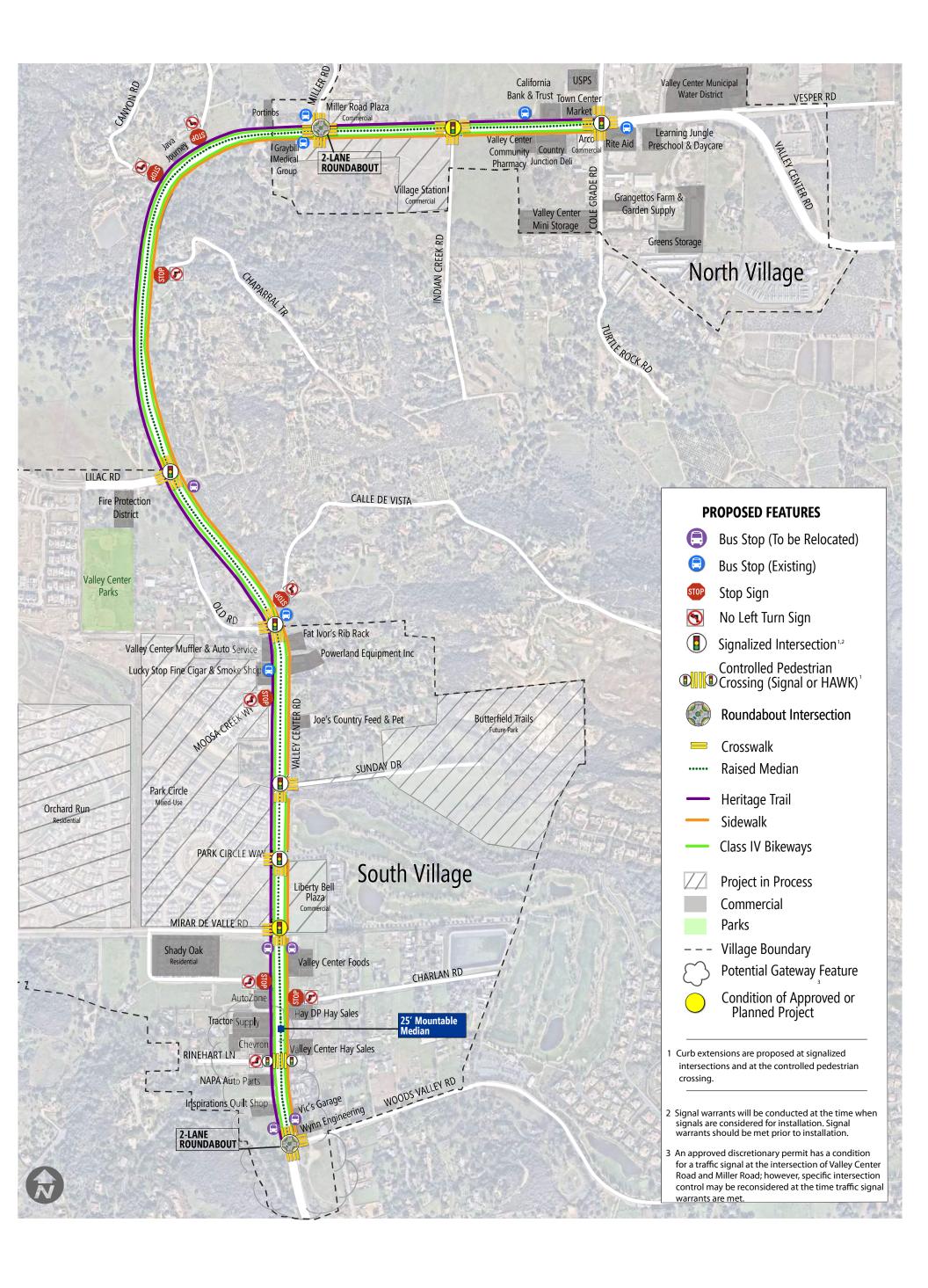
Citygate also found one published article (Exhibit 13) from the Traffic Operations Manager of Clearwater Beach, Florida entitled "Round is Resilient." As a result of Hurricane Charlie, the city had to contraflow and double the capacity of the main roundabout entering the City. The resultant plan worked, increasing capacity and only requiring minor oversight from a traffic officer.

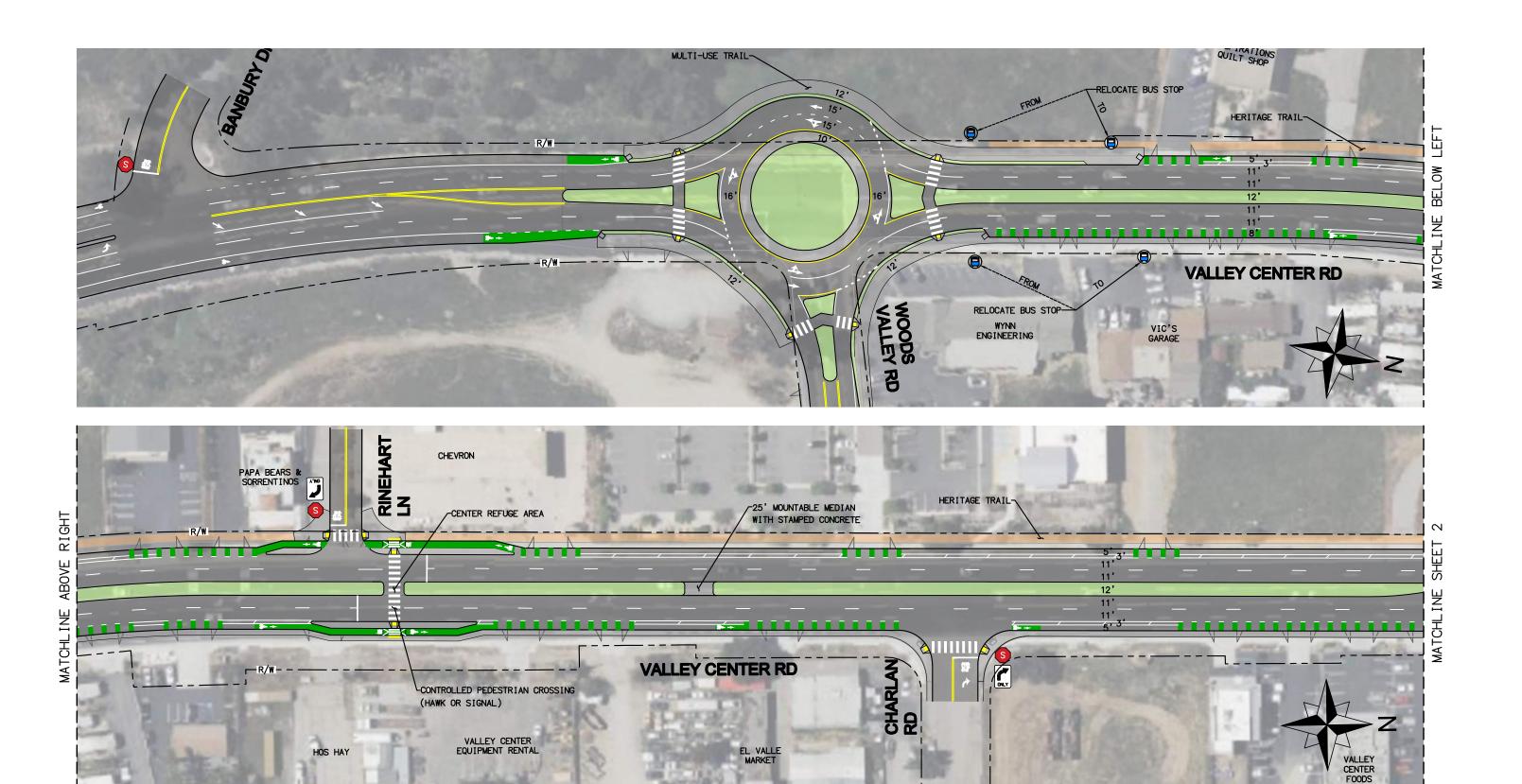
Finding #6: The proposed roundabouts in the CCP Options A and B will not slow or hamper evacuation route use and, in fact, would provide a smoother flow and higher capacity than a four-way intersection.

⁵ https://www.naplesgov.com/sites/default/files/fileattachments/streets amp stormwater/project/3361/fes round is resilient.pdf

⁴ https://commons.wikimedia.org/wiki/File:Contraflow_traffic_through_roundabout_on_North_Beach_Road.ogv

SEPTEMBER 26, 2023




MBI EXHIBITS 1–9 CITYGATE EXHIBITS 10–13

WWW.CITYGATEASSOCIATES.COM

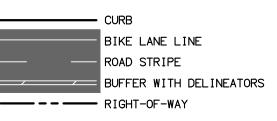
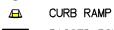


Exhibit 1 - Draft CCP Option A

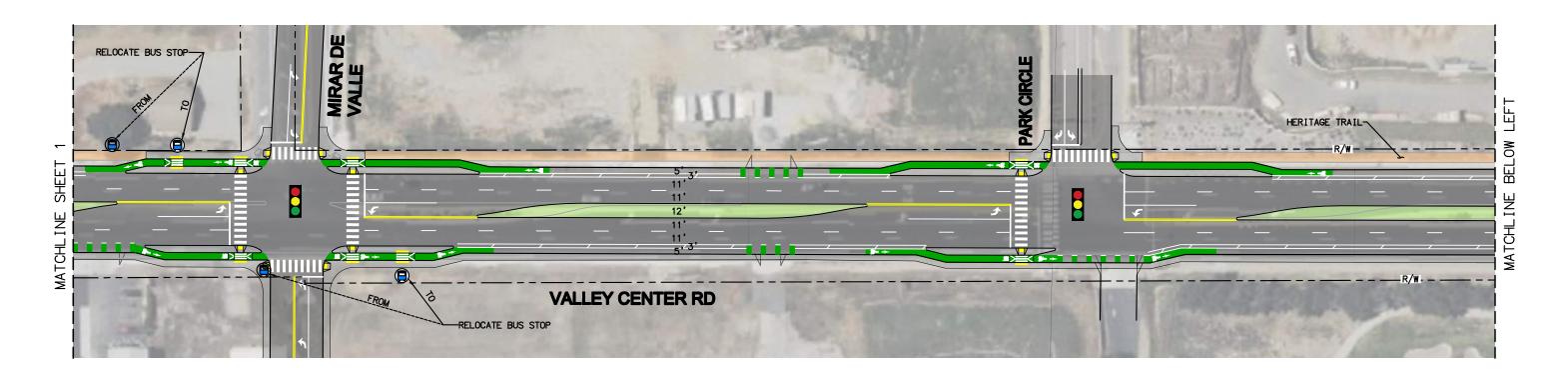


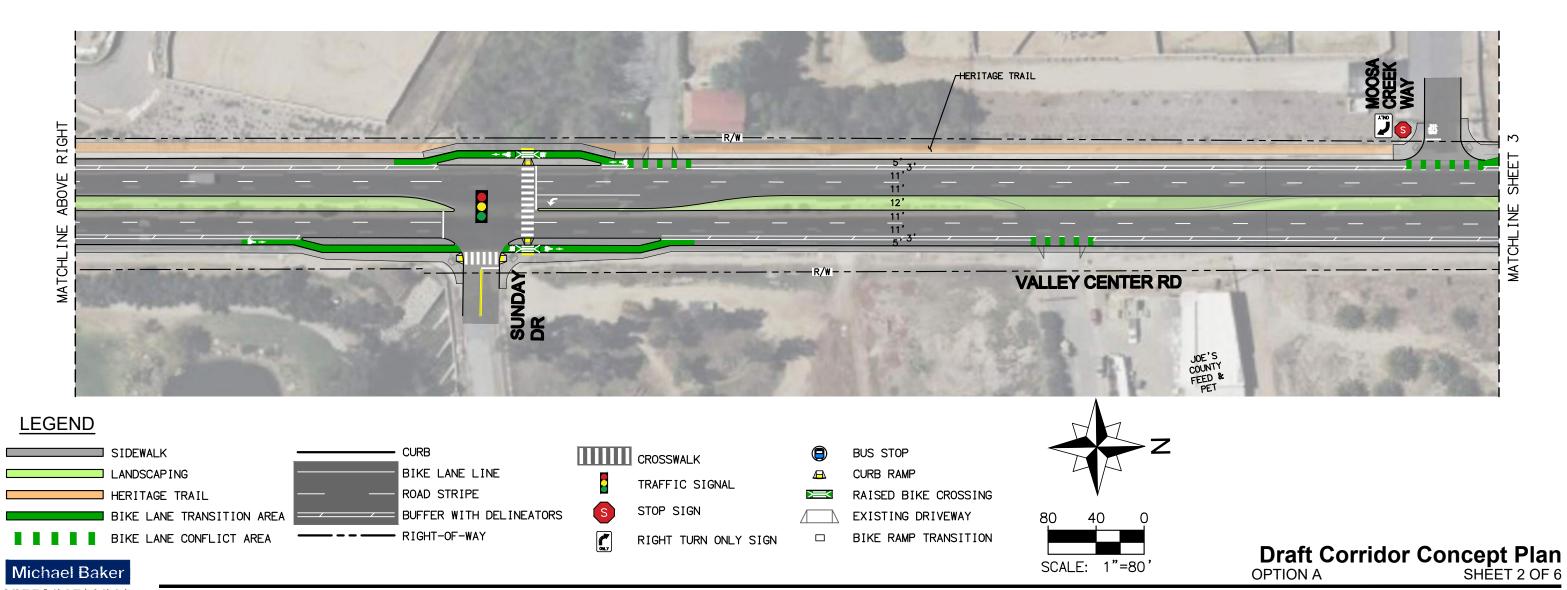
STOP SIGN

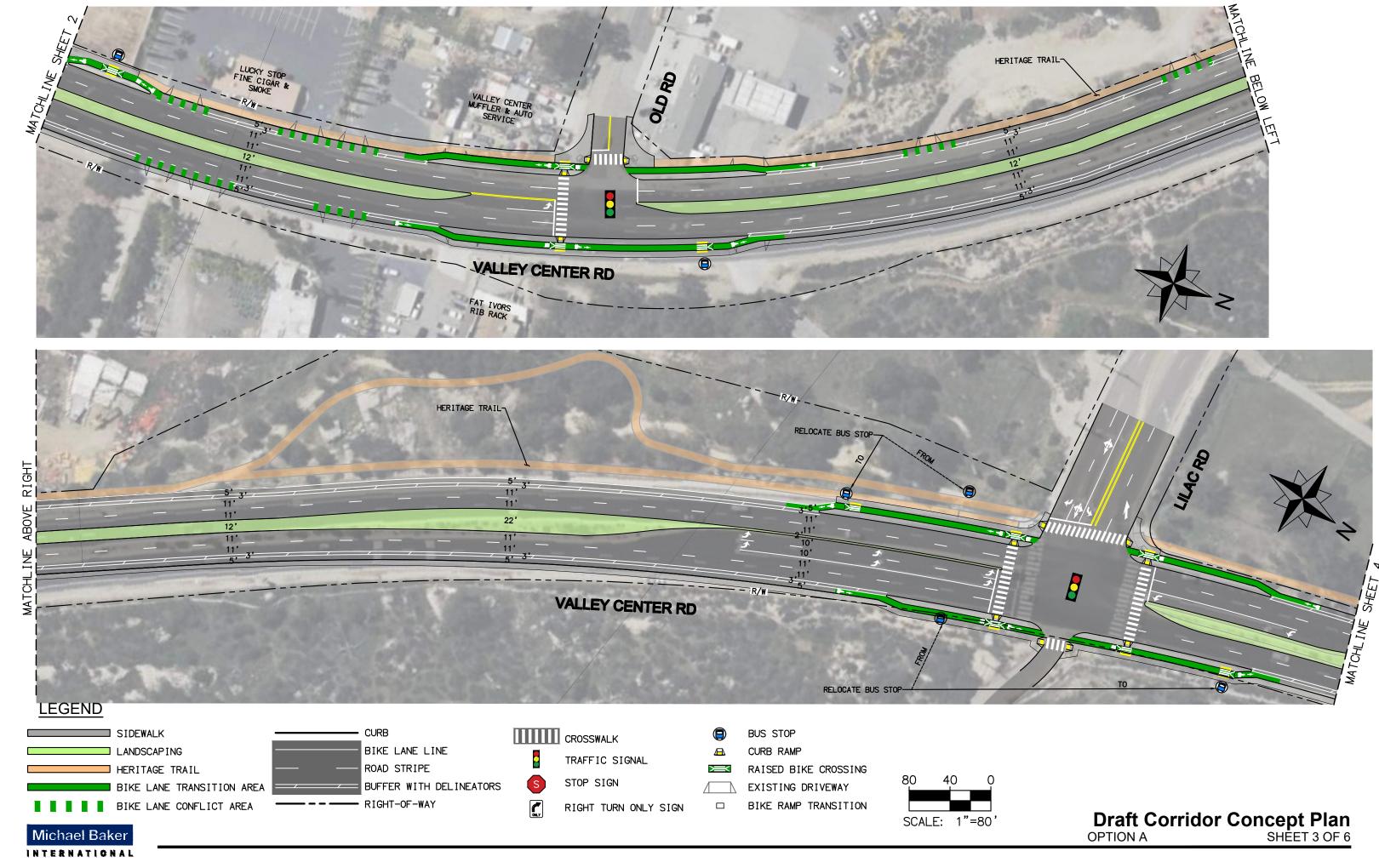
RIGHT TURN ONLY SIGN

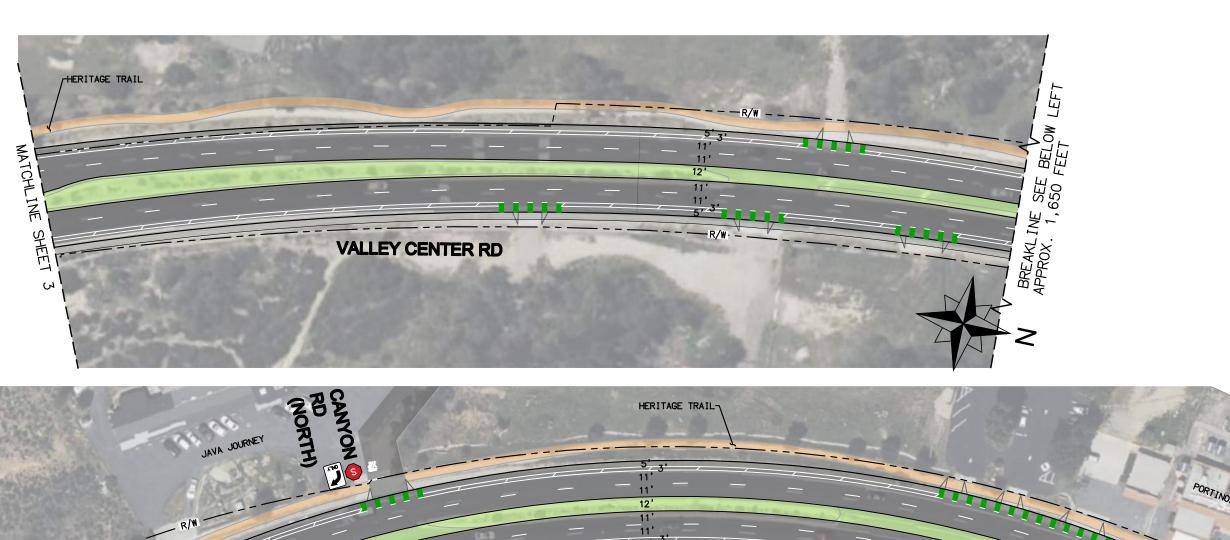
BUS STOP

RAISED BIKE CROSSING

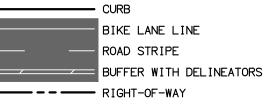


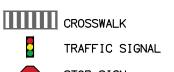

EXISTING DRIVEWAY
BIKE RAMP TRANSITION

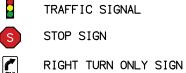

SCALE: 1"=80'

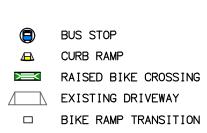

LEGEND

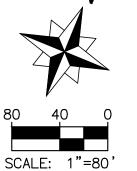
Draft Corridor Concept Plan
OPTION A SHEET 1 OF 6

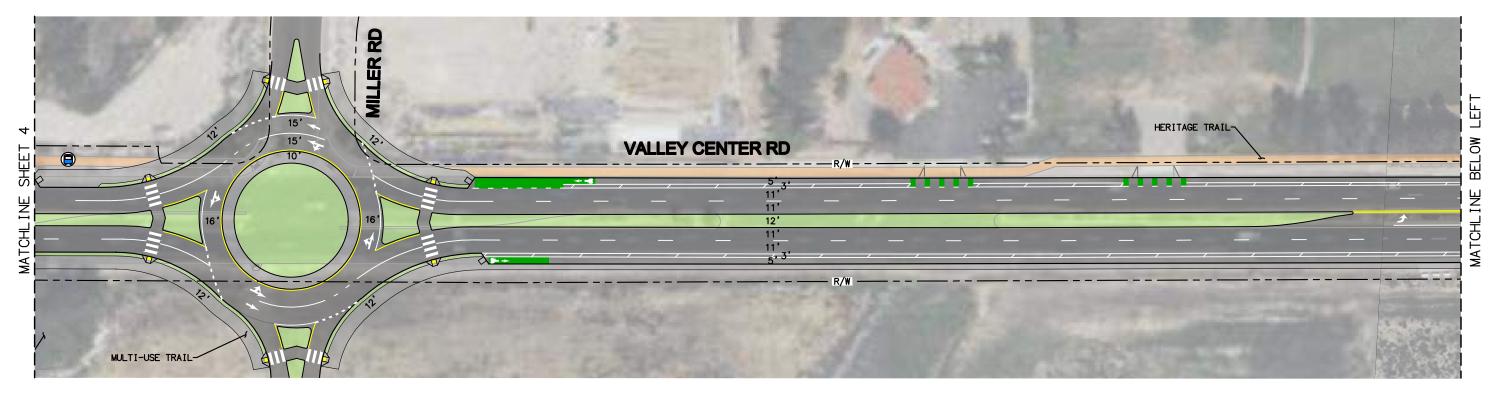


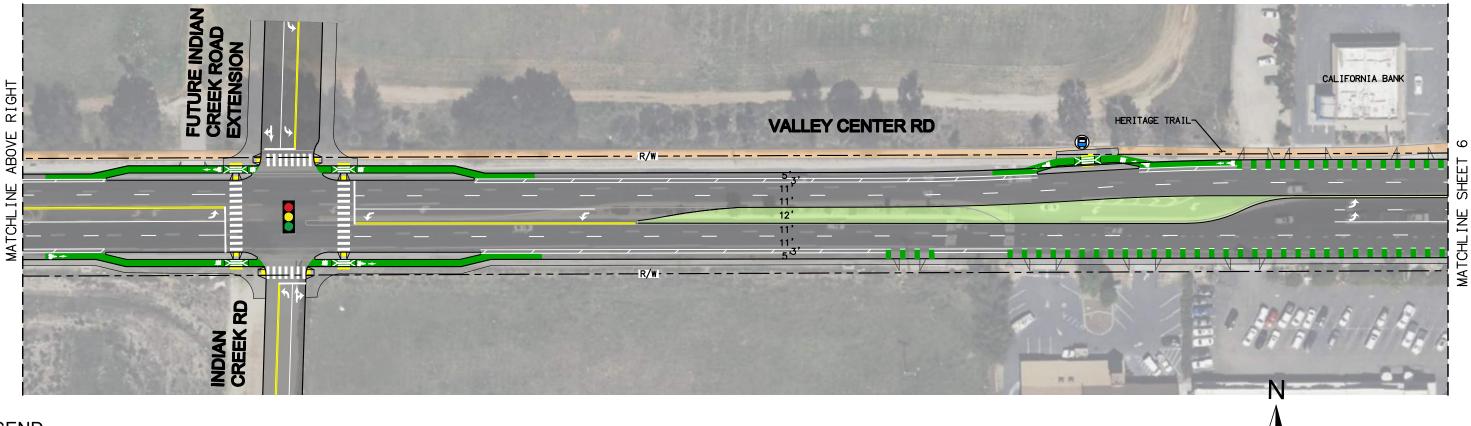


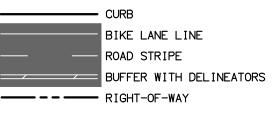


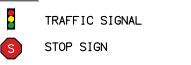


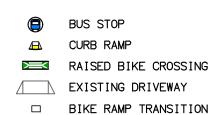


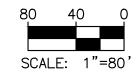


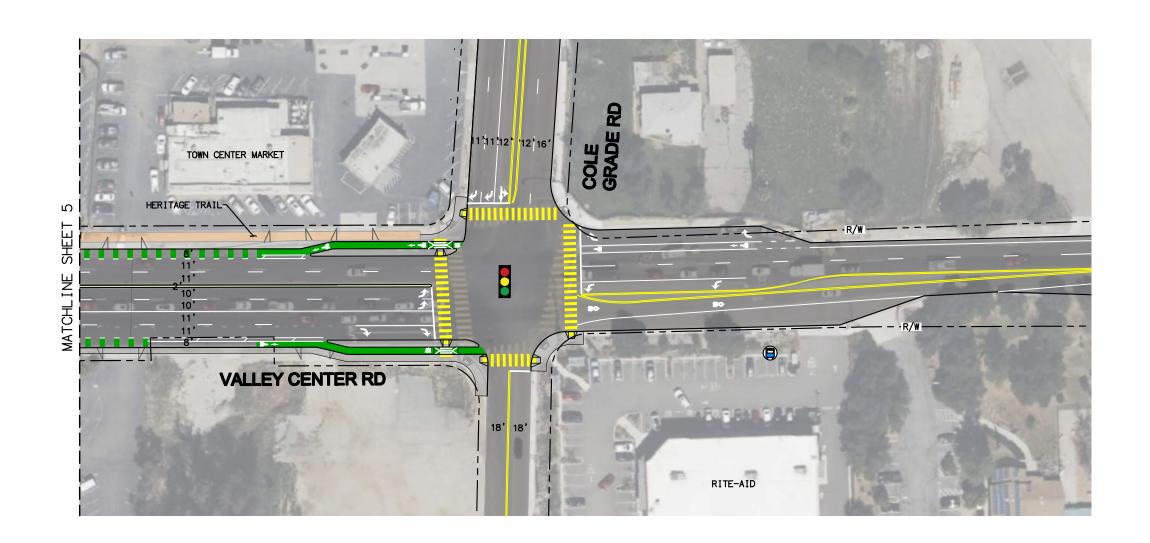



Draft Corridor Concept Plan
OPTION A SHEET 4 OF 6

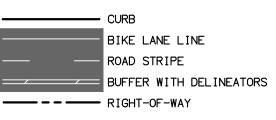


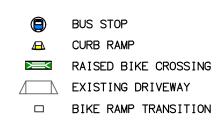


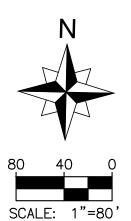




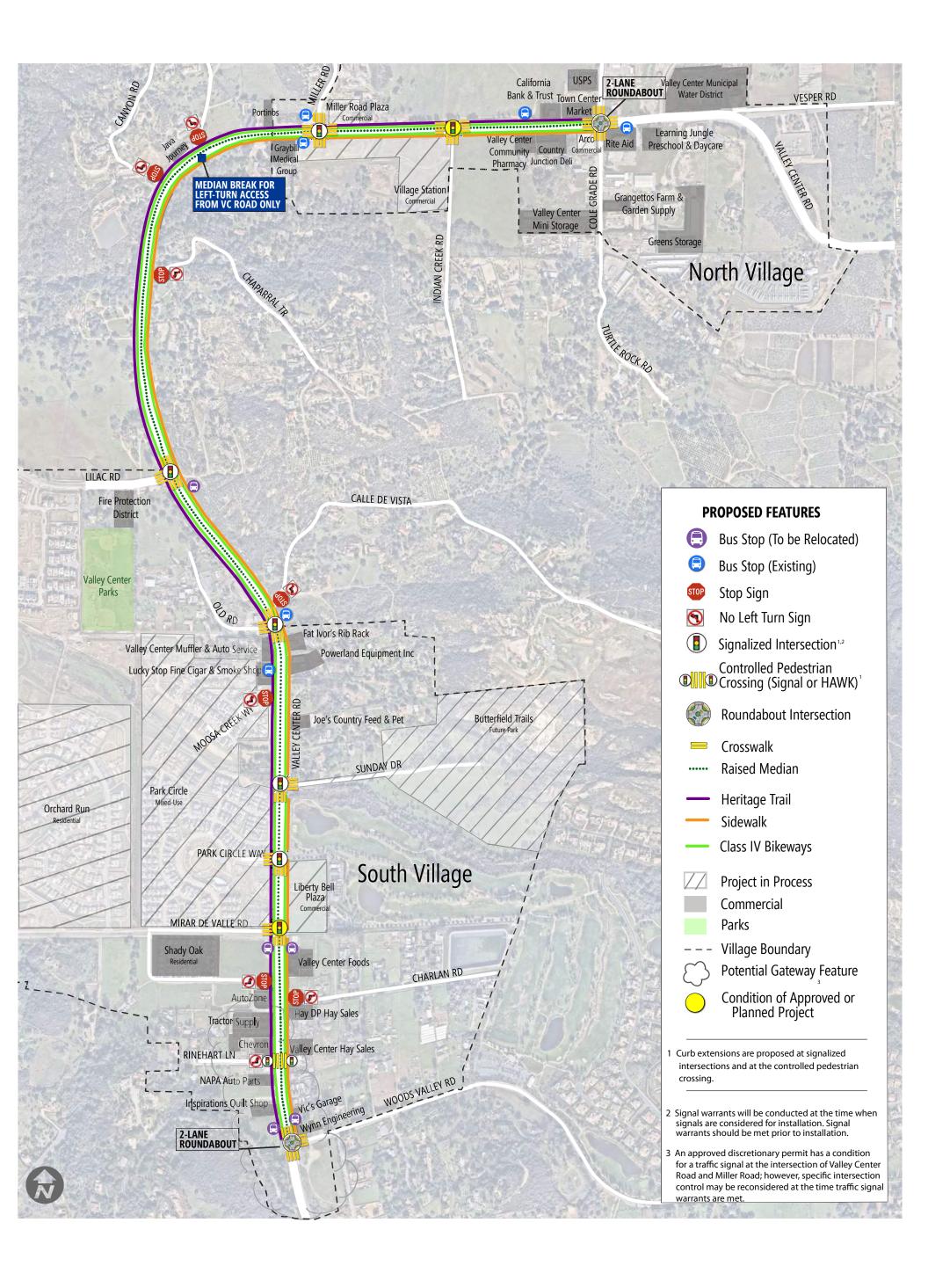
RIGHT TURN ONLY SIGN

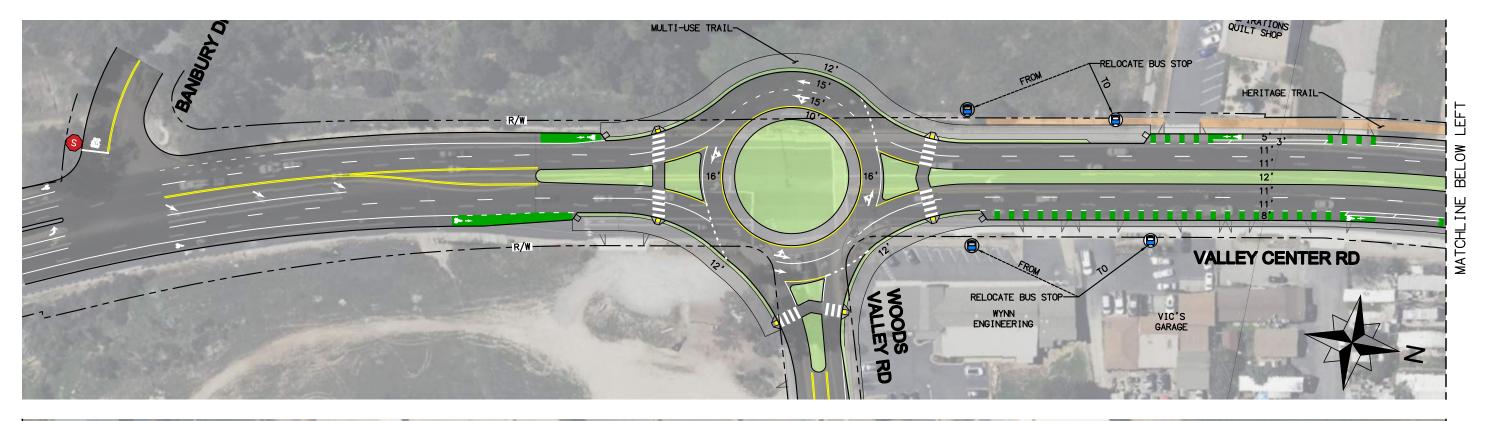



LEGEND


____ SIDEWALK LANDSCAPING HERITAGE TRAIL BIKE LANE TRANSITION AREA BIKE LANE CONFLICT AREA

RIGHT TURN ONLY SIGN





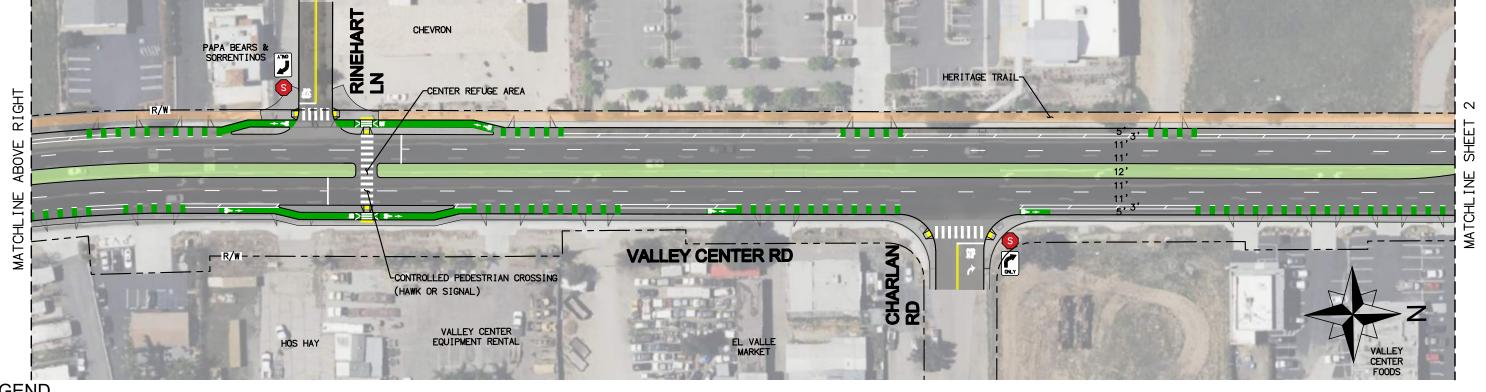

Draft Corridor Concept Plan
OPTION A SHEET 6 OF 6 OPTION A

Exhibit 2 – Draft CCP Option B

■ SIDEWALK LANDSCAPING HERITAGE TRAIL BIKE LANE TRANSITION AREA

BIKE LANE CONFLICT AREA

CURB BIKE LANE LINE ROAD STRIPE BUFFER WITH DELINEATORS RIGHT-OF-WAY

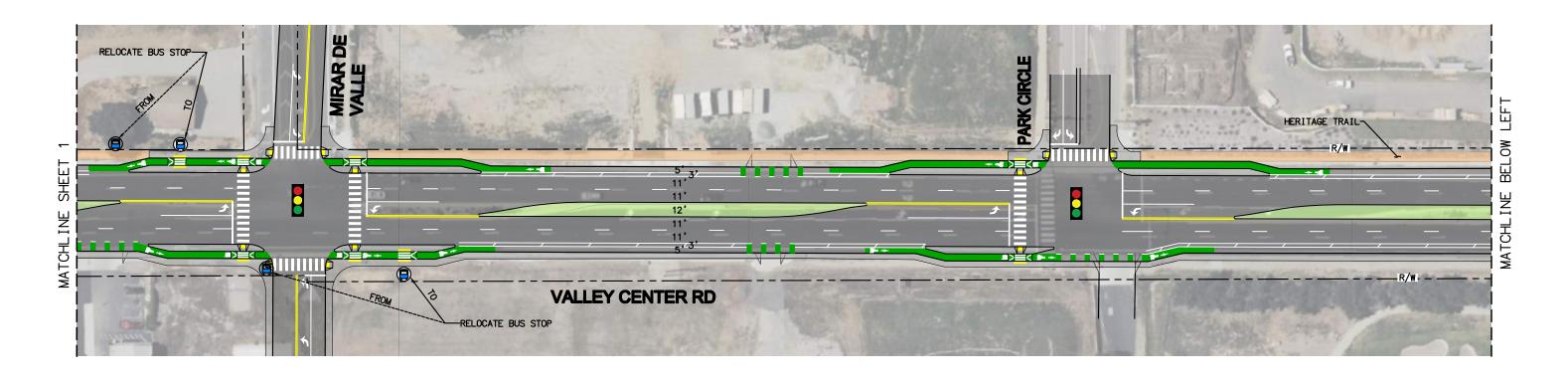
TRAFFIC SIGNAL

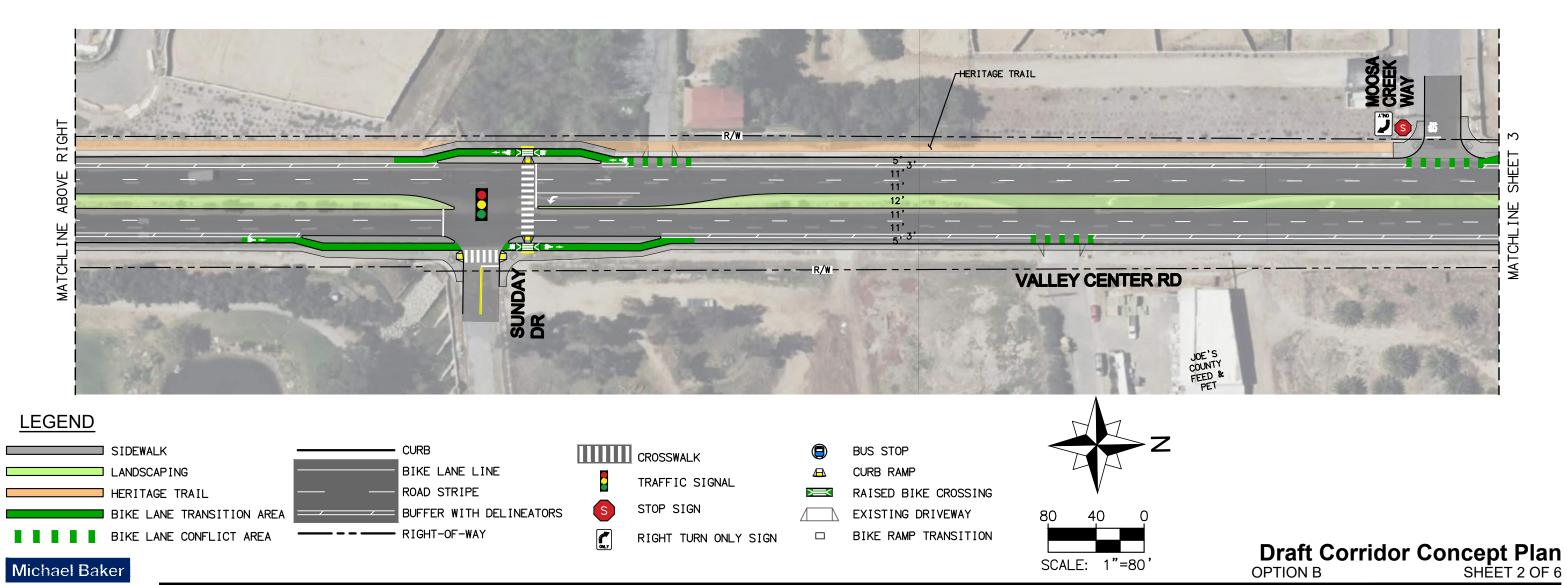
RIGHT TURN ONLY SIGN

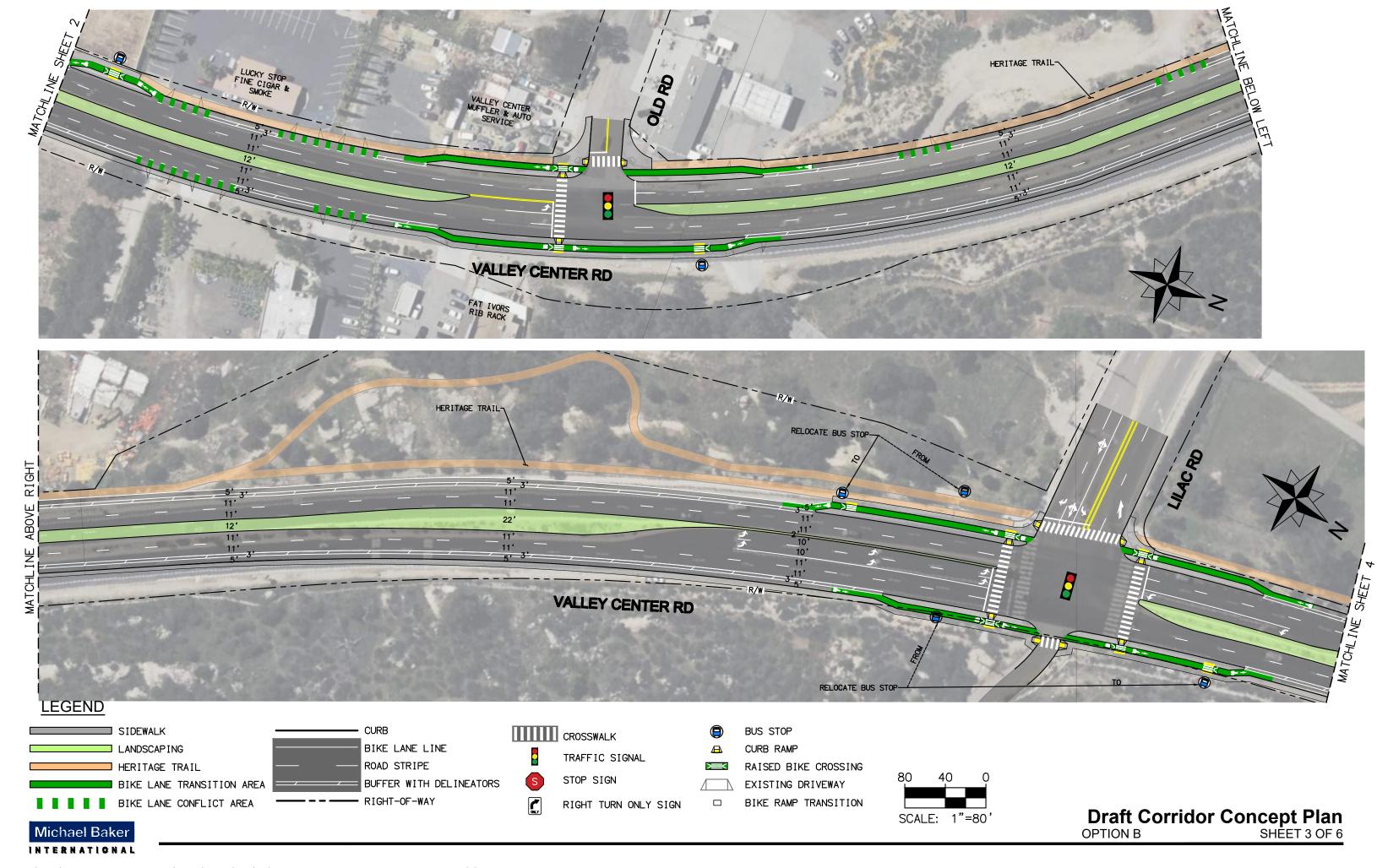
STOP SIGN

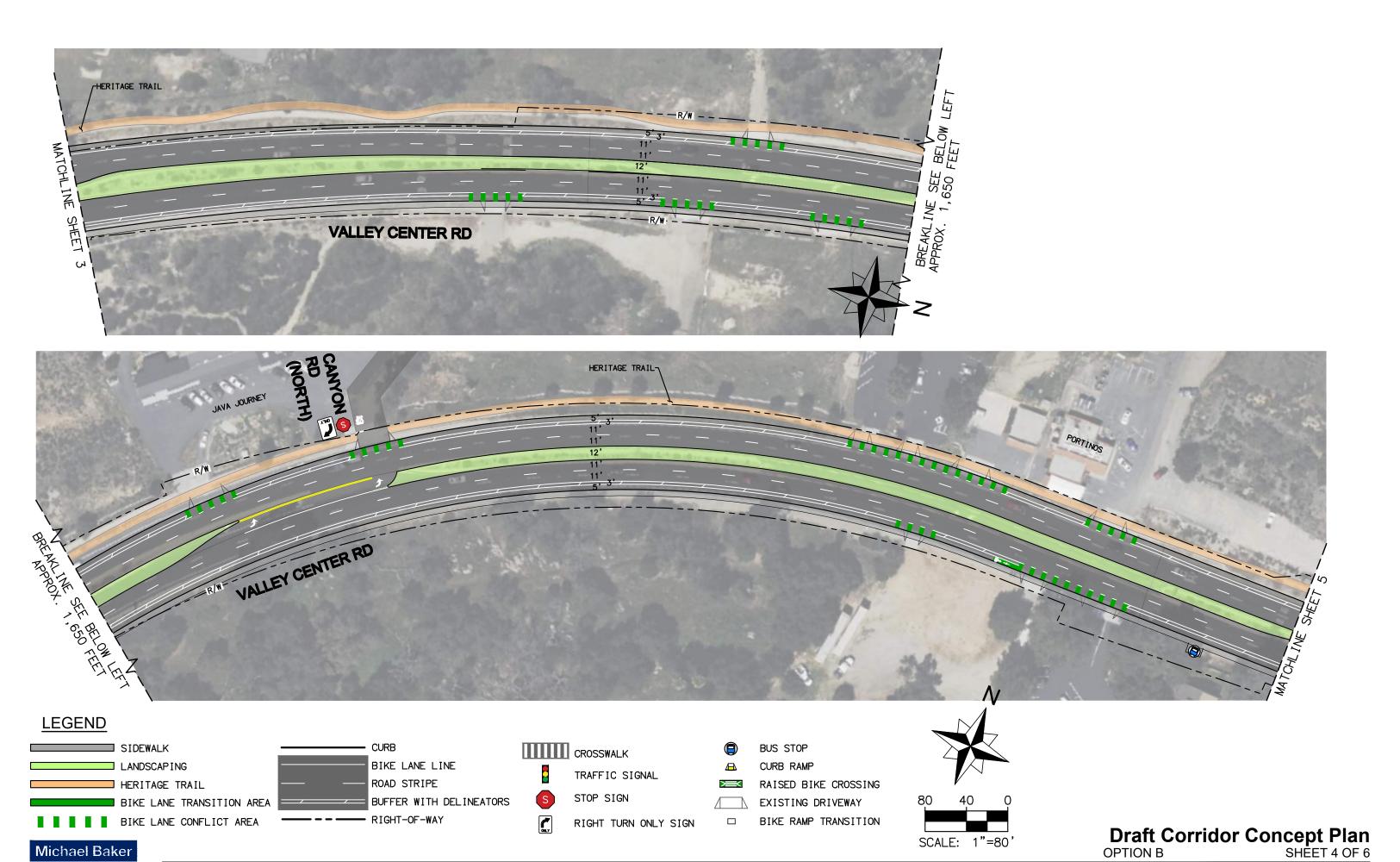
RAISED BIKE CROSSING EXISTING DRIVEWAY

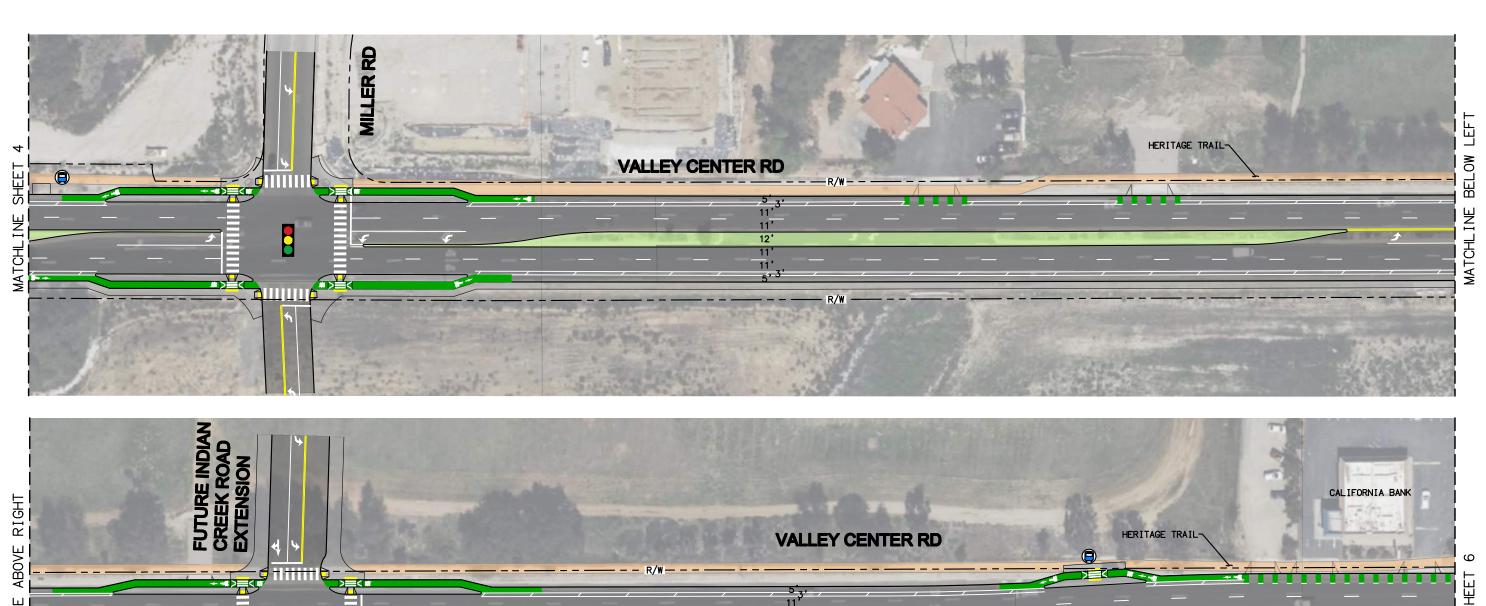
BUS STOP

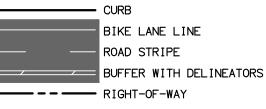

CURB RAMP

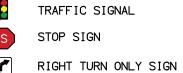

BIKE RAMP TRANSITION

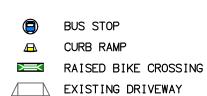

SCALE: 1"=80

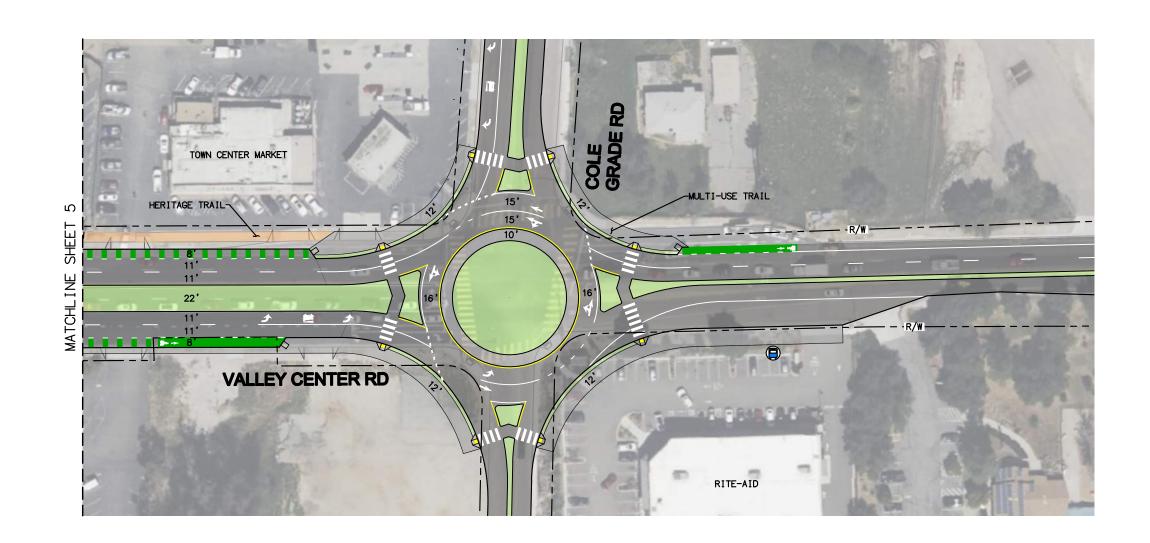



Draft Corridor Concept Plan
OPTION B SHEET 1 OF 6 OPTION B

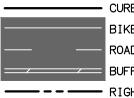





LEGEND

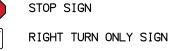


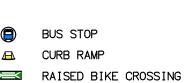
BIKE RAMP TRANSITION



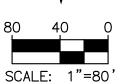
LEGEND

LANDSCAPING HERITAGE TRAIL BIKE LANE TRANSITION AREA


BIKE LANE CONFLICT AREA



CURB BIKE LANE LINE ROAD STRIPE BUFFER WITH DELINEATORS RIGHT-OF-WAY



EXISTING DRIVEWAY BIKE RAMP TRANSITION

Draft Corridor Concept Plan
OPTION B SHEET 6 OF 6 OPTION B

Exhibit 3 – Collision Data

CRASH ANALYSIS

Crash data was provided by the County for an eight-and-a-half-year period from July 2013 through December 2021. During this time period a total of 300 crashes were reported between Woods Valley Road at the southwest end of the corridor to the northeast end of the corridor in vicinity of Cole Grade Road.

A common method for evaluating the relative safety along the corridor is the crash rate analysis. The crash rate is calculated as follows:

Crash Rate (r) = 1,000,000 * C / (365 * N * V * L)

Where: C = Total number of crashes along the segment

N = Number of years of data

V = Number of vehicles per day (both directions) L = Length of the roadway segment (in miles)

The crash rate for the segment of Valley Center Road from Woods Valley Road to Cole Grade Road is 1.48 crashes per million vehicle miles (MVM). According to Caltrans 2019 Collision Data on California State Highways, the average annual crash rate (3 year rate: 2017 to 2019) for four-lane divided roadways in rural areas is reported to be 1.03 crashes per MVM and 1.25 crashes per MVM in urban areas. Therefore, the crash rate along Valley Center Road is higher than both the rural area average rate and the urban area average rate for a four-lane divided road.

Figure 1 illustrates the distribution of crashes by crash type and collision factor along the corridor. The following summarizes the findings of the crash analysis.

Crash by Location and Severity

The crash data on Valley Center Road was assessed to determine the location of each incident and assigned to the nearest intersection (within approximately 250-feet). Of the 300 crashes, the majority occurred at or near the three signalized intersections of Cole Grade Road, Lilac Road and Woods Valley Road. Of the unsignalized intersections along the corridor, Miller Road and Mirar de Valle Road had the highest number of crashes with 35 crashes and 21 crashes respectively. **Table 1** summarizes the crashes by location and severity. As shown in the table, three (3) fatal crashes occurred along the corridor at Mirar de Valle Road, Lilac Road, and Miller Road. A total of 16 crashes involved severe injuries and 34 involved other visible injuries. The majority of the crashes along the corridor, 184 out of 300 crashes reported, were property damage only.

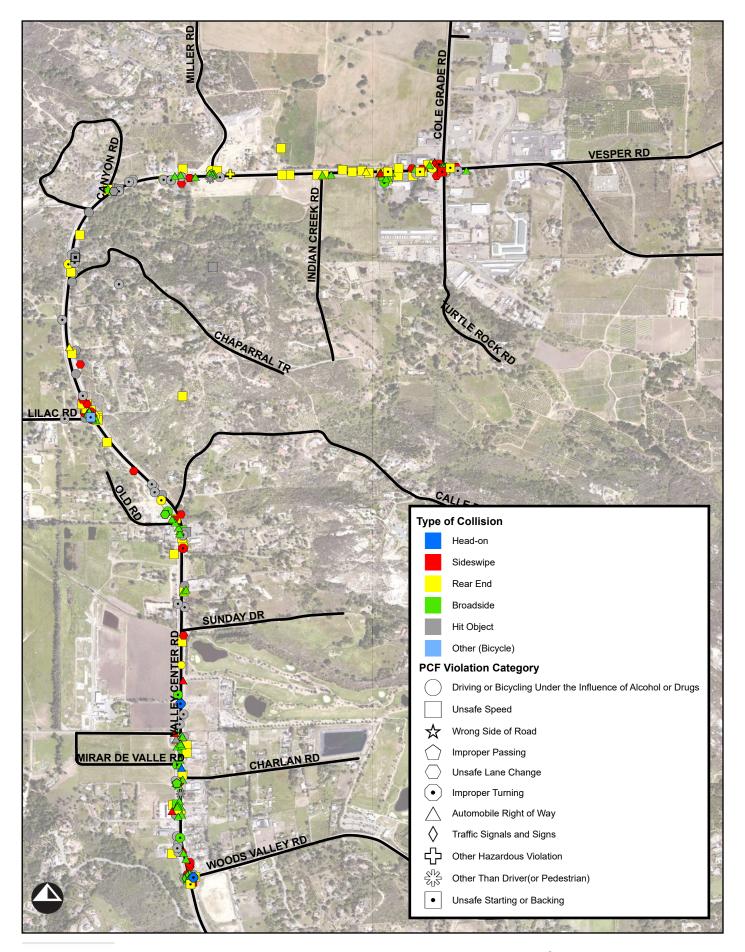
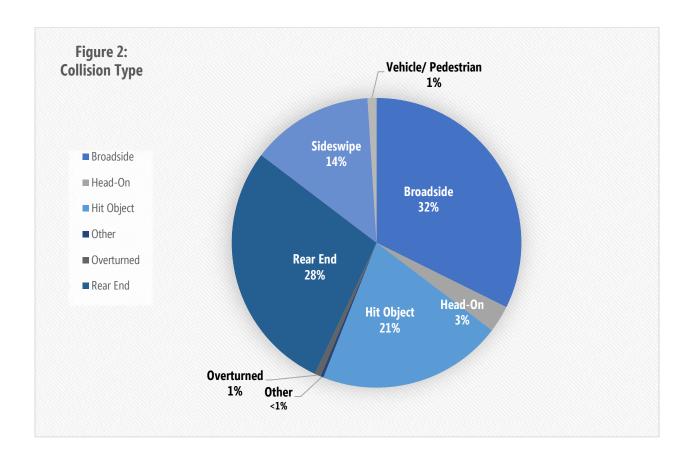


Table 1: Collision Severity by Location

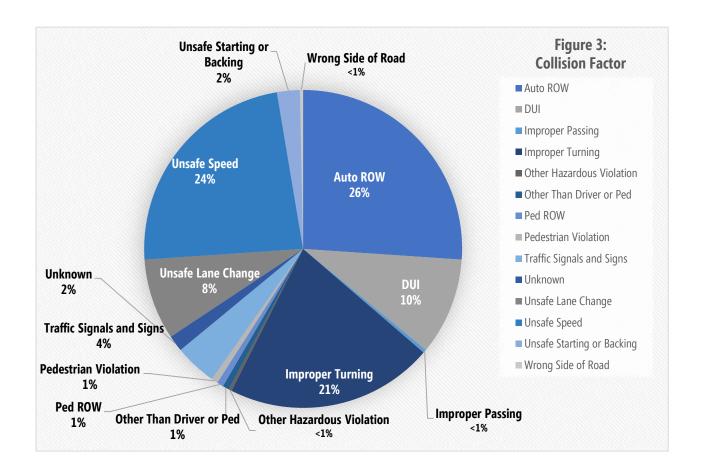
,	Neurale on of	Crash Severity								
Crash Locations	Number of Crashes (2013-2021)	Fatal	Severe	Other Visible Injury	Complaint of Pain	Property Damage Only				
Woods Valley Road	45	0	1	3	11	30				
Rinehart Lane	5	0	0	0	3	2				
Charlan Road	10	0	1	1	1	7				
Mirar de Valle Road	21	1	1	1	2	16				
Sunday Drive	7	0	0	1	1	5				
Old Road	21	0	1	6	2	12				
Calle De Vista	6	0	0	0	1	5				
Lilac Road	64	1	5	5	14	39				
Chaparral Terrace	8	0	0	1	0	7				
Canyon Road	6	0	1	1	2	2				
Miller Road	35	1	1	6	8	19				
Indian Creek Road	6	0	0	2	2	2				
Cole Grade Road	66	0	1	3	24	38				
Total	300	3	12	30	71	184				


Source: County of San Diego, Crossroads Database (6/2013-6/2018), SWITRS Database (7/2018-12/2021)

Crash by Collision Type

Of the 300 crashes reported, most were broadside (97 crashes), rear end (85 crashes) or hit object (62 crashes). As shown in **Figure 2**, these three collision types account for 81% of all crashes along the corridor. A breakdown of collision type by intersection is provided in **Table 2**.

Table 2: Collision Type by Location


		Collision Type										
Crash Locations	Number of Crashes (2013-2021)	Head On	Sideswipe	Rear End	Broadside	Hit Object	Overturned	Vehicle / Pedestrian	Other			
Woods Valley Road	45	2	5	11	16	11	0	0	0			
Rinehart Lane	5	0	1	0	4	0	0	0	0			
Charlan Road	10	0	2	2	5	1	0	0	0			
Mirar de Valle Road	21	1	2	1	11	5	0	1	0			
Sunday Drive	7	0	1	2	2	2	0	0	0			
Old Road	21	0	2	4	12	3	0	0	0			
Calle De Vista	6	0	1	2	2	1	0	0	0			
Lilac Road	64	3	11	20	13	14	1	1	1			
Chaparral Terrace	8	0	1	2	0	5	0	0	0			
Canyon Road	6	0	0	0	2	3	1	0	0			
Miller Road	35	1	2	12	9	11	0	0	0			
Indian Creek Road	6	0	1	2	2	1	0	0	0			
Cole Grade Road	66	2	12	27	19	5	0	1	0			
Total	300	9	41	85	97	62	2	3	1			

Source: County of San Diego, Crossroads Database (6/2013-6/2018), SWITRS Database (7/2018-12/2021)

Crash by Collision Factor

Of the 300 crashes reported, 71% of the crashes were attributed to auto right-of-way violations (79 crashes), unsafe speed (71 crashes), or improper turning (62 crashes). Driving under the influence (DUI) accounted for 30 of the 300 crashes reported along the corridor in the eight-and-a-half-year period. **Figure 3** and **Table 3** summarize the collision factor data. Speed data provided with this report indicates that most drivers exceed the posted speed limit. To reduce speed and reduce crashes associated with speed, traffic calming measures and/or geometric modifications to the road are necessary (i.e., installing a roundabout). Improper Turning and Auto ROW also correspond with the broadside collision type.

Table 3: Collision Factor by Location

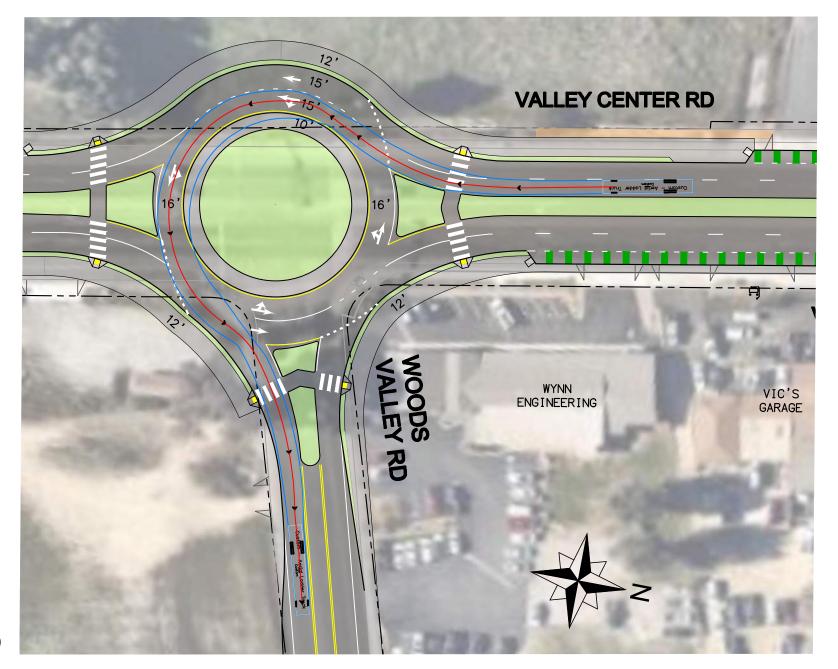
	Number		Collision Factor												
Crash Locations	of Crashes (2013- 2021)	Unsafe Speed	Auto ROW	Improper Turning	DUI	Unsafe Lane Change	Traffic Signal & Signs	Unsafe Starting or Backing	Other	Other than Driver or Ped	Wrong Side of the Road	Improper Passing	Other Hazard Violation	Ped ROW	Ped Violation
Woods Valley Road	45	8	10	11	7	3	5	1	0	0	0	0	0	0	0
Rinehart Lane	5	0	5	0	0	0	0	0	0	0	0	0	0	0	0
Charlan Road	10	2	4	1	0	1	0	0	0	1	0	1	0	0	0
Mirar de Valle Road	21	2	11	6	1	0	0	0	0	0	0	0	0	0	1
Sunday Drive	7	1	2	2	0	2	0	0	0	0	0	0	0	0	0
Old Road	21	7	8	3	2	1	0	0	0	0	0	0	0	0	0
Calle De Vista	6	1	1	4	0	0	0	0	0	0	0	0	0	0	0
Lilac Road	64	16	10	13	11	6	2	1	4	0	0	0	0	1	0
Chaparral Terrace	8	2	0	2	2	1	0	1	0	0	0	0	0	0	0
Canyon Road	6	0	2	3	1	0	0	0	0	0	0	0	0	0	0
Miller Road	35	10	8	7	4	3	0	0	0	1	1	0	1	0	0
Indian Creek Road	6	2	3	1	0	0	0	0	0	0	0	0	0	0	0
Cole Grade Road	66	20	15	9	2	8	6	4	1	0	0	0	0	1	0
Total	300	71	79	62	30	25	13	7	5	2	1	1	1	2	1

Source: County of San Diego, Crossroads Database (6/2013-6/2018), SWITRS Database (7/2018-12/2021)

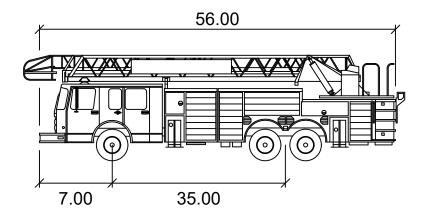
Pedestrian & Bicycle Involved Collisions

Of the 300 collisions reported, one collision involved a bicycle. The bicycle involved collision occurred at the intersection of Valley Center Road / Lilac Road. The collision resulted in injury and is attributed to a vehicle code violation.

Three (3) pedestrian involved collisions were reported during the eight-and-a-half-year period. The pedestrian collisions at the intersections Cole Grade Road and Lilac Road resulted in complaints of pain and are attributed to pedestrian right-of-way violations. The pedestrian collision at Mirar de Valle Road resulted in a fatality and was also attributed to a pedestrian code violation.


Time of Day Summary of Collisions

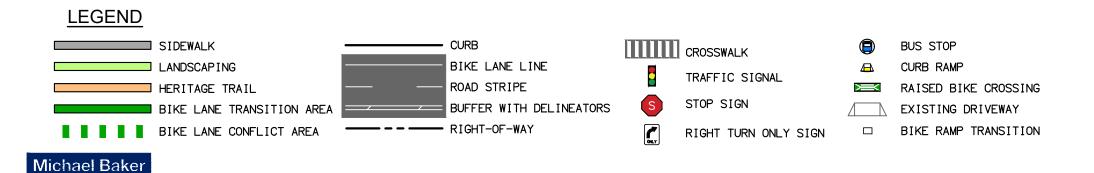
Collision reports include a summary of the time of day, based on daylight, when the collision occurred. Based on the eight-and-a-half-year data provided, the majority of the crashes reported occurred during daylight hours. A summary of crashes by time of day is provided below:


- Daylight 185 crashes
- Dusk / Dawn 7 crashes
- Dark Street Lights 54 crashes
- Dark No Street Lights 53 crashes
- Dark Lights not Functioning 1 crash

Therefore, non-daylight conditions account for approximately 38% of the crashes along Valley Center Road.

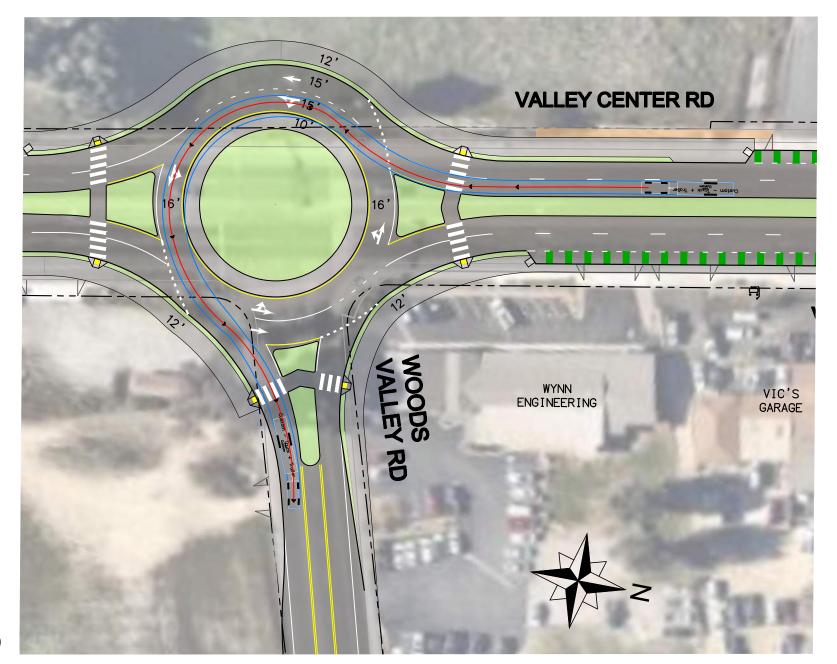
VALLEY CENTER RD - WOODS VALLEY RD TURN TEMPLATE

Custom - Aerial Ladder Truck


feet

Width : 8.25
Track : 8.25
Lock to Lock Time : 6.0
Steering Angle : 33.3

CENTER LINE OF THE VEHICLE
WHEEL TRACKING



INTERNATIONAL

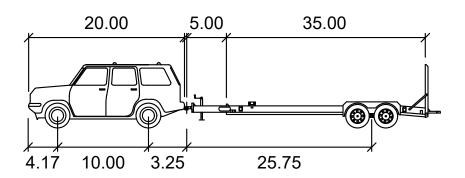
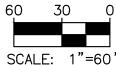
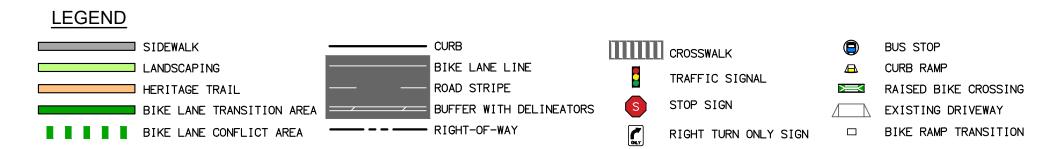


Exhibit 4:

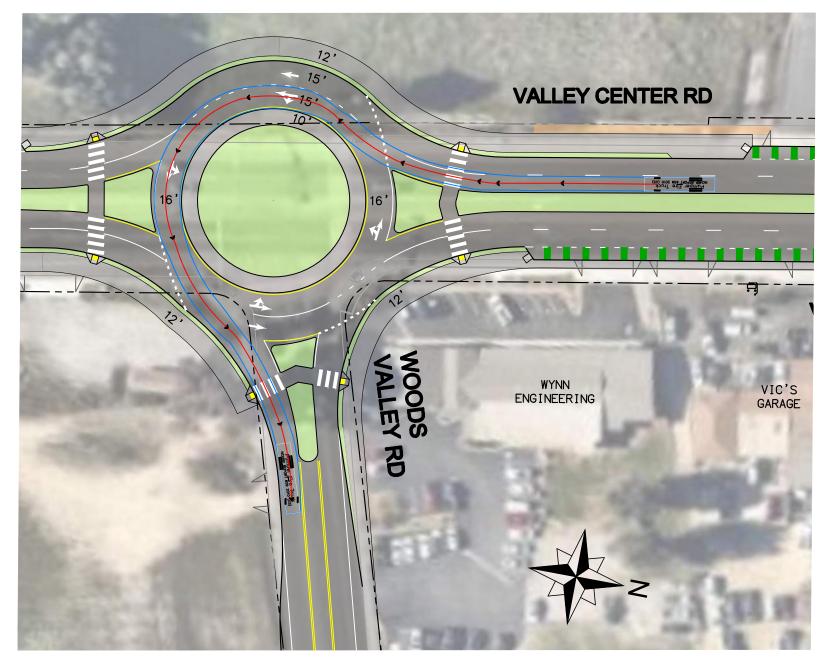
Roundabout Turn Template: Aerial Ladder Truck
(Dimensions match the largest VCFPD vehicle)


VALLEY CENTER RD - WOODS VALLEY RD TURN TEMPLATE

CUSTOM - TRUCK+TRAILER


	feet
Car Width	: 7.00
Trailer Width	: 8.00
Car Track	: 7.00
Trailer Track	: 8.00
Lock to Lock Time	: 6.0
Steering Angle	: 19.8
Articulating Angle	: 50.0

CENTER LINE OF THE VEHICLE
WHEEL TRACKING


Michael Baker

INTERNATIONAL

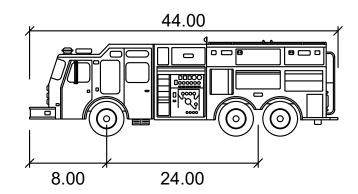


Exhibit 5:

Roundabout Turn Template: CalFire Truck with Trailer for Bulldozer (Dimensions match specifications provided by the County Fire Protection District)

VALLEY CENTER RD - WOODS VALLEY RD TURN TEMPLATE

Pumper Fire Truck

Width	: 8.50
Track	: 8.50
Lock to Lock Time	: 6.0
Steering Angle	: 37.8

CENTER LINE OF THE VEHICLE
WHEEL TRACKING

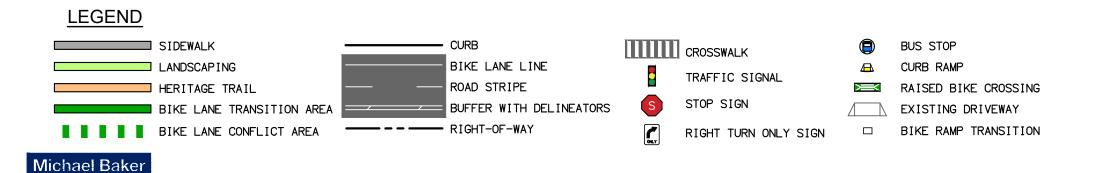


Exhibit 6:

Roundabout Turn Template: Pumper Fire Truck

feet

Exhibit 7 Modeled Intersection Performance Comparison of Existing Traffic Control, CCP Option A, and CCP Option B - Based on Existing Traffic

Study Intersection	With Existing Geometry and Traffic Control				With CCP Opti	on A	With CCP Option B			
	Traffic	AM	PM	Traffic	AM	PM	Traffic	AM	PM	
	Control	Delay ² - LOS	Delay ² - LOS	Control	Delay ² - LOS	Delay ² - LOS	Control	Delay ² - LOS	Delay ² - LOS	
1- Valley Center Road / Woods Valley Road		7.5 - A	9.0 - A	0,	4.0 - A	6.7 - B		4.0 - A	6.7 - B	
2- Valley Center Road / Mirar De Valle Road	STOP	29.7 - D	45.2 - E		11.4 - B	13.2 - B		11.4 - B	13.2 - B	
3- Valley Center Road / Park Circle Way ³		3.4 - A	3.7 - A		3.4 A	3.7 A		3.4 A	3.7 A	
4- Valley Center Road / Sunday Drive	STOP	26.7 - D	51.7 - F		4.2 - A	4.7 - A		4.2 - A	4.7 - A	
5- Valley Center Road / Old Road	STOP	26.1 - D	30.1 - D		5.4 - A	5.6 - A		5.4 - A	5.6 - A	
6- Valley Center Road / Lilac Road		17.5 - B	13.5 - B		18.2 - B	14.0 - B		18.2 - B	14.0 - B	
7- Valley Center Road / Miller Road	STOP	27.3 - D	15.2 - C		7.8 - A	10.0 - A		27.4 - C	38.7 - D	
8- Valley Center Road / Indian Creek Road	STOP	16.9 - C	26.1 - D		6.4 - A	6.6 - B		6.4 - A	6.6 - B	
9- Valley Center Road / Cole Grade Road		31.3 - C	33.5 - C		27.1 - C	34.5 - C	(0)	9.6 - A	13.0 - B	

Note: Deficient intersection operation indicated in **bold**.

³ The Park Circle Way intersection did not exist at the time of the 2019 analysis of existing conditions.

Traffic Signal (condition of private development)

Signal warrants will be conducted at the time signals are considered for installation. Signal warrants should be met prior to installation.

Minor Street Stop Control, worst approach delay and LOS reported. Traffic along Valley Center Road does not stop.

¹ Existing conditions data was collected for the corridor prior to the buildout of Park Circle and Liberty Bell Plaza developments.


² Average seconds of delay per vehicle. *The lower the number, the better the anticipated intersection performance.*

Exhibit 8 Modeled Intersection Performance Comparison of Existing Traffic Control, CCP Option A, and CCP Option B - Based on Future Year 2035 Traffic

	Study Intersection		With Existing Geometry and Traffic Control			With CCP Option	on A	With CCP Option B			
		Traffic	AM	PM	Traffic	AM	PM	Traffic	AM	PM	
		Control	Delay ² - LOS	Delay ² - LOS	Control	Delay ² - LOS	Delay ² - LOS	Control	Delay ² - LOS	Delay ² - LOS	
1-	Valley Center Road / Woods Valley Road		7.8 - A	10.0 - A		4.3 - A	7.6 - A		4.3 - A	7.6 - A	
2-	Valley Center Road / Mirar De Valle Road	STOP	42.5 - E	70.8 - F		15.1 - B	15.2 - B		15.1 - B	15.2 - B	
3-	Valley Center Road / Park Circle Way ³		12.8 - B	18.4 - B		12.8 - B	6.7 - A		12.8 - B	6.7 - A	
4-	Valley Center Road / Sunday Drive	STOP	32.7 - D	72.9 - F		5.6 - A	5.1 - A		5.6 - A	5.1 - A	
5-	Valley Center Road / Old Road	STOP	1338.7 - F	214.2 - F		8.6 - A	6.3 - A		8.6 - A	6.3 - A	
6-	Valley Center Road / Lilac Road		26.7 - C	20.5 - C		26.7 - C	19.4 - B		26.7 - C	19.4 - B	
7-	Valley Center Road / Miller Road	STOP	45.3 - E	17.4 - C		9.0 - A	11.6 - B		28.4 - C	50.5 - D	
8-	Valley Center Road / Indian Creek Road	STOP	19.8 - C	32.0 - D		6.5 - A	8.5 - A		6.5 - A	8.5 - A	
9-	Valley Center Road / Cole Grade Road		42.2 - C	47.7 - D		40.2 - D	47.3 - D	0	12.7 - B	16.5 - C	

Note: Deficient intersection operation indicated in **bold**.

³ The Park Circle Way intersection did not exist at the time of the 2019 analysis of existing conditions.

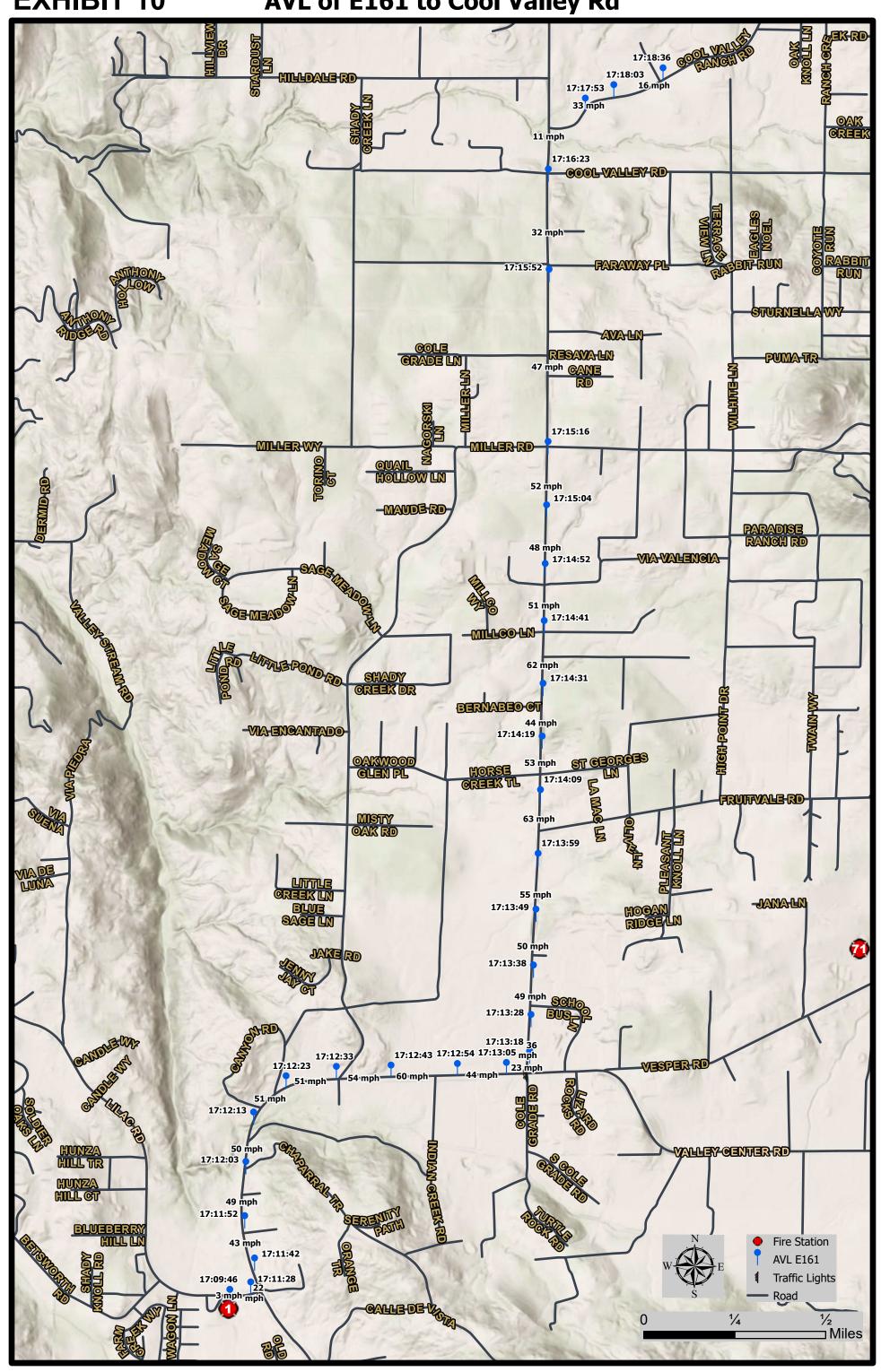
Traffic Signal (condition of private development)

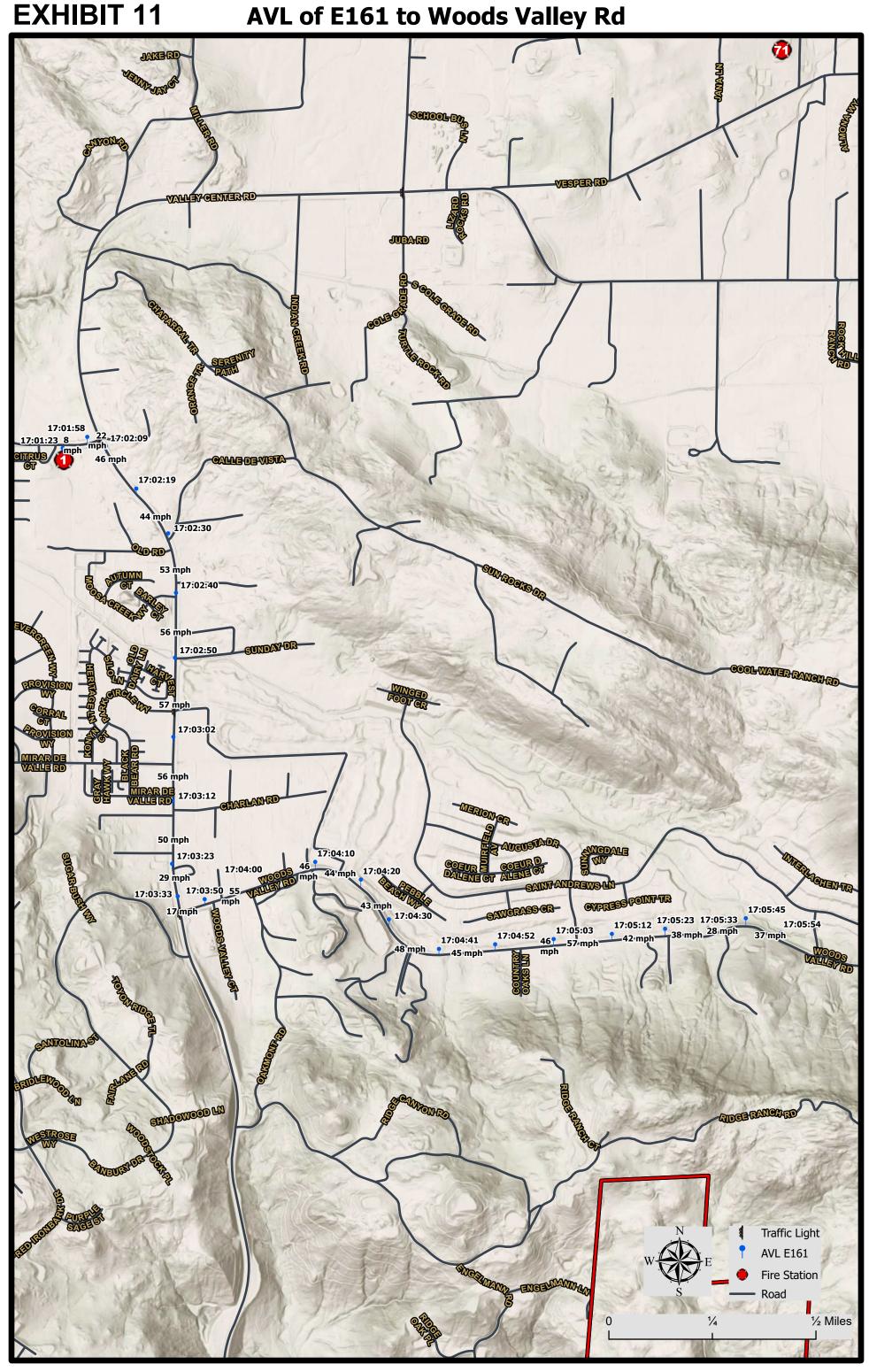
Signal warrants will be conducted at the time signals are considered for installation. Signal warrants should be met prior to installation.

Minor Street Stop Control, worst approach delay and LOS reported. Traffic along Valley Center Road does not stop.

¹ Existing conditions data was collected for the corridor prior to the buildout of Park Circle and Liberty Bell Plaza developments.

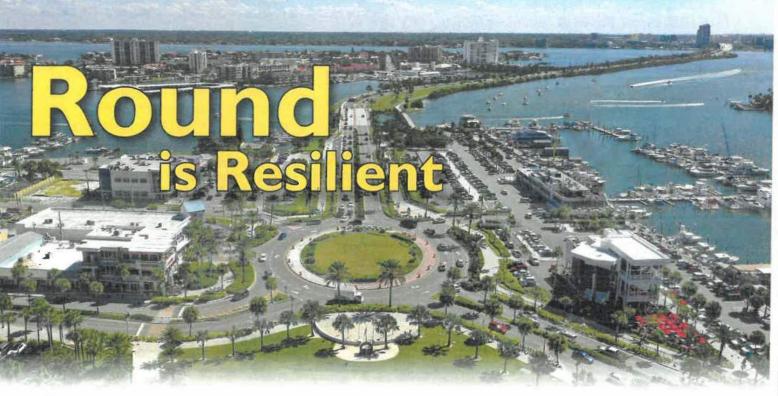
² Average seconds of delay per vehicle. *The lower the number, the better the anticipated intersection performance.*


Exhibit 9
Valley Center Road VCFPD Travel Time Comparison


Sco	nario	Northbound / Eastbound	Southbound					
Ste	iiai iu	Lilac Road to Cole Grade	Lilac Road to Woods					
		Road	Valley Road					
	g Traffic Volumes							
Baseline (Calibrated)	Travel Time	4:31	2:49					
Option A	Travel Time	4:55	3:03					
Орион А	Difference	+0:24	+0:14					
Option B	Travel Time	5:07	3:03					
Орион в	Difference	+0:36	+0:14					
No Roundabouts	Travel Time	5:31	3:06					
NO ROUNGADOULS	Difference +1:00		+0:17					
	Based on Future Yea	r 2035 Traffic Volumes						
Baseline (Calibrated)	Travel Time	4:55	2:51					
Option A	Travel Time	5:23	3:07					
Орион А	Difference	+0:28	+0:16					
Option B	Travel Time	5:40	3:07					
Орион в	Difference	+0:45	+0:16					
No Roundabouts	Travel Time	6:17	3:11					
NO ROUNDADOULS	Difference	+1:22	+0:20					
Difference between Existing and Future Year 2035								
Baseline (Calibrated)	+0:24	+0:02					
Opt	ion A	+0:28	+0:04					
Opt	ion B	+0:33	+0:04					
No Rou	ndabouts	+0:46	+0:05					

All times are shown in minutes : seconds

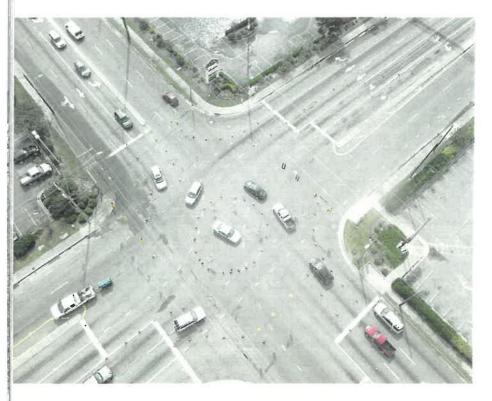
Notes:


- Baseline (calibrated) scenario utilizes actual speeds provided by AVL (automatic vehicle location) data. For segments that were greater than the posted speed limit (45 MPH), a ceiling cap of 45 MPH was applied. For speeds lower than 45 MPH, actual speeds were used.
- Option A & B assumes the same segment speeds as the Baseline condition and only considers the change in delay associated with the intersection control modifications.
- South of Lilac Road, Option A and Option B have the same intersection controls and geometry. Therefore the estimated travel time in the southbound direction are assumed to be identical.
- All Travel Time estimates utilize PM Peak Hour intersection delays as this scenario is shown to be the worse case study scenario.
- All Travel Time estimates utilize the approach delay for the direction of travel (i.e. northbound / eastbound or southbound approaches to the intersection).

Paul Bertels knew he faced the biggest challenge of his career. Hurricane Charlie had already destroyed parts of Punta Gorda and was headed directly for Clearwater Beach, a barrier island on the west coast of Florida. As the City of Clearwater Traffic Operations Manager, he, somehow, had to pull off a mandatory evacuation of the beach. Hurricane Charlie was the most intense storm to hit Florida since Hurricane Andrew wreaked havoc on South Florida in 1992 and the strongest storm to hit the west coast of Florida in a century.

Bertels knew he could contraflow the westbound lanes of the 4-lane divided highway, Memorial Causeway, that connects Clearwater Beach to the mainland. That would give him enough causeway capacity to safely evacuate the beach population. But the intersection connecting the causeway to the beach roadway network was the Clearwater Beach Entryway Roundabout, a trailblazing project that four years earlier had become the first high-profile modern roundabout in the United States. With a normal daily traffic of about 33,000 vehicles, the beach roundabout operation is tested every Spring Break weekend, when the traffic volume almost doubles to nearly 60,000. The roundabout aces that test every year by controlling Spring Break traffic arriving from the mainland with the first roundabout metering signal in the United States, but how could the roundabout handle mandatory evacuation traffic departing the Beach?

The problem Paul Bertels had to solve was how to double the capacity of the roundabout for the evacuation. Because the roundabout is located mid-island, normally traffic from both North and South Clearwater Beach departs the island by flowing counterclockwise through the south half of the roundabout and directly into the two eastbound lanes of the causeway and on to the mainland. No one had ever attempted to evacuate an island through half a


continued on next page

As the City of
Clearwater Traffic
Operations Manager,
Ken Sides, somehow, had
to pull off a mandatory
evacuation of the beach.

By Ken Sides, PE, PTOE, CNU-a

Round is Resilient continued from page 23

roundabout. Working closely with the police beach commander Mike Williams, Bertels devised a plan to contraflow the north half of the roundabout, so that all North Beach traffic contraflowed clockwise through the north half of the roundabout and directly into the two contraflowed westbound lanes of Memorial Causeway. Remarkably, very few resources were needed to contraflow the roundabout: just one parked police vehicle to block circulating traffic from entering the contraflowing section and two patrol officers on foot to direct North Beach traffic entering the roundabout to contraflow clockwise, instead of flowing normally counterclockwise.

Networks aren't networks without functioning nodes, and that includes the roadway transportation network. But severe storms, hurricanes and power outages can severely curtail the operation of street intersections and make them dangerous to cross, adding to woes during and after disasters.

Modern roundabouts are the most resilient intersections ever invented. In normal operation, they provide excellent operational efficiency and outstanding safety compared to conventional intersections. Modern roundabouts operate exactly the same both in normal times and after disasters because they require no sensors, signals, controllers or electricity to operate the same as they always do. Even if the roundabout YIELD signs have been blown away by high winds, the geometry of modern roundabouts causes all drivers to slow down to 25 MPH or less—highly desirable behavior during times of stress.

For roundabouts, there is no lengthy and very costly post-disaster recovery period of dangerous, minimally functioning intersections while repair crews scramble to repair downed power lines, restore power, and replace missing signal heads and damaged controllers. There is no hindrance to emergency vehicles, no severe crashes, and no need to divert critically-needed police forces to manually direct intersection traffic.

Many small and medium-sized signalized intersections are good candidates for conversion to modern roundabouts for safety and operational benefits alone; taking them off the signal network relieves the annual signal budget during normal times and can pay big dividends in time of disaster. Instead of rebuilding signalized intersections post-disaster at considerable expense, some could instead be converted to modern roundabouts.

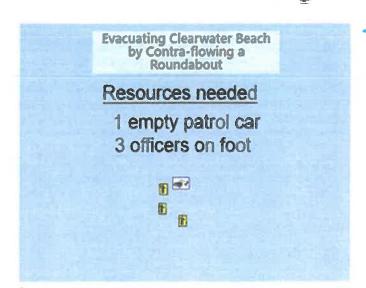
An early study by the Insurance Institute for Highway Safety found that modern roundabouts reduce fatalities by more than 90% --thereby closing in on the goal of Vision Zero for intersections. Based on 17 years of crash data, a 2018 study by Pennsylvania DOT found modern roundabouts have reduced both fatalities and severe injuries by 100% to zero. Minor injuries were reduced 95%, and possible/ unknown injuries by 92%. Total crashes went down 47%. The Florida DOT pegs the comprehensive cost to society of a fatal crash at \$10,660,000 and severe injury crashes at \$599,040.

A 2017 Minnesota DOT study found

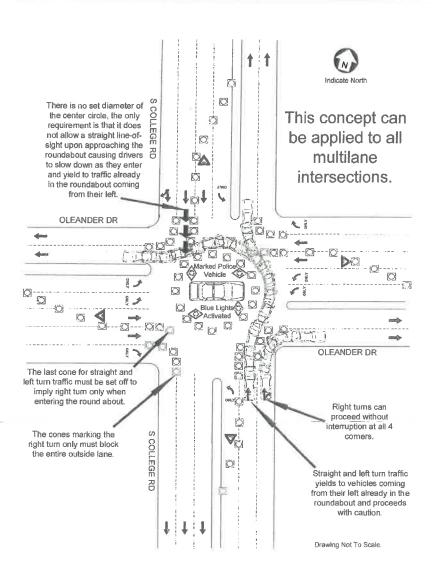
modern roundabouts have reduced the fatality crash rate by 86% and the severe injuries rate by 83%. The crash rate for all roundabouts is 1/2 the crash rate of highvolume/low-speed signalized intersections and 1/3 the crash rate of high-volume/ high-speed signalized intersections. The typical 15-25 MPH roundabout speeds and two-thirds fewer pedestrian/vehicle conflict points are a substantial safety benefit for pedestrians, youngsters, oldsters, bicyclists, skaters and transit riders, as well.

Converting signalized intersections to modern roundabouts typically improves peak hour operations a very welcome 30%, and roundabouts flow even better for the roughly 80% of traffic that is off-peak. Latenight vehicles typically encounter no delay at all. The elimination of idling vehiclehours queued up at red lights typically results in a 30% reduction in the associated fuel consumption, toxic pollution, and greenhouse gas emissions—the last a major contributor to increasing storm severity due to the greater energy input of warming ocean water into storm formation.

In the aftermath of Hurricane Florence, Traffic Management Officer Eric Lippert was directing traffic at an inoperative signalized intersection in Wilmington, NC, when he realized the intersection could better handle the low post-storm traffic volume by itself and without him-if it were converted to


a temporary roundabout by means of few traffic cones. His "tactical urbanism" idea worked surprisingly well in rudimentary implementation, so several other Wilmington intersections were also promptly and easily converted to temporary "cone" roundabouts. Wilmington City Traffic Engineer Don Bennett, PE, refined the design and observed that, "Unequivocally, a single lane

> Converting signalized intersections to modern roundabounts typically improves peak hour operations a very welcome 30%...


roundabout works better than four, 5-lane approaches with STOP control. There are capacity issues, but it works much better and everyone complies." During critical times, each intersection was tying up 12-16 officers for 24-hour operations; the "coneabouts" got that down to just three officers plus a patrol car parked in the center. The officers reset downed cones and the vehicle's flashing blue light alerts motorists in advance.

Modern roundabouts offer engineers a way to dramatically reduce intersection fatalities and severe injuries while saving society billions of dollars annually. To date,

continued on next page

the United States has built approximately 5,000 modern roundabouts, but to achieve roundabout parity by population with countries such as France or Australia, the U.S. would need to construct some 145,000 roundabouts. The City of Carmel, Indiana, has led the way by eliminating almost all traffic signals and constructing 121 modern roundabouts—more than one for every 1,000 residents. The equivalent for Tallahassee would be a minimum of 190 roundabouts.

References

¹ Crash Reductions Following Installation of Roundabouts in the United States, Insurance Institute for Highway Safety, Bhagwant N. Persaud, Richard A. Retting, Per E. Garder, Dominique Lord, March 2000

- ² The Pennsylvania Department of Transportation, 9/27/2018, https://www.penndot.gov/pages/all-news-details.aspx?newsid=536
- ³ FDOT KABCO Crash Costs, Table 122.6.2, FDOT Design Manual, Florida Department of Transportation, 1/1/2018
- ⁴ A Study of the Traffic Safety at Roundabouts in Minnesota, Office of Traffic, Safety, and Technology Minnesota Department of Transportation, Derek Leuer, P.E., October 30, 2017, http://www.dot.state.mn.us/trafficeng/safety/docs/roundaboutstudy.pdf

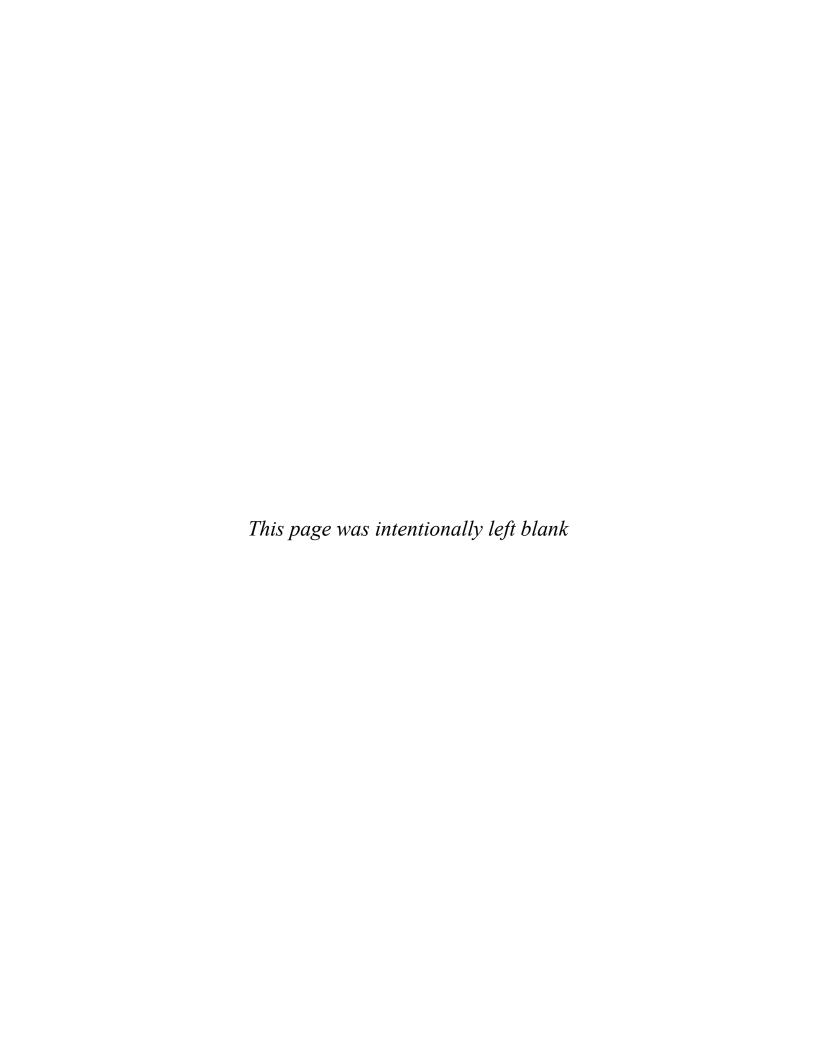
About the Author: Ken Sides, PE, PTOE, CNU-a, is

a Senior Transportation Engineer for Sam Schwartz Transportation Consultants in Tampa, Florida. He is a quadruple hurricane evacuee, having fled ahead of Hurricanes Andrew, Charley, Irma, and Florence. He has been instrumental in several dozen modern roundabouts constructed in Clearwater, Florida, mostly as project manager. Many of the roundabouts are elements of complete street road diet corridor projects. His first roundabout was the pioneering Clearwater Beach Entryway Roundabout in 1998. His roundabout projects have won nine engineering, planning and construction awards.

Mr. Sides is a long-serving member of both the Transportation Research Board (TRB) Roundabout Committee and the Institute of Transportation Engineers (ITE) Roundabout Committee. TRB is an arm of the National Academy of Sciences. He is a certified Professional Transportation Operations Engineer (PTOE), an accredited member of the Congress of New Urbanism (CNU-a), and a certified bicycle safety instructor. His peers have named him Engineer of the Year four times.

Valley Center Road Corridor Concept Plan

Appendix C: 2024 Citygate Report Supplement



JUNE 24, 2024

WWW.CITYGATEASSOCIATES.COM

600 COOLIDGE DRIVE, SUITE 150 PHONE: (916) 458-5100 FOLSOM, CA 95630 FAX: (916) 983-2090

600 Coolidge Drive, Suite 150 Folsom, CA 95630 PH 916-458-5100 FAX 916-983-2090

June 24, 2024

RE: SUPPLEMENT TO THE SEPTEMBER 2023 REVIEW OF EMERGENCY RESPONSE CONSIDERATIONS FOR THE VALLEY CENTER ROAD CORRIDOR CONCEPT PLAN DESIGN OPTIONS – ADDRESSING THE DRAFT FINAL CORRIDOR CONCEPT PLAN

This supplement to Citygate Associates, LLC's (Citygate's) 2023 report reviews the Draft Final Valley Center Road Corridor Concept Plan (CCP), which is slightly different than the options covered in our analysis that was published on September 26, 2003. Citygate's ongoing scope of work is to understand the potential impacts of the CCP options on fire and EMS response times and public evacuation.

Citygate's updated research work on the Spring 2024 Draft Final CCP included:

- Understanding the perspectives of community members as presented in the public meetings.
- Review of the updated traffic flow and intersection design work by Michael Baker International (MBI) for the Draft Final CCP.
- ♦ Comparison and contrast of the use of the Draft Final CCP intersection controls on emergency response times and disaster evacuation routes, including traffic signals and roundabouts.
- Comparison of historical fire unit travel time records (as used in Citygate's 2023 report) to the Draft Final CCP design traffic control models.

COMPONENTS OF THE DRAFT FINAL CCP

Following several outreach meetings for consideration of the three CCP options addressed in Citygate's 2023 report, the Valley Center Community Planning Group (CPG) voted on February 12, 2024, to recommend new CCP Option A with one revision: to remove the Woods Valley Road intersection roundabout included in that option. All other components of Option A would apply to the Draft Final CCP per this CPG recommendation, including the proposed roundabout at the Miller Road intersection. This CPG recommendation is now the Draft Final CCP and is addressed in this supplement to Citygate's 2023 Report, which addressed previous CCP Options A, B, and C. Plan sheets for this Draft Final CCP can be found in Exhibit S-1.

Page 2

The key components of the Draft Final CCP are:

- ♦ A two-lane roundabout at the Miller Road intersection.
- ♦ Newly proposed traffic signals at the Sunday Drive and Old Road intersections.
 - Implementation actions for newly proposed signals at the Old Road and Sunday Drive intersections would be contingent on funding availability and adherence to the latest guidance in the California Manual on Uniform Traffic Control Devices (CA MUTCD) for justifying signal installation.
 - In the full corridor one-page plan sheet attached as Exhibit S-1, these newly proposed signals and existing signals are depicted with white circles surrounding the signal symbol. The signals with yellow circles are conditions of private development projects and are not considered part of the improvements planned with the Valley Center Road CCP.
- ♦ A controlled pedestrian crossing (also referred to as a pedestrian signal) at Rinehart Lane.
 - The type of controlled pedestrian crossing would be determined during the engineering phase of implementation.
- Curb extensions (also referred to as bulb outs) at all existing or proposed signalized intersections.
- ♦ A Class IV separated bikeway on both sides of the road throughout the corridor.
 - The type of physical separation would be determined at the engineering phase of implementation.
- Extending the raised median throughout the corridor, with median openings limited to signal or roundabout-controlled intersections.
- No left turn restrictions at stop sign-controlled side streets.
- ♦ A 25-foot-long mountable median in the South Village for public safety personnel use only.
- Reduction in travel lane widths (outside the roundabout) from 12' to 11'.
- ◆ Extending the 5'-wide sidewalk on the east and south sides of the corridor to fill in existing gaps.
- ♦ Maintaining the 8'-wide Heritage Trail pathway on the west and north sides of the corridor, with minor modifications at the proposed roundabout to accommodate the roundabout multi-use path, as well as at the proposed curb extensions.

Page 3

- Converting crosswalks to continental crosswalks at intersections that do not already have continental crosswalks.
- ♦ The plan sheets in Exhibit S-1 show a few locations for consideration as potential bus stop relocations. These potential relocations are in consideration of best practices under ideal implementation circumstances (e.g., a County-initiated implementation project). The bus stop relocations are not required for Valley Center Road CCP consistency but may be considered during implementation coordination with the North County Transit District (NCTD), the operator of a bus route along the corridor.

UPDATED CITYGATE TECHNICAL REVIEW

Citygate reviewed the Draft Final CCP traffic flow modeling statistics provided by MBI in Exhibits S-5 and S-6. This review included the changed mathematics due to the exchange of a roundabout for a controlled intersection traffic signal at Valley Center Road and Woods Valley Road and any other design changes that might affect the response times of emergency units, given the sensitivity of the traffic models.

In Citygate's experience, the exchange of one roundabout for a signal-controlled intersection is not a major enough design change to significantly change the summary findings in our initial 2023 review of the corridor design elements as to impacts on public safety access. Citygate has revisited and then compared in depth the findings of our September 2023 report that related to evaluation of the 2023 CCP options for emergency response and evacuation consideration. For clarity, we list below all of our 2023 findings and, where needed, address changes given the 2024 Draft Final CCP.

Finding #1: In Citygate's experience, the existing emergency response travel times for fire units are typical for suburban business districts as found within the corridor. The fire unit speeds reflect the existing four-lane boulevard design with intermittent medians and controls.

No changes; was not applicable to evaluation and comparison of the Draft Final CCP.

Finding #2: The two roundabouts proposed in Option A and Option B are consistent with best practices and will impact fire unit travel times less than traffic signals while being safer for the motoring public and firefighters requesting emergency right-of-way. For both Options A and B, there are only two roundabouts proposed for the CCP—one north of Lilac Road, and one south of Lilac Road. Based on the location of Station 1 (Lilac Road), a Valley Center Fire unit would typically only encounter

Page 4

one roundabout during a response. The lag factor for multiple added traffic signals will be far greater than it will be for the one roundabout.

Supplement to Finding #2 for Draft Final CCP: The finding's impacts are unchanged other than the removal of the southern corridor roundabout.

Finding #3: In Citygate's experience, increased traffic and added development along the corridor will result in the need for additional intersection control requirements at some point in the near term—even without a Corridor Concept Plan. Therefore, response times will be affected by congestion, an increased number and use of side streets/driveways, and controls such as traffic signals.

No changes; was not applicable to evaluation and comparison of the Draft Final CCP.

Finding #4: Increasing traffic and resultant required traffic controls will lengthen emergency unit travel time. The current CCP strategies only lengthen travel times by 0:14 to 0:36 seconds compared to longer anticipated delays with other options.

Supplement to Finding #4 for Draft Final CCP: In comparison to the previous Options A and B, the removal of the single roundabout at Woods Valley Road and Valley Center Road in the Draft Final CCP—combined with all the southbound design elements—only increases emergency unit travel time from the 2023 Options A and B by 4 seconds, from 3:07 minutes to 3:11 minutes, using Exhibit S-6 2035 traffic volumes. It only increases by 3 seconds in the modeling based on existing traffic volumes found in the same Exhibit. This resultant impact is materially insignificant given all the variables related to emergency unit speeds in differing traffic volumes across a 24/7/365 traffic flow model. Any change in time that is less than 1:00 minute is not likely to negatively impact emergency outcomes.

Finding #5: The least traffic safety impact to response times will be the options with roundabouts proposed as part the CCP. The small roadway design impact on fire or ambulance unit travel time must be contrasted with the overall improvements in traffic and pedestrian safety.

Supplement to Finding #5 for the Draft Final CCP: The only change is that there is only one remaining roundabout. The modeling shows that any roundabout causes less impact to travel time than a traffic signal.

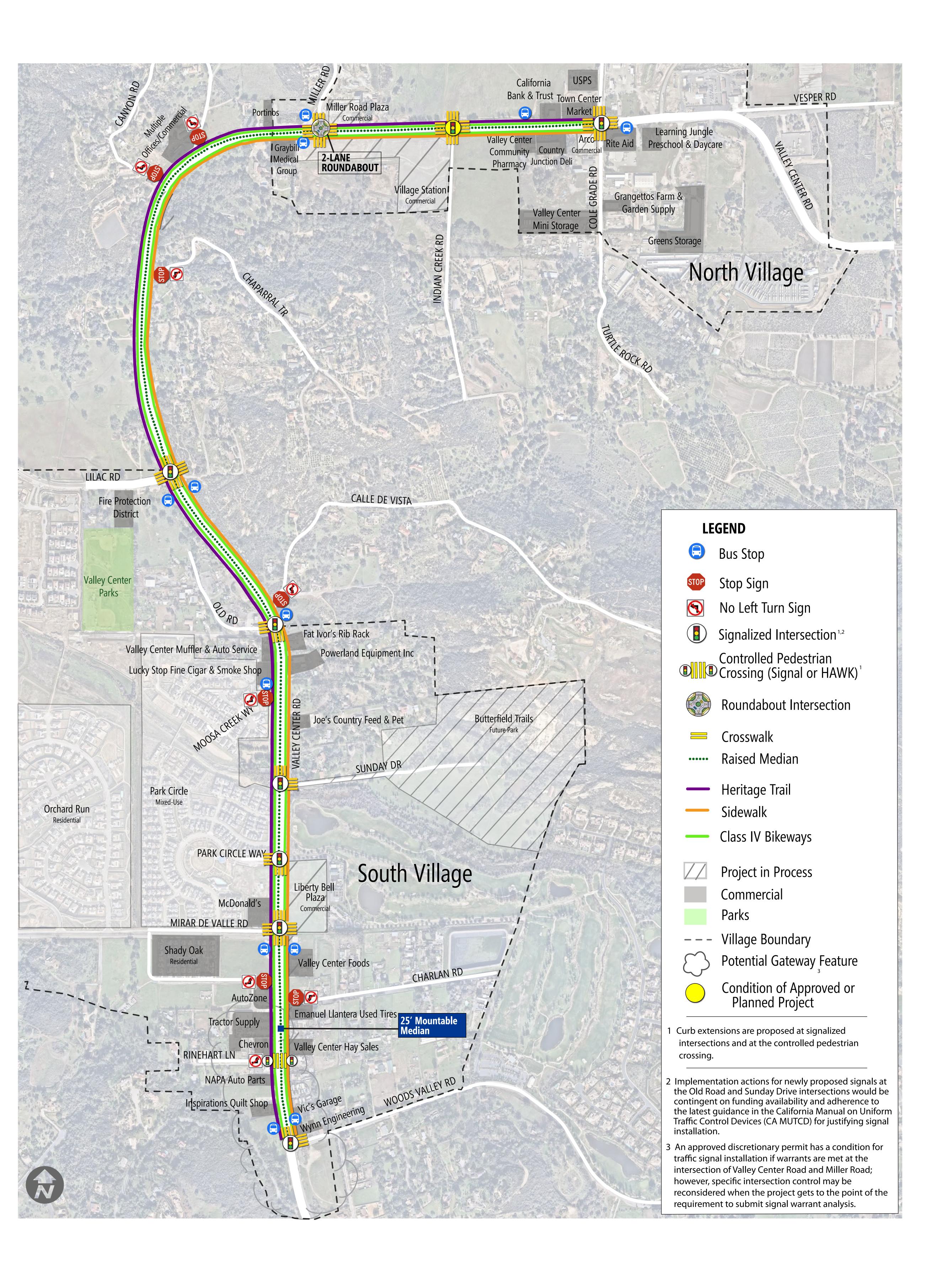
Page 5

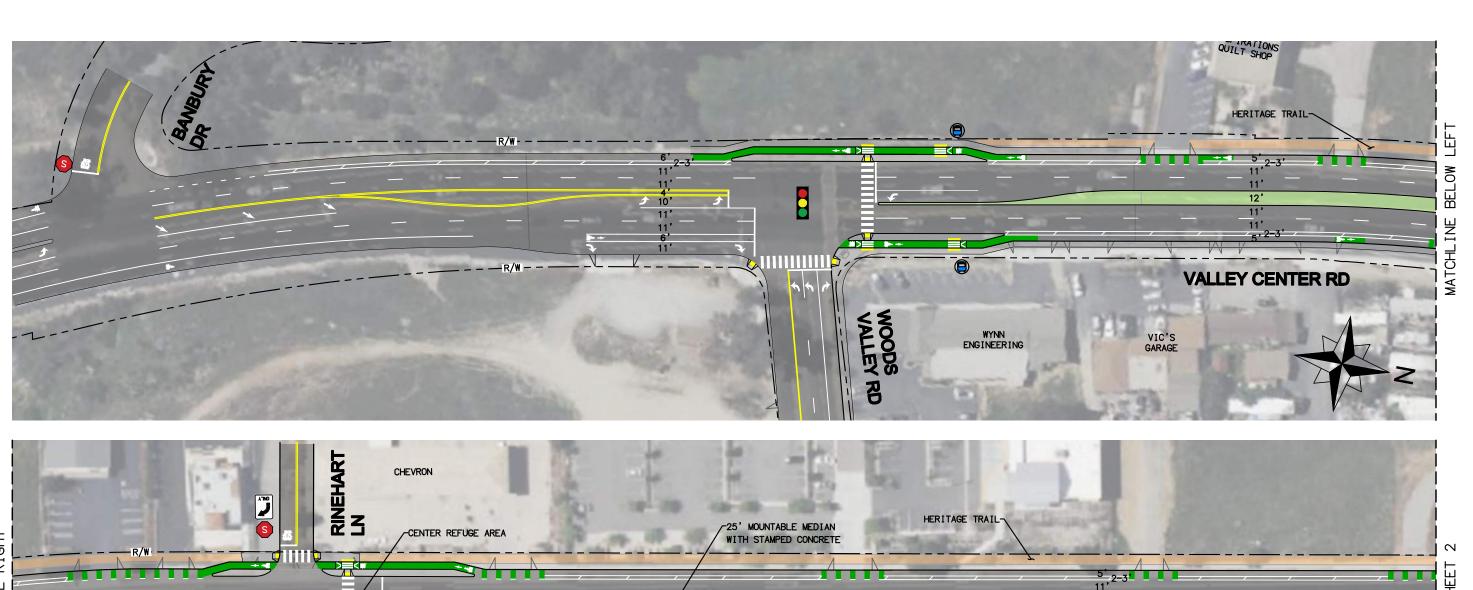
Finding #6: The proposed roundabouts in the CCP Options A and B will not slow or hamper evacuation route use and, in fact, would provide a smoother flow and higher capacity than a four-way intersection.

Supplement to Finding #6 for the Draft Final CCP: The only change is that there is only one remaining roundabout. The roundabout proposed in the Draft Final CCP was also part of Option A addressed in our 2023 study, and Citygate stands by this finding in consideration of the Draft Final CCP.

CAPSTONE RECOMMENDATION

Based on the six findings included in our 2023 report and a supplemental review of the Draft Final CCP, combined with Citygate's research and professional experience in fire unit travel time planning, we find that fire and EMS unit response times will not be materially lengthened by the Draft Final CCP. Further, Citygate recommends the use of the roundabout in the Draft Final CCP, as it will slow response times the least (compared to a traffic signal) while providing for smoother evacuation routing.




WWW.CITYGATEASSOCIATES.COM

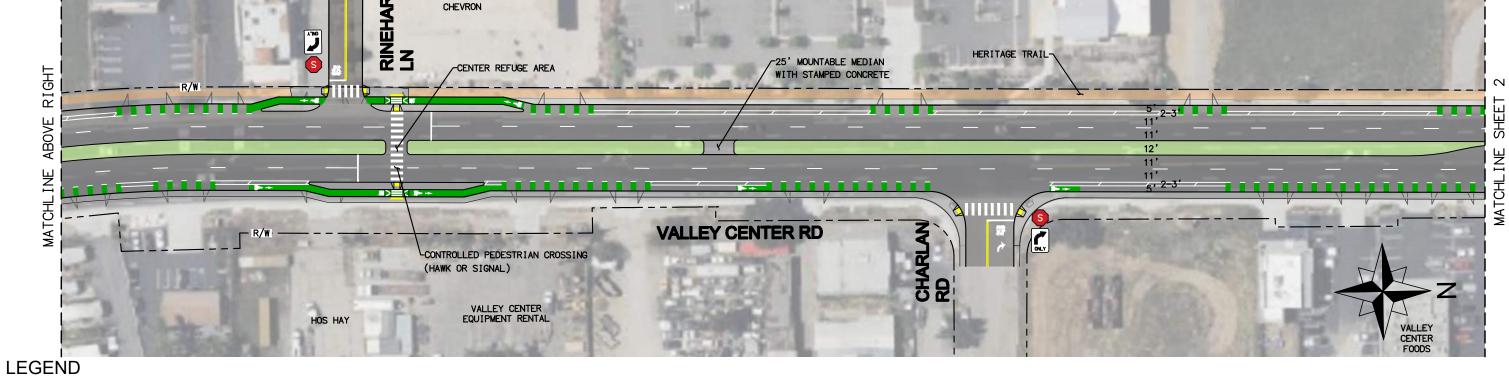

Michael Baker

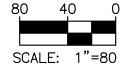
Exhibit S-1 Draft Final Valley Center Road
Corridor Concept Plan

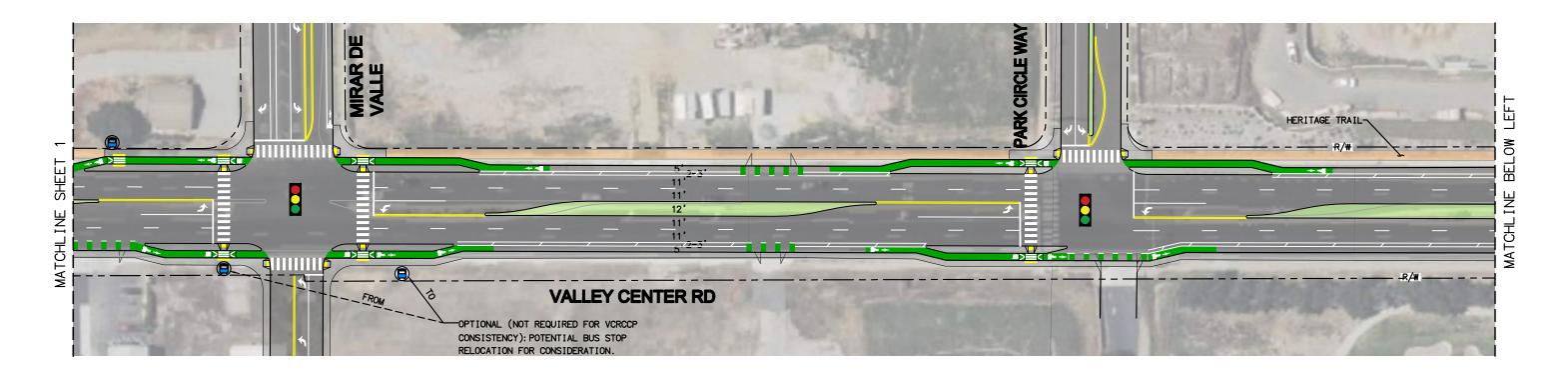
CURB BIKE LANE LINE ROAD STRIPE BUFFER (WITH PHYSICAL SEPARATION S
- TYPE TO BE DETERMINED WITH ENGINEERING DESIGN)

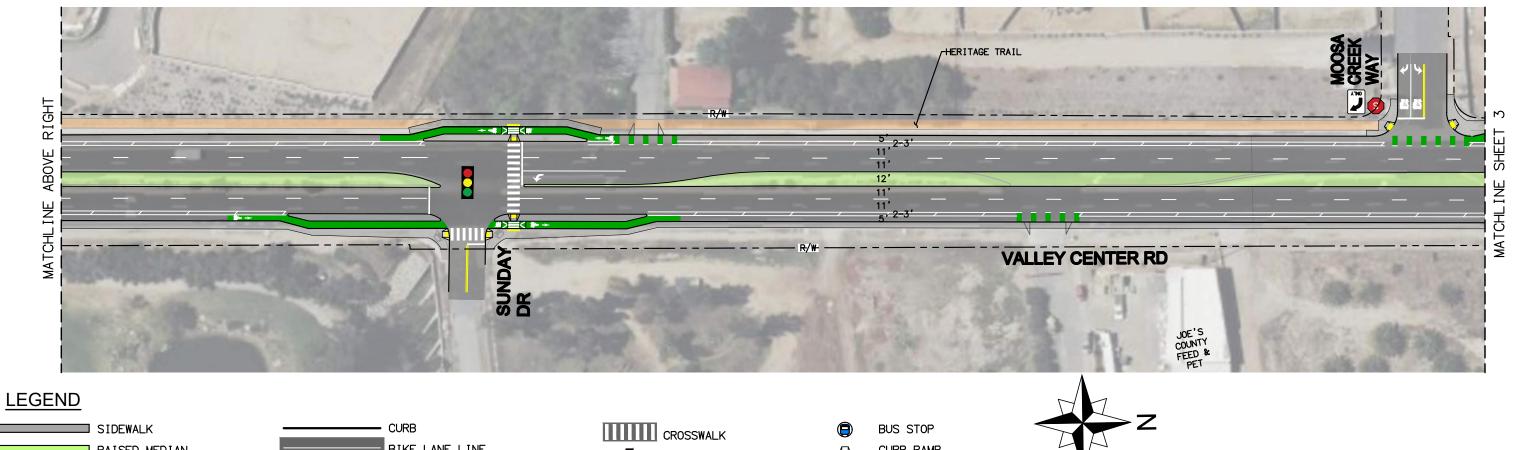
RIGHT-OF-WAY

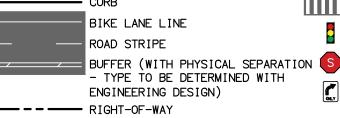
CROSSWALK

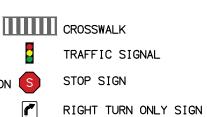
STOP SIGN

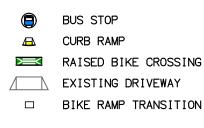

RIGHT TURN ONLY SIGN

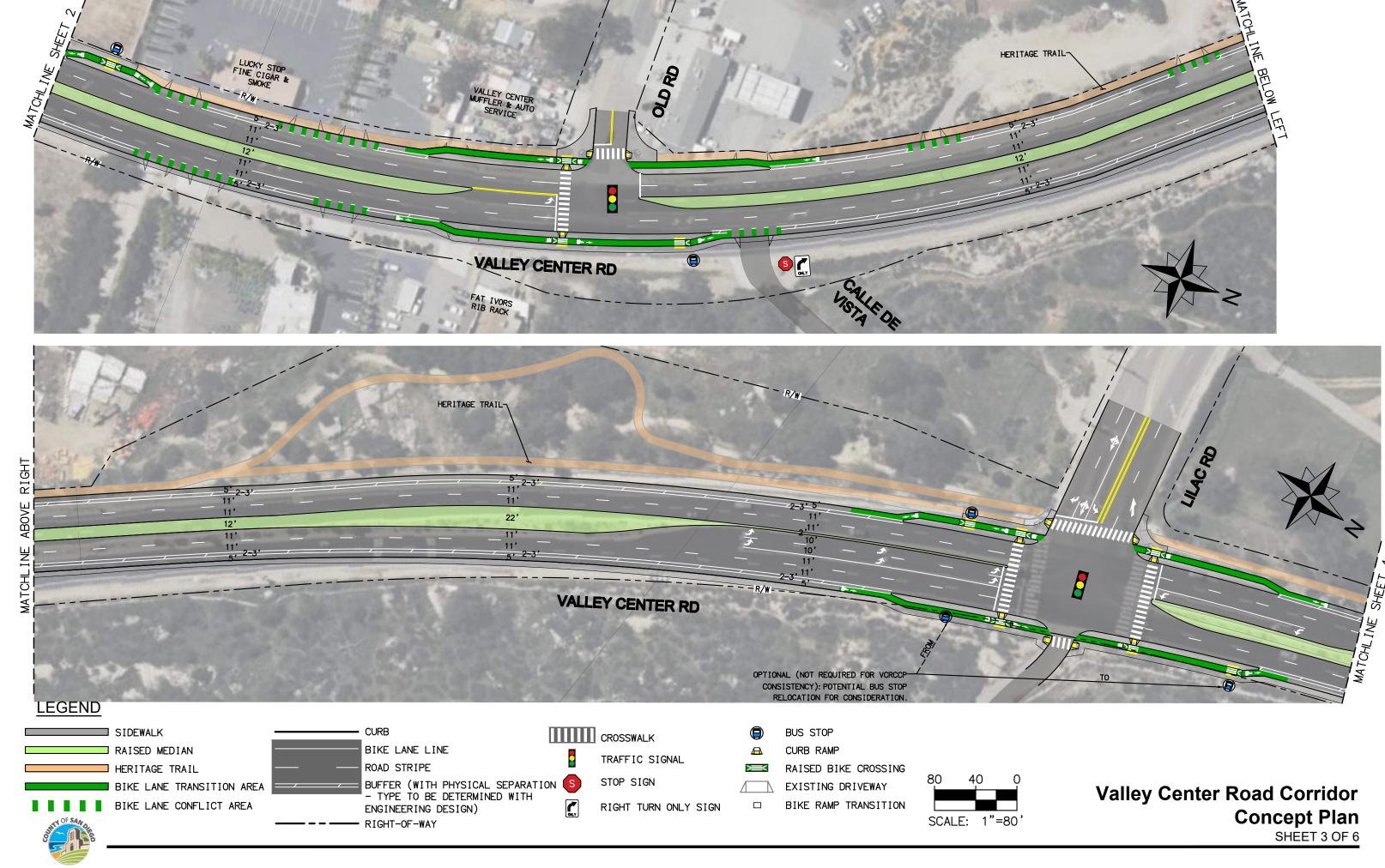


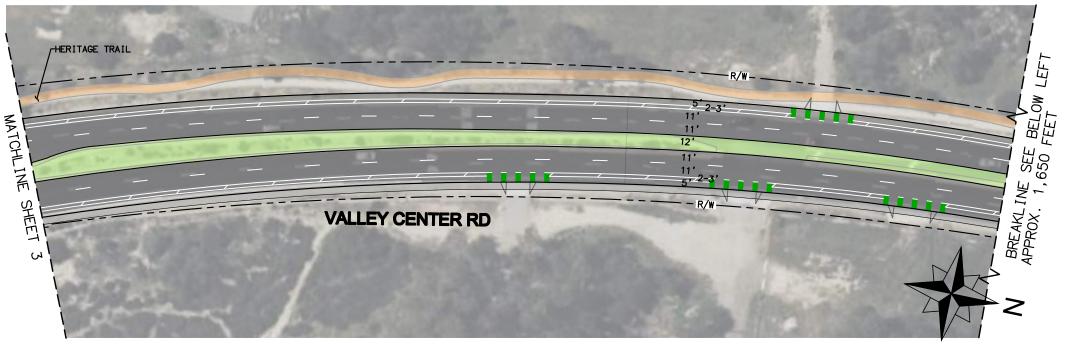

EXISTING DRIVEWAY BIKE RAMP TRANSITION


Valley Center Road Corridor Concept Plan SHEET 1 OF 6

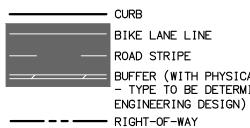

H: \PDATA\170071_VALLEY CENTER CORRIDOR\TRAFFIC\EXHIBITS\CADD\DLV\170071-OVERALL-FINAL.DWG MELENDEZ, ANGEL 5/30/2024 10:53 AM

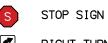






SCALE: 1"=80


Valley Center Road Corridor Concept Plan SHEET 2 OF 6



CURB

BIKE LANE LINE ROAD STRIPE BUFFER (WITH PHYSICAL SEPARATION S
- TYPE TO BE DETERMINED WITH

TRAFFIC SIGNAL

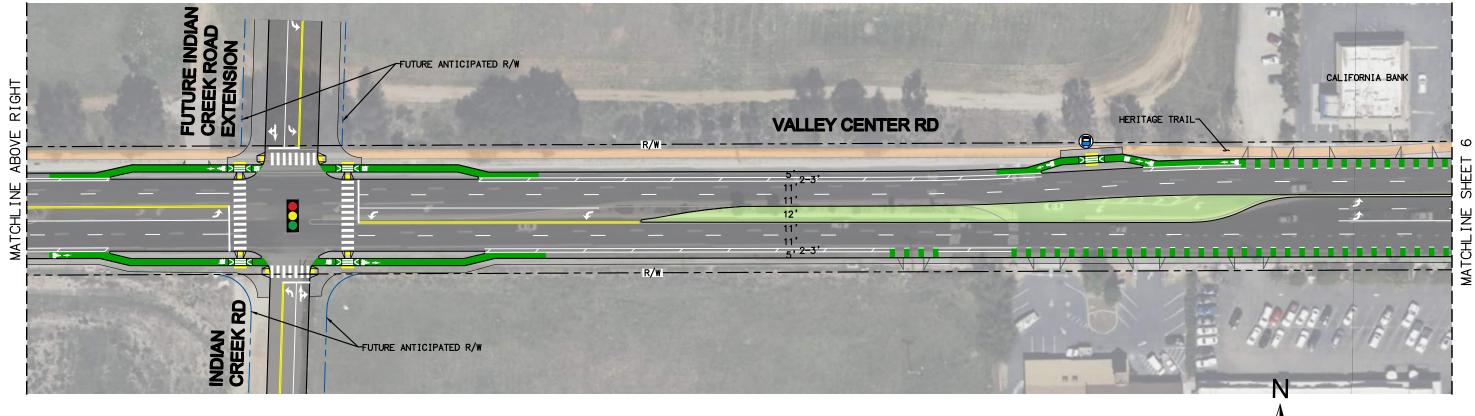
CROSSWALK

RIGHT TURN ONLY SIGN

BUS STOP CURB RAMP

RAISED BIKE CROSSING EXISTING DRIVEWAY

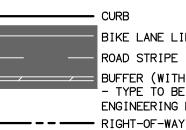
BIKE RAMP TRANSITION

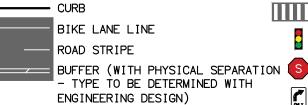


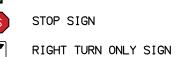
SCALE: 1"=80'

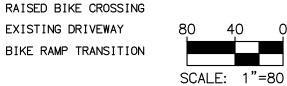
Valley Center Road Corridor Concept Plan

SHEET 4 OF 6

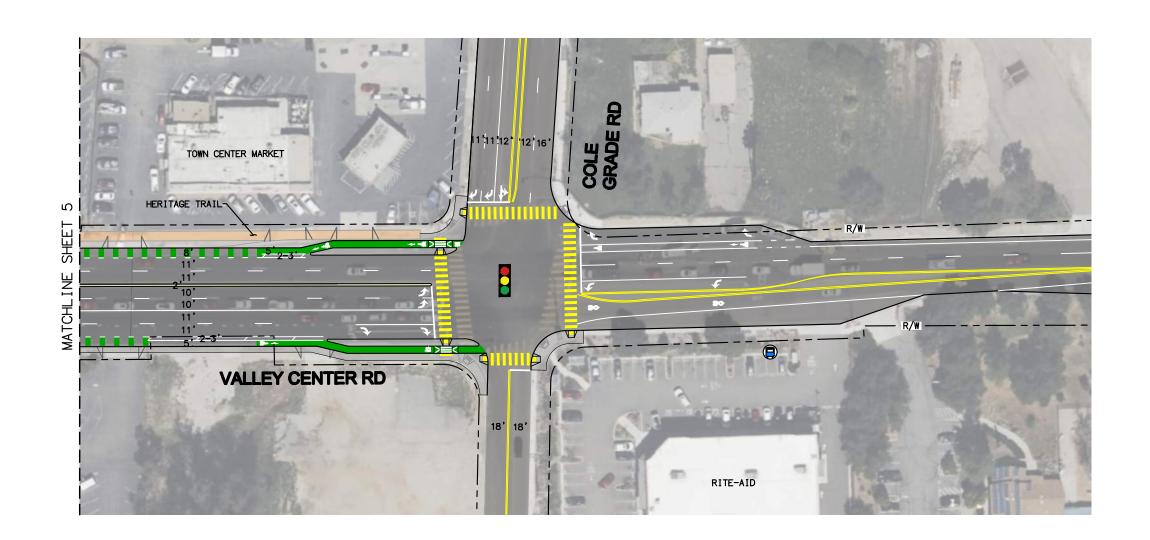


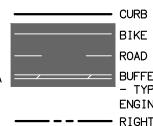


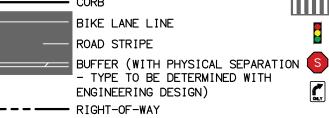


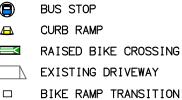


BUS STOP


CURB RAMP

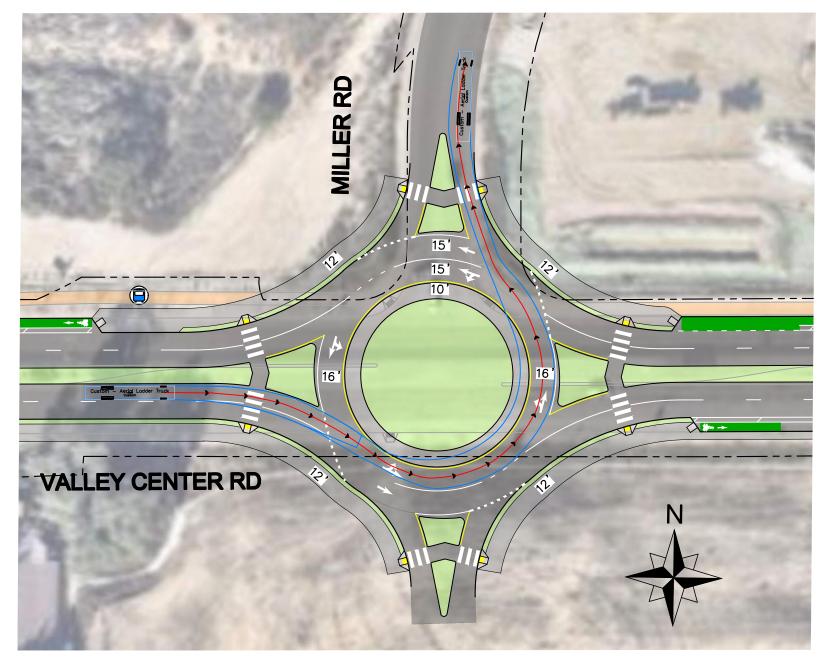

Valley Center Road Corridor Concept Plan SHEET 5 OF 6

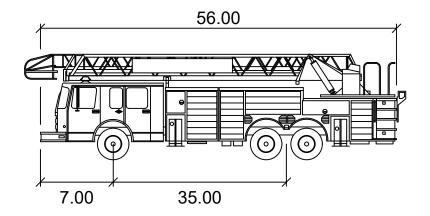

H:\PDATA\170071_VALLEY CENTER CORRIDOR\TRAFFIC\EXHIBITS\CADD\DLV\170071-OVERALL-FINAL.DWG MELENDEZ, ANGEL 5/30/2024 12:54 PM



STOP SIGN

RIGHT TURN ONLY SIGN



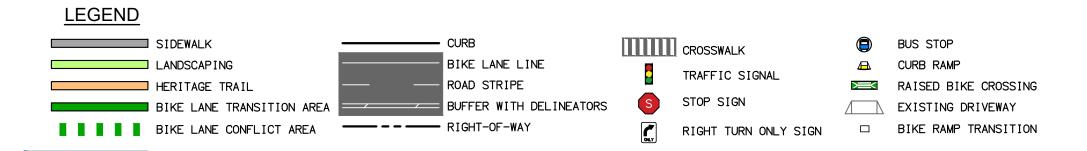

SCALE: 1"=80

Valley Center Road Corridor Concept Plan SHEET 6 OF 6

H:\PDATA\170071_VALLEY CENTER CORRIDOR\TRAFFIC\EXHIBITS\CADD\DLV\170071-OVERALL-FINAL.DWG MELENDEZ, ANGEL 5/30/2024 1:03 PM

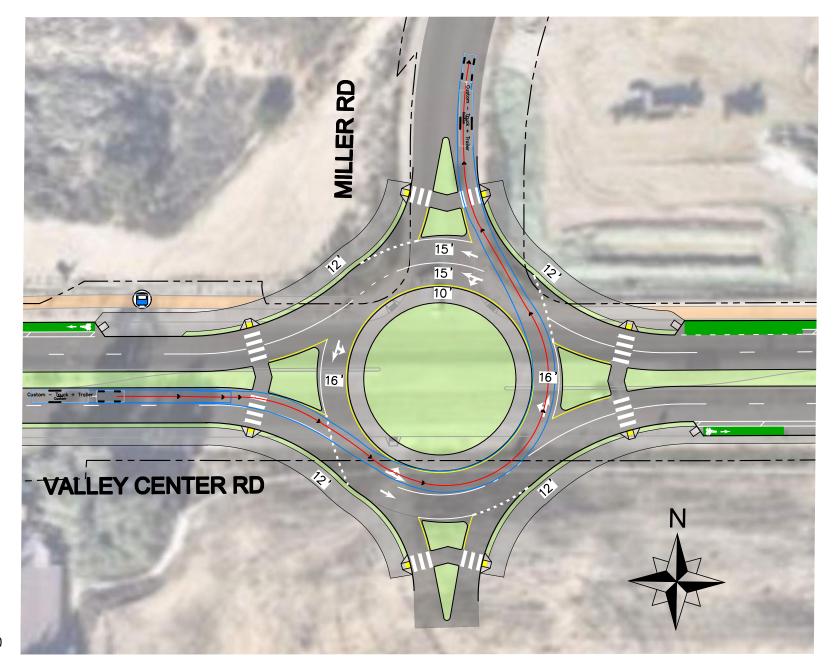
VALLEY CENTER RD - MILLER RD TURN TEMPLATE

Custom - Aerial Ladder Truck


feet

Width : 8.25
Track : 8.25
Lock to Lock Time : 6.0
Steering Angle : 33.3

CENTER LINE OF THE VEHICLE
WHEEL TRACKING



Michael Baker

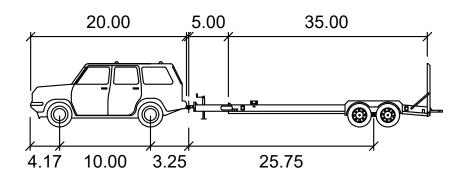


Exhibit S-2:

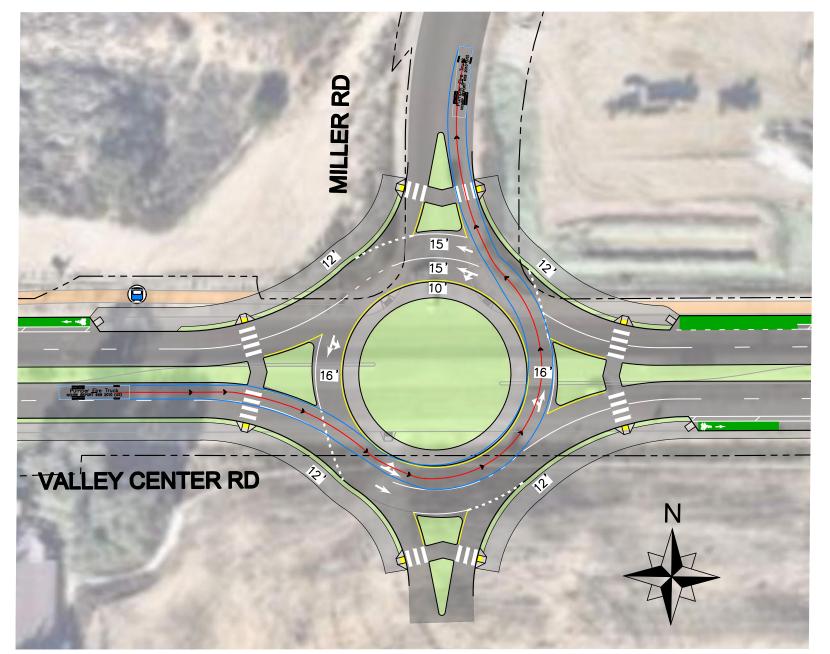
Roundabout Turn Template: Aerial Ladder Truck (Dimensions match the largest VCFPD vehicle)

VALLEY CENTER RD - MILLER RD TURN TEMPLATE

CUSTOM - TRUCK+TRAILER


O 147:10	7.00
Car Width :	
Trailer Width :	8.00
Car Track :	7.00
Trailer Track :	8.00
Lock to Lock Time :	6.0
Steering Angle :	19.8
Articulating Angle :	50.0

CENTER LINE OF THE VEHICLE
WHEEL TRACKING


Michael Baker

INTERNATIONAL

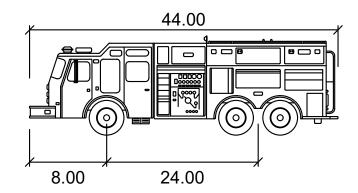
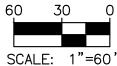
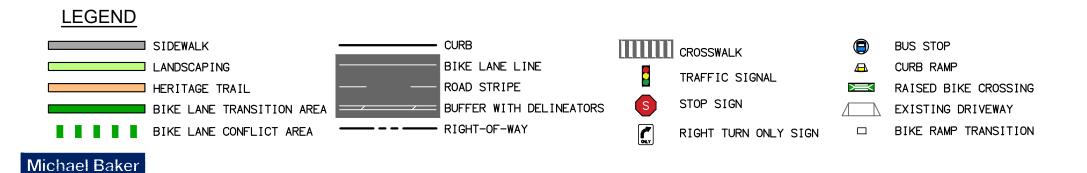


Exhibit S-3:

Roundabout Turn Template: CalFire Truck with Trailer for Bulldozer (Dimensions match specifications provided by the County Fire Protection District)


VALLEY CENTER RD - MILLER RD TURN TEMPLATE



Pumper Fire Truck

	feet
Width	: 8.50
Track	: 8.50
Lock to Lock Time	: 6.0
Steering Angle	: 37.8

CENTER LINE OF THE VEHICLE
WHEEL TRACKING

Exhibit S-4:

Roundabout Turn Template: Pumper Fire Truck

Exhibit S-5
Valley Center Road VCFPD Travel Time Comparison - Final Corridor Concept Plan

Sco	nario	Northbound / Eastbound	Southbound			
Jue	IIaiio	Lilac Road to Cole Grade	Lilac Road to Woods			
		Road	Valley Road			
	Based on Existing	g Traffic Volumes				
Baseline (Calibrated)	Travel Time	4:31	2:49			
Draft Final CCP	Travel Time	4:55	3:06			
Diait Filial CCF	Difference	+0:24	+0:17			
	Based on Future Year	2035 Traffic Volumes				
Baseline (Calibrated)	Travel Time	4:55	2:51			
Draft Final CCP	Travel Time	5:23	3:11			
Diait Fillal CCF	Difference +0:28		+0:20			
Difference between Existing and Future Year 2035						
Baseline (Calibrated)	+0:24	+0:02			
Draft F	inal CCP	+0:28	+0:05			

All times are shown in minutes: seconds

Notes:

- Baseline (calibrated) scenario utilizes actual speeds provided by AVL (automatic vehicle location) data. For segments that were greater than the posted speed limit (45 MPH), a ceiling cap of 45 MPH was applied. For speeds lower than 45 MPH, actual speeds were used.
- Travel Time estimates for the Draft Final CCP assume the same segment speeds as the Baseline condition and only consider the change in delay associated with the intersection control modifications.
- All Travel Time estimates utilize PM Peak Hour intersection delays as this scenario is shown to be the worse case study scenario.
- All Travel Time estimates utilize the approach delay for the direction of travel (i.e., northbound / eastbound or southbound approaches to the intersection).

Exhibit S-6
Valley Center Road VCFPD Travel Time Comparison
- Previous Options A, B, C, and Final Corridor Concept Plan

Sco	nario	Northbound / Eastbound	Southbound	
306	IIdiiO	Lilac Road to Cole Grade	Lilac Road to Woods	
		Road	Valley Road	
	Based on Existing	g Traffic Volumes		
Baseline (Calibrated)	Travel Time	4:31	2:49	
Option A	Travel Time	4:55	3:03	
Option A	Difference	+0:24	+0:14	
Option B	Travel Time	5:07	3:03	
Орион в	Difference	+0:36	+0:14	
Option C	Travel Time	5:31	3:06	
(No Roundabouts)	Difference	+1:00	+0:17	
Draft Final CCP	Travel Time	4:55	3:06	
Diait Fillal CCF	Difference	+0:24	+0:17	
	Based on Future Year	2035 Traffic Volumes		
Baseline (Calibrated)	Travel Time	4:55	2:51	
Option A	Travel Time	5:23	3:07	
Option A	Difference	+0:28	+0:16	
Option B	Travel Time	5:40	3:07	
Орион в	Difference	+0:45	+0:16	
Option C	Travel Time	6:17	3:11	
(No Roundabouts)	Difference	+1:22	+0:20	
Draft Final CCP	Travel Time	5:23	3:11	
Diait illiai cer	Difference	+0:28	+0:20	
		ing and Future Year 2035		
Baseline	(Calibrated)	+0:24	+0:02	
Opt	tion A	+0:28	+0:04	
Opt	tion B	+0:33	+0:04	
No Rou	ndabouts	+0:46	+0:05	
Draft F	inal CCP	+0:28	+0:05	

All times are shown in minutes : seconds

Notes

- Baseline (calibrated) scenario utilizes actual speeds provided by AVL (automatic vehicle location) data. For segments that were greater than the posted speed limit (45 MPH), a ceiling cap of 45 MPH was applied. For speeds lower than 45 MPH, actual speeds were used.
- Travel Time estimates for Options A, B, and C, and the Draft Final CCP assume the same segment speeds as the Baseline condition and only consider the change in delay associated with the intersection control modifications.
- South of Lilac Road, Option A and Option B have the same intersection controls and geometry. Therefore the estimated travel time in the southbound direction are assumed to be identical.
- All Travel Time estimates utilize PM Peak Hour intersection delays as this scenario is shown to be the worse case study scenario.
- All Travel Time estimates utilize the approach delay for the direction of travel (i.e., northbound / eastbound or southbound approaches to the intersection).

Exhibit S-7 Modeled Intersection Performance Comparison of Existing Traffic Control and Final Valley Center Road **Corridor Concept Plan - Based on Existing Traffic**

Study Intersection	With Exis	ting Geometry and	l Traffic Control ¹	With Draft Final CCP			
	Traffic	AM	PM	Traffic	AM	PM	
	Control	Delay ² - LOS	Delay ² - LOS	Control	Delay ² - LOS	Delay ² - LOS	
1- Valley Center Road / Woods Valley Road		7.5 - A	9.0 - A		7.5 - A	9.0 - A	
2- Valley Center Road / Mirar De Valle Road	STOP	29.7 - D	45.2 - E		11.4 - B	13.2 - B	
3- Valley Center Road / Park Circle Way ³		3.4 - A	3.7 - A		3.4 A	3.7 A	
4- Valley Center Road / Sunday Drive	STOP	26.7 - D	51.7 - F		4.2 - A	4.7 - A	
5- Valley Center Road / Old Road	STOP	26.1 - D	30.1 - D		5.4 - A	5.6 - A	
6- Valley Center Road / Lilac Road		17.5 - B	13.5 - B		18.2 - B	14.0 - B	
7- Valley Center Road / Miller Road	STOP	27.3 - D	15.2 - C		7.8 - A	10.0 - A	
8- Valley Center Road / Indian Creek Road	STOP	16.9 - C	26.1 - D		6.4 - A	6.6 - B	
9- Valley Center Road / Cole Grade Road		31.3 - C	33.5 - C		27.1 - C	34.5 - C	

Note: Deficient intersection operation indicated in **bold**.

³ The Park Circle Way intersection did not exist at the time of the 2019 analysis of existing conditions.

Traffic Signal (condition of private development)

Signal warrants will be conducted at the time signals are considered for installation. Signal warrants should be met prior to installation.

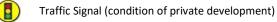
Minor Street Stop Control, worst approach delay and LOS reported. Traffic along Valley Center Road does not stop.

¹ Existing conditions data was collected for the corridor prior to the buildout of Park Circle and Liberty Bell Plaza developments.

² Average seconds of delay per vehicle. *The lower the number, the better the anticipated intersection performance.*

Exhibit S-8

Modeled Intersection Performance Comparison of Existing Traffic Control and Final Valley Center Road


Corridor Concept Plan - Based on Future Year 2035 Traffic

Study Intersection	With Exis	ting Geometry and	l Traffic Control ¹	With Draft Final CCP			
	Traffic	AM	PM	Traffic	AM	PM	
	Control	Delay ² - LOS	Delay ² - LOS	Control	Delay ² - LOS	Delay ² - LOS	
1- Valley Center Road / Woods Valley Road		7.8 - A	10.0 - A		7.8 - A	10.0 - A	
2- Valley Center Road / Mirar De Valle Road	STOP	42.5 - E	70.8 - F		15.1 - B	15.2 - B	
3- Valley Center Road / Park Circle Way ³		12.8 - B	18.4 - B		12.8 - B	6.7 - A	
4- Valley Center Road / Sunday Drive	STOP	32.7 - D	72.9 - F		5.6 - A	5.1 - A	
5- Valley Center Road / Old Road	STOP	1338.7 - F	214.2 - F		8.6 - A	6.3 - A	
6- Valley Center Road / Lilac Road		26.7 - C	20.5 - C		26.7 - C	19.4 - B	
7- Valley Center Road / Miller Road	STOP	45.3 - E	17.4 - C	9	9.0 - A	11.6 - B	
8- Valley Center Road / Indian Creek Road	STOP	19.8 - C	32.0 - D		6.5 - A	8.5 - A	
9- Valley Center Road / Cole Grade Road		42.2 - C	47.7 - D		40.2 - D	47.3 - D	

Note: Deficient intersection operation indicated in **bold**.

 $^{^{3}}$ The Park Circle Way intersection did not exist at the time of the 2019 analysis of existing conditions.

Signal warrants will be conducted at the time signals are considered for installation. Signal warrants should be met prior to installation.

Minor Street Stop Control, worst approach delay and LOS reported. Traffic along Valley Center Road does not stop.

¹ Existing conditions data was collected for the corridor prior to the buildout of Park Circle and Liberty Bell Plaza developments.

² Average seconds of delay per vehicle. *The lower the number, the better the anticipated intersection performance.*

Valley Center Road Corridor Concept Plan

Appendix D: Summary of 2023 VCRCCP Options for Outreach

Valley Center Road Corridor Concept Plan Summary of Input Received on 2022 Draft Corridor Concept Plan (CCP) and Summary of New CCP Options A, B and C

This document summarizes new CCP Options A and B, and how they were developed. While the intersection performance modeling and the Citygate report (emergency response considerations) are based on review of these options in comparison to a "no roundabouts" option (Option C), these are not the only options on the table going forward. The project team will consider all recommendations that come out of the next outreach, prior to a determination on a Draft Final CCP that will go through CEQA review and then hearings.

Summary of Public Input on the 2022 Draft CCP

The Draft CCP that was out for public review in 2022 drew a lot of input. Emailed input was generally 50-50 in terms of support for the plan and opposition to it (or concerns with certain components); however, some of the opposition were more vocal at the most recent public meetings, with concerns about roundabouts.

Here are some summary points of common themes in comments of support and opposition:

Support:

- Will help reduce speeding and accidents, which are increasing problems
- Speeding and reckless drivers make it scary to slow down to turn into businesses or turn out of businesses
- The most serious accidents (injuries, damage T-bone and head on collisions) can be avoided with roundabouts
- Will reduce stopping/starting with signals and associated air quality/GHG issues; too many signals would be needed along short stretch
- Improved safety for bicyclists and pedestrians (Class IV bike lanes, sidewalk extensions, bulb outs/curb extensions at signalized intersections)
- References to illegal maneuvers in the center turn lane (like passing) and prevalence of conflicting turn movements that can be addressed with the proposed median extensions
- The plan would contribute to more of a Village atmosphere along the corridor (calmed traffic, more pedestrian oriented, aesthetic values), as envisioned in the General Plan, VC Community Plan and VC Design Guidelines

Opposition

- Concerns with effects on emergency response times and evacuation (roundabouts)
- Concerns with large vehicles being able to navigate roundabouts
- Drivers not used to roundabouts, some get confused, and a lot of out-of-town visitors passing through use the corridor
- Perceptions that roundabouts will cause more delay
- Concerns with closing off portions of the median, limiting left turn access to certain businesses
- A few commenters don't think bicycle facility safety improvements are needed, since they don't see a lot of bicyclists
- Concerns with the number of roundabouts proposed

Here is a list of components applicable to both options and components unique to Option A and Option B, with the addition of a few rationale points:

Applicable to both:

- Two roundabouts instead of four (locations vary between Options A and B, see below)
 - o Trying to find some middle ground between supporters and opposition.
 - Chief Napier input on more minimal emergency response impacts, as VCFPD emergency responders would typically only go through one roundabout on most calls, if there is just one roundabout in South Village and one in North Village
- Newly proposed signals at the intersections of Sunday Drive and Old Road
 - o The plan calls for meeting traffic signal warrants prior to installing newly proposed signals.
 - Throughout the process, we heard a lot of concerns about dangerous turns onto the corridor from Old Road, due to its location at the end of the curve and sight distance in relation to speeds.
- Carrying forward proposed signals that are conditions of private development (not newly proposed with the CCP) at Mirar De Valle and Indian Creek Road
- Class IV bike lanes throughout the corridor Final CCP will call out flexibility for final engineering process, re: the type of physical separation.
 - These are called for along the corridor in the County's current General Plan Mobility
 Element Network, so the County doesn't have discretion on changing this aspect without adding a General Plan Amendment to the project.
- Curb extensions/bulb-outs at all signalized intersections
 - For traffic calming and improved safety and visibility for pedestrians and bicyclists
 - Class IV bike lanes/striping would transition behind pedestrian area at curb extensions, as shown in the plans.
- Pedestrian signal at Rinehart
 - With the addition of this controlled crossing, the plan would limit the distance between controlled pedestrian crossings to approximately ¼ mile or less within the Village boundaries, as a best practice for pedestrian oriented.
 - Note: the corridor geographic scope runs through the South Village, curve area, and North Village; the curve area is not part of either Village (you can see Village boundaries on the one-page plan map).
- No left turn restriction at stop-controlled side streets: Canyon Road (north and south legs),
 Chaparral Terrace, Calle de Vista, Moosa Creek Way, Charlan Road, and Rinehart Lane
 - Many comments early in the process on dangerous/scary left turns from these side streets
- Raised median extension with openings limited to controlled intersections (roundabouts and signals)
 one exception in Option B (see below)
 - Addressing safety concerns
- Extension of the sidewalk (many gaps now) along the east and south sides of the corridor and maintain the Heritage Trail (decomposed granite pathway) on the west and north sides
 - O Both of these are consistent with the current VC Community RightofWay Development Standards, which address the right of way outside travel lanes.
- Reduction in segment lane widths (outside roundabouts) from 12' to 11'

- Roundabouts at Woods Valley Road and Miller Road
 - Miller is the most feasible for development of a roundabout in the near term, as the developer on the south side (covering southeast and southwest corners) has agreed to provide an Irrevocable Offer to Dedicated Right of Way (IOD) for roundabout right of way if needed, the northwest corner is vacant, and there would be no structures in the limited area needed on the northeast corner.
 - The Woods Valley roundabout would slow down drivers before they get into the Villages from the south (from Escondido and other job centers, commercial centers, and more densely populated areas)
- Lilac and Cole Grade would remain signals.
- This option has a couple components preferred by California Highway Patrol (CHP) during coordination meetings.
 - CHP had concerns with a median opening for left turns from VC Rd to Canyon Rd at the curve (included in Option B), due to the speeds and sight distance in this area, so this option has the median closed there.
 - There were some stakeholder concerns about continued speeding along the curve if there was no side friction from turn pocket(s), so we combined this median closed along curve with the option that has a roundabout just before the curve in the North Village (Miller Road intersection)
 - CHP would also prefer to have an area where officers can radar drivers and have an emergency turnaround outside of regular median openings, for pursuits – this is the reason for providing a 25' long mountable median in South Village in this option, for public safety personnel only.

Applicable to Option B:

- Roundabouts at Woods Valley Road and Cole Grade Road
 - As shown in the intersection performance tables, at the busiest Cole Grade intersection, the roundabout shows the most dramatic improvement (less delay) over a signal, in comparison to other intersections that modeled roundabout vs. signal.
 - This provides a "bookend" approach to roundabouts having a roundabout when entering the area of the Villages from either side of the corridor,
- Lilac would remain a signal and Miller would be proposed for a signal.
- Left turn median turn pocket at Canyon Road, for northbound Valley Center Road (would still have no left turn restriction from Canyon, entering VC Road)
 - Provides access to commercial and residential uses utilizing this road along the curve, where the opportunities for U-turns at controlled intersections are not as close as within the Village boundaries.
 - o "Side friction" of median opening (referenced above) to limit speeding along the curve.

Option C - the "No Roundabouts" Option:

- Option C (the "No Roundabouts" Option) would entail all components of Option B, except with signals where Option B shows roundabouts (the intersections of Woods Valley Road and Cole Grade Road).
- In the intersection performance tables (attached) stakeholders can compare modeled average delay associated with signals vs. roundabouts at the Woods Valley and Cole Grade intersections.

Table 1 Modeled Intersection Performance Comparison of Existing Traffic Control, CCP Option A, and CCP Option B - Based on Existing Traffic

Study Intersection	With Exis	With Existing Geometry and Traffic Conti			With CCP Opti	on A	With CCP Option B			
	Traffic	AM	PM	Traffic	AM	PM	Traffic	AM	PM	
	Control	Delay ² - LOS	Delay ² - LOS	Control	Delay ² - LOS	Delay ² - LOS	Control	Delay ² - LOS	Delay ² - LOS	
1- Valley Center Road / Woods Valley Road		7.5 - A	9.0 - A		4.0 - A	6.7 - B		4.0 - A	6.7 - B	
2- Valley Center Road / Mirar De Valle Road	STOP	29.7 - D	45.2 - E	1	11.4 - B	13.2 - B	•	11.4 - B	13.2 - B	
3- Valley Center Road / Park Circle Way ³		3.4 - A	3.7 - A		3.4 A	3.7 A		3.4 A	3.7 A	
4- Valley Center Road / Sunday Drive	STOP	26.7 - D	51.7 - F		4.2 - A	4.7 - A		4.2 - A	4.7 - A	
5- Valley Center Road / Old Road	STOP	26.1 - D	30.1 - D		5.4 - A	5.6 - A		5.4 - A	5.6 - A	
6- Valley Center Road / Lilac Road		17.5 - B	13.5 - B		18.2 - B	14.0 - B		18.2 - B	14.0 - B	
7- Valley Center Road / Miller Road	STOP	27.3 - D	15.2 - C	0	7.8 - A	10.0 - A		27.4 - C	38.7 - D	
8- Valley Center Road / Indian Creek Road	STOP	16.9 - C	26.1 - D		6.4 - A	6.6 - B		6.4 - A	6.6 - B	
9- Valley Center Road / Cole Grade Road		31.3 - C	33.5 - C		27.1 - C	34.5 - C	00	9.6 - A	13.0 - B	

Note: Deficient intersection operation indicated in **bold**.

³ The Park Circle Way intersection did not exist at the time of the 2019 analysis of existing conditions.

Traffic Signal (condition of private development)

Signal warrants will be conducted at the time signals are considered for installation. Signal warrants should be met prior to installation.

Minor Street Stop Control, worst approach delay and LOS reported

¹ Existing conditions data was collected for the corridor prior to the buildout of Park Circle and Liberty Bell Plaza developments.

² Average seconds of delay per vehicle. *The lower the number, the better the anticipated intersection performance.*

Table 2 Modeled Intersection Performance Comparison of Existing Traffic Control, CCP Option A, and CCP Option B - Based on Future Year 2035 Traffic

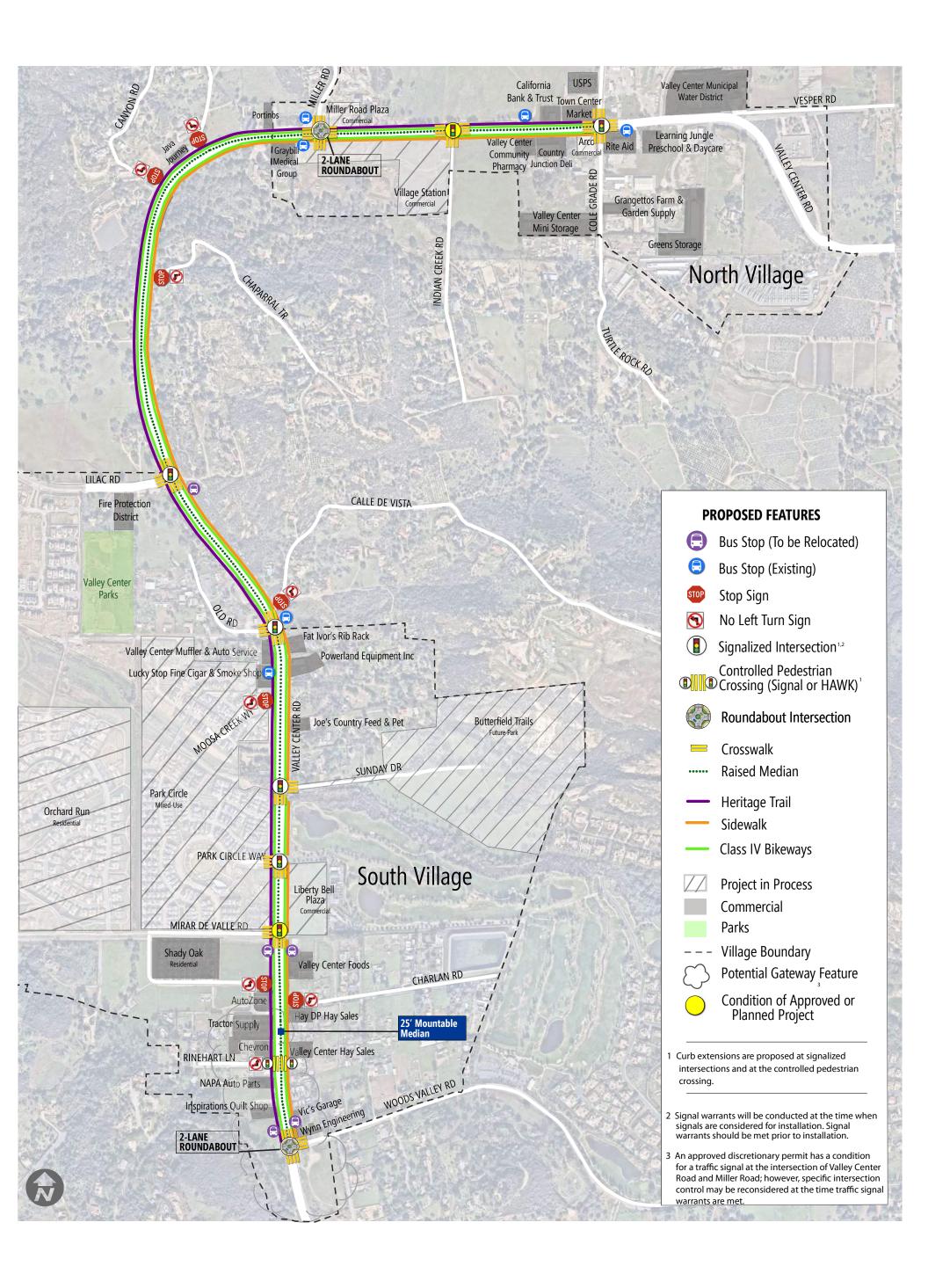
	Study Intersection	With Existing Geometry and Traffic Control ¹				With CCP Opti	on A	With CCP Option B			
		Traffic	AM	PM	Traffic	AM	PM	Traffic	AM	PM	
		Control	Delay ² - LOS	Delay ² - LOS	Control	Delay ² - LOS	Delay ² - LOS	Control	Delay ² - LOS	Delay ² - LOS	
1-	Valley Center Road / Woods Valley Road		7.8 - A	10.0 - A		4.3 - A	7.6 - A		4.3 - A	7.6 - A	
2-	Valley Center Road / Mirar De Valle Road	STOP	42.5 - E	70.8 - F		15.1 - B	15.2 - B		15.1 - B	15.2 - B	
3-	Valley Center Road / Park Circle Way ³		12.8 - B	18.4 - B		12.8 - B	6.7 - A		12.8 - B	6.7 - A	
4-	Valley Center Road / Sunday Drive	STOP	32.7 - D	72.9 - F		5.6 - A	5.1 - A		5.6 - A	5.1 - A	
5-	Valley Center Road / Old Road	STOP	1338.7 - F	214.2 - F		8.6 - A	6.3 - A		8.6 - A	6.3 - A	
6-	Valley Center Road / Lilac Road		26.7 - C	20.5 - C		26.7 - C	19.4 - B		26.7 - C	19.4 - B	
7-	Valley Center Road / Miller Road	STOP	45.3 - E	17.4 - C		9.0 - A	11.6 - B		28.4 - C	50.5 - D	
8-	Valley Center Road / Indian Creek Road	STOP	19.8 - C	32.0 - D		6.5 - A	8.5 - A		6.5 - A	8.5 - A	
9-	Valley Center Road / Cole Grade Road		42.2 - C	47.7 - D		40.2 - D	47.3 - D		12.7 - B	16.5 - C	

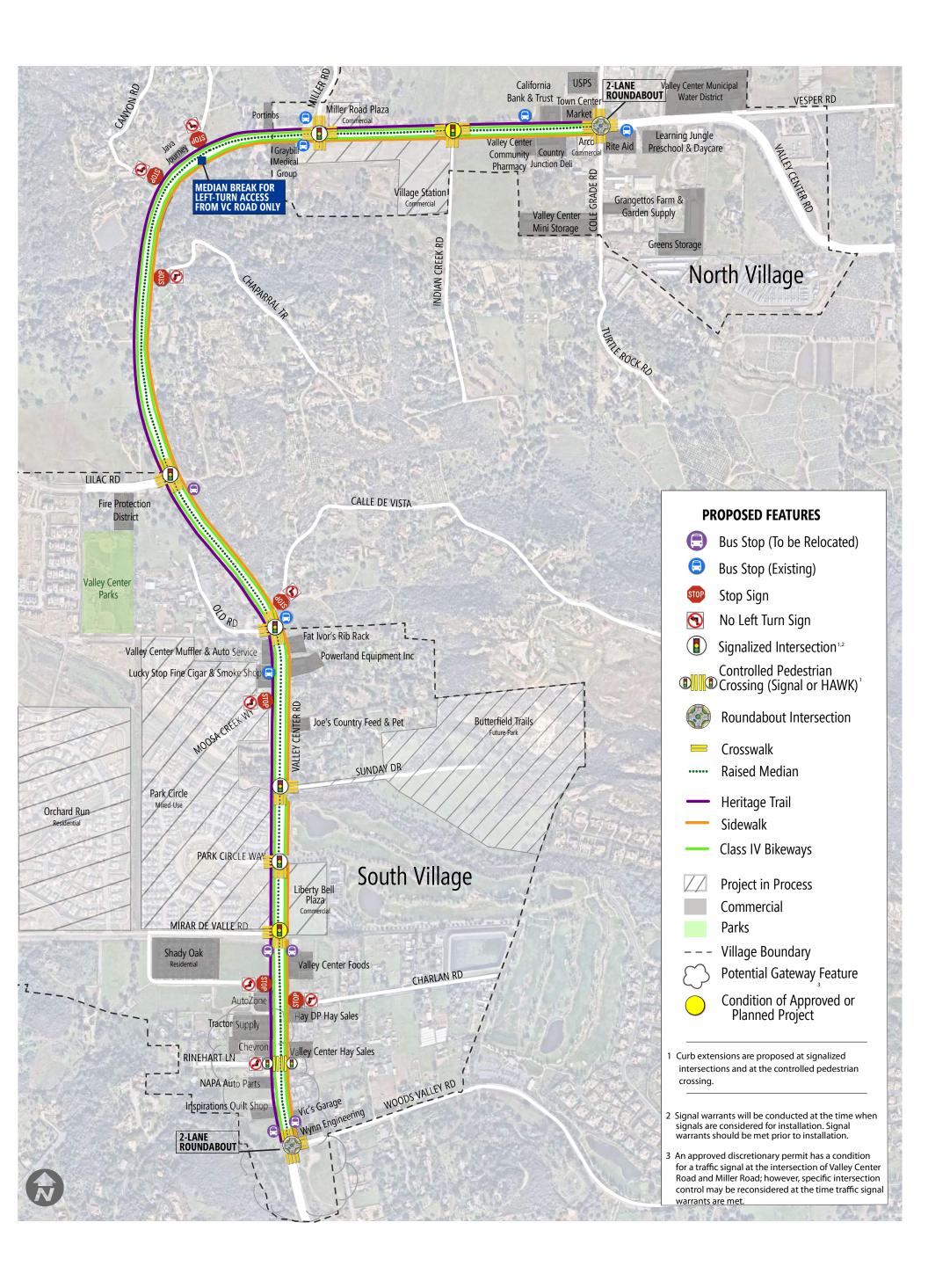
Note: Deficient intersection operation indicated in **bold**.

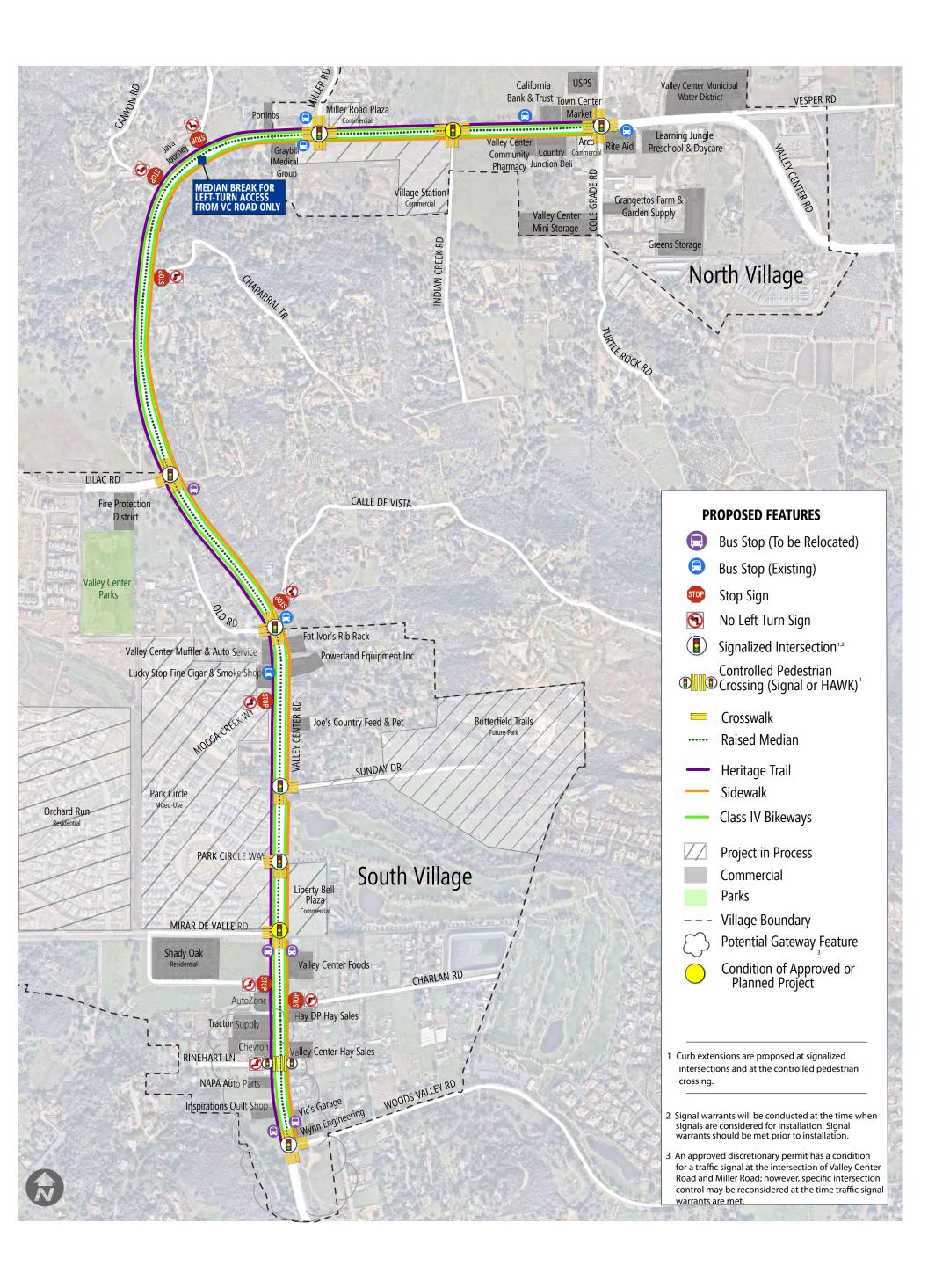
³ The Park Circle Way intersection did not exist at the time of the 2019 analysis of existing conditions.

Traffic Signal (condition of private development)

Signal warrants will be conducted at the time signals are considered for installation. Signal warrants should be met prior to installation.






Minor Street Stop Control, worst approach delay and LOS reported

¹ Existing conditions data was collected for the corridor prior to the buildout of Park Circle and Liberty Bell Plaza developments.

² Average seconds of delay per vehicle. *The lower the number, the better the anticipated intersection performance.*

Valley Center Road Corridor Concept Plan

Appendix E: Operational Analysis Worksheets

	•	•	†	/	/	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
ane Configurations	ሻሻ	7	^	7	J.	^	
Fraffic Volume (veh/h)	166	98	465	57	44	1018	
Future Volume (veh/h)	166	98	465	57	44	1018	
nitial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No		No			No	
Adj Sat Flow, veh/h/ln	1841	1841	1841	1841	1841	1841	
Adj Flow Rate, veh/h	184	109	479	59	47	1083	
Peak Hour Factor	0.90	0.90	0.97	0.97	0.94	0.94	
Percent Heavy Veh, %	4	4	4	4	4	4	
Cap, veh/h	467	214	919	624	77	1687	
Arrive On Green	0.14	0.14	0.26	0.26	0.04	0.48	
Sat Flow, veh/h	3401	1560	3589	1560	1753	3589	
Grp Volume(v), veh/h	184	109	479	59	47	1083	
Grp Sat Flow(s),veh/h/ln	1700	1560	1749	1560	1753	1749	
2 Serve(g_s), s	1.4	1.8	3.3	0.7	0.7	6.5	
Cycle Q Clear(g_c), s	1.4	1.8	3.3	0.7	0.7	6.5	
Prop In Lane	1.00	1.00		1.00	1.00		
ane Grp Cap(c), veh/h	467	214	919	624	77	1687	
//C Ratio(X)	0.39	0.51	0.52	0.09	0.61	0.64	
Avail Cap(c_a), veh/h	3196	1466	2722	1429	415	4165	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Jpstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Jniform Delay (d), s/veh	11.0	11.1	8.8	5.2	13.1	5.4	
ncr Delay (d2), s/veh	0.2	0.7	0.2	0.0	2.9	0.2	
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	0.3	1.6	0.6	0.1	0.2	0.4	
Jnsig. Movement Delay, s/veh							
_nGrp Delay(d),s/veh	11.2	11.8	8.9	5.2	16.0	5.6	
nGrp LOS	В	В	Α	Α	В	Α	
Approach Vol, veh/h	293		538			1130	
Approach Delay, s/veh	11.4		8.5			6.0	
Approach LOS	В		А			Α	
imer - Assigned Phs				4		6	7 8
Phs Duration (G+Y+Rc), s				18.7		9.1	6.1 12.6
Change Period (Y+Rc), s				5.3		5.3	4.9 5.3
Max Green Setting (Gmax), s				33.2		26.2	6.6 21.7
Max Q Clear Time (q_c+I1), s				8.5		3.8	2.7 5.3
Green Ext Time (p_c), s				5.0		0.5	0.0 1.8
ntersection Summary							
ICM 6th Ctrl Delay			7.5				
HCM 6th LOS			A				

Intersection							
Int Delay, s/veh	1.8						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	ሻ	T T	NDE.	↑ ↑	↑ ↑	JUIN	
Traffic Vol, veh/h	25	53	17	570	1033	24	
Future Vol, veh/h	25	53	17	570	1033	24	
Conflicting Peds, #/hr	0	0	17	0	0	1	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	310p	•	-	None	-	None	
Storage Length	100	0	100	NONE -		- TOTIC	
Veh in Median Storage		-	-	0	0	_	
Grade, %	, π 0	_	_	0	0	_	
Peak Hour Factor	67	67	88	88	88	88	
Heavy Vehicles, %	2	2	4	4	4	4	
Mymt Flow	37	79	19	648	1174	27	
IVIVIIIL FIUW	31	19	19	040	11/4	21	
Major/Minor N	/linor2	N	/lajor1	1	Major2		
Conflicting Flow All	1551	602	1202	0	-	0	
Stage 1	1189	-	-	-	-	-	
Stage 2	362	-	-	-	-	-	
Critical Hdwy	6.84	6.94	4.18	-	-	-	
Critical Hdwy Stg 1	5.84	-	-	-	-	-	
Critical Hdwy Stg 2	5.84	-	-	-	-	-	
Follow-up Hdwy	3.52	3.32	2.24	-	-	-	
Pot Cap-1 Maneuver	104	443	565	-	-	-	
Stage 1	251	-	-	-	-	-	
Stage 2	675	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	100	443	564	-	_	-	
Mov Cap-2 Maneuver	100	-	-	_	-	_	
Stage 1	242	-	_	-	-	-	
Stage 2	674	_	_	_	_	_	
Stuge 2	077						
A	F		NE		C.D.		
Approach	EB		NB		SB		
HCM Control Delay, s	29.7		0.3		0		
HCM LOS	D						
Minor Lane/Major Mvm	t	NBL	NBT	EBLn1 l	EBLn2	SBT	
Capacity (veh/h)		564		100	443		
HCM Lane V/C Ratio		0.034	_	0.373		_	
HCM Control Delay (s)		11.6		61	14.9	_	
HCM Lane LOS		В	_	F	В	_	
HCM 95th %tile Q(veh)		0.1	-	1.5	0.6	-	
1101VI 73111 70111E Q(VEII)		U. I	-	1.5	0.0	-	

Intersection							
Int Delay, s/veh	0.1						
		=			05::	0=:	0==
Movement	WBL	WBR	NBT	NBR	SBU	SBL	SBT
Lane Configurations	¥		Αφ				^
Traffic Vol, veh/h	1	0	624	1	1	1	1034
Future Vol, veh/h	1	0	624	1	1	1	1034
Conflicting Peds, #/hr		0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	-	None
Storage Length	0	-	-	-	-	100	-
Veh in Median Storag		-	0	-	-	-	0
Grade, %	0	-	0	-	-	-	2
Peak Hour Factor	25	25	90	90	92	98	98
Heavy Vehicles, %	2	2	4	4	4	4	4
Mvmt Flow	4	0	693	1	1	1	1055
Major/Minor	Minari	Λ.	loier1	N.	/oicr2		
Major/Minor	Minor1		Major1		Major2	(01	
Conflicting Flow All	1226	347	0	0	694	694	0
Stage 1	694	-	-	-	-	-	-
Stage 2	532	-	-	-	-	-	-
Critical Hdwy	6.84	6.94	-	-	6.48	4.18	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	-	-	2.54	2.24	-
Pot Cap-1 Maneuver	171	649	-	-	514	884	-
Stage 1	457	-	-	-	-	-	-
Stage 2	553	-	-	-	-	-	-
Platoon blocked, %			-	-			-
Mov Cap-1 Maneuver		649	-	-	645	645	-
Mov Cap-2 Maneuver	170	-	-	-	-	-	-
Stage 1	456	-	-	-	-	-	-
Stage 2	553	-	-	-	-	-	-
J							
Annraach	MD		ND		CD		
Approach	WB		NB		SB		
HCM Control Delay, s			0		0		
HCM LOS	D						
Minor Lane/Major Mvi	mt	NBT	NBR\	WBLn1	SBL	SBT	
Capacity (veh/h)		-	-		645	-	
HCM Lane V/C Ratio		-		0.024		-	
HCM Control Delay (s	.)	-	-		10.6	-	
HCM Lane LOS	7)		-	20.7 D			
	2)	-	-		В	-	
HCM 95th %tile Q(vel	IJ	-	-	0.1	0	-	

	•	→	•	•	←	•	₹î	•	†	/	/	+
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	4	7		4			ሻሻ	∱ ∱		ሻ	∱ î≽
Traffic Volume (veh/h)	274	0	233	2	0	0	1	146	512	0	0	814
Future Volume (veh/h)	274	0	233	2	0	0	1	146	512	0	0	814
Initial Q (Qb), veh	0	0	0	0	0	0		0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.98	1.00		1.00		1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No				No			No
Adj Sat Flow, veh/h/ln	1841	1841	1914	1870	1870	1870		1841	1841	1914	1841	1841
Adj Flow Rate, veh/h	364	0	163	8	0	0		164	575	0	0	885
Peak Hour Factor	0.95	0.95	0.95	0.25	0.25	0.25		0.89	0.89	0.89	0.92	0.92
Percent Heavy Veh, %	4	4	4	2	2	2		4	4	4	4	4
Cap, veh/h	584	0	266	22	0	0		255	2031	0	3	1072
Arrive On Green	0.17	0.00	0.17	0.01	0.00	0.00		0.07	0.58	0.00	0.00	0.43
Sat Flow, veh/h	3506	0	1596	1781	0	0		3401	3589	0	1753	2493
Grp Volume(v), veh/h	364	0	163	8	0	0		164	575	0	0	620
Grp Sat Flow(s),veh/h/ln	1753	0	1596	1781	0	0		1700	1749	0	1753	1749
Q Serve(g_s), s	6.2	0.0	6.1	0.3	0.0	0.0		3.0	5.3	0.0	0.0	20.2
Cycle Q Clear(g_c), s	6.2	0.0	6.1	0.3	0.0	0.0		3.0	5.3	0.0	0.0	20.2
Prop In Lane	1.00		1.00	1.00		0.00		1.00		0.00	1.00	
Lane Grp Cap(c), veh/h	584	0	266	22	0	0		255	2031	0	3	752
V/C Ratio(X)	0.62	0.00	0.61	0.36	0.00	0.00		0.64	0.28	0.00	0.00	0.82
Avail Cap(c_a), veh/h	1664	0	757	856	0	0		438	2842	0	152	1348
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00		1.00	1.00	0.00	0.00	1.00
Uniform Delay (d), s/veh	25.0	0.0	24.9	31.6	0.0	0.0		29.0	6.8	0.0	0.0	16.2
Incr Delay (d2), s/veh	0.4	0.0	0.9	7.2	0.0	0.0		1.0	0.0	0.0	0.0	0.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.2	0.0	2.1	0.2	0.0	0.0		1.2	1.4	0.0	0.0	6.6
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	25.4	0.0	25.8	38.8	0.0	0.0		30.0	6.8	0.0	0.0	17.1
LnGrp LOS	С	A	С	D	A	A		С	A	A	A	<u>B</u>
Approach Vol, veh/h		527			8				739			1214
Approach Delay, s/veh		25.5			38.8				12.0			17.2
Approach LOS		С			D				В			В
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		16.7	9.7	33.0		5.0	0.0	42.7				
Change Period (Y+Rc), s		6.0	4.9	5.3		4.2	4.9	5.3				
Max Green Setting (Gmax), s		30.6	8.3	49.7		31.0	5.6	52.4				
Max Q Clear Time (g_c+I1), s		8.2	5.0	22.4		2.3	0.0	7.3				
Green Ext Time (p_c), s		0.9	0.1	5.2		0.0	0.0	2.4				
Intersection Summary												
HCM 6th Ctrl Delay			17.5									
HCM 6th LOS			В									

Notes

User approved volume balancing among the lanes for turning movement.

Movement	SBR
	SDK
Lare Configurations	202
Traffic Volume (veh/h)	303 303
Future Volume (veh/h)	
Initial Q (Qb), veh	0
Ped-Bike Adj(A_pbT)	0.99
Parking Bus, Adj	1.00
Work Zone On Approach	1011
Adj Sat Flow, veh/h/ln	1914
Adj Flow Rate, veh/h	329
Peak Hour Factor	0.92
Percent Heavy Veh, %	4
Cap, veh/h	397
Arrive On Green	0.43
Sat Flow, veh/h	923
Grp Volume(v), veh/h	594
Grp Sat Flow(s),veh/h/ln	1668
Q Serve(g_s), s	20.4
Cycle Q Clear(q_c), s	20.4
Prop In Lane	0.55
Lane Grp Cap(c), veh/h	717
V/C Ratio(X)	0.83
Avail Cap(c_a), veh/h	1285
HCM Platoon Ratio	1.00
Upstream Filter(I)	1.00
Uniform Delay (d), s/veh	16.3
Incr Delay (d2), s/veh	1.0
Initial Q Delay(d3),s/veh	0.0
%ile BackOfQ(50%),veh/ln	6.3
Unsig. Movement Delay, s/vel	
LnGrp Delay(d),s/veh	17.3
LnGrp LOS	17.3 B
	<u> </u>
Approach Polavis/veh	
Approach LOS	
Approach LOS	
Timer - Assigned Phs	

EDT	14.55	14/55	05.	055
EBT WBU	WBT	WBR	SBL	SBR
*			¥	0.5
790 0		14	18	89
790 0	1026	14	18	89
				0
			•	Stop
				None
				-
		-		-
		-		-
				86
4 4	4	4		2
888 0	1080	15	21	103
Major2		Λ	/linor2	
	_			555
	_	-		-
				-
				6.94
- 0.40				0.74
	-			-
254	-			3.32
	-			475
	-			4/5
	-			
	-		ეგე	-
	-		ΩE	171
- 386	-	-		471
	-	-		-
	-	-		-
	-	-	580	-
			SB	
WB			27.3	
WB 0			// >	
			D D	
0			D	
0 EBL EBT	WBU	WBT		
0 EBL EBT 613 -	001	WBT -	D	283
0 EBL EBT 613 - 0.033 -			D WBR S	283 0.44
0 EBL EBT 613 -	386		D WBR S	283 0.44 27.3
0 EBL EBT 613 - 0.033 -	386 - 0	-	WBR S	283 0.44
V	888 0 Major2 0 888 	Free Free Free Ione	Free Free Free Free Ione - None - Non	Free Free Free Free Stop lone - None None None None None None None None

Intersection						
Int Delay, s/veh	0.1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ħβ			^	¥	
Traffic Vol, veh/h	794	2	2	1032	4	2
Future Vol, veh/h	794	2	2	1032	4	2
Conflicting Peds, #/hr	0	1	1	0	1	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	100	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	_	_	0	0	_
Peak Hour Factor	90	90	96	96	75	75
Heavy Vehicles, %	4	4	4	4	2	2
Mymt Flow	882	2	2	1075	5	3
IVIVIIIL I IOW	002	2	Z	1075	5	J
Major/Minor N	1ajor1	<u> </u>	/lajor2	<u> </u>	Vinor1	
Conflicting Flow All	0	0	885	0	1427	443
Stage 1	-	-	-	-	884	-
Stage 2	-	-	_	-	543	-
Critical Hdwy	-	-	4.18	-	6.84	6.94
Critical Hdwy Stg 1	_		-	-	5.84	-
Critical Hdwy Stg 2		_	_	_	5.84	_
Follow-up Hdwy	_	_	2.24	_	3.52	3.32
Pot Cap-1 Maneuver	_	_	748	-	126	562
Stage 1			740	-	364	502
	-	-	-	-	546	-
Stage 2	-	-	-		040	-
Platoon blocked, %	-	-	747	-	105	F/4
Mov Cap-1 Maneuver	-	-	747	-	125	561
Mov Cap-2 Maneuver	-	-	-	-	253	-
Stage 1	-	-	-	-	363	-
Stage 2	-	-	-	-	545	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		16.9	
HCM LOS					С	
Minor Lane/Major Mvmt		VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		310		-		-
HCM Lane V/C Ratio		0.026	_		0.003	_
HCM Control Delay (s)		16.9	-	-	9.8	-
HCM Lane LOS		10.9 C				-
			-	-	A	
HCM 95th %tile Q(veh)		0.1	-	-	0	-

		۶	→	•	F	•	←	•	•	†	/	L
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBU
Lane Configurations		44	†	7		ሻ	↑ ↑			4		
Traffic Volume (veh/h)	25	371	387	31	1	14	390	154	26	11	9	10
Future Volume (veh/h)	25	371	387	31	1	14	390	154	26	11	9	10
Initial Q (Qb), veh		0	0	0		0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)		1.00		0.99		1.00		0.99	1.00		1.00	
Parking Bus, Adj		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach			No				No			No		
Adj Sat Flow, veh/h/ln		1841	1841	1841		1841	1841	1914	1841	1841	1841	
Adj Flow Rate, veh/h		391	407	33		16	443	175	30	12	10	
Peak Hour Factor		0.95	0.95	0.95		0.88	0.88	0.88	0.88	0.88	0.88	
Percent Heavy Veh, %		4	4	4		4	4	4	4	4	4	
Cap, veh/h		398	612	516		27	564	221	60	24	20	
Arrive On Green		0.12	0.33	0.33		0.02	0.23	0.23	0.06	0.06	0.06	
Sat Flow, veh/h		3401	1841	1551		1753	2445	956	999	399	333	
Grp Volume(v), veh/h		391	407	33		16	316	302	52	0	0	
Grp Sat Flow(s),veh/h/ln		1700	1841	1551		1753	1749	1652	1731	0	0	
Q Serve(g_s), s		7.9	13.1	1.0		0.6	11.7	11.9	2.0	0.0	0.0	
Cycle Q Clear(g_c), s		7.9	13.1	1.0		0.6	11.7	11.9	2.0	0.0	0.0	
Prop In Lane		1.00		1.00		1.00		0.58	0.58		0.19	
Lane Grp Cap(c), veh/h		398	612	516		27	404	381	105	0	0	
V/C Ratio(X)		0.98	0.66	0.06		0.60	0.78	0.79	0.50	0.00	0.00	
Avail Cap(c_a), veh/h		398	826	696		142	722	682	725	0	0	
HCM Platoon Ratio		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)		1.00	1.00	1.00		1.00	1.00	1.00	1.00	0.00	0.00	
Uniform Delay (d), s/veh		30.5	19.8	15.8		33.9	25.0	25.1	31.5	0.0	0.0	
Incr Delay (d2), s/veh		40.5	0.5	0.0		7.6	1.3	1.4	2.7	0.0	0.0	
Initial Q Delay(d3),s/veh		0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln		5.2	4.9	0.3		0.3	4.5	4.3	0.9	0.0	0.0	
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh		71.0	20.3	15.8		41.5	26.3	26.5	34.2	0.0	0.0	
LnGrp LOS		Е	С	В		D	С	С	С	Α	Α	
Approach Vol, veh/h			831				634			52		
Approach Delay, s/veh			44.0				26.8			34.2		
Approach LOS			D				С			С		
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	6.0	28.3		26.2	13.0	21.3		8.8				
Change Period (Y+Rc), s	4.9	5.3		5.3	4.9	5.3		4.6				
Max Green Setting (Gmax), s	5.6	31.1		34.2	8.1	28.6		29.0				
Max Q Clear Time (g_c+l1), s	2.6	15.1		17.2	9.9	13.9		4.0				
Green Ext Time (p_c), s	0.0	1.3		3.0	0.0	1.9		0.2				
Intersection Summary												
HCM 6th Ctrl Delay			31.3									
HCM 6th LOS			С									
Notes												

	-	↓	1
Movement	SBL	SBT	SBR
Lane Configurations		4	77
Traffic Volume (veh/h)	199	28	613
Future Volume (veh/h)	199	28	613
Initial Q (Qb), veh	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99
Parking Bus, Adj	1.00	1.00	1.00
Work Zone On Approach		No	
Adj Sat Flow, veh/h/ln	1841	1841	1841
Adj Flow Rate, veh/h	212	30	652
Peak Hour Factor	0.94	0.94	0.94
Percent Heavy Veh, %	4	4	4
Cap, veh/h	466	66	821
Arrive On Green	0.30	0.30	0.30
Sat Flow, veh/h	1545	219	2723
Grp Volume(v), veh/h	242	0	652
Grp Sat Flow(s), veh/h/ln	1763	0	1361
Q Serve(g_s), s	7.7	0.0	15.2
Cycle Q Clear(q_c), s	7.7	0.0	15.2
Prop In Lane	0.88		1.00
Lane Grp Cap(c), veh/h	532	0	821
V/C Ratio(X)	0.46	0.00	0.79
Avail Cap(c_a), veh/h	871	0	1344
HCM Platoon Ratio	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00
Uniform Delay (d), s/veh	19.6	0.0	22.2
Incr Delay (d2), s/veh	0.5	0.0	1.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.8	0.0	4.8
Unsig. Movement Delay, s/veh	1		
LnGrp Delay(d),s/veh	20.0	0.0	23.6
LnGrp LOS	С	Α	С
Approach Vol, veh/h		894	
Approach Delay, s/veh		22.6	
Approach LOS		С	
Timor Accianad Dha			
Timer - Assigned Phs			

Intersection						
Int Delay, s/veh	0.2					
		ED.	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y		- ሽ	^	ΦÞ	
Traffic Vol, veh/h	6	6	2	624	1050	2
Future Vol, veh/h	6	6	2	624	1050	2
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	60	-	-	-
Veh in Median Storag		-	-	0	0	-
Grade, %	0	-	-	2	2	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	7	7	2	678	1141	2
IVIVIIIL I IOW	,	,		070	1141	2
Major/Minor	Minor2	ľ	Major1	Ν	/lajor2	
Conflicting Flow All	1485	572	1143	0	-	0
Stage 1	1142	-	-	-	-	-
Stage 2	343	-	-	-	-	-
Critical Hdwy	6.84	6.94	4.14	-	-	-
Critical Hdwy Stg 1	5.84	_	-	_	_	_
Critical Hdwy Stg 2	5.84	_	_	_	_	_
Follow-up Hdwy	3.52	3.32	2.22	_	_	_
Pot Cap-1 Maneuver	115	463	607			
Stage 1	266	405	007		_	_
	690	_	-	-	-	-
Stage 2	090	-	-	-	-	-
Platoon blocked, %	115	4/0	/07	-	-	-
Mov Cap-1 Maneuver		463	607	-	-	-
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	265	-	-	-	-	-
Stage 2	690	-	-		-	-
Approach	EB		NB		SB	
			0		0	
HCM LOS			U		U	
HCM LOS	D					
Minor Lane/Major Mvr	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		607	_			
HCM Lane V/C Ratio		0.004		0.071	_	_
HCM Control Delay (s	1	11				
HCM Lane LOS	7		-	20.1 D		
	٠١	В	-		-	-
HCM 95th %tile Q(veh	וו	0	-	0.2	-	-

	•	4	†	/	/	↓				
Movement	WBL	WBR	NBT	NBR	SBL	SBT				
ane Configurations	J. J.	7	^	7	ķ	^				
raffic Volume (veh/h)	76	103	1043	165	118	780				
future Volume (veh/h)	76	103	1043	165	118	780				
nitial Q (Qb), veh	0	0	0	0	0	0				
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00					
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00				
Vork Zone On Approach	No		No			No				
Adj Sat Flow, veh/h/ln	1811	1811	1811	1811	1811	1811				
Adj Flow Rate, veh/h	84	114	1075	170	126	830				
Peak Hour Factor	0.90	0.90	0.97	0.97	0.94	0.94				
Percent Heavy Veh, %	6	6	6	6	6	6				
Cap, veh/h	379	174	1456	823	160	2178				
Arrive On Green	0.11	0.11	0.42	0.42	0.09	0.63				
Sat Flow, veh/h	3346	1535	3532	1535	1725	3532				
Grp Volume(v), veh/h	84	114	1075	170	126	830				
Grp Sat Flow(s),veh/h/ln	1673	1535	1721	1535	1725	1721				
2 Serve(g_s), s	1.0	3.0	11.0	2.4	3.0	4.9				
Cycle Q Clear(g_c), s	1.0	3.0	11.0	2.4	3.0	4.9				
Prop In Lane	1.00	1.00		1.00	1.00					
ane Grp Cap(c), veh/h	379	174	1456	823	160	2178				
//C Ratio(X)	0.22	0.66	0.74	0.21	0.79	0.38				
vail Cap(c_a), veh/h	2057	944	2445	1265	376	3598				
ICM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00				
Jpstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00				
Jniform Delay (d), s/veh	16.9	17.7	10.1	5.0	18.6	3.7				
ncr Delay (d2), s/veh	0.1	1.6	0.3	0.0	3.3	0.0				
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0				
%ile BackOfQ(50%),veh/ln	0.3	2.6	2.5	0.6	1.1	0.4				
Insig. Movement Delay, s/veh										
.nGrp Delay(d),s/veh	17.0	19.3	10.4	5.1	21.8	3.8				
nGrp LOS	В	В	В	Α	С	Α				
Approach Vol, veh/h	198		1245			956				
Approach Delay, s/veh	18.3		9.7			6.1				
pproach LOS	В		А			Α				
imer - Assigned Phs				4		6	7	8		
Phs Duration (G+Y+Rc), s				31.8		10.0	8.8	23.0		
Change Period (Y+Rc), s				5.3		5.3	4.9	5.3		
Max Green Setting (Gmax), s				43.7		25.7	9.1	29.7		
Max Q Clear Time (q_c+l1), s				6.9		5.0	5.0	13.0		
Green Ext Time (p_c), s				3.7		0.3	0.1	4.7		
ntersection Summary										
ICM 6th Ctrl Delay			9.0							

Intersection							
Int Delay, s/veh	1.1						
		EDD	MDU	ND	NOT	CDT	CDD
Movement	EBL	EBR	NBU	NBL	NBT	SBT	SBR
Lane Configurations	ች	7		<u> </u>	^	† }	
Traffic Vol, veh/h	14	17	1	51	1103	904	17
Future Vol, veh/h	14	17	1	51	1103	904	17
Conflicting Peds, #/hr		0	5	_ 5	0	0	5
Sign Control	Stop	Stop	Free	Free	Free	Free	Free
RT Channelized	-	110110	-	-	None	-	None
Storage Length	100	0	-	100	-	-	-
Veh in Median Storag		-	-	-	0	0	-
Grade, %	0	-	-	-	0	0	-
Peak Hour Factor	67	67	92	88	88	88	88
Heavy Vehicles, %	2	2	6	6	6	6	6
Mvmt Flow	21	25	1	58	1253	1027	19
Major/Minor	Minor2	Λ	/ajor1			Major2	
			Major1	1051			0
Conflicting Flow All	1787	528	1047	1051	0	-	0
Stage 1	1042	-	-	-	-	-	-
Stage 2	745	-		4.00	-	-	-
Critical Hdwy	6.84	6.94	6.52	4.22	-	-	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	2.56	2.26	-	-	-
Pot Cap-1 Maneuver	73	495	299	635	-	-	-
Stage 1	301	-	-	-	-	-	-
Stage 2	430	-	-	-	-	-	-
Platoon blocked, %					-	-	-
Mov Cap-1 Maneuver	65	493	618	618	-	-	-
Mov Cap-2 Maneuver		-	-	-	-	-	-
Stage 1	271	-	-	-	-	-	-
Stage 2	428	-	_	-	-	-	-
g							
A			ND			CD	
Approach	EB		NB			SB	
HCM Control Delay, s			0.5			0	
HCM LOS	E						
Minor Lane/Major Mv	mt	NBL	NRT	EBLn1	FBI n2	SBT	SBR
Capacity (veh/h)		618	1101	65	493		UDIN
HCM Lane V/C Ratio		0.096	-	0.321		-	-
	-1		-			-	-
HCM Long LOS	>)	11.4	-	84.7	12.7	-	-
HCM Lane LOS	b)	В	-	F	В	-	-
HCM 95th %tile Q(ve	n)	0.3	-	1.2	0.2	-	-

New Note N
Movement
Traffic Vol, veh/h
Traffic Vol, veh/h 1 0 1115 1 1 936 Future Vol, veh/h 1 0 1115 1 1 936 Conflicting Peds, #/hr 0 0 0 0 0 0 Sign Control Stop Stop Free 6 6 6
Future Vol, veh/h Conflicting Peds, #/hr O O O O O O O O O O O O O O O O O O O
Conflicting Peds, #/hr 0 0 0 0 0 Sign Control Stop Stop Free 60 6 6 <td< td=""></td<>
Sign Control Stop Stop Free Ree Free Room Storage Length 0 - 0 - 0 - - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 98<
RT Channelized - None - None - None Storage Length 0 - - 100 Veh in Median Storage, # 0 - 0 - - 0 Grade, % 0 - 0 - - - 0 Peak Hour Factor 25 25 90 90 98 96 Heavy Vehicles, % 2 2 6 6 6 6 Mvmt Flow 4 0 1239 1 1 946 Momman Major1 Major2 Major2 1 1 946 Momman Major1 Major2 Major2 1 1 946 Momman Major1 Major2 Major2 1 1 946 Major/Minor Minor Major1 Major2 1 1 946 Major Major1 Major2 1 1 946 1 1 1 1 946
Storage Length 0 - - 100 Veh in Median Storage, # 0 - 0 - - 0 Grade, % 0 - 0 - - - 0 Peak Hour Factor 25 25 90 90 98 98 Heavy Vehicles, % 2 2 6 6 6 6 Mvmt Flow 4 0 1239 1 1 94* Major/Minor Minor1 Major1 Major2 Conflicting Flow All 1717 620 0 0 1240 0 Stage 1 1240 - - - - - Stage 2 477 - - - - - Critical Hdwy Stg 1 5.84 - - - - - Critical Hdwy Stg 1 5.84 - - - - - - - - - - - - - - - - - - -
Weh in Median Storage, # 0 - 0 - - 0 Grade, % 0 - 0 - <t< td=""></t<>
Grade, % 0 - 0 - - 2 Peak Hour Factor 25 25 90 90 98 98 Heavy Vehicles, % 2 2 6 6 6 6 Mvmt Flow 4 0 1239 1 1 949 Major/Minor Minor1 Major1 Major2 Conflicting Flow All 1717 620 0 0 1240 0 Stage 1 1240 -
Peak Hour Factor 25 25 90 90 98 98 Heavy Vehicles, % 2 2 6 6 6 6 Mvmt Flow 4 0 1239 1 1 944 Major/Minor Minor1 Major1 Major2 Conflicting Flow All 1717 620 0 0 1240 0 Stage 1 1240 -
Heavy Vehicles, % 2 2 6 7 2
Momental Major Majo
Major/Minor Minor1 Major1 Major2 Conflicting Flow All 1717 620 0 0 1240 0 Stage 1 1240 -
Conflicting Flow All 1717 620 0 0 1240 Stage 1 1240 - - - - Stage 2 477 - - - - Critical Hdwy 6.84 6.94 - - 4.22 Critical Hdwy Stg 1 5.84 - - - - Critical Hdwy Stg 2 5.84 - - - - Follow-up Hdwy 3.52 3.32 - - 2.26 Pot Cap-1 Maneuver 81 431 - - 536 Stage 1 236 - - - - Platoon blocked, % - - - - - Mov Cap-1 Maneuver 81 431 - - 536 Mov Cap-2 Maneuver 81 - - - - Stage 1 236 - - - - Stage 2 590 - -
Conflicting Flow All 1717 620 0 0 1240 Stage 1 1240 - - - - Stage 2 477 - - - - Critical Hdwy 6.84 6.94 - - 4.22 Critical Hdwy Stg 1 5.84 - - - - Critical Hdwy Stg 2 5.84 - - - - Follow-up Hdwy 3.52 3.32 - - 2.26 Pot Cap-1 Maneuver 81 431 - - 536 Stage 1 236 - - - - Platoon blocked, % - - - - - Mov Cap-1 Maneuver 81 431 - - 536 Mov Cap-2 Maneuver 81 - - - - Stage 1 236 - - - - Stage 2 590 - -
Conflicting Flow All 1717 620 0 0 1240 Stage 1 1240 - - - - Stage 2 477 - - - - Critical Hdwy 6.84 6.94 - - 4.22 Critical Hdwy Stg 1 5.84 - - - - Critical Hdwy Stg 2 5.84 - - - - Follow-up Hdwy 3.52 3.32 - - 2.26 Pot Cap-1 Maneuver 81 431 - - 536 Stage 1 236 - - - - Platoon blocked, % - - - - - Mov Cap-1 Maneuver 81 431 - - 536 Mov Cap-2 Maneuver 81 - - - - Stage 1 236 - - - - Stage 2 590 - -
Stage 1 1240 - - - Stage 2 477 - - - Critical Hdwy 6.84 6.94 - - 4.22 Critical Hdwy Stg 1 5.84 - - - - Critical Hdwy Stg 2 5.84 - - - - Follow-up Hdwy 3.52 3.32 - - 2.26 Pot Cap-1 Maneuver 81 431 - - 536 Stage 1 236 - - - - Platoon blocked, % - - - - - Mov Cap-1 Maneuver 81 431 - - 536 Mov Cap-2 Maneuver 81 - - - - Stage 1 236 - - - - Stage 2 590 - - - - Approach WB NB SB HCM Control Delay, s 51.7 0 0
Stage 2 477 - - - Critical Hdwy 6.84 6.94 - - 4.22 Critical Hdwy Stg 1 5.84 - - - - Critical Hdwy Stg 2 5.84 - - - - Follow-up Hdwy 3.52 3.32 - - 2.26 Pot Cap-1 Maneuver 81 431 - - 536 Stage 1 236 - - - - Stage 2 590 - - - - Mov Cap-1 Maneuver 81 431 - - 536 Mov Cap-2 Maneuver 81 - - - - Stage 1 236 - - - - Stage 2 590 - - - - Approach WB NB SB HCM Control Delay, s 51.7 0 0
Critical Hdwy 6.84 6.94 - - 4.22 Critical Hdwy Stg 1 5.84 - - - - Critical Hdwy Stg 2 5.84 - - - - Follow-up Hdwy 3.52 3.32 - - 2.26 Pot Cap-1 Maneuver 81 431 - - 536 Stage 1 236 - - - - Stage 2 590 - - - - Mov Cap-1 Maneuver 81 431 - - 536 Mov Cap-2 Maneuver 81 - - - - Stage 1 236 - - - - Stage 2 590 - - - - Approach WB NB SB HCM Control Delay, s 51.7 0 0
Critical Hdwy Stg 1 5.84 - - - Critical Hdwy Stg 2 5.84 - - - Follow-up Hdwy 3.52 3.32 - - 2.26 Pot Cap-1 Maneuver 81 431 - - 536 Stage 1 236 - - - - Stage 2 590 - - - - Mov Cap-1 Maneuver 81 431 - - 536 Mov Cap-2 Maneuver 81 - - - - Stage 1 236 - - - - Stage 2 590 - - - - Approach WB NB SB HCM Control Delay, s 51.7 0 0
Critical Hdwy Stg 2 5.84 - - - - Follow-up Hdwy 3.52 3.32 - - 2.26 Pot Cap-1 Maneuver 81 431 - - 536 Stage 1 236 - - - - Stage 2 590 - - - - Platoon blocked, % - - - - - Mov Cap-1 Maneuver 81 431 - - 536 Mov Cap-2 Maneuver 81 - - - - Stage 1 236 - - - - Stage 2 590 - - - - Approach WB NB SB HCM Control Delay, s 51.7 0 0
Follow-up Hdwy 3.52 3.32 2.26 Pot Cap-1 Maneuver 81 431 536 Stage 1 236 Stage 2 590 Platoon blocked, % Mov Cap-1 Maneuver 81 431 536 Mov Cap-2 Maneuver 81 Stage 1 236 Stage 2 590 Approach WB NB SB HCM Control Delay, s 51.7 0 0
Pot Cap-1 Maneuver 81 431 - - 536 Stage 1 236 - - - Stage 2 590 - - - Platoon blocked, % - - - Mov Cap-1 Maneuver 81 431 - - 536 Mov Cap-2 Maneuver 81 - - - - Stage 1 236 - - - - Stage 2 590 - - - - Approach WB NB SB HCM Control Delay, s 51.7 0 0
Stage 1 236 - - - Stage 2 590 - - - Platoon blocked, % - - - Mov Cap-1 Maneuver 81 431 - - 536 Mov Cap-2 Maneuver 81 -
Stage 2 590 - - - - Platoon blocked, % - - - - Mov Cap-1 Maneuver 81 - - - - Mov Cap-2 Maneuver 81 - - - - Stage 1 236 - - - - Stage 2 590 - - - - Approach WB NB SB HCM Control Delay, s 51.7 0 0
Platoon blocked, % - - Mov Cap-1 Maneuver 81 431 - - 536 Mov Cap-2 Maneuver 81 - <td< td=""></td<>
Mov Cap-1 Maneuver 81 431 - - 536 Mov Cap-2 Maneuver 81 - - - - Stage 1 236 - - - - Stage 2 590 - - - - Approach WB NB SB HCM Control Delay, s 51.7 0 0
Mov Cap-2 Maneuver 81 - - - Stage 1 236 - - - Stage 2 590 - - - Approach WB NB SB HCM Control Delay, s 51.7 0 0
Mov Cap-2 Maneuver 81 - - - - Stage 1 236 - - - - Stage 2 590 - - - - Approach WB NB SB HCM Control Delay, s 51.7 0 0
Stage 1 236 - - - - Stage 2 590 - - - - Approach WB NB SB HCM Control Delay, s 51.7 0 0
Stage 2 590 - - - - Approach WB NB SB HCM Control Delay, s 51.7 0 0
Approach WB NB SB HCM Control Delay, s 51.7 0 0
HCM Control Delay, s 51.7 0 0
HCM Control Delay, s 51.7 0 0
y .
HCM LOS F
Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SB
Capacity (veh/h) 81 536
HCM Lane V/C Ratio 0.049 0.002
HCM Control Delay (s) - 51.7 11.7
HCM Lane LOS F B HCM 95th %tile Q(veh) - 0.2 0
HCM 95th %tile Q(veh) 0.2 0

	۶	→	•	•	←	•	•	†	<i>></i>	L	>	ţ
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBU	SBL	SBT
Lane Configurations	7	4	7		4		ሻሻ	ħβ			7	↑ ↑
Traffic Volume (veh/h)	310	0	182	0	0	0	209	895	0	3	0	761
Future Volume (veh/h)	310	0	182	0	0	0	209	895	0	3	0	761
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0		0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		1.00	1.00		1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00
Work Zone On Approach		No			No			No				No
Adj Sat Flow, veh/h/ln	1811	1811	1884	1870	1870	1870	1811	1811	1884		1811	1811
Adj Flow Rate, veh/h	386	0	128	0	0	0	235	1006	0		0	827
Peak Hour Factor	0.95	0.95	0.95	0.25	0.25	0.25	0.89	0.89	0.89		0.92	0.92
Percent Heavy Veh, %	6	6	6	2	2	2	6	6	6		6	6
Cap, veh/h	599	0	274	0	3	0	350	2138	0		3	1030
Arrive On Green	0.17	0.00	0.17	0.00	0.00	0.00	0.10	0.62	0.00		0.00	0.43
Sat Flow, veh/h	3450	0	1580	0	1870	0	3346	3532	0		1725	2406
Grp Volume(v), veh/h	386	0	128	0	0	0	235	1006	0		0	591
Grp Sat Flow(s), veh/h/ln	1725	0	1580	0	1870	0	1673	1721	0		1725	1721
Q Serve(g_s), s	5.7	0.0	4.0	0.0	0.0	0.0	3.7	8.6	0.0		0.0	16.5
Cycle Q Clear(g_c), s	5.7	0.0	4.0	0.0	0.0	0.0	3.7	8.6	0.0		0.0	16.5
Prop In Lane	1.00		1.00	0.00		0.00	1.00		0.00		1.00	
Lane Grp Cap(c), veh/h	599	0	274	0	3	0	350	2138	0		3	736
V/C Ratio(X)	0.64	0.00	0.47	0.00	0.00	0.00	0.67	0.47	0.00		0.00	0.80
Avail Cap(c_a), veh/h	1929	0	883	0	1053	0	674	3261	0		175	1459
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	0.00	0.00	0.00	1.00	1.00	0.00		0.00	1.00
Uniform Delay (d), s/veh	21.2	0.0	20.5	0.0	0.0	0.0	23.8	5.6	0.0		0.0	13.7
Incr Delay (d2), s/veh	0.4	0.0	0.5	0.0	0.0	0.0	0.8	0.1	0.0		0.0	0.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0
%ile BackOfQ(50%),veh/ln	1.9	0.0	1.3	0.0	0.0	0.0	1.3	1.6	0.0		0.0	4.9
Unsig. Movement Delay, s/veh	1											
LnGrp Delay(d),s/veh	21.6	0.0	20.9	0.0	0.0	0.0	24.6	5.6	0.0		0.0	14.5
LnGrp LOS	С	А	С	Α	Α	Α	С	Α	Α		Α	В
Approach Vol, veh/h		514			0			1241				1155
Approach Delay, s/veh		21.5			0.0			9.2				14.6
Approach LOS		С						Α				В
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		15.6	10.7	28.9		0.0	0.0	39.5				
Change Period (Y+Rc), s		6.0	4.9	5.3		4.2	4.9	5.3				
Max Green Setting (Gmax), s		30.8	11.1	46.7		31.0	5.6	52.2				
Max Q Clear Time (q_c+l1), s		7.7	5.7	18.6		0.0	0.0	10.6				
Green Ext Time (p_c), s		0.8	0.2	4.9		0.0	0.0	4.8				
Intersection Summary												
HCM 6th Ctrl Delay			13.5									
HCM 6th LOS			13.5 B									
HOW OUT LOS			D									

Notes

User approved volume balancing among the lanes for turning movement.

Movement	SBR
Lance Configurations	
Traffic Volume (veh/h)	302
Future Volume (veh/h)	302
Initial Q (Qb), veh	0
Ped-Bike Adj(A_pbT)	1.00
Parking Bus, Adj	1.00
Work Zone On Approach	
Adj Sat Flow, veh/h/ln	1884
Adj Flow Rate, veh/h	328
Peak Hour Factor	0.92
Percent Heavy Veh, %	6
Cap, veh/h	407
Arrive On Green	0.43
Sat Flow, veh/h	952
Grp Volume(v), veh/h	564
Grp Sat Flow(s), veh/h/ln	1638
Q Serve(q_s), s	16.6
Cycle Q Clear(g_c), s	16.6
Prop In Lane	0.58
Lane Grp Cap(c), veh/h	701
V/C Ratio(X)	0.81
Avail Cap(c_a), veh/h	1389
HCM Platoon Ratio	1.00
	1.00
Upstream Filter(I)	13.8
Uniform Delay (d), s/veh	0.8
Incr Delay (d2), s/veh	
Initial Q Delay(d3),s/veh	0.0
%ile BackOfQ(50%),veh/ln	4.6
Unsig. Movement Delay, s/ve	
LnGrp Delay(d),s/veh	14.6
LnGrp LOS	В
Approach Vol, veh/h	
Approach Delay, s/veh	
Approach LOS	
Timer - Assigned Phs	
Timer 7133igned F113	

Movement	Intersection								
Lane Configurations		0.7							
Traffic Vol, veh/h						==	=	0=:	0
Traffic Vol, veh/h		EBU					WBR		SBR
Future Vol, veh/h									
Conflicting Peds, #/hr O O O O O O O O O	· ·								
Sign Control Free Free									
RT Channelized - - None - - None Storage Length - 100 - 100 - - - 0 - 0 - - - - 0 - - 0 - 0 - 0 - 0 - 0 - 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0									
Storage Length		Free	Free		Free	Free		Stop	
Weh in Median Storage, # - - 0 - 0 - 0 - Grade, % - - - 2 - 0 - 0 - - - - 2 2 - 0 - 0 - - - 0 - - 0 - - - 0 - - - 0 - - 0 - - - 0 1072 29 1 50 Major/Minor Major1 Major2 Minor2 Minor2 Major/Minor Major Major Minor 2 2 2 - - - - 0 1889 551 550 Major/Minor Major Major Minor 2 - - - - - - - - - - - - - - - - -		-		None		-	None		None
Grade, % - - 2 - 0 - 0 - Peak Hour Factor 92 89 89 95 95 95 86 86 Heavy Vehicles, % 6 6 6 6 6 6 6 2 2 Mvmt Flow 2 82 1267 0 1072 29 1 50 Major/Minor Major1 Major2 Minor2 Minor2 Conflicting Flow All 1101 1101 0 1267 0 1889 551 Stage 1 - - - - - 1087 - Stage 2 - - - - - 802 - Critical Hdwy Stg 2 - - - - 5.84 - Critical Hdwy Stg 2 - - - - 5.84 - Follow-up Hdwy 2.56 2.26 <td< td=""><td></td><td></td><td>100</td><td></td><td>100</td><td>-</td><td>-</td><td>0</td><td>-</td></td<>			100		100	-	-	0	-
Peak Hour Factor	Veh in Median Storage	e,# -	-		-	0	-	0	-
Major/Minor Major1 Major2 Minor2	Grade, %	-	-	2	-	0	-	0	-
Mymt Flow 2 82 1267 0 1072 29 1 50 Major/Minor Major1 Major2 Minor2 Conflicting Flow All 1101 1101 0 1267 0 1889 551 Stage 1 - - - - - 1087 - Stage 2 - - - - - 802 - Critical Hdwy 6.52 4.22 - 6.52 - 6.84 6.94 Critical Hdwy Stg 1 - - - - 5.84 - Critical Hdwy Stg 2 - - - - 5.84 - Critical Hdwy Stg 2 - - - 5.84 - Follow-up Hdwy 2.56 2.26 - 2.56 - 3.52 3.32 Pot Cap-1 Maneuver 276 607 - 215 - 53 478 Mov Cap-1 Maneuver 586	Peak Hour Factor	92	89	89	95	95	95	86	86
Mymt Flow 2 82 1267 0 1072 29 1 50 Major/Minor Major1 Major2 Minor2 Conflicting Flow All 1101 1101 0 1267 0 1889 551 Stage 1 - - - - - 1087 - Stage 2 - - - - - 802 - Critical Hdwy 6.52 4.22 - 6.52 - - 6.84 6.94 Critical Hdwy Stg 1 - - - - 5.84 - Critical Hdwy Stg 2 - - - 5.84 - Critical Hdwy Stg 2 - - - 5.84 - Critical Hdwy Stg 2 - - - 5.84 - Critical Hdwy Stg 2 - - - 5.84 - - 607 2.15 - 62 478 - - - - 62 478<	Heavy Vehicles, %	6	6	6	6	6	6	2	2
Major/Minor Major1 Major2 Minor2 Conflicting Flow All 1101 1101 0 1267 0 1889 551 Stage 1 - - - - 1087 - Stage 2 - - - - 802 - Critical Hdwy 6.52 4.22 - 6.52 - 6.84 6.94 Critical Hdwy Stg 1 - - - - 5.84 - - - 5.84 - - - 5.84 - - - 5.84 - - - 5.84 - - - 5.84 - - - 5.84 - - - 5.84 - - - 5.84 -					0		29		
Stage 1									
Stage 1	N A . ' (N A'								
Stage 1 - - - - 1087 - Stage 2 - - - - 802 - Critical Hdwy 6.52 4.22 - 6.52 - 6.84 6.94 Critical Hdwy Stg 1 - - - - - 5.84 - Critical Hdwy Stg 2 - - - - - 5.84 - Follow-up Hdwy 2.56 2.26 - 2.56 - 3.52 3.32 Pot Cap-1 Maneuver 276 607 - 215 - 62 478 Stage 1 - - - - 285 - Stage 2 - - - - - - Mov Cap-1 Maneuver 586 586 - 215 - 53 478 Mov Cap-2 Maneuver - - - - - 53 - Stage 1 - - - - - - 53 - M									
Stage 2 - - - - 802 - Critical Hdwy 6.52 4.22 - 6.52 - 6.84 6.94 Critical Hdwy Stg 1 - - - - - 5.84 - Critical Hdwy Stg 2 - - - - - 5.84 - Follow-up Hdwy 2.56 2.26 - 2.56 - 3.52 3.32 Pot Cap-1 Maneuver 276 607 - 215 - 62 478 Stage 1 - - - - - 285 - Stage 2 - - - - - - 285 - Mov Cap-1 Maneuver 586 586 - 215 - - 53 478 Mov Cap-2 Maneuver - - - - - 53 - Stage 1 - - - - - - - - - 402 - Approach		1101	1101	0	1267	-	0		551
Critical Hdwy 6.52 4.22 - 6.52 - 6.84 6.94 Critical Hdwy Stg 1 5.84 - Critical Hdwy Stg 2 5.84 - Follow-up Hdwy 2.56 2.26 - 2.56 - 3.52 3.32 Pot Cap-1 Maneuver 276 607 - 215 - 62 478 Stage 1 285 - - 285 - Stage 2 285 - - 402 - Platoon blocked, % 53 478 Mov Cap-1 Maneuver 586 586 - 215 - 53 478 Mov Cap-2 Maneuver 53 - - 244 - Stage 1 402 - - 244 - Stage 2 402 - 244 - Stage 1 402 - 244 - 3 Approach EB WB SB HCM LOS		-	-	-	-	-	-		-
Critical Hdwy Stg 1 - - - - 5.84 - Critical Hdwy Stg 2 - - - - 5.84 - Follow-up Hdwy 2.56 2.26 - 2.56 - 3.52 3.32 Pot Cap-1 Maneuver 276 607 - 215 - 62 478 Stage 1 - - - - - 285 - Stage 2 - - - - - 402 - Platoon blocked, % - - - - - 402 - Mov Cap-1 Maneuver 586 586 - 215 - 53 478 Mov Cap-2 Maneuver - - - - - 53 - Stage 1 - - - - - - 244 - Stage 2 - - - - - - 402 - Approach EB WB WB SB B		-		-		-	-		
Critical Hdwy Stg 2 - - - 5.84 - Follow-up Hdwy 2.56 2.26 - 2.56 - 3.52 3.32 Pot Cap-1 Maneuver 276 607 - 215 - 62 478 Stage 1 - - - - - 285 - Stage 2 - - - - - 402 - Platoon blocked, % - - - - - 402 - Mov Cap-1 Maneuver 586 586 - 215 - 53 478 Mov Cap-2 Maneuver - - - - - 53 - Stage 1 - - - - - - 244 - Stage 2 - - - - - - 402 - Approach EB WB WB SB B B		6.52	4.22	-	6.52	-	-		6.94
Follow-up Hdwy 2.56 2.26 - 2.56 - 3.52 3.32 Pot Cap-1 Maneuver 276 607 - 215 - 62 478 Stage 1 - - - - - 285 - Stage 2 - - - - - 402 - Platoon blocked, % - - - - - - - 402 - Mov Cap-1 Maneuver 586 586 - 215 - 53 478 Mov Cap-2 Maneuver - - - - - 53 - Stage 1 - - - - - 53 - Stage 2 - - - - - - 402 - Approach EB WB SB B B B B B B B B B B	Critical Hdwy Stg 1	-	-	-	-	-	-	5.84	-
Follow-up Hdwy 2.56 2.26 - 2.56 - 3.52 3.32 Pot Cap-1 Maneuver 276 607 - 215 - 62 478 Stage 1 285 - 285 - Stage 2 285 - Platoon blocked, %	Critical Hdwy Stg 2	-	-	-	-	-	-	5.84	-
Pot Cap-1 Maneuver 276 607 - 215 - - 62 478 Stage 1 - - - - - 285 - Stage 2 - - - - 402 - Platoon blocked, % - - - - - - Mov Cap-1 Maneuver 586 586 - 215 - - 53 478 Mov Cap-2 Maneuver - - - - - - 53 - Stage 1 - - - - - 244 - Stage 2 - - - - - 402 - Approach EB WB SB HCM LOS C C Minor Lane/Major Mvmt EBL EBT WBU WBT WBR SBLn1 Capacity (veh/h) 586 - 215 - - 404		2.56	2.26	-	2.56	-	-	3.52	3.32
Stage 1 - - - - 285 - Stage 2 - - - - 402 - Platoon blocked, % - - - - - Mov Cap-1 Maneuver 586 586 - 215 - 53 478 Mov Cap-2 Maneuver - - - - - 53 - Stage 1 - - - - - 244 - Stage 2 - - - - - 402 - Approach EB WB SB HCM Control Delay, s O 15.2 HCM LOS C Minor Lane/Major Mvmt EBL EBT WBU WBT WBR SBLn1 Capacity (veh/h) 586 - 215 - 404 HCM Lane V/C Ratio O.144 0.127		276		-	215	-	-	62	478
Stage 2 - - - - 402 - Platoon blocked, % - - - - - Mov Cap-1 Maneuver 586 586 - 215 - - 53 478 Mov Cap-2 Maneuver - - - - - - 53 - Stage 1 - - - - - 244 - Stage 2 - - - - - 402 - Approach EB WB SB HCM Control Delay, s 0.8 0 15.2 HCM LOS C Minor Lane/Major Mvmt EBL EBT WBU WBT WBR SBLn1 Capacity (veh/h) 586 - 215 - - 404 HCM Lane V/C Ratio 0.144 - - - 0.127	•		-	-		-	-		
Platoon blocked, %		-	-	-	-	-	-		-
Mov Cap-1 Maneuver 586 586 - 215 - 53 478 Mov Cap-2 Maneuver 53 - 53				_		_	-		
Mov Cap-2 Maneuver - - - - 53 - Stage 1 - - - - 244 - Stage 2 - - - - 402 - Approach EB WB SB HCM Control Delay, s 0.8 0 15.2 HCM LOS C C Minor Lane/Major Mvmt EBL EBT WBU WBT WBR SBLn1 Capacity (veh/h) 586 - 215 - 404 HCM Lane V/C Ratio 0.144 0.127		586	586	-	215	-	-	53	478
Stage 1 - - - - 244 - Stage 2 - - - - 402 - Approach EB WB SB HCM Control Delay, s 0.8 0 15.2 HCM LOS C C Minor Lane/Major Mvmt EBL EBT WBU WBT WBR SBLn1 Capacity (veh/h) 586 - 215 - - 404 HCM Lane V/C Ratio 0.144 - - - 0.127				_					
Stage 2 - - - - - 402 - Approach EB WB SB HCM Control Delay, s 0.8 0 15.2 HCM LOS C Minor Lane/Major Mvmt EBL EBT WBU WBT WBR SBLn1 Capacity (veh/h) 586 - 215 - - 404 HCM Lane V/C Ratio 0.144 - - - 0.127		-	_	_	_	_			
Approach EB WB SB HCM Control Delay, s 0.8 0 15.2 HCM LOS C C Minor Lane/Major Mvmt EBL EBT WBU WBT WBR SBLn1 Capacity (veh/h) 586 - 215 - - 404 HCM Lane V/C Ratio 0.144 - - - 0.127	ū				_				
HCM Control Delay, s 0.8 0 15.2 HCM LOS	Staye 2	-	-	-	-	-	<u>-</u>	402	-
HCM Control Delay, s 0.8 0 15.2 HCM LOS									
Minor Lane/Major Mvmt EBL EBT WBU WBT WBR SBLn1 Capacity (veh/h) 586 - 215 - 404 HCM Lane V/C Ratio 0.144 0.127	Approach	EB			WB			SB	
Minor Lane/Major Mvmt EBL EBT WBU WBT WBR SBLn1 Capacity (veh/h) 586 - 215 - 404 HCM Lane V/C Ratio 0.144 0.127	HCM Control Delay, s	0.8			0			15.2	
Minor Lane/Major Mvmt EBL EBT WBU WBT WBR SBLn1 Capacity (veh/h) 586 - 215 404 HCM Lane V/C Ratio 0.144 0.127	3							С	
Capacity (veh/h) 586 - 215 - 404 HCM Lane V/C Ratio 0.144 0.127									
Capacity (veh/h) 586 - 215 - 404 HCM Lane V/C Ratio 0.144 0.127	N 41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		EDI	FDT	MELL	MOT	WED	201 4	
HCM Lane V/C Ratio 0.144 0.127		nt		EBT		WBT	WBR S		
				-	215	-	-		
HOM Control Dolon (a) 10.0				-	-	-	-		
J 1 7	HCM Control Delay (s)		12.2	-	0	-	-	15.2	
HCM Lane LOS B - A C				-	Α	-	-	С	
HCM 95th %tile Q(veh) 0.5 - 0 0.4	HCM 95th %tile Q(veh)	0.5	-	0	-	-	0.4	

Intersection							
Int Delay, s/veh	0						
	EBT	EBR	WBU	WBL	WBT	NBL	NBR
	†	LUK	1100	YVDL	↑ ↑	₩.	אטוז
	1128	6	1	1	1043	2	0
	1128	6	1	1	1043	2	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0
ğ	Free	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	-	None	-	None
Storage Length	-	-	-	100	-	0	-
Veh in Median Storage, #	# 0	-	-	-	0	0	-
Grade, %	0	-	-	-	0	0	-
Peak Hour Factor	90	90	92	96	96	75	75
Heavy Vehicles, %	6	6	6	6	6	2	2
Mvmt Flow 1	1253	7	1	1	1086	3	0
Major/Minor Ma	ajor1	N	Major2		N	/linor1	
Conflicting Flow All	0	0	1260	1260	0	1804	630
Stage 1	-	-	-	-	-	1257	-
Stage 2	_		_	_	_	547	_
Critical Hdwy	-	-	6.52	4.22	-	6.84	6.94
Critical Hdwy Stg 1	-	_	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	_	-	-	5.84	-
Follow-up Hdwy	-	-	2.56	2.26	-	3.52	3.32
Pot Cap-1 Maneuver	-	-	217	526	-	71	424
Stage 1	-	-	-	-	-	231	-
Stage 2	-	-	-	-	-	544	-
Platoon blocked, %	-	-			-		
Mov Cap-1 Maneuver	-	-	305	305	-	71	424
Mov Cap-2 Maneuver	-	-	-	-	-	173	-
Stage 1	-	-	-	-	-	229	-
Stage 2	-	-	-	-	-	544	-
J							
Annroach	EB		WB			NB	
Approach							
HCM Control Delay, s	0		0			26.1	
HCM LOS						D	
Minor Lane/Major Mvmt	N	VBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)		173	-	-	305	-	
HCM Lane V/C Ratio		0.015	-	-	0.007	-	
HCM Control Delay (s)		26.1	-	-	16.9	-	
LICM Land LOC					_		
HCM Lane LOS HCM 95th %tile Q(veh)		D 0	-	-	C 0	-	

		۶	→	•	F	•	←	•	•	†	<i>></i>	L
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBU
Lane Configurations		ሻሻ	^	7		ሻ	∱ ⊅			4		
Traffic Volume (veh/h)	61	647	467	37	2	23	498	111	59	23	21	16
Future Volume (veh/h)	61	647	467	37	2	23	498	111	59	23	21	16
Initial Q (Qb), veh		0	0	0		0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)		1.00		1.00		1.00		1.00	1.00		1.00	
Parking Bus, Adj		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach			No				No			No		
Adj Sat Flow, veh/h/ln		1811	1811	1811		1811	1811	1884	1811	1811	1811	
Adj Flow Rate, veh/h		681	492	39		26	566	126	67	26	24	
Peak Hour Factor		0.95	0.95	0.95		0.88	0.88	0.88	0.88	0.88	0.88	
Percent Heavy Veh, %		6	6	6		6	6	6	6	6	6	
Cap, veh/h		775	813	689		37	667	148	92	36	33	
Arrive On Green		0.23	0.45	0.45		0.02	0.24	0.24	0.09	0.09	0.09	
Sat Flow, veh/h		3346	1811	1535		1725	2799	621	973	378	349	
Grp Volume(v), veh/h		681	492	39		26	347	345	117	0	0	
Grp Sat Flow(s), veh/h/ln		1673	1811	1535		1725	1721	1699	1700	0	0	
Q Serve(g_s), s		17.8	18.7	1.3		1.4	17.5	17.6	6.1	0.0	0.0	
Cycle Q Clear(g_c), s		17.8	18.7	1.3		1.4	17.5	17.6	6.1	0.0	0.0	
Prop In Lane		1.00		1.00		1.00		0.37	0.57		0.21	
Lane Grp Cap(c), veh/h		775	813	689		37	410	405	160	0	0	
V/C Ratio(X)		0.88	0.61	0.06		0.71	0.85	0.85	0.73	0.00	0.00	
Avail Cap(c_a), veh/h		1293	1221	1034		108	602	595	543	0	0	
HCM Platoon Ratio		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)		1.00	1.00	1.00		1.00	1.00	1.00	1.00	0.00	0.00	
Uniform Delay (d), s/veh		33.7	18.9	14.2		44.2	33.0	33.0	40.0	0.0	0.0	
Incr Delay (d2), s/veh		2.1	0.3	0.0		9.1	5.0	5.3	4.7	0.0	0.0	
Initial Q Delay(d3),s/veh		0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln		7.0	7.0	0.4		0.6	7.4	7.4	2.7	0.0	0.0	
Unsig. Movement Delay, s/veh		7.0	7.0	0.1		0.0	7.1	,	2.,,	0.0	0.0	
LnGrp Delay(d),s/veh		35.7	19.2	14.2		53.3	38.0	38.4	44.7	0.0	0.0	
LnGrp LOS		D	В	В		D	D	D	D	A	A	
Approach Vol, veh/h			1212				718	<u> </u>		117		
Approach Delay, s/veh			28.3				38.7			44.7		
Approach LOS			20.5 C				50.7 D			44.7 D		
		0	0		_	,		0				
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	6.8	46.1		24.8	25.9	26.9		13.2				
Change Period (Y+Rc), s	4.9	5.3		5.3	4.9	5.3		4.6				
Max Green Setting (Gmax), s	5.7	61.2		34.0	35.1	31.8		29.0				
Max Q Clear Time (g_c+l1), s	3.4	20.7		17.6	19.8	19.6		8.1				
Green Ext Time (p_c), s	0.0	1.8		1.8	1.2	2.0		0.5				
Intersection Summary												
HCM 6th Ctrl Delay			33.5									
HCM 6th LOS			С									
Notes												

	>	ļ	1
Movement	SBL	SBT	SBR
Lane Configurations	ODL	<u> अध</u>	77
Traffic Volume (veh/h)	101	14	456
Future Volume (veh/h)	101	14	456
Initial Q (Qb), veh	0	0	0
Ped-Bike Adj(A_pbT)	1.00	O .	1.00
Parking Bus, Adj	1.00	1.00	1.00
Work Zone On Approach	1.00	No	1.00
Adj Sat Flow, veh/h/ln	1811	1811	1811
Adj Flow Rate, veh/h	107	15	485
Peak Hour Factor	0.94	0.94	0.94
Percent Heavy Veh, %	6	6	6
Cap, veh/h	326	46	579
Arrive On Green	0.21	0.21	0.21
Sat Flow, veh/h	1522	213	2701
Grp Volume(v), veh/h	122	0	485
Grp Sat Flow(s), veh/h/ln	1735	0	1351
Q Serve(g_s), s	5.4	0.0	15.6
Cycle Q Clear(q_c), s	5.4	0.0	15.6
Prop In Lane	0.88	0.0	1.00
	372	0	579
Lane Grp Cap(c), veh/h		0	
V/C Ratio(X)	0.33	0.00	0.84
Avail Cap(c_a), veh/h	650	0	1011
HCM Platoon Ratio	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00
Uniform Delay (d), s/veh	30.1	0.0	34.2
Incr Delay (d2), s/veh	0.4	0.0	2.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.2	0.0	5.3
Unsig. Movement Delay, s/veh			
LnGrp Delay(d),s/veh	30.5	0.0	36.7
LnGrp LOS	С	Α	D
Approach Vol, veh/h		607	
Approach Delay, s/veh		35.4	
Approach LOS		D	
Timer - Assigned Phs			
or riosignou i rio			

Intersection						
Int Delay, s/veh	0.1					
						0
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥		ী	^	∱ ⊅	
Traffic Vol, veh/h	3	3	7	1115	943	7
Future Vol, veh/h	3	3	7	1115	943	7
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	60	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	2	2	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	3	3	8	1212	1025	8
	Minor2		/lajor1		Major2	
Conflicting Flow All	1651	517	1033	0	-	0
Stage 1	1029	-	-	-	-	-
Stage 2	622	-	-	-	-	-
Critical Hdwy	6.84	6.94	4.14	-	-	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	2.22	-	-	-
Pot Cap-1 Maneuver	89	503	668	-	-	-
Stage 1	306	-	-	-	-	-
Stage 2	498	-	-	-	-	-
Platoon blocked, %				-	_	_
Mov Cap-1 Maneuver	88	503	668	-	-	-
Mov Cap 1 Maneuver	88	-	-	_	_	_
Stage 1	302					_
Stage 2	498					
Jiayt Z	470	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	30.1		0.1		0	
HCM LOS	D					
N 41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		NDI	NET	EDL 4	ODT	000
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		668	-	150	-	-
HCM Lane V/C Ratio		0.011	-	0.043	-	-
HCM Control Delay (s))	10.5	-	30.1	-	-
HCM Lane LOS		В	-	D	-	-
HCM 95th %tile Q(veh	1)	0	-	0.1	-	-
	,					

	•	•	†	/	/	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
ane Configurations	ሻሻ	7	^	7	7	^	
Fraffic Volume (veh/h)	166	98	465	57	44	1018	
Future Volume (veh/h)	166	98	465	57	44	1018	
nitial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No		No			No	
Adj Sat Flow, veh/h/ln	1841	1841	1841	1841	1841	1841	
Adj Flow Rate, veh/h	184	109	479	59	47	1083	
Peak Hour Factor	0.90	0.90	0.97	0.97	0.94	0.94	
Percent Heavy Veh, %	4	4	4	4	4	4	
Cap, veh/h	467	214	919	624	77	1687	
Arrive On Green	0.14	0.14	0.26	0.26	0.04	0.48	
Sat Flow, veh/h	3401	1560	3589	1560	1753	3589	
Grp Volume(v), veh/h	184	109	479	59	47	1083	
Grp Sat Flow(s),veh/h/ln	1700	1560	1749	1560	1753	1749	
2 Serve(g_s), s	1.4	1.8	3.3	0.7	0.7	6.5	
Cycle Q Clear(g_c), s	1.4	1.8	3.3	0.7	0.7	6.5	
Prop In Lane	1.00	1.00		1.00	1.00		
ane Grp Cap(c), veh/h	467	214	919	624	77	1687	
//C Ratio(X)	0.39	0.51	0.52	0.09	0.61	0.64	
Avail Cap(c_a), veh/h	3196	1466	2722	1429	415	4165	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Jpstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Jniform Delay (d), s/veh	11.0	11.1	8.8	5.2	13.1	5.4	
ncr Delay (d2), s/veh	0.2	0.7	0.2	0.0	2.9	0.2	
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	0.3	1.6	0.6	0.1	0.2	0.4	
Jnsig. Movement Delay, s/veh							
_nGrp Delay(d),s/veh	11.2	11.8	8.9	5.2	16.0	5.6	
nGrp LOS	В	В	Α	Α	В	Α	
Approach Vol, veh/h	293		538			1130	
Approach Delay, s/veh	11.4		8.5			6.0	
Approach LOS	В		Α			Α	
imer - Assigned Phs				4		6	7 8
Phs Duration (G+Y+Rc), s				18.7		9.1	6.1 12.6
Change Period (Y+Rc), s				5.3		5.3	4.9 5.3
Max Green Setting (Gmax), s				33.2		26.2	6.6 21.7
Max Q Clear Time (q_c+I1), s				8.5		3.8	2.7 5.3
Green Ext Time (p_c), s				5.0		0.5	0.0 1.8
ntersection Summary							
ICM 6th Ctrl Delay			7.5				
HCM 6th LOS			A				

	۶	→	•	•	←	•	•	†	<i>></i>	\	↓	✓	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		ĵ.		*	f)			∱ }		ች	ħβ		
Traffic Volume (veh/h)	25	5	53	25	5	25	17	570	25	25	1033	24	
Future Volume (veh/h)	25	5	53	25	5	25	17	570	25	25	1033	24	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		0.99	1.00		0.99	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approac	h	No			No			No			No		
Adj Sat Flow, veh/h/ln	1870	1870	1945	1870	1870	1870	1811	1811	1870	1870	1811	1811	
Adj Flow Rate, veh/h	37	5	79	27	5	27	19	648	27	27	1174	27	
Peak Hour Factor	0.67	0.92	0.67	0.92	0.92	0.92	0.88	0.88	0.92	0.92	0.88	0.88	
Percent Heavy Veh, %	2	2	2	2	2	2	6	6	2	2	6	6	
Cap, veh/h	175	15	245	57	25	133	268	1153	48	57	1659	38	
Arrive On Green	0.10	0.16	0.16	0.03	0.10	0.10	0.34	0.34	0.34	0.03	0.48	0.48	
Sat Flow, veh/h	1781	95	1504	1781	254	1370	450	3365	140	1781	3438	79	
Grp Volume(v), veh/h	37	0	84	27	0	32	19	331	344	27	587	614	
Grp Sat Flow(s),veh/h/li		0	1600	1781	0	1624	450	1721	1785	1781	1721	1796	
Q Serve(g_s), s	0.8	0.0	1.9	0.6	0.0	0.8	1.4	6.6	6.6	0.6	11.2	11.2	
Cycle Q Clear(g_c), s	0.8	0.0	1.9	0.6	0.0	0.8	6.8	6.6	6.6	0.6	11.2	11.2	
Prop In Lane	1.00	0.0	0.94	1.00	0.0	0.84	1.00	0.0	0.08	1.00	· · · · -	0.04	
Lane Grp Cap(c), veh/h		0	260	57	0	157	268	590	612	57	830	867	
V/C Ratio(X)	0.21	0.00	0.32	0.47	0.00	0.20	0.07	0.56	0.56	0.47	0.71	0.71	
Avail Cap(c_a), veh/h	766	0	1166	234	0	699	339	859	891	217	1254	1309	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/vel		0.0	15.5	19.9	0.0	17.4	13.5	11.2	11.2	19.9	8.5	8.5	
Incr Delay (d2), s/veh	0.6	0.0	0.7	5.9	0.0	0.6	0.1	0.8	0.8	5.9	1.1	1.1	
Initial Q Delay(d3),s/vel		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),vel		0.0	0.7	0.3	0.0	0.3	0.1	1.8	1.9	0.3	2.4	2.5	
Unsig. Movement Delay			V.,	0.0	0.0	0.0	V.1	1.0	1.0	0.0		2.0	
LnGrp Delay(d),s/veh	18.0	0.0	16.2	25.8	0.0	18.0	13.6	12.0	12.0	25.8	9.6	9.6	
LnGrp LOS	В	A	В	C	A	В	В	В	В	C	A	A	
Approach Vol, veh/h		121			59			694			1228	,,	
Approach Delay, s/veh		16.7			21.6			12.1			10.0		
Approach LOS		В			C C			В			Α		
••					- 3						, (
Timer - Assigned Phs	1	2	3	4		6	7	8					
Phs Duration (G+Y+Rc)		18.8	5.8	11.3		24.7	8.6	8.6					
Change Period (Y+Rc),		4.5	4.5	4.5		4.5	4.5	4.5					
Max Green Setting (Gm	, ,	20.9	5.5	30.5		30.5	18.0	18.0					
Max Q Clear Time (g_c		8.8	2.6	3.9		13.2	2.8	2.8					
Green Ext Time (p_c), s	0.0	3.2	0.0	0.4		7.0	0.0	0.1					
Intersection Summary													
HCM 6th Ctrl Delay			11.4										
HCM 6th LOS			В										
Notes													
INUIGS													

	۶	→	*	•	←	•	1	†	/	/	ţ	4	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ř	ĵ.			4		۲	^		Ť	↑ ↑		
Traffic Volume (veh/h)	10	0	25	0	0	0	10	620	0	0	1008	25	
Future Volume (veh/h)	10	0	25	0	0	0	10	620	0	0	1008	25	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	า	No			No			No			No		
	1870	1870	1870	1870	1870	1870	1870	1870	0	1870	1870	1870	
Adj Flow Rate, veh/h	11	0	27	0	0	0	11	674	0	0	1096	27	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	0	2	2	2	
Cap, veh/h	295	0	71	0	83	0	489	2438	0	216	2431	60	
Arrive On Green	0.04	0.00	0.04	0.00	0.00	0.00	0.69	0.69	0.00	0.00	0.69	0.69	
Sat Flow, veh/h	1781	0	1585	0	1870	0	502	3647	0	764	3544	87	
Grp Volume(v), veh/h	11	0	27	0	0	0	11	674	0	0	549	574	
Grp Sat Flow(s), veh/h/ln	1781	0	1585	0	1870	0	502	1777	0	764	1777	1855	
Q Serve(g_s), s	0.2	0.0	0.6	0.0	0.0	0.0	0.3	2.5	0.0	0.0	4.7	4.7	
Cycle Q Clear(g_c), s	0.2	0.0	0.6	0.0	0.0	0.0	5.0	2.5	0.0	0.0	4.7	4.7	
Prop In Lane	1.00		1.00	0.00		0.00	1.00		0.00	1.00		0.05	
Lane Grp Cap(c), veh/h	295	0	71	0	83	0	489	2438	0	216	1219	1272	
V/C Ratio(X)	0.04	0.00	0.38	0.00	0.00	0.00	0.02	0.28	0.00	0.00	0.45	0.45	
Avail Cap(c_a), veh/h	1181	0	859	0	1014	0	489	2438	0	216	1219	1272	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	0.00	1.00	0.00	0.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00	
Uniform Delay (d), s/veh	15.3	0.0	15.5	0.0	0.0	0.0	3.5	2.0	0.0	0.0	2.4	2.4	
Incr Delay (d2), s/veh	0.1	0.0	3.4	0.0	0.0	0.0	0.1	0.3	0.0	0.0	1.2	1.2	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh.	/lr0.1	0.0	0.2	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.4	0.4	
Unsig. Movement Delay,	s/veh												
LnGrp Delay(d),s/veh	15.4	0.0	18.9	0.0	0.0	0.0	3.6	2.3	0.0	0.0	3.6	3.5	
LnGrp LOS	В	Α	В	Α	Α	Α	Α	Α	Α	Α	Α	Α	
Approach Vol, veh/h		38			0			685			1123		
Approach Delay, s/veh		17.9			0.0			2.3			3.6		
Approach LOS		В						Α			Α		
Timer - Assigned Phs		2		4		6		8					
Phs Duration (G+Y+Rc),	S	27.4		6.0		27.4		6.0					
Change Period (Y+Rc),		4.5		4.5		4.5		4.5					
Max Green Setting (Gma		22.9		18.1		22.9		18.1					
Max Q Clear Time (g_c+		7.0		2.6		6.7		0.0					
Green Ext Time (p_c), s	.,, 0	3.9		0.1		6.2		0.0					
Intersection Summary													
HCM 6th Ctrl Delay			3.4										
HCM 6th LOS			3.4 A										
I IOW OUI LOS			А										

	•	•	†	~	-	Ţ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	W		†		*	^		
Traffic Volume (veh/h)	1	1	624	1	2	1034		
Future Volume (veh/h)	1	1	624	1	2	1034		
Initial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A_pbT)	1.00	1.00		0.98	1.00			
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Work Zone On Approach	No		No			No		
Adj Sat Flow, veh/h/ln	1945	1945	1811	1811	1788	1788		
Adj Flow Rate, veh/h	4	4	693	1	2	1055		
Peak Hour Factor	0.25	0.25	0.90	0.90	0.98	0.98		
Percent Heavy Veh, %	2	2	6	6	6	6		
Cap, veh/h	10	10	1376	2	7	2009		
Arrive On Green	0.01	0.01	0.39	0.39	0.00	0.59		
Sat Flow, veh/h	784	784	3616	5	1702	3486		
Grp Volume(v), veh/h	9	0	338	356	2	1055		
Grp Sat Flow(s), veh/h/ln	1765	0	1721	1810	1702	1698		
Q Serve(g_s), s	0.1	0.0	3.4	3.4	0.0	4.2		
Cycle Q Clear(g_c), s	0.1	0.0	3.4	3.4	0.0	4.2		
Prop In Lane	0.44	0.44	0.1	0.00	1.00	1.2		
Lane Grp Cap(c), veh/h	21	0.14	672	707	7	2009		
V/C Ratio(X)	0.42	0.00	0.50	0.50	0.27	0.53		
Avail Cap(c_a), veh/h	1399	0.00	1402	1475	375	4189		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00		
Uniform Delay (d), s/veh	11.1	0.0	5.2	5.2	11.3	2.7		
Incr Delay (d2), s/veh	12.5	0.0	0.6	0.6	17.9	0.2		
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/ln	0.1	0.0	0.2	0.0	0.0	0.0		
Unsig. Movement Delay, s/veh		3.0	J.L	0.2	0.0	3.1		
LnGrp Delay(d),s/veh	23.6	0.0	5.8	5.8	29.2	3.0		
LnGrp LOS	20.0 C	Α	Α	A	23.2 C	Α		
Approach Vol, veh/h	9	/\	694			1057		
Approach Delay, s/veh	23.6		5.8			3.0		
Approach LOS	23.0 C		3.6 A			Α		
	U		A			А		
Timer - Assigned Phs	1	2				6	8	
Phs Duration (G+Y+Rc), s	4.6	13.4				17.9	4.8	
Change Period (Y+Rc), s	4.5	4.5				4.5	4.5	
Max Green Setting (Gmax), s	5.0	18.5				28.0	18.0	
Max Q Clear Time (g_c+I1), s	2.0	5.4				6.2	2.1	
Green Ext Time (p_c), s	0.0	3.2				7.2	0.0	
Intersection Summary								
HCM 6th Ctrl Delay			4.2					
HCM 6th LOS			Α					
Notes								

	•	•	1	1	¥	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W		*	^	ΦÞ	
Traffic Volume (veh/h)	5	5	5	695	1047	5
Future Volume (veh/h)	5	5	5	695	1047	5
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	0.91	1.00		•	0.94
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		1.00	1.00	No	No	1.00
	1870	1870	1847	1847	1847	1847
Adj Flow Rate, veh/h	5	5	5	755	1138	5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2
Cap, veh/h	62	62	12	2242	1769	8
Arrive On Green	0.08	0.08	0.01	0.64	0.49	0.49
Sat Flow, veh/h	735	735	1759	3601	3674	16
Grp Volume(v), veh/h	11	0	5	755	557	586
Grp Sat Flow(s), veh/h/ln		0	1759	1754	1754	1843
Q Serve(g_s), s	0.2	0.0	0.1	3.2	7.7	7.7
Cycle Q Clear(g_c), s	0.2	0.0	0.1	3.2	7.7	7.7
Prop In Lane	0.45	0.45	1.00	0.2	1.1	0.01
				2242	000	
Lane Grp Cap(c), veh/h	136	0	12	2242	866	910
V/C Ratio(X)	0.08	0.00	0.42	0.34	0.64	0.64
Avail Cap(c_a), veh/h	895	0	276	3562	1263	1326
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	13.7	0.0	16.1	2.7	6.1	6.1
Incr Delay (d2), s/veh	0.3	0.0	21.7	0.1	8.0	8.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh	/lr0.1	0.0	0.1	0.0	1.0	1.1
Unsig. Movement Delay,						
LnGrp Delay(d),s/veh	14.0	0.0	37.7	2.8	6.9	6.9
LnGrp LOS	В	A	D	Α	Α	Α
	11		<u> </u>			
Approach Vol, veh/h				760	1143	
Approach Delay, s/veh	14.0			3.0	6.9	
Approach LOS	В			Α	Α	
Timer - Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc),	S	25.3		7.2	4.7	20.6
Change Period (Y+Rc),		4.5		4.5	4.5	4.5
Max Green Setting (Gma		33.0		18.0	5.1	23.4
Max Q Clear Time (g_c+	-11), S	5.2		2.2	2.1	9.7
Green Ext Time (p_c), s		5.1		0.0	0.0	5.8
Intersection Summary						
HCM 6th Ctrl Delay			5.4			
HCM 6th LOS			A			
Notes						

	٠	→	•	•	•	•	1	†	~	/	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	4	7		4		ሻሻ	†		*	†	
Traffic Volume (veh/h)	274	0	233	2	0	0	147	512	0	0	814	303
Future Volume (veh/h)	274	0	233	2	0	0	147	512	0	0	814	303
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.98	1.00		1.00	1.00		1.00	1.00		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	1011	No	1011	40-0	No	40=0	1=10	No	1010	1=10	No	1010
Adj Sat Flow, veh/h/ln	1841	1841	1914	1870	1870	1870	1746	1746	1816	1746	1746	1816
Adj Flow Rate, veh/h	364	0	163	8	0	0	165	575	0	0	885	329
Peak Hour Factor	0.95	0.95	0.95	0.25	0.25	0.25	0.89	0.89	0.89	0.92	0.92	0.92
Percent Heavy Veh, %	4	4	4	2	2	2	4	4	4	4	4	4
Cap, veh/h	577	0	263	22	0	0	248	1965	0	2	1046	387
Arrive On Green	0.16	0.00	0.16	0.01	0.00	0.00	0.08	0.59	0.00	0.00	0.44	0.44
Sat Flow, veh/h	3506	0	1596	1781	0	0	3227	3406	0	1663	2366	876
Grp Volume(v), veh/h	364	0	163	8	0	0	165	575	0	0	620	594
Grp Sat Flow(s),veh/h/ln	1753	0	1596	1781	0	0	1613	1659	0	1663	1659	1582
Q Serve(g_s), s	6.5	0.0	6.4	0.3	0.0	0.0	3.3	5.7	0.0	0.0	22.3	22.5
Cycle Q Clear(g_c), s	6.5	0.0	6.4	0.3	0.0	0.0	3.3	5.7	0.0	0.0	22.3	22.5
Prop In Lane	1.00	^	1.00	1.00	0	0.00	1.00	4005	0.00	1.00	704	0.55
Lane Grp Cap(c), veh/h	577	0	263	22	0	0	248	1965	0	2	734	700
V/C Ratio(X)	0.63	0.00	0.62 727	0.36 822	0.00	0.00	0.66 399	0.29 2590	0.00	0.00 139	0.84 1228	0.85 1171
Avail Cap(c_a), veh/h HCM Platoon Ratio	1598 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00
Uniform Delay (d), s/veh	26.1	0.00	26.1	32.9	0.00	0.00	30.1	6.8	0.00	0.00	16.7	16.7
Incr Delay (d2), s/veh	0.4	0.0	0.9	3.7	0.0	0.0	1.1	0.0	0.0	0.0	1.2	1.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.4	0.0	2.2	0.0	0.0	0.0	1.2	1.4	0.0	0.0	7.0	6.8
Unsig. Movement Delay, s/vel		0.0	۷.۷	0.1	0.0	0.0	1.2	1.7	0.0	0.0	1.0	0.0
LnGrp Delay(d),s/veh	26.6	0.0	27.0	36.6	0.0	0.0	31.3	6.8	0.0	0.0	17.8	18.1
LnGrp LOS	C	Α	C	D	Α	A	C	Α	Α	A	В	В
Approach Vol, veh/h		527			8	,,		740		,,	1214	
Approach Delay, s/veh		26.7			36.6			12.2			17.9	
Approach LOS		C			D			В			В	
•			•			•	7					
Timer - Assigned Phs		2	3	25.0		6	7	8				
Phs Duration (G+Y+Rc), s		17.0	10.1	35.0		5.0	0.0	45.1				
Change Period (Y+Rc), s		6.0	4.9	5.3		4.2	4.9	5.3				
Max Green Setting (Gmax), s		30.6	8.3	49.7		31.0	5.6	52.4				
Max Q Clear Time (g_c+l1), s Green Ext Time (p_c), s		8.5	5.3 0.1	24.5 5.2		2.3 0.0	0.0	7.7				
" = "		0.9	0.1	J.Z		0.0	0.0	2.4				
Intersection Summary												
HCM 6th Ctrl Delay			18.2									
HCM 6th LOS			В									

Notes

User approved pedestrian interval to be less than phase max green.

User approved volume balancing among the lanes for turning movement.

MOVEMENT SUMMARY

▼ Site: 7 [Miller Road (Site Folder: Valley Center Road)]

ΑM

Site Category: Existing

Roundabout

Vehi	cle Mo	vement	Perform	nance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO\ [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed mph
Sout	h: Road	Name												
3	L2	72	3.0	78	3.0	0.193	9.1	LOS A	0.7	16.9	0.65	0.65	0.65	31.0
8	T1	1	3.0	1	3.0	0.193	9.1	LOS A	0.7	16.9	0.65	0.65	0.65	31.0
18	R2	25	3.0	27	3.0	0.193	9.1	LOS A	0.7	16.9	0.65	0.65	0.65	30.3
Appr	oach	98	3.0	107	3.0	0.193	9.1	LOS A	0.7	16.9	0.65	0.65	0.65	30.8
East	Valley	Center R	oad											
1	L2	64	3.0	70	3.0	0.478	7.9	LOS A	3.0	77.6	0.35	0.19	0.35	32.8
6	T1	1048	4.0	1103	4.0	0.478	7.9	LOS A	3.0	77.6	0.35	0.19	0.35	33.0
16	R2	14	4.0	15	4.0	0.478	7.9	LOS A	3.0	77.5	0.35	0.19	0.35	32.3
Appr	oach	1126	3.9	1187	3.9	0.478	7.9	LOS A	3.0	77.6	0.35	0.19	0.35	33.0
North	n: Miller	Road												
7	L2	18	2.0	21	2.0	0.272	12.1	LOS B	1.0	24.5	0.73	0.75	0.81	30.8
4	T1	1	3.0	1	3.0	0.272	12.1	LOS B	1.0	24.5	0.73	0.75	0.81	30.9
14	R2	89	2.0	103	2.0	0.272	12.1	LOS B	1.0	24.5	0.73	0.75	0.81	30.2
Appr	oach	108	2.0	126	2.0	0.272	12.1	LOS B	1.0	24.5	0.73	0.75	0.81	30.3
West	: Valley	Center F	Road											
5	L2	18	4.0	20	4.0	0.430	7.2	LOS A	2.5	65.5	0.31	0.16	0.31	33.4
2	T1	887	4.0	997	4.0	0.430	7.2	LOS A	2.5	65.6	0.31	0.16	0.31	33.5
12	R2	56	3.0	61	3.0	0.430	7.2	LOS A	2.5	65.6	0.31	0.16	0.31	32.6
Appr	oach	961	3.9	1078	3.9	0.430	7.2	LOS A	2.5	65.6	0.31	0.16	0.31	33.4
All V	ehicles	2293	3.8	2497	3.8	0.478	7.8	LOSA	3.0	77.6	0.36	0.23	0.37	32.9

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

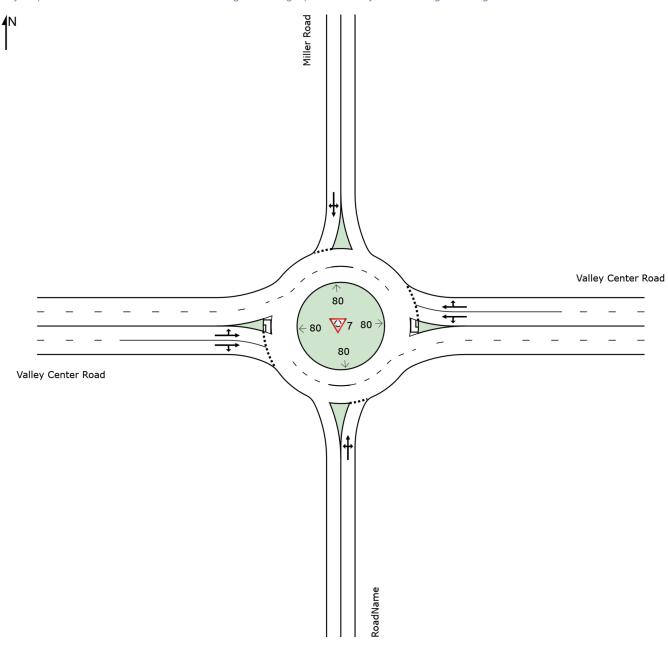
Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: MICHAEL BAKER INTERNATIONAL | Licence: NETWORK / 1PC | Processed: Friday, April 14, 2023 3:39:31 PM

Project: H:\PDATA\170071_Valley Center Corridor\Traffic\Concept Development\Synchro\Final Concept\Existing\Final_Option A_AM - 2lanes


WVR.sip9

SITE LAYOUT

▼ Site: 7 [Miller Road (Site Folder: Valley Center Road)]

Site Category: Existing Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

	۶	→	*	•	+	4	1	†	~	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	†		7	↑ ↑		*	7		*	1	
Traffic Volume (veh/h)	19	794	21	2	1032	0	4	0	2	0	0	0
Future Volume (veh/h)	19	794	21	2	1032	0	4	0	2	0	0	0
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		0.94	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1811	1811	1811	1811	1870	1945	1870	1945	1870	1870	1870
Adj Flow Rate, veh/h	21	882	23	2	1075	0	5	0	3	0	0	0
Peak Hour Factor	0.92	0.90	0.90	0.96	0.96	0.92	0.75	0.92	0.75	0.92	0.92	0.92
Percent Heavy Veh, %	2	6	6	6	6	2	2	2	2	2	2	2
Cap, veh/h	357	1699	44	409	1707	0	431	0	345	5	6	0
Arrive On Green	0.50	0.50	0.50	0.50	0.50	0.00	0.23	0.00	0.23	0.00	0.00	0.00
Sat Flow, veh/h	525	3426	89	596	3532	0	1853	0	1483	1781	1870	0
Grp Volume(v), veh/h	21	443	462	2	1075	0	5	0	3	0	0	0
Grp Sat Flow(s),veh/h/ln	525	1721	1795	596	1721	0	1853	0	1483	1781	1870	0
Q Serve(g_s), s	1.0	5.8	5.8	0.1	7.6	0.0	0.1	0.0	0.1	0.0	0.0	0.0
Cycle Q Clear(g_c), s	8.6	5.8	5.8	5.9	7.6	0.0	0.1	0.0	0.1	0.0	0.0	0.0
Prop In Lane	1.00		0.05	1.00		0.00	1.00		1.00	1.00		0.00
Lane Grp Cap(c), veh/h	357	853	890	409	1707	0	431	0	345	5	6	0
V/C Ratio(X)	0.06	0.52	0.52	0.00	0.63	0.00	0.01	0.00	0.01	0.00	0.00	0.00
Avail Cap(c_a), veh/h	500	1322	1380	571	2645	0	1005	0	805	966	1015	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	0.00	1.00	0.00	1.00	0.00	0.00	0.00
Uniform Delay (d), s/veh	9.3	5.7	5.7	7.7	6.1	0.0	9.8	0.0	9.8	0.0	0.0	0.0
Incr Delay (d2), s/veh	0.1	0.5	0.5	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.1	1.0	1.1	0.0	1.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Unsig. Movement Delay, s/veh	9.4	6.2	6.1	7.7	6.5	0.0	9.8	0.0	9.8	0.0	0.0	0.0
LnGrp Delay(d),s/veh												0.0
LnGrp LOS	A	A 000	A	A	A 4077	A	A	<u>A</u>	A	A	A	A
Approach Vol, veh/h		926			1077			8			0	
Approach LOS		6.2			6.5			9.8			0.0	
Approach LOS		А			А			А				
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		12.2		21.0		0.0		21.0				
Change Period (Y+Rc), s		4.5		4.5		4.5		4.5				
Max Green Setting (Gmax), s		18.0		25.5		18.0		25.5				
Max Q Clear Time (g_c+l1), s		2.1		10.6		0.0		9.6				
Green Ext Time (p_c), s		0.0		5.2		0.0		6.9				
Intersection Summary												
HCM 6th Ctrl Delay			6.4									
HCM 6th LOS			Α									

03/02/2023

	۶	→	•	F	•	←	4	1	†	~	/	
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	ሽኘ	†	7		ă	^	7		4			र्स
Traffic Volume (veh/h)	400	387	31	1	14	390	154	26	11	9	199	28
Future Volume (veh/h)	400	387	31	1	14	390	154	26	11	9	199	28
Initial Q (Qb), veh	0	0	0		0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00		1.00		1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No				No			No			No
Adj Sat Flow, veh/h/ln	1811	1811	1811		1811	1811	1884	1811	1811	1811	1811	1811
Adj Flow Rate, veh/h	421	407	33		16	443	175	30	12	10	212	30
Peak Hour Factor	0.95	0.95	0.95		0.88	0.88	0.88	0.88	0.88	0.88	0.94	0.94
Percent Heavy Veh, %	6	6	6		6	6	6	6	6	6	6	6
Cap, veh/h	450	487	413		80	647	300	38	15	13	464	66
Arrive On Green	0.13	0.27	0.27		0.05	0.19	0.19	0.04	0.04	0.04	0.31	0.31
Sat Flow, veh/h	3346	1811	1535		1725	3441	1596	983	393	328	1520	215
Grp Volume(v), veh/h	421	407	33		16	443	175	52	0	0	242	0
Grp Sat Flow(s),veh/h/ln	1673	1811	1535		1725	1721	1596	1703	0	0	1735	0
Q Serve(g_s), s	7.5	12.8	1.0		0.5	7.2	6.0	1.8	0.0	0.0	6.8	0.0
Cycle Q Clear(g_c), s	7.5	12.8	1.0		0.5	7.2	6.0	1.8	0.0	0.0	6.8	0.0
Prop In Lane	1.00		1.00		1.00		1.00	0.58		0.19	0.88	
Lane Grp Cap(c), veh/h	450	487	413		80	647	300	66	0	0	529	0
V/C Ratio(X)	0.94	0.84	0.08		0.20	0.69	0.58	0.79	0.00	0.00	0.46	0.00
Avail Cap(c_a), veh/h	450	936	793		160	1635	758	820	0	0	986	0
HCM Platoon Ratio	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00		1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00
Uniform Delay (d), s/veh	25.8	20.7	16.4		27.6	22.8	22.3	28.7	0.0	0.0	16.9	0.0
Incr Delay (d2), s/veh	26.6	1.5	0.0		0.4	0.5	0.7	14.3	0.0	0.0	0.5	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	4.4	5.0	0.3		0.2	2.7	2.1	1.0	0.0	0.0	2.3	0.0
Unsig. Movement Delay, s/veh		00.0	16.5		00.4	00.0	00.0	42.0	0.0	0.0	47.4	0.0
LnGrp Delay(d),s/veh	52.4	22.2 C			28.1	23.3 C	23.0	43.0	0.0	0.0	17.4	0.0
LnGrp LOS	D		В		С		С	D	A	A	В	A
Approach Vol, veh/h		861				634			52			894
Approach Delay, s/veh		36.7				23.3			43.0			19.6
Approach LOS		D				С			D			В
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	8.1	21.5		23.7	13.0	16.6		6.9				
Change Period (Y+Rc), s	5.3	* 5.3		5.3	4.9	5.3		4.6				
Max Green Setting (Gmax), s	5.6	* 31		34.2	8.1	28.6		29.0				
Max Q Clear Time (g_c+l1), s	2.5	14.8		15.3	9.5	9.2		3.8				
Green Ext Time (p_c), s	0.0	1.4		3.1	0.0	2.1		0.2				
Intersection Summary												
HCM 6th Ctrl Delay			27.1									
HCM 6th LOS			С									

NI. (...

User approved ignoring U-Turning movement.

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

	•
Movement	SBR
Lane Configurations	77
Traffic Volume (veh/h)	613
Future Volume (veh/h)	613
Initial Q (Qb), veh	0
Ped-Bike Adj(A_pbT)	1.00
Parking Bus, Adj	1.00
Work Zone On Approach	
Adj Sat Flow, veh/h/ln	1811
Adj Flow Rate, veh/h	652
Peak Hour Factor	0.94
Percent Heavy Veh, %	6
Cap, veh/h	824
Arrive On Green	0.31
Sat Flow, veh/h	2701
Grp Volume(v), veh/h	652
Grp Sat Flow(s),veh/h/ln	1351
Q Serve(g_s), s	13.3
Cycle Q Clear(g_c), s	13.3
Prop In Lane	1.00
Lane Grp Cap(c), veh/h	824
V/C Ratio(X)	0.79
Avail Cap(c_a), veh/h	1534
HCM Platoon Ratio	1.00
Upstream Filter(I)	1.00
Uniform Delay (d), s/veh	19.2
Incr Delay (d2), s/veh	1.3
Initial Q Delay(d3),s/veh	0.0
%ile BackOfQ(50%),veh/ln	4.0
Unsig. Movement Delay, s/ve	
LnGrp Delay(d),s/veh	20.5
LnGrp LOS	С
Approach Vol, veh/h	
Approach Delay, s/veh	
Approach LOS	
•	
Timer - Assigned Phs	

	•	4	†	/	/	↓				
Movement	WBL	WBR	NBT	NBR	SBL	SBT				
ane Configurations	J. J.	7	^	7	ķ	^				
raffic Volume (veh/h)	76	103	1043	165	118	780				
future Volume (veh/h)	76	103	1043	165	118	780				
nitial Q (Qb), veh	0	0	0	0	0	0				
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00					
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00				
Vork Zone On Approach	No		No			No				
Adj Sat Flow, veh/h/ln	1811	1811	1811	1811	1811	1811				
Adj Flow Rate, veh/h	84	114	1075	170	126	830				
Peak Hour Factor	0.90	0.90	0.97	0.97	0.94	0.94				
Percent Heavy Veh, %	6	6	6	6	6	6				
Cap, veh/h	379	174	1456	823	160	2178				
Arrive On Green	0.11	0.11	0.42	0.42	0.09	0.63				
Sat Flow, veh/h	3346	1535	3532	1535	1725	3532				
Grp Volume(v), veh/h	84	114	1075	170	126	830				
Grp Sat Flow(s),veh/h/ln	1673	1535	1721	1535	1725	1721				
2 Serve(g_s), s	1.0	3.0	11.0	2.4	3.0	4.9				
Cycle Q Clear(g_c), s	1.0	3.0	11.0	2.4	3.0	4.9				
Prop In Lane	1.00	1.00		1.00	1.00					
ane Grp Cap(c), veh/h	379	174	1456	823	160	2178				
//C Ratio(X)	0.22	0.66	0.74	0.21	0.79	0.38				
vail Cap(c_a), veh/h	2057	944	2445	1265	376	3598				
ICM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00				
Jpstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00				
Jniform Delay (d), s/veh	16.9	17.7	10.1	5.0	18.6	3.7				
ncr Delay (d2), s/veh	0.1	1.6	0.3	0.0	3.3	0.0				
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0				
%ile BackOfQ(50%),veh/ln	0.3	2.6	2.5	0.6	1.1	0.4				
Insig. Movement Delay, s/veh										
.nGrp Delay(d),s/veh	17.0	19.3	10.4	5.1	21.8	3.8				
nGrp LOS	В	В	В	Α	С	Α				
Approach Vol, veh/h	198		1245			956				
Approach Delay, s/veh	18.3		9.7			6.1				
pproach LOS	В		А			Α				
imer - Assigned Phs				4		6	7	8		
Phs Duration (G+Y+Rc), s				31.8		10.0	8.8	23.0		
Change Period (Y+Rc), s				5.3		5.3	4.9	5.3		
Max Green Setting (Gmax), s				43.7		25.7	9.1	29.7		
Max Q Clear Time (q_c+l1), s				6.9		5.0	5.0	13.0		
Green Ext Time (p_c), s				3.7		0.3	0.1	4.7		
ntersection Summary										
										 _
ICM 6th Ctrl Delay			9.0							

	۶	→	•	•	←	•	∳ 1	•	†	<i>></i>	>	ţ	4	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ች	ĵ.		*	ĵ.			ች	† \$		*	ħβ		
Traffic Volume (veh/h)	14	5	17	50	5	50	1	51	1103	50	50	904	17	
Future Volume (veh/h)	14	5	17	50	5	50	1	51	1103	50	50	904	17	
Initial Q (Qb), veh	0	0	0	0	0	0		0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00		1.00		0.99	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	า	No			No				No			No		
	1870	1870	1945	1870	1870	1870		1811	1811	1870	1870	1811	1811	
Adj Flow Rate, veh/h	21	5	25	54	5	54		58	1253	54	54	1027	19	
Peak Hour Factor	0.67	0.92	0.67	0.92	0.92	0.92		0.88	0.88	0.92	0.92	0.88	0.88	
Percent Heavy Veh, %	2	2	2	2	2	2		6	6	2	2	6	6	
Cap, veh/h	129	28	138	91	11	118		357	1578	68	91	2082	39	
Arrive On Green	0.07	0.10	0.10	0.05	0.08	0.08		0.47	0.47	0.47	0.05	0.60	0.60	
	1781	271	1355	1781	136	1470		522	3360	145	1781	3456	64	
Grp Volume(v), veh/h	21	0	30	54	0	59		58	641	666	54	511	535	
Grp Sat Flow(s), veh/h/ln		0	1626	1781	0	1606		522	1721	1784	1781	1721	1799	
Q Serve(g_s), s	0.6	0.0	0.9	1.6	0.0	1.9		3.9	17.4	17.4	1.6	9.3	9.3	
Cycle Q Clear(g_c), s	0.6	0.0	0.9	1.6	0.0	1.9		5.9	17.4	17.4	1.6	9.3	9.3	
Prop In Lane	1.00	0.0	0.83	1.00	0.0	0.92		1.00		0.08	1.00	0.0	0.04	
Lane Grp Cap(c), veh/h	129	0	166	91	0	129		357	808	838	91	1036	1084	
V/C Ratio(X)	0.16	0.00	0.18	0.59	0.00	0.46		0.16	0.79	0.79	0.59	0.49	0.49	
Avail Cap(c_a), veh/h	581	0.00	855	226	0	524		405	967	1002	161	1036	1084	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh		0.0	22.7	25.6	0.0	24.2		9.9	12.4	12.4	25.6	6.2	6.2	
Incr Delay (d2), s/veh	0.6	0.0	0.5	6.1	0.0	2.5		0.2	3.9	3.8	6.1	0.4	0.3	
Initial Q Delay(d3),s/veh		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh		0.0	0.4	0.8	0.0	0.8		0.4	5.5	5.7	0.8	1.9	2.0	
Unsig. Movement Delay,			•••	0.0	0.0	0.0		•	0.0	•	0.0			
LnGrp Delay(d),s/veh	24.6	0.0	23.2	31.7	0.0	26.7		10.1	16.2	16.2	31.7	6.6	6.6	
LnGrp LOS	C	A	C	С	A	C		В	В	В	С	A	A	
Approach Vol, veh/h		51			113				1365			1100		
Approach Delay, s/veh		23.8			29.1				15.9			7.8		
Approach LOS		C C			C C				В			Α.		
	1		2	1		6	7	0				Λ.		
Timer - Assigned Phs Phs Duration (G+Y+Rc),	s7 3	30.4	7.3	10.1		37.7	7 8.5	8.9						
Change Period (Y+Rc),		4.5	4.5	4.5		4.5	4.5	4.5						
Max Green Setting (Gma		31.0	7.0	29.0		31.0	18.0	18.0						
Max Q Clear Time (g_c+	, .	19.4	3.6	2.9		11.3	2.6	3.9						
Green Ext Time (p_c), s	, .	6.5	0.0	0.1		6.2	0.0	0.2						
Intersection Summary														
HCM 6th Ctrl Delay			13.2											
HCM 6th LOS			В											
Notes														

	۶	→	•	•	←	•	4	†	/	/	↓	4	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	- 1	₽			4		- ሻ	^		- ሻ	ħβ		
Traffic Volume (veh/h)	53	0	5	0	0	0	84	1218	0	0	1019	52	
Future Volume (veh/h)	53	0	5	0	0	0	84	1218	0	0	1019	52	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach		No			No			No			No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	0	1870	1870	1870	
Adj Flow Rate, veh/h	58	0	5	0	0	0	91	1324	0	0	1108	57	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	0	2	2	2	
Cap, veh/h	269	0	96	0	114	0	457	2623	0	161	2538	131	
Arrive On Green	0.06	0.00	0.06	0.00	0.00	0.00	0.74	0.74	0.00	0.00	0.74	0.74	
Sat Flow, veh/h	1781	0	1585	0	1870	0	482	3647	0	414	3439	177	
Grp Volume(v), veh/h	58	0	5	0	0	0	91	1324	0	0	572	593	
Grp Sat Flow(s), veh/h/ln	1781	0	1585	0	1870	0	482	1777	0	414	1777	1839	
Q Serve(g_s), s	1.4	0.0	0.1	0.0	0.0	0.0	4.0	7.0	0.0	0.0	5.6	5.6	
Cycle Q Clear(g_c), s	1.4	0.0	0.1	0.0	0.0	0.0	9.6	7.0	0.0	0.0	5.6	5.6	
Prop In Lane	1.00		1.00	0.00		0.00	1.00		0.00	1.00		0.10	
Lane Grp Cap(c), veh/h		0	96	0	114	0	457	2623	0	161	1311	1357	
V/C Ratio(X)	0.22	0.00	0.05	0.00	0.00	0.00	0.20	0.50	0.00	0.00	0.44	0.44	
Avail Cap(c_a), veh/h	878	0	638	0	753	0	457	2623	0	161	1311	1357	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	0.00	1.00	0.00	0.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00	
Uniform Delay (d), s/veh		0.0	19.8	0.0	0.0	0.0	4.1	2.4	0.0	0.0	2.3	2.3	
Incr Delay (d2), s/veh	0.4	0.0	0.2	0.0	0.0	0.0	1.0	0.7	0.0	0.0	1.1	1.0	
Initial Q Delay(d3),s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh		0.0	0.0	0.0	0.0	0.0	0.3	0.3	0.0	0.0	0.4	0.4	
Unsig. Movement Delay													
LnGrp Delay(d),s/veh	20.8	0.0	20.0	0.0	0.0	0.0	5.1	3.1	0.0	0.0	3.3	3.3	
LnGrp LOS	С	A	С	A	A	A	A	Α	A	A	Α	Α	
Approach Vol, veh/h		63			0			1415			1165		
Approach Delay, s/veh		20.7			0.0			3.3			3.3		
Approach LOS		С						Α			Α		
Timer - Assigned Phs		2		4		6		8					
Phs Duration (G+Y+Rc)	, S	37.5		7.2		37.5		7.2					
Change Period (Y+Rc),		4.5		4.5		4.5		4.5					
Max Green Setting (Gma	ax), s	33.0		18.0		33.0		18.0					
Max Q Clear Time (g_c+		11.6		3.4		7.6		0.0					
Green Ext Time (p_c), s		10.7		0.1		7.8		0.0					
Intersection Summary													
HCM 6th Ctrl Delay			3.7										
HCM 6th LOS			Α										

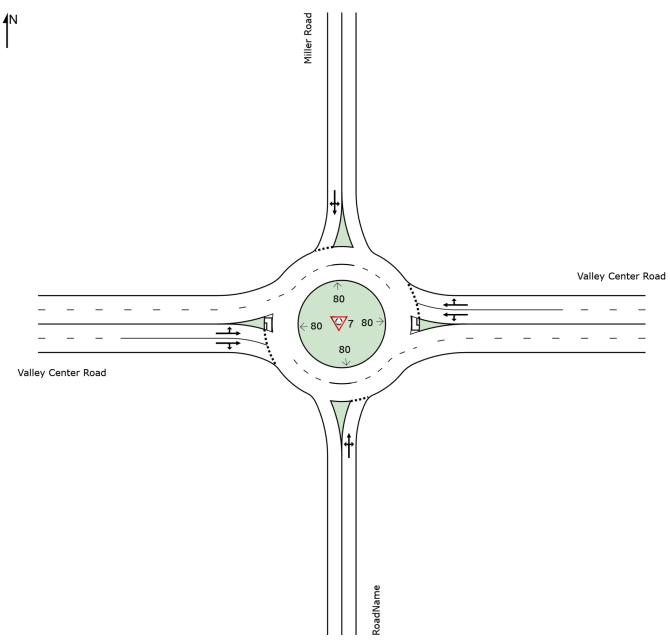
	•	*	†	1	-	ļ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	W		† }		*	^		
Traffic Volume (veh/h)	1	1	1115	1	1	930		
Future Volume (veh/h)	1	1	1115	1	1	930		
nitial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A_pbT)	1.00	1.00	-	0.98	1.00	•		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Nork Zone On Approach	No		No		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	No		
Adj Sat Flow, veh/h/ln	1945	1945	1811	1811	1788	1788		
Adj Flow Rate, veh/h	4	4	1239	1	1	949		
Peak Hour Factor	0.25	0.25	0.90	0.90	0.98	0.98		
Percent Heavy Veh, %	2	2	6	6	6	6		
Cap, veh/h	9	9	1793	1	6	2272		
Arrive On Green	0.01	0.01	0.51	0.51	0.00	0.67		
Sat Flow, veh/h	784	784	3619	3	1702	3486		
Grp Volume(v), veh/h	9	0	604	636	1702	949		
Grp Sat Flow(s), veh/h/ln	1765	0	1721	1810	1702	1698		
Q Serve(g_s), s	0.1	0.0	7.5	7.5	0.0	3.6		
	0.1		7.5		0.0	3.6		
Cycle Q Clear(g_c), s		0.0	7.5	7.5		3.0		
Prop In Lane	0.44	0.44	074	0.00	1.00	0070		
Lane Grp Cap(c), veh/h	21	0	874	920	6	2272		
//C Ratio(X)	0.42	0.00	0.69	0.69	0.17	0.42		
Avail Cap(c_a), veh/h	1126	0	1128	1187	302	3370		
ICM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		
Jpstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00		
Iniform Delay (d), s/veh	13.8	0.0	5.3	5.3	14.0	2.1		
ncr Delay (d2), s/veh	12.7	0.0	1.2	1.2	12.4	0.1		
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/ln	0.1	0.0	0.6	0.6	0.0	0.0		
Jnsig. Movement Delay, s/veh			6 -		00 -			
.nGrp Delay(d),s/veh	26.6	0.0	6.5	6.4	26.5	2.3		
nGrp LOS	С	Α	Α	Α	С	Α		
Approach Vol, veh/h	9		1240			950		
Approach Delay, s/veh	26.6		6.5			2.3		
Approach LOS	С		Α			Α		
Timer - Assigned Phs	1	2				6	8	
Phs Duration (G+Y+Rc), s	4.5	18.8				23.4	4.8	
Change Period (Y+Rc), s	4.5	4.5				4.5	4.5	
Max Green Setting (Gmax), s	5.0	18.5				28.0	18.0	
Max Q Clear Time (g_c+l1), s	2.0	9.5				5.6	2.1	
Green Ext Time (p_c), s	0.0	4.8				6.4	0.0	
(1 —):	0.0	4.0				0.4	0.0	
ntersection Summary			4 7					
HCM 6th Ctrl Delay			4.7					
HCM 6th LOS			Α					
Notes								

Movement Lane Configurations Traffic Volume (veh/h) Future Volume (veh/h) Initial Q (Qb), veh Ped-Bike Adj(A_pbT) Parking Bus, Adj Work Zone On Approa Adj Sat Flow, veh/h/ln Adj Flow Rate, veh/h	EBL ₩ 8 8	1	BR N	NBL	NBT	SBT	SBR
Lane Configurations Traffic Volume (veh/h) Future Volume (veh/h) Initial Q (Qb), veh Ped-Bike Adj(A_pbT) Parking Bus, Adj Work Zone On Approa Adj Sat Flow, veh/h/ln Adj Flow Rate, veh/h	¥	1					
Traffic Volume (veh/h) Future Volume (veh/h) Initial Q (Qb), veh Ped-Bike Adj(A_pbT) Parking Bus, Adj Work Zone On Approa Adj Sat Flow, veh/h/ln Adj Flow Rate, veh/h	8				^	∱ }	
Future Volume (veh/h) Initial Q (Qb), veh Ped-Bike Adj(A_pbT) Parking Bus, Adj Work Zone On Approa Adj Sat Flow, veh/h/ln Adj Flow Rate, veh/h		S	8	12	1225	1072	12
Initial Q (Qb), veh Ped-Bike Adj(A_pbT) Parking Bus, Adj Work Zone On Approa Adj Sat Flow, veh/h/ln Adj Flow Rate, veh/h			8	12	1225	1072	12
Ped-Bike Adj(A_pbT) Parking Bus, Adj Work Zone On Approa Adj Sat Flow, veh/h/ln Adj Flow Rate, veh/h	0		0	0	0	0	0
Parking Bus, Adj Work Zone On Approa Adj Sat Flow, veh/h/ln Adj Flow Rate, veh/h	1.00		-	1.00	U	U	0.94
Work Zone On Approa Adj Sat Flow, veh/h/ln Adj Flow Rate, veh/h	1.00			1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln Adj Flow Rate, veh/h			JU 1	1.00	No	No	1.00
Adj Flow Rate, veh/h	1870		70 1 <i>5</i>	847	1847	1847	1847
	9		9	13	1332	1165	13
Dook Hour Footor	0.92).92	0.92	0.92	0.92
Peak Hour Factor							
Percent Heavy Veh, %			2	2	2	2	2
Cap, veh/h	70		70	30	2253	1748	20
Arrive On Green	0.09			0.02	0.64	0.49	0.49
Sat Flow, veh/h	760) 76	60 17	759	3601	3644	40
Grp Volume(v), veh/h	19)	0	13	1332	575	603
Grp Sat Flow(s), veh/h/	In1605	j	0 17	759	1754	1754	1837
Q Serve(g_s), s	0.4		0.0	0.2	7.4	8.4	8.4
Cycle Q Clear(g_c), s	0.4		0.0	0.2	7.4	8.4	8.4
Prop In Lane	0.47			1.00			0.02
Lane Grp Cap(c), veh/			0	30	2253	863	904
V/C Ratio(X)	0.13).43	0.59	0.67	0.67
Avail Cap(c_a), veh/h	853			260	3419	1218	1275
HCM Platoon Ratio	1.00			1.00		1.00	1.00
					1.00		
Upstream Filter(I)	1.00			1.00	1.00	1.00	1.00
Uniform Delay (d), s/ve				16.5	3.5	6.5	6.5
Incr Delay (d2), s/veh	0.4			9.6	0.2	0.9	0.9
Initial Q Delay(d3),s/ve				0.0	0.0	0.0	0.0
%ile BackOfQ(50%),ve			0.0	0.2	0.1	1.2	1.3
Unsig. Movement Dela	•						
LnGrp Delay(d),s/veh	14.5			26.1	3.7	7.4	7.4
LnGrp LOS	В	}	Α	С	Α	Α	Α
Approach Vol, veh/h	19)			1345	1178	
Approach Delay, s/veh	14.5	j			4.0	7.4	
Approach LOS	В				Α	Α	
Timer - Assigned Phs			2		4	5	6
Phs Duration (G+Y+Re	e). s	26	.2		7.6	5.1	21.2
Change Period (Y+Rc	, .		l.5		4.5	4.5	4.5
Max Green Setting (Gi					18.0	5.0	23.5
Max Q Clear Time (g_).4		2.4	2.2	10.4
Max O Clear Time ()	, .						
,0_	S	10	.0		0.0	0.0	5.8
Green Ext Time (p_c),							
Green Ext Time (p_c), Intersection Summary				5.6			
Green Ext Time (p_c), Intersection Summary HCM 6th Ctrl Delay				5.0			
Green Ext Time (p_c), Intersection Summary				Α			

	۶	→	*	•	—	•	4	†	~	L	-	Ţ
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBU	SBL	SBT
Lane Configurations	7	4	7		4		44	†			×	†
Traffic Volume (veh/h)	310	0	182	0	0	0	209	895	0	3	0	761
Future Volume (veh/h)	310	0	182	0	0	0	209	895	0	3	0	761
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0		0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		1.00	1.00		1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00
Work Zone On Approach		No			No			No				No
Adj Sat Flow, veh/h/ln	1811	1811	1884	1870	1870	1870	1717	1717	1786		1717	1717
Adj Flow Rate, veh/h	386	0	128	0	0	0	235	1006	0		0	827
Peak Hour Factor	0.95	0.95	0.95	0.25	0.25	0.25	0.89	0.89	0.89		0.92	0.92
Percent Heavy Veh, %	6	6	6	2	2	2	6	6	6		6	6
Cap, veh/h	591	0	271	0	3	0	339	2062	0		3	1004
Arrive On Green	0.17	0.00	0.17	0.00	0.00	0.00	0.11	0.63	0.00		0.00	0.44
Sat Flow, veh/h	3450	0	1579	0	1870	0	3172	3348	0		1635	2281
Grp Volume(v), veh/h	386	0	128	0	0	0	235	1006	0		0	591
Grp Sat Flow(s),veh/h/ln	1725	0	1579	0	1870	0	1586	1631	0		1635	1631
Q Serve(g_s), s	6.0	0.0	4.2	0.0	0.0	0.0	4.1	9.4	0.0		0.0	18.3
Cycle Q Clear(g_c), s	6.0	0.0	4.2	0.0	0.0	0.0	4.1	9.4	0.0		0.0	18.3
Prop In Lane	1.00		1.00	0.00		0.00	1.00		0.00		1.00	
Lane Grp Cap(c), veh/h	591	0	271	0	3	0	339	2062	0		3	718
V/C Ratio(X)	0.65	0.00	0.47	0.00	0.00	0.00	0.69	0.49	0.00		0.00	0.82
Avail Cap(c_a), veh/h	1847	0	846	0	1008	0	612	2960	0		159	1324
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	0.00	0.00	0.00	1.00	1.00	0.00		0.00	1.00
Uniform Delay (d), s/veh	22.2	0.0	21.5	0.0	0.0	0.0	24.8	5.6	0.0		0.0	14.1
Incr Delay (d2), s/veh	0.5	0.0	0.5	0.0	0.0	0.0	1.0	0.1	0.0		0.0	0.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0
%ile BackOfQ(50%),veh/ln	2.0	0.0	1.4	0.0	0.0	0.0	1.4	1.7	0.0		0.0	5.2
Unsig. Movement Delay, s/veh	22.7	0.0	22.0	0.0	0.0	0.0	25.7	5.7	0.0		0.0	15.1
LnGrp Delay(d),s/veh	22.1 C	0.0 A	22.0 C			0.0 A	25.7 C		0.0 A		0.0 A	15.1 B
LnGrp LOS				A	A	A	U	A 1044	A		A	1155
Approach Vol, veh/h		514			0.0			1241				15.1
Approach LOS		22.5 C			0.0			9.5				15.1 B
Approach LOS								Α				Б
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		15.9	11.1	30.6		0.0	0.0	41.7				
Change Period (Y+Rc), s		6.0	4.9	5.3		4.2	4.9	5.3				
Max Green Setting (Gmax), s		30.8	11.1	46.7		31.0	5.6	52.2				
Max Q Clear Time (g_c+l1), s		8.0	6.1	20.4		0.0	0.0	11.4				
Green Ext Time (p_c), s		0.8	0.2	4.9		0.0	0.0	4.8				
Intersection Summary												
HCM 6th Ctrl Delay			14.0									
HCM 6th LOS			В									

Notes

User approved volume balancing among the lanes for turning movement.


Movement SB Lare Configurations
LaresConfigurations
Traffic Volume (veh/h) 30
Future Volume (veh/h) 30
Initial Q (Qb), veh
Ped-Bike Adj(A_pbT) 1.0
Parking Bus, Adj 1.0
Work Zone On Approach
Adj Sat Flow, veh/h/ln 178
Adj Flow Rate, veh/h 32
Peak Hour Factor 0.9
Percent Heavy Veh, %
Cap, veh/h 39
Arrive On Green 0.4
Sat Flow, veh/h
Grp Volume(v), veh/h 56
Grp Sat Flow(s), veh/h/ln 155
Q Serve(g_s), s 18
Cycle Q Clear(g_c), s 18
Prop In Lane 0.5
Lane Grp Cap(c), veh/h 68
V/C Ratio(X) 0.8
Avail Cap(c_a), veh/h 126
HCM Platoon Ratio 1.0
Upstream Filter(I) 1.0
Uniform Delay (d), s/veh 14
Incr Delay (d2), s/veh 1
Initial Q Delay(d3),s/veh 0
%ile BackOfQ(50%),veh/ln 5
Unsig. Movement Delay, s/veh
LnGrp Delay(d),s/veh 15
LnGrp LOS
Approach Vol, veh/h
Approach Delay, s/veh
Approacri Delay, o/veri
Approach LOS

SITE LAYOUT

▼ Site: 7 [Miller Road (Site Folder: Valley Center Road)]

Site Category: Existing Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

MOVEMENT SUMMARY

▼ Site: 7 [Miller Road (Site Folder: Valley Center Road)]

PM

Site Category: Existing

Roundabout

Vehi	cle Mo	vement	Perfori	nance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO\ [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed mph
South	h: Road	Name												
3	L2	92	3.0	100	3.0	0.362	16.8	LOS C	1.3	34.3	0.81	0.87	1.07	28.0
8	T1	1	3.0	1	3.0	0.362	16.8	LOS C	1.3	34.3	0.81	0.87	1.07	28.0
18	R2	31	3.0	34	3.0	0.362	16.8	LOS C	1.3	34.3	0.81	0.87	1.07	27.5
Appr	oach	124	3.0	135	3.0	0.362	16.8	LOS C	1.3	34.3	0.81	0.87	1.07	27.9
East:	Valley	Center R	load											
1	L2	64	3.0	70	3.0	0.523	9.1	LOS A	3.3	84.9	0.49	0.34	0.49	32.3
6	T1	1048	4.0	1103	4.0	0.523	9.1	LOS A	3.3	84.9	0.49	0.34	0.49	32.4
16	R2	28	4.0	29	4.0	0.523	9.1	LOS A	3.3	84.8	0.49	0.34	0.49	31.7
Appr	oach	1140	3.9	1202	3.9	0.523	9.1	LOS A	3.3	84.9	0.49	0.34	0.49	32.4
North	n: Miller	Road												
7	L2	1	2.0	1	2.0	0.115	9.6	LOS A	0.4	9.5	0.70	0.70	0.70	32.3
4	T1	1	3.0	1	3.0	0.115	9.6	LOS A	0.4	9.5	0.70	0.70	0.70	32.3
14	R2	43	2.0	50	2.0	0.115	9.6	LOS A	0.4	9.5	0.70	0.70	0.70	31.5
Appr	oach	45	2.0	52	2.0	0.115	9.6	LOS A	0.4	9.5	0.70	0.70	0.70	31.5
West	:: Valley	Center F	Road											
5	L2	72	4.0	81	4.0	0.603	10.0	LOS B	4.8	124.8	0.37	0.18	0.37	31.9
2	T1	1244	4.0	1398	4.0	0.603	10.0	LOS B	4.8	125.0	0.37	0.18	0.37	32.0
12	R2	56	3.0	61	3.0	0.603	10.0	LOS B	4.8	125.0	0.37	0.18	0.37	31.3
Appr	oach	1372	4.0	1540	4.0	0.603	10.0	LOS B	4.8	125.0	0.37	0.18	0.37	32.0
All Ve	ehicles	2681	3.9	2929	3.9	0.603	10.0	LOSA	4.8	125.0	0.44	0.29	0.45	31.9

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: MICHAEL BAKER INTERNATIONAL | Licence: NETWORK / 1PC | Processed: Friday, April 14, 2023 3:39:55 PM

Project: H:\PDATA\170071_Valley Center Corridor\Traffic\Concept Development\Synchro\Final Concept\Existing\Final_Option B_PM - 2lanes

WVR.sip9

	→	*	F	1	•	4	-	
Movement	EBT	EBR	WBU	WBL	WBT	NBL	NBR	
Lane Configurations	† 1>			*	^	W		
Traffic Volume (veh/h)	1147	23	1	43	1043	63	18	
Future Volume (veh/h)	1147	23	1	43	1043	63	18	
Initial Q (Qb), veh	0	0	•	0	0	0	0	
Ped-Bike Adj(A_pbT)	•	1.00		1.00		1.00	0.93	
Parking Bus, Adj	1.00	1.00		1.00	1.00	1.00	1.00	
Work Zone On Approach	No	1.00		1.00	No	No	1.00	
Adj Sat Flow, veh/h/ln	1811	1811		1811	1811	1945	1945	
Adj Flow Rate, veh/h	1274	26		45	1086	84	24	
Peak Hour Factor	0.90	0.90		0.96	0.96	0.75	0.75	
Percent Heavy Veh, %	6	6		6	6	2	2	
Cap, veh/h	1962	40		310	1958	280	80	
Arrive On Green	0.57	0.57		0.57	0.57	0.21	0.21	
Sat Flow, veh/h	3539	70		410	3532	1364	390	
Grp Volume(v), veh/h	635	665		45	1086	109	0	
Grp Sat Flow(s), veh/h/ln	1721	1798		410	1721	1771	0	
Q Serve(g_s), s	10.1	10.1		3.4	7.9	2.1	0.0	
Cycle Q Clear(g_c), s	10.1	10.1		13.4	7.9	2.1	0.0	
Prop In Lane	10.1	0.04		1.00	1.9	0.77	0.0	
Lane Grp Cap(c), veh/h	979	1023		310	1958	364	0.22	
V/C Ratio(X)	0.65	0.65		0.15	0.55	0.30	0.00	
Avail Cap(c_a), veh/h	1315	1375		390	2630	910	0.00	
HCM Platoon Ratio	1.00	1.00		1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00		1.00	1.00	1.00	0.00	
Uniform Delay (d), s/veh	5.9	5.9		10.5	5.4	13.4	0.00	
Incr Delay (d2), s/veh	0.7	0.7		0.2	0.2	0.5	0.0	
Initial Q Delay(d3),s/veh	0.0	0.0		0.2	0.2	0.0	0.0	
, , , , , , , , , , , , , , , , , , ,	1.9			0.0	1.4	0.0	0.0	
%ile BackOfQ(50%),veh/ln		2.0		0.2	1.4	0.0	0.0	
Unsig. Movement Delay, s/veh		6.6		10.7	5.7	12.0	0.0	
LnGrp Delay(d),s/veh	6.6					13.9		
LnGrp LOS	A 200	A		В	A 4424	<u>B</u>	A	
Approach Vol, veh/h	1300				1131	109		
Approach Delay, s/veh	6.6				5.9	13.9		
Approach LOS	Α				Α	В		
Timer - Assigned Phs		2		4				8
Phs Duration (G+Y+Rc), s		12.7		27.2				27.2
Change Period (Y+Rc), s		4.5		4.5				4.5
Max Green Setting (Gmax), s		20.5		30.5				30.
Max Q Clear Time (g_c+l1), s		4.1		12.1				15.4
Green Ext Time (p_c), s		0.2		8.5				7.3
Intersection Summary								
HCM 6th Ctrl Delay			6.6					
HCM 6th LOS			А					
Notes								

User approved volume balancing among the lanes for turning movement.

	۶	→	*	F	•	←	4	1	†	~	/	
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	ሽኘ		7		ሻ	^	7		4			4
Traffic Volume (veh/h)	700	467	37	2	23	498	111	59	23	21	101	14
Future Volume (veh/h)	700	467	37	2	23	498	111	59	23	21	101	14
Initial Q (Qb), veh	0	0	0		0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.96		1.00		0.97	1.00	4.00	0.92	1.00	
Parking Bus, Adj	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	1011	No	1011		1011	No	1001	1011	No	1011	1011	No
Adj Sat Flow, veh/h/ln	1811	1811	1811		1811	1811	1884	1811	1811	1811	1811	1811
Adj Flow Rate, veh/h	737	492	39		26	566	126	67	26	24	107	15
Peak Hour Factor	0.95	0.95	0.95		0.88	0.88	0.88	0.88	0.88	0.88	0.94	0.94
Percent Heavy Veh, %	6	6	6		6	6	6	6	6	6	6	6
Cap, veh/h	830	553	451 0.31		248	708	319	87	34	31	342	48
Arrive On Green	0.25	0.31			0.14	0.21	0.21	0.09	0.09	0.09	0.22	0.22
Sat Flow, veh/h	3346	1811	1476		1725	3441	1551	954	370	342	1522	213
Grp Volume(v), veh/h	737	492	39		26	566	126	117	0	0	122	0
Grp Sat Flow(s),veh/h/ln	1673	1811	1476		1725	1721	1551	1666	0	0	1735	0
Q Serve(g_s), s	18.5	22.6	1.6		1.1	13.7	6.1	6.0	0.0	0.0	5.1	0.0
Cycle Q Clear(g_c), s	18.5	22.6	1.6		1.1	13.7	6.1	6.0	0.0	0.0	5.1	0.0
Prop In Lane	1.00	EE 2	1.00		1.00	700	1.00	0.57	0	0.21	0.88	0
Lane Grp Cap(c), veh/h	830	553	451 0.09		248	708 0.80	319	153	0	0	390	0.00
V/C Ratio(X)	0.89 1077	0.89 1064	867		0.10 248	1135	0.39 512	0.77 554	0.00	0.00	0.31 676	
Avail Cap(c_a), veh/h HCM Platoon Ratio	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00		1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00
Uniform Delay (d), s/veh	31.7	28.9	21.6		32.5	33.0	30.0	38.7	0.00	0.00	28.2	0.00
Incr Delay (d2), s/veh	6.4	2.0	0.0		0.1	0.8	0.3	5.9	0.0	0.0	0.3	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	7.9	9.6	0.6		0.5	5.6	2.2	2.7	0.0	0.0	2.0	0.0
Unsig. Movement Delay, s/veh		3.0	0.0		0.5	5.0	۷.۷	2.1	0.0	0.0	2.0	0.0
LnGrp Delay(d),s/veh	38.1	30.9	21.7		32.6	33.8	30.3	44.6	0.0	0.0	28.6	0.0
LnGrp LOS	D	C	C		C	C	C C	D	Α	Α	C	Α
Approach Vol, veh/h		1268				718			117			607
Approach Delay, s/veh		34.8				33.1			44.6			33.5
Approach LOS		04.0 C				C			TT.0			00.0 C
• •												J
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	17.9	32.0		24.9	26.5	23.3		12.6				
Change Period (Y+Rc), s	5.3	* 5.3		5.3	4.9	5.3		4.6				
Max Green Setting (Gmax), s	5.6	* 51		34.0	28.1	28.8		29.0				
Max Q Clear Time (g_c+l1), s	3.1	24.6		17.7	20.5	15.7		8.0				
Green Ext Time (p_c), s	0.0	2.0		1.9	1.1	2.3		0.5				
Intersection Summary												
HCM 6th Ctrl Delay			34.5									
HCM 6th LOS			С									

Notes

User approved ignoring U-Turning movement.

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Movement	SBR
Lane Configurations	77
Traffic Volume (veh/h)	456
Future Volume (veh/h)	456
Initial Q (Qb), veh	0
Ped-Bike Adj(A_pbT)	0.96
Parking Bus, Adj	1.00
Work Zone On Approach	
Adj Sat Flow, veh/h/ln	1811
Adj Flow Rate, veh/h	485
Peak Hour Factor	0.94
Percent Heavy Veh, %	6
Cap, veh/h	579
Arrive On Green	0.22
Sat Flow, veh/h	2580
Grp Volume(v), veh/h	485
Grp Sat Flow(s), veh/h/ln	1290
Q Serve(g_s), s	15.7
Cycle Q Clear(g_c), s	15.7
Prop In Lane	1.00
Lane Grp Cap(c), veh/h	579
V/C Ratio(X)	0.84
Avail Cap(c_a), veh/h	1005
HCM Platoon Ratio	1.00
Upstream Filter(I)	1.00
Uniform Delay (d), s/veh	32.3
Incr Delay (d2), s/veh	2.5
Initial Q Delay(d3),s/veh	0.0
%ile BackOfQ(50%),veh/ln	5.0
Unsig. Movement Delay, s/ve	en 34.8
LnGrp Delay(d),s/veh	
LnGrp LOS	С
Approach Vol, veh/h	
Approach Delay, s/veh	
Approach LOS	
Timer - Assigned Phs	
<u> </u>	

	•	•	†	/	/	ļ				
Movement	WBL	WBR	NBT	NBR	SBL	SBT				
Lane Configurations	ሻሻ	7	^	7	ሻ	^				
Traffic Volume (veh/h)	182	109	517	57	44	1117				
Future Volume (veh/h)	182	109	517	57	44	1117				
nitial Q (Qb), veh	0	0	0	0	0	0				
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00					
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00				
Nork Zone On Approach	No		No			No				
Adj Sat Flow, veh/h/ln	1841	1841	1746	1746	1841	1841				
Adj Flow Rate, veh/h	202	121	533	59	47	1188				
Peak Hour Factor	0.90	0.90	0.97	0.97	0.94	0.94				
Percent Heavy Veh, %	4	4	4	4	4	4				
Cap, veh/h	493	226	995	658	76	1766				
Arrive On Green	0.14	0.14	0.30	0.30	0.04	0.50				
Sat Flow, veh/h	3401	1560	3406	1480	1753	3589				
Grp Volume(v), veh/h	202	121	533	59	47	1188				
Grp Sat Flow(s),veh/h/ln	1700	1560	1659	1480	1753	1749				
Q Serve(g_s), s	1.6	2.2	4.1	0.7	0.8	7.7				
Cycle Q Clear(g_c), s	1.6	2.2	4.1	0.7	0.8	7.7				
Prop In Lane	1.00	1.00		1.00	1.00					
_ane Grp Cap(c), veh/h	493	226	995	658	76	1766				
V/C Ratio(X)	0.41	0.54	0.54	0.09	0.62	0.67				
Avail Cap(c_a), veh/h	2944	1351	2379	1276	382	3837				
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00				
Jpstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00				
Jniform Delay (d), s/veh	11.8	12.0	8.8	4.9	14.2	5.6				
ncr Delay (d2), s/veh	0.2	0.7	0.2	0.0	3.1	0.2				
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0				
%ile BackOfQ(50%),veh/ln	0.4	1.9	0.8	0.1	0.3	0.6				
Jnsig. Movement Delay, s/veh										
_nGrp Delay(d),s/veh	12.0	12.7	9.0	4.9	17.3	5.8				
_nGrp LOS	В	В	Α	Α	В	Α				
Approach Vol, veh/h	323		592			1235				
Approach Delay, s/veh	12.3		8.6			6.2				
Approach LOS	В		Α			Α				
				4		6	7	8		
Fimer - Assigned Phs							•			
Phs Duration (G+Y+Rc), s				20.6		9.7	6.2	14.4		
Change Period (Y+Rc), s				5.3		5.3	4.9	5.3		
Max Green Setting (Gmax), s				33.2		26.2	6.6	21.7		
Max Q Clear Time (g_c+l1), s				9.7		4.2	2.8	6.1		
Green Ext Time (p_c), s				5.6		0.5	0.0	2.0		
ntersection Summary										
HCM 6th Ctrl Delay			7.8							
HCM 6th LOS			Α							

Intersection						
Int Delay, s/veh	2.6					
		EDD	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ነ	7	\	^	†	0.4
Traffic Vol, veh/h	28	59	17	637	1149	24
Future Vol, veh/h	28	59	17	637	1149	24
Conflicting Peds, #/hr	0	0	_ 1	0	0	1
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	100	0	100	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	67	67	88	88	88	88
Heavy Vehicles, %	2	2	4	4	4	4
Mvmt Flow	42	88	19	724	1306	27
N A . ' /N A'	N. C		1.1.4		1	
	Minor2		Major1		Major2	
Conflicting Flow All	1721	668	1334	0	-	0
Stage 1	1321	-	-	-	-	-
Stage 2	400	-	-	-	-	-
Critical Hdwy	6.84	6.94	4.18	-	-	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	2.24	-	-	_
Pot Cap-1 Maneuver	80	401	503	-	-	-
Stage 1	214			_	_	_
Stage 2	646	_	_	_	_	_
Platoon blocked, %	UTU	_	_	_	-	-
Mov Cap-1 Maneuver	77	401	503	-	-	-
Mov Cap-1 Maneuver		1 01	303	-	-	-
		-	-	-	-	-
Stage 1	206	-	-	-	-	-
Stage 2	645	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	42.5		0.3		0	
HCM LOS	42.5 E		0.0		U	
I IOIVI LOO						
Minor Lane/Major Mvr	nt	NBL	NBT I	EBLn1 E	EBL _{n2}	SBT
Capacity (veh/h)		503	-		401	_
HCM Lane V/C Ratio		0.038	_	0.543	0.22	-
HCM Control Delay (s)	12.4	-		16.5	-
HCM Lane LOS	,	В	_	F	C	_
HCM 95th %tile Q(veh	1)	0.1	_	2.3	0.8	
TOWN JOHN WHILE WINE	'/	U. I	_	2.0	0.0	

	۶	→	•	•	←	•	1	†	~	/	+	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	₽			4		ሻ	ተ ኈ		ሻ	∱ ∱	
Traffic Volume (veh/h)	57	0	88	1	0	1	52	820	1	1	1297	55
Future Volume (veh/h)	57	0	88	1	0	1	52	820	1	1	1297	55
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	62	0	96	1	0	1	57	891	1	1	1410	60
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	161	0	143	2	0	2	86	2337	3	3	2065	88
Arrive On Green	0.09	0.00	0.09	0.00	0.00	0.00	0.05	0.64	0.64	0.00	0.59	0.59
Sat Flow, veh/h	1781	0	1585	839	0	839	1781	3642	4	1781	3473	148
Grp Volume(v), veh/h	62	0	96	2	0	0	57	435	457	1	720	750
Grp Sat Flow(s),veh/h/ln	1781	0	1585	1677	0	0	1781	1777	1870	1781	1777	1844
Q Serve(g_s), s	2.2	0.0	4.0	0.1	0.0	0.0	2.1	7.9	7.9	0.0	18.9	19.0
Cycle Q Clear(g_c), s	2.2	0.0	4.0	0.1	0.0	0.0	2.1	7.9	7.9	0.0	18.9	19.0
Prop In Lane	1.00		1.00	0.50		0.50	1.00		0.00	1.00		0.08
Lane Grp Cap(c), veh/h	161	0	143	5	0	0	86	1140	1200	3	1057	1097
V/C Ratio(X)	0.38	0.00	0.67	0.44	0.00	0.00	0.66	0.38	0.38	0.38	0.68	0.68
Avail Cap(c_a), veh/h	472	0	420	442	0	0	138	1140	1200	133	1057	1097
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	29.3	0.0	30.1	34.0	0.0	0.0	31.9	5.8	5.8	34.1	9.4	9.5
Incr Delay (d2), s/veh	1.5	0.0	5.3	54.4	0.0	0.0	8.4	1.0	0.9	73.3	3.6	3.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.0	0.0	1.7	0.1	0.0	0.0	1.1	2.2	2.3	0.1	6.0	6.3
Unsig. Movement Delay, s/veh							40.0			10= 0	10.0	10.0
LnGrp Delay(d),s/veh	30.8	0.0	35.3	88.4	0.0	0.0	40.3	6.8	6.7	107.3	13.0	12.9
LnGrp LOS	С	Α	D	F	Α	Α	D	Α	A	F	В	<u>B</u>
Approach Vol, veh/h		158			2			949			1471	
Approach Delay, s/veh		33.5			88.4			8.8			13.0	
Approach LOS		С			F			Α			В	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	4.6	48.3		10.7	7.8	45.1		4.7				
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	5.1	40.8		18.1	5.3	40.6		18.0				
Max Q Clear Time (g_c+I1), s	2.0	9.9		6.0	4.1	21.0		2.1				
Green Ext Time (p_c), s	0.0	5.6		0.5	0.0	9.6		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			12.8									
HCM 6th LOS			В									

Intersection							
Int Delay, s/veh	0.1						
		\.			05::	0	0==
Movement	WBL	WBR	NBT	NBR	SBU	SBL	SBT
Lane Configurations	¥		↑ ⊅				^
Traffic Vol, veh/h	1	0	708	1	1	1	1163
Future Vol, veh/h	1	0	708	1	1	1	1163
Conflicting Peds, #/hr	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	-	None
Storage Length	0	-	-	-	-	100	-
Veh in Median Storage	e, # 0	-	0	-	-	-	0
Grade, %	0	-	0	-	-	-	2
Peak Hour Factor	25	25	90	90	92	98	98
Heavy Vehicles, %	2	2	4	4	4	4	4
Mvmt Flow	4	0	787	1	1	1	1187
		_		_			
	Minor1		Major1		Major2		
Conflicting Flow All	1386	394	0	0	788	788	0
Stage 1	788	-	-	-	-	-	-
Stage 2	598	-	-	-	-	-	-
Critical Hdwy	6.84	6.94	-	-	6.48	4.18	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	-	-	2.54	2.24	-
Pot Cap-1 Maneuver	134	605	-	-	447	814	-
Stage 1	409	-	-	-	_	-	-
Stage 2	512	_	_	_	_	_	_
Platoon blocked, %			_	-			-
Mov Cap-1 Maneuver	134	605	_	-	572	572	_
Mov Cap 1 Maneuver	134	-	_	_	-	-	_
Stage 1	409						_
Stage 2	510	_	_				
Slaye 2	310	<u>-</u>	<u>-</u>	_	<u>-</u>	-	_
Approach	WB		NB		SB		
HCM Control Delay, s	32.7		0		0		
HCM LOS	D						
		NDT	NDE	VDI (0.01	0.00	
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT	
Capacity (veh/h)		-	-	134	572	-	
HCM Lane V/C Ratio		-	-		0.004	-	
HCM Control Delay (s)		-	-	32.7	11.3	-	
HCM Lane LOS		-	-	D	В	-	
HCM 95th %tile Q(veh)	-	-	0.1	0	-	
	,						

Intersection						
	1148.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥		ሻ	^	†	USIN
Traffic Vol, veh/h	34	17	2	12	1300	27
Future Vol, veh/h	34	17	2	12	1300	27
Conflicting Peds, #/hr	0	0	872	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Stop -	None	-	None	-	
Storage Length	0	-	60	-	_	-
Veh in Median Storage		_	-	0	0	-
Grade, %	0	-	-	2	2	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	37	18	2	13	1413	29
Major/Minor	Minor2	N	Major1	N	//ajor2	
						^
Conflicting Flow All	2311	1593	2314	0	-	0
Stage 1	2300	-	-	-	-	-
Stage 2	11	-	-	-	-	-
Critical Hdwy	6.84	6.94	4.14	-	-	-
Critical Hdwy Stg 1	5.84	-		-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	2.22	-	-	-
Pot Cap-1 Maneuver	~ 32	96	213	-	_	_
Stage 1	62	-		_	_	_
Stage 2	1010	_	_	_	_	_
Platoon blocked, %	1010		_	_	_	
	- 1	. 10	20			-
Mov Cap-1 Maneuver	~1	~ 16	36	-	-	-
Mov Cap-2 Maneuver	~ 1	-	-	-	-	-
Stage 1	~ 10	-	-	-	-	-
Stage 2	172	-	-	-	-	-
Annroach	ED		ND		CD	
Approach	EB		NB		SB	
HCM Control Delay\$\$			15.9		0	
HCM LOS	F					
Minor Long/Major Mara	nt .	NDI	NDT	EDI1	CDT	CDD
Minor Lane/Major Mvm	π	NBL		EBLn1	SBT	SBR
		36	-	1	-	-
Capacity (veh/h)			L	55.435	-	-
Capacity (veh/h) HCM Lane V/C Ratio		0.06				
Capacity (veh/h))	0.06		1338.7	-	-
Capacity (veh/h) HCM Lane V/C Ratio)				-	-
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		111.3	\$ 3′	1338.7		
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s) HCM Lane LOS HCM 95th %tile Q(veh		111.3 F	\$ 3′	1338.7 F	-	-
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s) HCM Lane LOS)	111.3 F 0.2	\$ 3´ - -	1338.7 F	-	-

	۶	→	•	•	←	•	₽ſ	1	†	/	/	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	4	7		4			ሻሻ	∱ ∱		ሻ	Φ₽
Traffic Volume (veh/h)	304	0	264	2	0	0	1	193	568	0	0	921
Future Volume (veh/h)	304	0	264	2	0	0	1	193	568	0	0	921
Initial Q (Qb), veh	0	0	0	0	0	0		0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.98	1.00		1.00		1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No				No			No
Adj Sat Flow, veh/h/ln	1841	1841	1914	1870	1870	1870		1746	1746	1816	1746	1746
Adj Flow Rate, veh/h	406	0	185	8	0	0		217	638	0	0	1001
Peak Hour Factor	0.95	0.95	0.95	0.25	0.25	0.25		0.89	0.89	0.89	0.92	0.92
Percent Heavy Veh, %	4	4	4	2	2	2		4	4	4	4	4
Cap, veh/h	580	0	264	22	0	0		286	2130	0	2	1121
Arrive On Green	0.17	0.00	0.17	0.01	0.00	0.00		0.09	0.64	0.00	0.00	0.50
Sat Flow, veh/h	3506	0	1596	1781	0	0		3227	3406	0	1663	2260
Grp Volume(v), veh/h	406	0	185	8	0	0		217	638	0	0	730
Grp Sat Flow(s),veh/h/ln	1753	0	1596	1781	0	0		1613	1659	0	1663	1659
Q Serve(g_s), s	9.4	0.0	9.4	0.4	0.0	0.0		5.6	7.3	0.0	0.0	34.0
Cycle Q Clear(g_c), s	9.4	0.0	9.4	0.4	0.0	0.0		5.6	7.3	0.0	0.0	34.0
Prop In Lane	1.00		1.00	1.00		0.00		1.00		0.00	1.00	
Lane Grp Cap(c), veh/h	580	0	264	22	0	0		286	2130	0	2	823
V/C Ratio(X)	0.70	0.00	0.70	0.37	0.00	0.00		0.76	0.30	0.00	0.00	0.89
Avail Cap(c_a), veh/h	1259	0	573	644	0	0		305	2130	0	109	962
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00		1.00	1.00	0.00	0.00	1.00
Uniform Delay (d), s/veh	33.8	0.0	33.8	42.0	0.0	0.0		38.2	6.8	0.0	0.0	19.5
Incr Delay (d2), s/veh	0.6	0.0	1.3	7.6	0.0	0.0		8.6	0.0	0.0	0.0	8.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	3.7	0.0	3.5	0.2	0.0	0.0		2.5	2.0	0.0	0.0	12.9
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	34.4	0.0	35.1	49.7	0.0	0.0		46.7	6.8	0.0	0.0	27.7
LnGrp LOS	С	Α	D	D	Α	Α		D	Α	Α	Α	C
Approach Vol, veh/h		591			8				855			1436
Approach Delay, s/veh		34.6			49.7				17.0			29.1
Approach LOS		С			D				В			С
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		20.2	12.5	47.8		5.2	0.0	60.3				
Change Period (Y+Rc), s		6.0	4.9	5.3		4.2	4.9	5.3				
Max Green Setting (Gmax), s		30.8	8.1	49.7		31.0	5.6	52.2				
Max Q Clear Time (g_c+l1), s		11.4	7.6	37.5		2.4	0.0	9.3				
Green Ext Time (p_c), s		1.0	0.0	5.1		0.0	0.0	2.7				
Intersection Summary												
HCM 6th Ctrl Delay			26.7									
HCM 6th LOS			С									

User approved volume balancing among the lanes for turning movement. User approved ignoring U-Turning movement.

Movement SBR Lange Configurations Traffic Volume (veh/h) 400 Future Volume (veh/h) 400 Initial Q (Qb), veh 0 Ped-Bike Adj(A_pbT) 0.99 Parking Bus, Adj 1.00 Work Zone On Approach Adj Sat Flow, veh/h/ln 1816 Adj Flow Rate, veh/h 435 Peak Hour Factor 0.92 Percent Heavy Veh, % 4 Cap, veh/h 479 Arrive On Green 0.50 Sat Flow, veh/h 965 Grp Volume(v), veh/h 706 Grp Sat Flow(s),veh/h/ln 1566 Q Serve(g_s), s 35.5 Cycle Q Clear(g_c), s 35.5 Prop In Lane 0.62 Lane Grp Cap(c), veh/h 777 V/C Ratio(X) 0.91 Avail Cap(c_a), veh/h 908 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 19.8 Incr Delay (d2), s/veh 10.8 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/ln 13.2 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 30.6 LnGrp LOS C Approach Vol, veh/h Approach Delay, s/veh Approach LOS Timer - Assigned Phs		
Traffic Volume (veh/h) 400 Future Volume (veh/h) 400 Initial Q (Qb), veh 0 Ped-Bike Adj(A_pbT) 0.99 Parking Bus, Adj 1.00 Work Zone On Approach Adj Sat Flow, veh/h/ln 1816 Adj Flow Rate, veh/h 435 Peak Hour Factor 0.92 Percent Heavy Veh, % 4 Cap, veh/h 479 Arrive On Green 0.50 Sat Flow, veh/h 965 Grp Volume(v), veh/h 706 Grp Sat Flow(s),veh/h/ln 1566 Q Serve(g_s), s 35.5 Cycle Q Clear(g_c), s 35.5 Prop In Lane 0.62 Lane Grp Cap(c), veh/h 777 V/C Ratio(X) 0.91 Avail Cap(c_a), veh/h 908 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 19.8 Incr Delay (d2), s/veh 10.8 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/ln 13.2 Unsig. Movement Delay, s/veh LnGrp Dolay (d), s/veh Approach LOS		SBR
Future Volume (veh/h) 400 Initial Q (Qb), veh 0 Ped-Bike Adj(A_pbT) 0.99 Parking Bus, Adj 1.00 Work Zone On Approach Adj Sat Flow, veh/h/ln 1816 Adj Flow Rate, veh/h 435 Peak Hour Factor 0.92 Percent Heavy Veh, % 4 Cap, veh/h 479 Arrive On Green 0.50 Sat Flow, veh/h 965 Grp Volume(v), veh/h 706 Grp Sat Flow(s), veh/h/ln 1566 Q Serve(g_s), s 35.5 Cycle Q Clear(g_c), s 35.5 Prop In Lane 0.62 Lane Grp Cap(c), veh/h 777 V/C Ratio(X) 0.91 Avail Cap(c_a), veh/h 908 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 19.8 Incr Delay (d2), s/veh 10.8 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/ln 13.2 Unsig. Movement Delay, s/veh LnGrp LOS C Approach Vol, veh/h Approach Delay, s/veh Approach LOS	Larte Configurations	
Initial Q (Qb), veh 0 Ped-Bike Adj(A_pbT) 0.99 Parking Bus, Adj 1.00 Work Zone On Approach Adj Sat Flow, veh/h/In 1816 Adj Flow Rate, veh/h 435 Peak Hour Factor 0.92 Percent Heavy Veh, % 4 Cap, veh/h 479 Arrive On Green 0.50 Sat Flow, veh/h 965 Grp Volume(v), veh/h 706 Grp Sat Flow(s), veh/h/n 1566 Q Serve(g_s), s 35.5 Cycle Q Clear(g_c), s 35.5 Prop In Lane 0.62 Lane Grp Cap(c), veh/h 777 V/C Ratio(X) 0.91 Avail Cap(c_a), veh/h 908 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 19.8 Incr Delay (d2), s/veh 10.8 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/ln 13.2 Unsig. Movement Delay, s/veh LnGrp Dolay(d), s/veh 30.6 LnGrp LOS C Approach Vol, veh/h Approach Delay, s/veh Approach LOS	Traffic Volume (veh/h)	400
Ped-Bike Adj(A_pbT) 0.99 Parking Bus, Adj 1.00 Work Zone On Approach 1.00 Adj Sat Flow, veh/h/In 1816 Adj Flow Rate, veh/h 435 Peak Hour Factor 0.92 Percent Heavy Veh, % 4 Cap, veh/h 479 Arrive On Green 0.50 Sat Flow, veh/h 706 Grp Volume(v), veh/h 706 Grp Sat Flow(s),veh/h/In 1566 Q Serve(g_s), s 35.5 Cycle Q Clear(g_c), s 35.5 Prop In Lane 0.62 Lane Grp Cap(c), veh/h 777 V/C Ratio(X) 0.91 Avail Cap(c_a), veh/h 908 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d2), s/veh 10.8 Incr Delay (d2), s/veh 10.8 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/ln 13.2 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh LnGrp LOS C <	Future Volume (veh/h)	400
Parking Bus, Adj 1.00 Work Zone On Approach 1816 Adj Sat Flow, veh/h/In 1816 Adj Flow Rate, veh/h 435 Peak Hour Factor 0.92 Percent Heavy Veh, % 4 Cap, veh/h 479 Arrive On Green 0.50 Sat Flow, veh/h 706 Grp Volume(v), veh/h 706 Grp Sat Flow(s),veh/h/In 1566 Q Serve(g_s), s 35.5 Cycle Q Clear(g_c), s 35.5 Prop In Lane 0.62 Lane Grp Cap(c), veh/h 777 V/C Ratio(X) 0.91 Avail Cap(c_a), veh/h 908 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d2), s/veh 10.8 Incr Delay (d2), s/veh 10.8 Initial Q Delay(d3), s/veh 0.0 %ile BackOfQ(50%), veh/ln 13.2 Unsig. Movement Delay, s/veh LnGrp Delay(d), s/veh LnGrp LOS C Approach Vol, veh/h Approach LOS <td>Initial Q (Qb), veh</td> <td>0</td>	Initial Q (Qb), veh	0
Work Zone On Approach Adj Sat Flow, veh/h/ln 1816 Adj Flow Rate, veh/h 435 Peak Hour Factor 0.92 Percent Heavy Veh, % 4 Cap, veh/h 479 Arrive On Green 0.50 Sat Flow, veh/h 965 Grp Volume(v), veh/h 706 Grp Sat Flow(s),veh/h/ln 1566 Q Serve(g_s), s 35.5 Cycle Q Clear(g_c), s 35.5 Prop In Lane 0.62 Lane Grp Cap(c), veh/h 777 V/C Ratio(X) 0.91 Avail Cap(c_a), veh/h 908 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d2), s/veh 19.8 Incr Delay (d2), s/veh 10.8 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/ln 13.2 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh LnGrp LOS C Approach Vol, veh/h Approach Delay, s/veh Approach LOS	Ped-Bike Adj(A_pbT)	0.99
Adj Sat Flow, veh/h/In 1816 Adj Flow Rate, veh/h 435 Peak Hour Factor 0.92 Percent Heavy Veh, % 4 Cap, veh/h 479 Arrive On Green 0.50 Sat Flow, veh/h 965 Grp Volume(v), veh/h 706 Grp Sat Flow(s),veh/h/In 1566 Q Serve(g_s), s 35.5 Cycle Q Clear(g_c), s 35.5 Prop In Lane 0.62 Lane Grp Cap(c), veh/h 777 V/C Ratio(X) 0.91 Avail Cap(c_a), veh/h 908 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 19.8 Incr Delay (d2), s/veh 10.8 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/ln 13.2 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh LnGrp LOS C Approach Vol, veh/h Approach Delay, s/veh Approach LOS	Parking Bus, Adj	1.00
Adj Flow Rate, veh/h 435 Peak Hour Factor 0.92 Percent Heavy Veh, % 4 Cap, veh/h 479 Arrive On Green 0.50 Sat Flow, veh/h 965 Grp Volume(v), veh/h 706 Grp Sat Flow(s),veh/h/ln 1566 Q Serve(g_s), s 35.5 Cycle Q Clear(g_c), s 35.5 Prop In Lane 0.62 Lane Grp Cap(c), veh/h 777 V/C Ratio(X) 0.91 Avail Cap(c_a), veh/h 908 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 19.8 Incr Delay (d2), s/veh 10.8 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/ln 13.2 Unsig. Movement Delay, s/veh 10.6 LnGrp LOS C Approach Vol, veh/h Approach Delay, s/veh Approach LOS C		
Peak Hour Factor 0.92 Percent Heavy Veh, % 4 Cap, veh/h 479 Arrive On Green 0.50 Sat Flow, veh/h 965 Grp Volume(v), veh/h 706 Grp Sat Flow(s),veh/h/ln 1566 Q Serve(g_s), s 35.5 Cycle Q Clear(g_c), s 35.5 Prop In Lane 0.62 Lane Grp Cap(c), veh/h 777 V/C Ratio(X) 0.91 Avail Cap(c_a), veh/h 908 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 19.8 Incr Delay (d2), s/veh 10.8 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/ln 13.2 Unsig. Movement Delay, s/veh 10.6 LnGrp LOS C Approach Vol, veh/h Approach Delay, s/veh Approach LOS C	Adj Sat Flow, veh/h/ln	1816
Peak Hour Factor 0.92 Percent Heavy Veh, % 4 Cap, veh/h 479 Arrive On Green 0.50 Sat Flow, veh/h 965 Grp Volume(v), veh/h 706 Grp Sat Flow(s),veh/h/In 1566 Q Serve(g_s), s 35.5 Cycle Q Clear(g_c), s 35.5 Prop In Lane 0.62 Lane Grp Cap(c), veh/h 777 V/C Ratio(X) 0.91 Avail Cap(c_a), veh/h 908 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 19.8 Incr Delay (d2), s/veh 10.8 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/ln 13.2 Unsig. Movement Delay, s/veh 10.6 LnGrp LOS C Approach Vol, veh/h Approach Delay, s/veh Approach LOS C		435
Percent Heavy Veh, % 4 Cap, veh/h 479 Arrive On Green 0.50 Sat Flow, veh/h 965 Grp Volume(v), veh/h 706 Grp Sat Flow(s), veh/h/In 1566 Q Serve(g_s), s 35.5 Cycle Q Clear(g_c), s 35.5 Prop In Lane 0.62 Lane Grp Cap(c), veh/h 777 V/C Ratio(X) 0.91 Avail Cap(c_a), veh/h 908 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 19.8 Incr Delay (d2), s/veh 10.8 Initial Q Delay(d3), s/veh 0.0 %ile BackOfQ(50%), veh/ln 13.2 Unsig. Movement Delay, s/veh 10.6 LnGrp Delay(d), s/veh 30.6 LnGrp LOS C Approach Vol, veh/h Approach Delay, s/veh Approach LOS Veh/h		0.92
Cap, veh/h 479 Arrive On Green 0.50 Sat Flow, veh/h 965 Grp Volume(v), veh/h 706 Grp Sat Flow(s),veh/h/ln 1566 Q Serve(g_s), s 35.5 Cycle Q Clear(g_c), s 35.5 Prop In Lane 0.62 Lane Grp Cap(c), veh/h 777 V/C Ratio(X) 0.91 Avail Cap(c_a), veh/h 908 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 19.8 Incr Delay (d2), s/veh 10.8 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/ln 13.2 Unsig. Movement Delay, s/veh 13.2 LnGrp Delay(d),s/veh 30.6 LnGrp LOS C Approach Vol, veh/h Approach Delay, s/veh Approach LOS 1		4
Arrive On Green 0.50 Sat Flow, veh/h 965 Grp Volume(v), veh/h 706 Grp Sat Flow(s),veh/h/ln 1566 Q Serve(g_s), s 35.5 Cycle Q Clear(g_c), s 35.5 Prop In Lane 0.62 Lane Grp Cap(c), veh/h 777 V/C Ratio(X) 0.91 Avail Cap(c_a), veh/h 908 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 19.8 Incr Delay (d2), s/veh 10.8 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/ln 13.2 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 30.6 LnGrp LOS C Approach Vol, veh/h Approach Delay, s/veh Approach LOS		
Sat Flow, veh/h 965 Grp Volume(v), veh/h 706 Grp Sat Flow(s),veh/h/ln 1566 Q Serve(g_s), s 35.5 Cycle Q Clear(g_c), s 35.5 Prop In Lane 0.62 Lane Grp Cap(c), veh/h 777 V/C Ratio(X) 0.91 Avail Cap(c_a), veh/h 908 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 19.8 Incr Delay (d2), s/veh 10.8 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/ln 13.2 Unsig. Movement Delay, s/veh 13.2 LnGrp Delay(d),s/veh 30.6 LnGrp LOS C Approach Vol, veh/h Approach Delay, s/veh Approach LOS 1		
Grp Volume(v), veh/h 706 Grp Sat Flow(s),veh/h/ln 1566 Q Serve(g_s), s 35.5 Cycle Q Clear(g_c), s 35.5 Prop In Lane 0.62 Lane Grp Cap(c), veh/h 777 V/C Ratio(X) 0.91 Avail Cap(c_a), veh/h 908 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 19.8 Incr Delay (d2), s/veh 10.8 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/ln 13.2 Unsig. Movement Delay, s/veh 10.6 LnGrp Delay(d),s/veh 30.6 LnGrp LOS C Approach Vol, veh/h Approach Delay, s/veh Approach LOS 10.0	Sat Flow, veh/h	
Grp Sat Flow(s),veh/h/ln 1566 Q Serve(g_s), s 35.5 Cycle Q Clear(g_c), s 35.5 Prop In Lane 0.62 Lane Grp Cap(c), veh/h 777 V/C Ratio(X) 0.91 Avail Cap(c_a), veh/h 908 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 19.8 Incr Delay (d2), s/veh 10.8 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/ln 13.2 Unsig. Movement Delay, s/veh 13.2 LnGrp Delay(d),s/veh 30.6 LnGrp LOS C Approach Vol, veh/h Approach Delay, s/veh Approach LOS 1		
Q Serve(g_s), s 35.5 Cycle Q Clear(g_c), s 35.5 Prop In Lane 0.62 Lane Grp Cap(c), veh/h 777 V/C Ratio(X) 0.91 Avail Cap(c_a), veh/h 908 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 19.8 Incr Delay (d2), s/veh 10.8 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/ln 13.2 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 30.6 LnGrp LOS C Approach Vol, veh/h Approach LOS		
Cycle Q Clear(g_c), s Prop In Lane 0.62 Lane Grp Cap(c), veh/h 777 V/C Ratio(X) 0.91 Avail Cap(c_a), veh/h 908 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh Incr Delay (d2), s/veh Initial Q Delay(d3),s/veh %ile BackOfQ(50%),veh/ln Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 20.6 Approach Vol, veh/h Approach LOS		
Prop In Lane 0.62 Lane Grp Cap(c), veh/h 777 V/C Ratio(X) 0.91 Avail Cap(c_a), veh/h 908 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 19.8 Incr Delay (d2), s/veh 10.8 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/In 13.2 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 30.6 LnGrp LOS C Approach Vol, veh/h Approach Delay, s/veh Approach LOS		
Lane Grp Cap(c), veh/h V/C Ratio(X) Avail Cap(c_a), veh/h HCM Platoon Ratio Upstream Filter(I) Uniform Delay (d), s/veh Incr Delay (d2), s/veh Initial Q Delay(d3),s/veh %ile BackOfQ(50%),veh/ln Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh Approach Vol, veh/h Approach LOS		
V/C Ratio(X) Avail Cap(c_a), veh/h HCM Platoon Ratio Upstream Filter(I) Uniform Delay (d), s/veh Incr Delay (d2), s/veh Initial Q Delay(d3),s/veh Vile BackOfQ(50%),veh/ln Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh Approach Vol, veh/h Approach LOS		
Avail Cap(c_a), veh/h 908 HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 19.8 Incr Delay (d2), s/veh 10.8 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/ln 13.2 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 30.6 LnGrp LOS C Approach Vol, veh/h Approach Delay, s/veh Approach LOS		
HCM Platoon Ratio 1.00 Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 19.8 Incr Delay (d2), s/veh 10.8 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/ln 13.2 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 30.6 LnGrp LOS C Approach Vol, veh/h Approach Delay, s/veh Approach LOS		
Upstream Filter(I) 1.00 Uniform Delay (d), s/veh 19.8 Incr Delay (d2), s/veh 10.8 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/ln 13.2 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 30.6 LnGrp LOS C Approach Vol, veh/h Approach Delay, s/veh Approach LOS		
Uniform Delay (d), s/veh 19.8 Incr Delay (d2), s/veh 10.8 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/ln 13.2 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 30.6 LnGrp LOS C Approach Vol, veh/h Approach Delay, s/veh Approach LOS		
Incr Delay (d2), s/veh 10.8 Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/ln 13.2 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 30.6 LnGrp LOS C Approach Vol, veh/h Approach Delay, s/veh Approach LOS	,	
Initial Q Delay(d3),s/veh 0.0 %ile BackOfQ(50%),veh/ln 13.2 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 30.6 LnGrp LOS C Approach Vol, veh/h Approach Delay, s/veh Approach LOS		
%ile BackOfQ(50%),veh/ln Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 30.6 LnGrp LOS C Approach Vol, veh/h Approach Delay, s/veh Approach LOS		
Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh LnGrp LOS C Approach Vol, veh/h Approach Delay, s/veh Approach LOS		
LnGrp Delay(d),s/veh 30.6 LnGrp LOS C Approach Vol, veh/h Approach Delay, s/veh Approach LOS		
LnGrp LOS C Approach Vol, veh/h Approach Delay, s/veh Approach LOS		
Approach Vol, veh/h Approach Delay, s/veh Approach LOS		
Approach Delay, s/veh Approach LOS		
Approach LOS		
**		
Timer - Assigned Phs		
	Timer - Assigned Phs	

Intersection							
Int Delay, s/veh	2.8						
Movement	EBL	EBT	WBU	WBT	WBR	SBL	SBR
Lane Configurations	ሻ	^	11 <u>11</u>	†		Y	
Traffic Vol, veh/h	18	883	0	1186	14	20	103
Future Vol, veh/h	18	883	0	1186	14	20	103
Conflicting Peds, #/hr	7	0	0	0	7	0	0
•	Free	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	-	None	-	None
Storage Length	100	-	100	-	-	0	-
Veh in Median Storage,		0	-	0	-	0	-
Grade, %	-	2	-	0	_	0	-
Peak Hour Factor	89	89	95	95	95	86	86
Heavy Vehicles, %	4	4	4	4	4	2	2
Mvmt Flow	20	992	0	1248	15	23	120
Major/Minor Major/Minor	ajor1	N	Major2		N	Minor2	
	1270	0	992			1799	639
Stage 1	1270	-	332	-	-	1263	- 009
Stage 2	_		_	_	_	536	_
	4.18	_	6.48	_	_	6.84	6.94
Critical Hdwy Stg 1	- 10	_	- 0.40	_	<u>-</u>	5.84	- 0.54
Critical Hdwy Stg 2	_		_	_	_	5.84	_
Follow-up Hdwy	2.24	_	2.54	_	<u>-</u>	3.52	3.32
Pot Cap-1 Maneuver	532	_	330	_	_	71	419
Stage 1	-	_	-	_	_	230	-
Stage 2	_	_	-	_	-	551	_
Platoon blocked, %		_		-	_		
Mov Cap-1 Maneuver	527	-	330	-	-	67	415
Mov Cap-2 Maneuver	-	_	-	_	_	67	-
Stage 1	-	-	-	-	-	219	-
Stage 2	_	_	_	-	_	546	-
5.tago 2						0.0	
Approach	EB		WB			SB	
HCM Control Delay, s	0.2		0			45.3	
HCM LOS	U.Z		U			45.5 E	
ncivi Los							
Minor Lane/Major Mvmt		EBL	EBT	WBU	WBT	WBR :	
Capacity (veh/h)		527	-	330	-	-	225
HCM Lane V/C Ratio		0.038	-	-	-	-	0.636
HCM Control Delay (s)		12.1	-	0	-	-	45.3
HCM Lane LOS		В	-	A	-	-	E
HCM 95th %tile Q(veh)		0.1	-	0	-	-	3.8

Intersection						
Int Delay, s/veh	0.1					
	EBT	EDD	\\/DI	\\/DT	NDI	NBR
Movement Configurations		EBR	WBL	WBT	NBL	NDK
Lane Configurations	↑	0	ነ	^	¥	0
Traffic Vol, veh/h	918	2	2		5	2
Future Vol, veh/h	918	2	2	1193	5	2
Conflicting Peds, #/hr	_ 0	•	1	0	1	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	100	-	0	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	96	96	75	75
Heavy Vehicles, %	4	4	4	4	2	2
Mvmt Flow	1020	2	2	1243	7	3
Major/Minor M	ajor1	N	Major2	l l	Minor1	
Conflicting Flow All	0	0	1023	0	1649	512
Stage 1	-	-	-	-	1022	-
Stage 2	_	_	_	_	627	_
Critical Hdwy	_	_	4.18	_	6.84	6.94
Critical Hdwy Stg 1	_	_		_	5.84	-
Critical Hdwy Stg 2	_	_	_	_	5.84	_
Follow-up Hdwy	_	_	2.24	_	3.52	3.32
Pot Cap-1 Maneuver	_	_	662	_	90	507
Stage 1	_	_	-	<u>-</u>	308	-
Stage 2	_	_	_	_	495	_
Platoon blocked, %	_	_		_	T00	
Mov Cap-1 Maneuver	_	_	661	_	90	506
Mov Cap-1 Maneuver	-		001	-	211	500
Stage 1		-	-		308	-
_	-	-	-	-	493	-
Stage 2	_	-	_	_	493	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		19.8	
HCM LOS					С	
Minor Lane/Major Mvmt	N	NBLn1	EBT	EBR	WBL	WBT
	ľ					
Capacity (veh/h)		253	-	-	•••	-
HCM Control Doloy (a)		0.037	-		0.003	-
HCM Control Delay (s) HCM Lane LOS		19.8 C	-	-		-
mi Milano i UN		(,	-	-	В	-
HCM 95th %tile Q(veh)		0.1	_	_	0	_

		۶	→	•	F	•	•	•	4	†	-	L
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBU
Lane Configurations		44	†	7		1	† 1>			4		
Traffic Volume (veh/h)	25	380	492	31	1	14	451	158	30	11	11	10
Future Volume (veh/h)	25	380	492	31	1	14	451	158	30	11	11	10
Initial Q (Qb), veh		0	0	0		0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)		1.00		0.99		1.00		0.99	1.00		1.00	
Parking Bus, Adj		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach			No				No			No		
Adj Sat Flow, veh/h/ln		1841	1841	1841		1841	1841	1914	1841	1841	1841	
Adj Flow Rate, veh/h		400	518	33		16	512	180	34	12	12	
Peak Hour Factor		0.95	0.95	0.95		0.88	0.88	0.88	0.88	0.88	0.88	
Percent Heavy Veh, %		4	4	4		4	4	4	4	4	4	
Cap, veh/h		355	617	520		26	622	217	62	22	22	
Arrive On Green		0.10	0.34	0.34		0.02	0.25	0.25	0.06	0.06	0.06	
Sat Flow, veh/h		3401	1841	1551		1753	2530	885	1012	357	357	
Grp Volume(v), veh/h		400	518	33		16	353	339	58	0	0	
Grp Sat Flow(s), veh/h/ln		1700	1841	1551		1753	1749	1667	1726	0	0	
Q Serve(g_s), s		8.1	20.2	1.1		0.7	14.8	15.0	2.5	0.0	0.0	
Cycle Q Clear(g_c), s		8.1	20.2	1.1		0.7	14.8	15.0	2.5	0.0	0.0	
Prop In Lane		1.00	20.2	1.00		1.00	11.0	0.53	0.59	0.0	0.21	
Lane Grp Cap(c), veh/h		355	617	520		26	430	410	105	0	0.21	
V/C Ratio(X)		1.13	0.84	0.06		0.61	0.82	0.83	0.55	0.00	0.00	
Avail Cap(c_a), veh/h		355	737	621		126	644	614	644	0.00	0.00	
HCM Platoon Ratio		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)		1.00	1.00	1.00		1.00	1.00	1.00	1.00	0.00	0.00	
Uniform Delay (d), s/veh		34.8	23.9	17.5		38.0	27.7	27.7	35.4	0.0	0.0	
Incr Delay (d2), s/veh		87.1	6.4	0.0		8.1	3.1	3.6	3.3	0.0	0.0	
Initial Q Delay(d3),s/veh		0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln		7.4	8.9	0.4		0.3	6.0	5.8	1.2	0.0	0.0	
Unsig. Movement Delay, s/veh		1.7	0.5	0.4		0.0	0.0	0.0	1.2	0.0	0.0	
LnGrp Delay(d),s/veh		121.8	30.3	17.6		46.1	30.8	31.3	38.7	0.0	0.0	
LnGrp LOS		121.0 F	30.3 C	17.0 B		40.1 D	30.0 C	31.3 C	30.7 D	Α	Α	
Approach Vol, veh/h		ı	951	<u> </u>		<u> </u>	708		<u> </u>	58		
Approach Delay, s/veh			68.3				31.4			38.7		
Approach LOS			00.3 E				31.4 C			30.1 D		
Approach LOS			Е				C			U		
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	6.1	31.3		30.9	13.0	24.4		9.3				
Change Period (Y+Rc), s	4.9	5.3		5.3	4.9	5.3		4.6				
Max Green Setting (Gmax), s	5.6	31.1		34.2	8.1	28.6		29.0				
Max Q Clear Time (g_c+l1), s	2.7	22.2		21.9	10.1	17.0		4.5				
Green Ext Time (p_c), s	0.0	1.4		3.3	0.0	2.0		0.2				
Intersection Summary												
HCM 6th Ctrl Delay			42.2									
HCM 6th LOS			D									
Notes												

	-	Ţ	1
Movement	SBL	SBT	SBR
Lane Configurations		4	11
Traffic Volume (veh/h)	253	28	709
Future Volume (veh/h)	253	28	709
Initial Q (Qb), veh	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99
Parking Bus, Adj	1.00	1.00	1.00
Work Zone On Approach		No	
Adj Sat Flow, veh/h/ln	1841	1841	1841
Adj Flow Rate, veh/h	269	30	754
Peak Hour Factor	0.94	0.94	0.94
Percent Heavy Veh, %	4	4	4
Cap, veh/h	523	58	899
Arrive On Green	0.33	0.33	0.33
Sat Flow, veh/h	1585	177	2725
Grp Volume(v), veh/h	299	0	754
Grp Sat Flow(s), veh/h/ln	1761	0	1362
Q Serve(g_s), s	10.6	0.0	19.9
Cycle Q Clear(g_c), s	10.6	0.0	19.9
Prop In Lane	0.90	0.0	1.00
Lane Grp Cap(c), veh/h	581	0	899
V/C Ratio(X)	0.51	0.00	0.84
Avail Cap(c_a), veh/h	776	0.00	1200
HCM Platoon Ratio	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00
Uniform Delay (d), s/veh	21.0	0.00	24.1
Incr Delay (d2), s/veh	0.5	0.0	3.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	4.0	0.0	6.6
Unsig. Movement Delay, s/veh		0.0	0.0
LnGrp Delay(d),s/veh	21.5	0.0	27.8
LnGrp Delay(d),s/ven LnGrp LOS	21.5 C	0.0 A	27.8 C
	U		U
Approach Vol, veh/h		1053	
Approach Delay, s/veh		26.0	
Approach LOS		С	
Timer - Assigned Phs			

	•	•	†	/	>	ţ			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	ሻሻ	7	^	7	ች	^			
Traffic Volume (veh/h)	83	115	1160	165	118	856			
Future Volume (veh/h)	83	115	1160	165	118	856			
nitial Q (Qb), veh	0	0	0	0	0	0			
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00				
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00			
Nork Zone On Approach	No		No			No			
Adj Sat Flow, veh/h/ln	1811	1811	1717	1717	1811	1811			
Adj Flow Rate, veh/h	92	128	1196	170	126	911			
Peak Hour Factor	0.90	0.90	0.97	0.97	0.94	0.94			
Percent Heavy Veh, %	6	6	6	6	6	6			
Cap, veh/h	408	187	1499	846	160	2254			
Arrive On Green	0.12	0.12	0.46	0.46	0.09	0.66			
Sat Flow, veh/h	3346	1535	3348	1455	1725	3532			
Grp Volume(v), veh/h	92	128	1196	170	126	911			
Grp Sat Flow(s),veh/h/ln	1673	1535	1631	1455	1725	1721			
Q Serve(g_s), s	1.2	3.8	14.9	2.6	3.4	5.9			
Cycle Q Clear(g_c), s	1.2	3.8	14.9	2.6	3.4	5.9			
Prop In Lane	1.00	1.00		1.00	1.00				
_ane Grp Cap(c), veh/h	408	187	1499	846	160	2254			
V/C Ratio(X)	0.23	0.68	0.80	0.20	0.79	0.40			
Avail Cap(c_a), veh/h	1866	856	2108	1117	265	3107			
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00			
Jpstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00			
Jniform Delay (d), s/veh	18.8	20.0	11.0	4.7	21.1	3.8			
ncr Delay (d2), s/veh	0.1	1.7	1.0	0.0	3.3	0.0			
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0			
%ile BackOfQ(50%),veh/ln	0.4	0.1	3.6	0.7	1.3	0.6			
Jnsig. Movement Delay, s/veh									
_nGrp Delay(d),s/veh	18.9	21.6	11.9	4.8	24.4	3.9			
_nGrp LOS	В	С	В	Α	С	Α			
Approach Vol, veh/h	220		1366			1037			
Approach Delay, s/veh	20.5		11.0			6.4			
Approach LOS	С		В			Α			
Timer - Assigned Phs				4		6	7	8	
Phs Duration (G+Y+Rc), s				36.4		11.1	9.3	27.1	ĺ
Change Period (Y+Rc), s				5.3		5.3	4.9	5.3	
Max Green Setting (Gmax), s				42.9		26.5	7.3	30.7	
Max Q Clear Time (g_c+l1), s				7.9		5.8	5.4	16.9	
Green Ext Time (p_c), s				4.1		0.3	0.0	5.0	
Intersection Summary									
HCM 6th Ctrl Delay			10.0						
HCM 6th LOS			Α						
IOW OUI LOO			\wedge						

Intersection							
Int Delay, s/veh	1.7						
		EDD	NDU	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBU	NBL	NBT	SBT	SBR
Lane Configurations	ነ	7	1	\	^	†	47
Traffic Vol, veh/h	16	19	1	51	1233	1006	17
Future Vol, veh/h	16	19	1	51	1233	1006	17
Conflicting Peds, #/hr	0	0	5	5	0	0	5
Sign Control	Stop	Stop	Free	Free	Free	Free	Free
RT Channelized	100	None	-	100	None	-	
Storage Length	100	0	-	100	-	-	-
Veh in Median Storage		-	-	-	0	0	-
Grade, %	0	-	-	-	0	0	-
Peak Hour Factor	67	67	92	88	88	88	88
Heavy Vehicles, %	2	2	6	6	6	6	6
Mvmt Flow	24	28	1	58	1401	1143	19
Major/Minor I	Minor2	N	Major1		N	Major2	
Conflicting Flow All	1977	586	1163	1167	0	-	0
Stage 1	1158	-			-	_	-
Stage 2	819	_	_	_	_	_	_
Critical Hdwy	6.84	6.94	6.52	4.22		_	_
Critical Hdwy Stg 1	5.84	- 0.54	0.02	7.22	_	_	_
Critical Hdwy Stg 1	5.84	_		_		_	-
Follow-up Hdwy	3.52	3.32	2.56	2.26			_
Pot Cap-1 Maneuver	54	454	252	572	<u>-</u>	-	-
	261	404		312	-		_
Stage 1	394	-	-	-	-	-	
Stage 2	394	-	-	-	-	-	-
Platoon blocked, %	40	450			-	-	-
Mov Cap-1 Maneuver	48	452	555	555	-	-	-
Mov Cap-2 Maneuver	48	-	-	-	-	-	-
Stage 1	232	-	-	-	-	-	-
Stage 2	392	-	-	-	-	-	-
Approach	EB		NB			SB	
HCM Control Delay, s	70.8		0.5			0	
HCM LOS	F		0.0				
Minor Long /Mairy M		NDI	NDT	EDL 4 1	EDL O	CDT	CDD
Minor Lane/Major Mvm	I	NBL	MRII	EBLn1 I		SBT	SBR
Capacity (veh/h)		555	-	48	452	-	-
HCM Lane V/C Ratio		0.106		0.498		-	-
HCM Control Delay (s)		12.3		138.9	13.5	-	-
HCM Lane LOS		В	-	F	В	-	-
HCM 95th %tile Q(veh)		0.4	-	1.8	0.2	-	-

	۶	→	•	•	←	•	•	†	/	/	ţ	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	₽			4		ሻ	∱ ኈ		7	ħβ	
Traffic Volume (veh/h)	108	0	59	1	0	1	168	1610	1	1	1383	106
Future Volume (veh/h)	108	0	59	1	0	1	168	1610	1	1	1383	106
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	117	0	64	1	0	1	183	1750	1	1	1503	115
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	160	0	143	2	0	2	218	2577	1	2	1962	149
Arrive On Green	0.09	0.00	0.09	0.00	0.00	0.00	0.12	0.71	0.71	0.00	0.59	0.59
Sat Flow, veh/h	1781	0	1585	839	0	839	1781	3645	2	1781	3347	255
Grp Volume(v), veh/h	117	0	64	2	0	0	183	853	898	1	794	824
Grp Sat Flow(s),veh/h/ln	1781	0	1585	1677	0	0	1781	1777	1870	1781	1777	1825
Q Serve(g_s), s	5.8	0.0	3.5	0.1	0.0	0.0	9.1	24.5	24.5	0.1	30.3	30.9
Cycle Q Clear(g_c), s	5.8	0.0	3.5	0.1	0.0	0.0	9.1	24.5	24.5	0.1	30.3	30.9
Prop In Lane	1.00	_	1.00	0.50	_	0.50	1.00		0.00	1.00		0.14
Lane Grp Cap(c), veh/h	160	0	143	5	0	0	218	1256	1322	2	1042	1070
V/C Ratio(X)	0.73	0.00	0.45	0.44	0.00	0.00	0.84	0.68	0.68	0.41	0.76	0.77
Avail Cap(c_a), veh/h	354	0	315	333	0	0	254	1256	1322	98	1042	1070
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	40.1	0.0	39.1	45.1	0.0	0.0	38.9	7.5	7.5	45.2	14.0	14.1
Incr Delay (d2), s/veh	6.2	0.0	2.2	55.2	0.0	0.0	19.3	3.0	2.8	83.8	5.3	5.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.8	0.0	1.4	0.1	0.0	0.0	4.9	7.3	7.6	0.1	11.4	11.9
Unsig. Movement Delay, s/veh		0.0	44.0	400.0	0.0	0.0	E0.0	40.4	40.0	400.0	40.0	40.5
LnGrp Delay(d),s/veh	46.4	0.0	41.3	100.3	0.0	0.0	58.2	10.4	10.3	129.0	19.3	19.5
LnGrp LOS	D	A 404	D	F	<u>A</u>	A	<u>E</u>	B	В	F	B	<u>B</u>
Approach Vol, veh/h		181			2			1934			1619	
Approach Delay, s/veh		44.6			100.3			14.9			19.5	
Approach LOS		D			F			В			В	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	4.6	68.5		12.7	15.6	57.6		4.7				
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	5.0	61.0		18.0	12.9	53.1		18.0				
Max Q Clear Time (g_c+l1), s	2.1	26.5		7.8	11.1	32.9		2.1				
Green Ext Time (p_c), s	0.0	16.5		0.4	0.1	11.1		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			18.4									
HCM 6th LOS			В									

Intersection						
Int Delay, s/veh	0.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		∱ ∱		- ነ	^
Traffic Vol, veh/h	1	0	1265	1	1	1046
Future Vol, veh/h	1	0	1265	1	1	1046
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	100	-
Veh in Median Storage	e,# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	2
Peak Hour Factor	25	25	90	90	98	98
Heavy Vehicles, %	2	2	6	6	6	6
Mymt Flow	4	0	1406	1	1	1067
WWW.CT IOW	•	•	1 100	•	•	1007
Major/Minor	Minor1	N	Major1		Major2	
Conflicting Flow All	1943	704	0	0	1407	0
Stage 1	1407	-	-	-	-	-
Stage 2	536	-	-	-	-	-
Critical Hdwy	6.84	6.94	_	_	4.22	_
Critical Hdwy Stg 1	5.84	-	_	_	-	_
Critical Hdwy Stg 2	5.84	_	_	_	_	_
Follow-up Hdwy	3.52	3.32	_	_	2.26	_
Pot Cap-1 Maneuver	57	379		_	461	_
Stage 1	192	-	_	_	- -	_
	551	_	-	_	-	_
Stage 2	551	-	-	-	-	
Platoon blocked, %		070	-	-	404	-
Mov Cap-1 Maneuver		379	-	-	461	-
Mov Cap-2 Maneuver	57	-	-	-	-	-
Stage 1	192	-	-	-	-	-
Stage 2	550	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	72.9		0		0	
HCM LOS	72.5 F		U		U	
I IOWI LOS	Г					
Minor Lane/Major Mvr	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	57	461	-
HCM Lane V/C Ratio		-	_		0.002	-
HCM Control Delay (s)	_	_	72.9	12.8	_
HCM Lane LOS	,	_	_	72.5 F	В	_
HCM 95th %tile Q(veh	1)			0.2	0	_
HOW BOTH WITH CALACT	1)	_	_	0.2	U	_

Intersection						
Int Delay, s/veh	1.7					
		EDD	NDI	NET	ODT	000
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥	10	<u>ነ</u>	^	†	
Traffic Vol, veh/h	12	12	19	1633	1503	19
Future Vol, veh/h	12	12	19	1633	1503	19
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	60	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	2	2	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	13	13	21	1775	1634	21
		_				
	Minor2		Major1		//ajor2	
Conflicting Flow All	2575	828	1655	0	-	0
Stage 1	1645	-	-	-	-	-
Stage 2	930	-	-	-	-	-
Critical Hdwy	6.84	6.94	4.14	-	-	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	_	-	-	-	-
Follow-up Hdwy	3.52	3.32	2.22	-	-	-
Pot Cap-1 Maneuver	21	314	386	-	-	-
Stage 1	143	-	-	-	-	-
Stage 2	344	-	_	-	_	-
Platoon blocked, %				_	_	_
Mov Cap-1 Maneuver	20	314	386	_	_	_
Mov Cap-2 Maneuver	20	-	-	_	_	_
Stage 1	135		_			
<u> </u>	344	-		-	-	-
Stage 2	J 44	_	-	_	-	-
Approach	EB		NB		SB	
HCM Control Delay, s			0.2		0	
HCM LOS	F		7.2			
	'					
Minor Lane/Major Mvm	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		386	-	00	-	-
HCM Lane V/C Ratio		0.054		0.686	-	-
HCM Control Delay (s)		14.9	-	214.2	-	-
HCM Lane LOS		В	-	F	-	-
HCM 95th %tile Q(veh)	0.2	-	2.5	-	-
1						

	۶	→	•	•	←	•	1	†	/	L	/	↓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBU	SBL	SBT
Lane Configurations	ሻ	4	7		4		ሻሻ	∱ ∱			ሻ	ħβ
Traffic Volume (veh/h)	344	0	206	0	0	0	276	992	0	3	0	861
Future Volume (veh/h)	344	0	206	0	0	0	276	992	0	3	0	861
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0		0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		1.00	1.00		1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00
Work Zone On Approach	1011	No	1001	10-0	No	10-0		No	4=00			No
Adj Sat Flow, veh/h/ln	1811	1811	1884	1870	1870	1870	1717	1717	1786		1717	1717
Adj Flow Rate, veh/h	430	0	145	0	0	0	310	1115	0		0	936
Peak Hour Factor	0.95	0.95	0.95	0.25	0.25	0.25	0.89	0.89	0.89		0.92	0.92
Percent Heavy Veh, %	6	6	6	2	2	2	6	6	6		6	6
Cap, veh/h	593	0	271	0	2	0	390	2213	0		2	1066
Arrive On Green	0.17	0.00	0.17	0.00	0.00	0.00	0.12	0.68	0.00		0.00	0.49
Sat Flow, veh/h	3450	0	1579	0	1870	0	3172	3348	0		1635	2173
Grp Volume(v), veh/h	430	0	145	0	0	0	310	1115	0		0	699
Grp Sat Flow(s),veh/h/ln	1725	0	1579	0	1870	0	1586	1631	0		1635	1631
Q Serve(g_s), s	8.9	0.0	6.3	0.0	0.0	0.0	7.2	12.6	0.0		0.0	28.9
Cycle Q Clear(g_c), s	8.9	0.0	6.3	0.0	0.0	0.0	7.2	12.6	0.0		0.0	28.9
Prop In Lane	1.00	0	1.00	0.00	0	0.00	1.00	0040	0.00		1.00	000
Lane Grp Cap(c), veh/h	593	0	271	0	2	0	390	2213	0		2	800
V/C Ratio(X)	0.73	0.00	0.53 644	0.00	0.00 768	0.00	0.79	0.50	0.00		0.00 121	0.87
Avail Cap(c_a), veh/h HCM Platoon Ratio	1407	0 1.00	1.00	0 1.00	1.00	1.00	466 1.00	2254 1.00	1.00		1.00	1008
Upstream Filter(I)	1.00 1.00	0.00	1.00	0.00	0.00	0.00	1.00	1.00	0.00		0.00	1.00
Uniform Delay (d), s/veh	29.6	0.00	28.5	0.00	0.00	0.00	32.2	5.9	0.00		0.00	17.2
Incr Delay (d2), s/veh	0.6	0.0	0.6	0.0	0.0	0.0	6.4	0.1	0.0		0.0	6.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0
%ile BackOfQ(50%),veh/ln	3.3	0.0	2.2	0.0	0.0	0.0	2.9	2.7	0.0		0.0	10.1
Unsig. Movement Delay, s/ver		0.0	۷.۷	0.0	0.0	0.0	2.5	2.1	0.0		0.0	10.1
LnGrp Delay(d),s/veh	30.2	0.0	29.1	0.0	0.0	0.0	38.6	6.0	0.0		0.0	23.3
LnGrp LOS	C	Α	C	Α	Α	A	D	Α	Α		Α	C
Approach Vol, veh/h		575			0	,,		1425			,,	1370
Approach Delay, s/veh		30.0			0.0			13.1				24.1
Approach LOS		C			0.0			В				C
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		19.0	14.2	42.4		0.0	0.0	56.6				
Change Period (Y+Rc), s		6.0	4.9	5.3		4.2	4.9	5.3				
Max Green Setting (Gmax), s		30.8	11.1	46.7		31.0	5.6	52.2				
Max Q Clear Time (g_c+I1), s		10.9	9.2	31.8		0.0	0.0	14.6				
Green Ext Time (p_c), s		0.9	0.1	5.3		0.0	0.0	5.5				
Intersection Summary												
HCM 6th Ctrl Delay			20.5									
HCM 6th LOS			С									

User approved volume balancing among the lanes for turning movement. User approved ignoring U-Turning movement.

Movement	SBR
Larte Configurations	
Traffic Volume (veh/h)	399
Future Volume (veh/h)	399
Initial Q (Qb), veh	0
Ped-Bike Adj(A_pbT)	1.00
Parking Bus, Adj	1.00
Work Zone On Approach	
Adj Sat Flow, veh/h/ln	1786
Adj Flow Rate, veh/h	434
Peak Hour Factor	0.92
Percent Heavy Veh, %	6
Cap, veh/h	488
Arrive On Green	0.49
Sat Flow, veh/h	994
Grp Volume(v), veh/h	671
Grp Sat Flow(s), veh/h/ln	1536
Q Serve(g_s), s	29.8
Cycle Q Clear(g_c), s	29.8
Prop In Lane	0.65
Lane Grp Cap(c), veh/h	754
V/C Ratio(X)	0.89
Avail Cap(c_a), veh/h	950
HCM Platoon Ratio	1.00
Upstream Filter(I)	1.00
Uniform Delay (d), s/veh	17.4
Incr Delay (d2), s/veh	7.6
	0.0
Initial Q Delay(d3),s/veh	10.1
%ile BackOfQ(50%),veh/ln	
Unsig. Movement Delay, s/veh	
LnGrp Delay(d),s/veh	25.0
LnGrp LOS	С
Approach Vol, veh/h	
Approach Delay, s/veh	
Approach LOS	
Timer - Assigned Phs	

Intersection								
Int Delay, s/veh	0.7							
Movement	EBU	EBL	EBT	WBU	WBT	WBR	SBL	SBR
Lane Configurations	LDU	CDL Š	<u>₹</u>		↑	WDK	SDL W	JON
Traffic Vol, veh/h	1	72	1261	9	1177	28	T	50
Future Vol, veh/h	1	72	1261	0	1177	28	1	50
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	None
Storage Length	_	100	-	100	-	-	0	-
Veh in Median Storage	,# -	-	0	-	0	-	0	-
Grade, %	-	-	2	_	0	-	0	-
Peak Hour Factor	92	89	89	95	95	95	86	86
Heavy Vehicles, %	6	6	6	6	6	6	2	2
Mvmt Flow	1	81	1417	0	1239	29	1	58
Major/Minor	Anie 1			Maisro			line=0	
	Major1	4000		Major2			/linor2	004
Conflicting Flow All	1268	1268	0	1417	-		2127	634
Stage 1	-	-	-	-	-	-	1254	-
Stage 2	-	4.00	-	-	-	-	873	-
Critical Hdwy	6.52	4.22	-	6.52	-	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	-	-	5.84	-
Follow-up Hdwy	2.56	2.26	-	2.56	-	-	3.52	3.32
Pot Cap-1 Maneuver	215	523	-	171	-	-	43	422
Stage 1	-	-	-	-	-	-	232	-
Stage 2	-	-	-	-	-	-	369	-
Platoon blocked, %	-11	-11	-	474	-	-	20	400
Mov Cap-1 Maneuver	511	511	-	171	-	-	36	422
Mov Cap-2 Maneuver	-	-	-	-	-	-	36	-
Stage 1	-	-	-	-	-	-	195	-
Stage 2	-	-	-	-	-	-	369	-
Approach	EB			WB			SB	
HCM Control Delay, s	0.7			0			17.4	
HCM LOS							С	
Minor Lane/Major Mvm	+	EBL	EBT	WBU	WBT	WBR S	2DI n1	
	ι		EDI	171	VVDI	WDN		
Capacity (veh/h) HCM Lane V/C Ratio		511 0.16	-		-	-	349 0.17	
HCM Control Delay (s)		13.4	-	0	-	-	17.4	
HCM Lane LOS		13.4 B	-	A	-	-	17.4 C	
HCM 95th %tile Q(veh)		0.6	-	0	-	-	0.6	
		0.0	-	U	-	-	0.0	

Intersection							
Int Delay, s/veh	0						
Movement	EBT	EBR	WBU	WBL	WBT	NBL	NBR
Lane Configurations		LDK	טפאי	VVDL	<u>₩</u>	INDL	NDN
Traffic Vol, veh/h	↑	6	1	<u>។</u> 1	TT 1206	T	0
Future Vol, veh/h	1304	6	1	1	1206	2	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	-	None	- Olop	None
Storage Length	_	-	<u>-</u>	100	-	0	-
Veh in Median Storage		_	_	-	0	0	_
Grade, %	0	_	<u>-</u>	_	0	0	_
Peak Hour Factor	90	90	92	96	96	75	75
Heavy Vehicles, %	6	6	6	6	6	2	2
Mvmt Flow	1449	7	1	1	1256	3	0
IVIVIIIL I IUW	1443	I	I		1200	3	U
Major/Minor I	Major1	1	Major2		N	Minor1	
Conflicting Flow All	0	0	1456	1456	0	2085	728
Stage 1	-	-	-	-	-	1453	-
Stage 2	-	-	-	-	-	632	-
Critical Hdwy	-	-	6.52	4.22	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	-	5.84	-
Follow-up Hdwy	-	-	2.56	2.26	-	3.52	3.32
Pot Cap-1 Maneuver	-	-	162	441	-	46	366
Stage 1	-	-	-	-	-	181	-
Stage 2	-	-	-	-	-	492	-
Platoon blocked, %	-	-			-		
Mov Cap-1 Maneuver	-	-	235	235	-	46	366
Mov Cap-2 Maneuver	-	-	-	-	-	136	-
Stage 1	-	-	-	-	-	181	-
Stage 2	-	-	-	-	-	488	-
A	ED		\A/D			NID	
Approach	EB		WB			NB	
HCM Control Delay, s	0		0			32	
HCM LOS						D	
Minor Lane/Major Mvm	t I	NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)		136	-	-	235	-	
HCM Lane V/C Ratio		0.02	_		0.009	-	
HCM Control Delay (s)		32	-	-	20.5	-	
HCM Lane LOS		D	-	-	С	-	
HCM 95th %tile Q(veh)		0.1	_	_	0	-	
		V. 1					

		۶	→	•	F	•	←	•	4	†	/	L
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBU
Lane Configurations		1/4		7		ň	∱ β			4		
Traffic Volume (veh/h)	61	663	594	37	2	23	576	114	68	24	27	16
Future Volume (veh/h)	61	663	594	37	2	23	576	114	68	24	27	16
Initial Q (Qb), veh		0	0	0		0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)		1.00		1.00		1.00		1.00	1.00		1.00	
Parking Bus, Adj		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach			No				No			No		
Adj Sat Flow, veh/h/ln		1811	1811	1811		1811	1811	1884	1811	1811	1811	
Adj Flow Rate, veh/h		698	625	39		26	655	130	77	27	31	
Peak Hour Factor		0.95	0.95	0.95		0.88	0.88	0.88	0.88	0.88	0.88	
Percent Heavy Veh, %		6	6	6		6	6	6	6	6	6	
Cap, veh/h		756	831	704		34	723	143	98	34	39	
Arrive On Green		0.23	0.46	0.46		0.02	0.25	0.25	0.10	0.10	0.10	
Sat Flow, veh/h		3346	1811	1535		1725	2862	567	966	339	389	
Grp Volume(v), veh/h		698	625	39		26	393	392	135	0	0	
Grp Sat Flow(s), veh/h/ln		1673	1811	1535		1725	1721	1709	1693	0	0	
Q Serve(g_s), s		22.3	31.1	1.5		1.6	24.2	24.2	8.5	0.0	0.0	
Cycle Q Clear(g_c), s		22.3	31.1	1.5		1.6	24.2	24.2	8.5	0.0	0.0	
Prop In Lane		1.00		1.00		1.00		0.33	0.57		0.23	
Lane Grp Cap(c), veh/h		756	831	704		34	435	432	172	0	0	
V/C Ratio(X)		0.92	0.75	0.06		0.75	0.90	0.91	0.79	0.00	0.00	
Avail Cap(c_a), veh/h		801	852	722		89	486	483	450	0	0	
HCM Platoon Ratio		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)		1.00	1.00	1.00		1.00	1.00	1.00	1.00	0.00	0.00	
Uniform Delay (d), s/veh		41.3	24.4	16.4		53.2	39.5	39.5	47.9	0.0	0.0	
Incr Delay (d2), s/veh		15.3	3.3	0.0		11.6	18.0	18.4	5.9	0.0	0.0	
Initial Q Delay(d3),s/veh		0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln		10.4	13.0	0.5		0.8	11.9	11.9	3.9	0.0	0.0	
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh		56.6	27.7	16.4		64.8	57.5	57.9	53.7	0.0	0.0	
LnGrp LOS		E	C	В		E	E	E	D	A	A	
Approach Vol, veh/h		_	1362	_		_	811	_	_	135		
Approach Delay, s/veh			42.2				57.9			53.7		
Approach LOS			D				E			D		
Timer - Assigned Phs	1	2		4	5	6		8				
	7.1	55.3			29.5			15.7				
Phs Duration (G+Y+Rc), s	4.9			31.0	4.9	32.9		4.6				
Change Period (Y+Rc), s		5.3		5.3	26.1	5.3						
Max Green Setting (Gmax), s	5.6	51.3		34.0		30.8		29.0				
Max Q Clear Time (g_c+l1), s	3.6	33.1		23.8	24.3	26.2		10.5				
Green Ext Time (p_c), s	0.0	2.3		1.9	0.4	1.3		0.6				
Intersection Summary												
HCM 6th Ctrl Delay			47.7									
HCM 6th LOS			D									
Notes												

	\	ļ	4
Movement	SBL	SBT	SBR
Lane Configurations		4	77
Traffic Volume (veh/h)	128	14	527
Future Volume (veh/h)	128	14	527
Initial Q (Qb), veh	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00
Work Zone On Approach		No	
Adj Sat Flow, veh/h/ln	1811	1811	1811
Adj Flow Rate, veh/h	136	15	561
Peak Hour Factor	0.94	0.94	0.94
Percent Heavy Veh, %	6	6	6
Cap, veh/h	368	41	637
Arrive On Green	0.24	0.24	0.24
Sat Flow, veh/h	1561	172	2701
Grp Volume(v), veh/h	151	0	561
Grp Sat Flow(s), veh/h/ln	1733	0	1351
Q Serve(g_s), s	8.0	0.0	21.8
Cycle Q Clear(g_c), s	8.0	0.0	21.8
Prop In Lane	0.90	0.0	1.00
Lane Grp Cap(c), veh/h	409	0	637
V/C Ratio(X)	0.37	0.00	0.88
Avail Cap(c_a), veh/h	540	0.00	842
HCM Platoon Ratio	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00
		0.00	40.2
Uniform Delay (d), s/veh	34.9 0.4		
Incr Delay (d2), s/veh		0.0	8.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	3.3	0.0	8.0
Unsig. Movement Delay, s/veh		0.0	40.0
LnGrp Delay(d),s/veh	35.3	0.0	48.2
LnGrp LOS	D	Α	D
Approach Vol, veh/h		712	
Approach Delay, s/veh		45.4	
Approach LOS		D	
Timer - Assigned Phs			

	•	•	†	<i>></i>	>	↓			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	ሻሻ	7	^	7	ሻ	^			
Traffic Volume (veh/h)	182	109	517	57	44	1117			
Future Volume (veh/h)	182	109	517	57	44	1117			
Initial Q (Qb), veh	0	0	0	0	0	0			
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00				
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00			
Work Zone On Approach	No		No			No			
Adj Sat Flow, veh/h/ln	1841	1841	1746	1746	1841	1841			
Adj Flow Rate, veh/h	202	121	533	59	47	1188			
Peak Hour Factor	0.90	0.90	0.97	0.97	0.94	0.94			
Percent Heavy Veh, %	4	4	4	4	4	4			
Cap, veh/h	493	226	995	658	76	1766			
Arrive On Green	0.14	0.14	0.30	0.30	0.04	0.50			
Sat Flow, veh/h	3401	1560	3406	1480	1753	3589			
Grp Volume(v), veh/h	202	121	533	59	47	1188			
Grp Sat Flow(s), veh/h/ln	1700	1560	1659	1480	1753	1749			
Q Serve(g_s), s	1.6	2.2	4.1	0.7	0.8	7.7			
Cycle Q Clear(g_c), s	1.6	2.2	4.1	0.7	0.8	7.7			
Prop In Lane	1.00	1.00	•••	1.00	1.00	• • • •			
Lane Grp Cap(c), veh/h	493	226	995	658	76	1766			
V/C Ratio(X)	0.41	0.54	0.54	0.09	0.62	0.67			
Avail Cap(c_a), veh/h	2944	1351	2379	1276	382	3837			
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00			
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00			
Uniform Delay (d), s/veh	11.8	12.0	8.8	4.9	14.2	5.6			
Incr Delay (d2), s/veh	0.2	0.7	0.2	0.0	3.1	0.2			
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0			
%ile BackOfQ(50%),veh/ln	0.4	1.9	0.8	0.1	0.3	0.6			
Unsig. Movement Delay, s/veh		1.0	0.0	V. 1	0.0	0.0			
LnGrp Delay(d),s/veh	12.0	12.7	9.0	4.9	17.3	5.8			
LnGrp LOS	12.0 B	В	A	4.5 A	В	A			
Approach Vol, veh/h	323		592	,,		1235			
Approach Delay, s/veh	12.3		8.6			6.2			
Approach LOS	12.3 B		Α			Α			
• •	D		^						
Timer - Assigned Phs				4		6	7	8	
Phs Duration (G+Y+Rc), s				20.6		9.7	6.2 14.		
Change Period (Y+Rc), s				5.3		5.3	4.9 5.		
Max Green Setting (Gmax), s				33.2		26.2	6.6 21.		
Max Q Clear Time (g_c+l1), s				9.7		4.2	2.8 6.		
Green Ext Time (p_c), s				5.6		0.5	0.0 2.	.0	
Intersection Summary									
HCM 6th Ctrl Delay			7.8						

2035 AM_VCRCCP 04/14/2023

	۶	→	*	•	•	•	4	†	-	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	₽		7	1		*	†		7	↑ ↑	
Traffic Volume (veh/h)	28	5	59	25	5	25	17	637	25	25	1149	24
Future Volume (veh/h)	28	5	59	25	5	25	17	637	25	25	1149	24
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		0.99	1.00		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1945	1870	1870	1870	1811	1811	1870	1870	1811	1811
Adj Flow Rate, veh/h	42	5	88	27	5	27	19	724	27	27	1306	27
Peak Hour Factor	0.67	0.92	0.67	0.92	0.92	0.92	0.88	0.88	0.92	0.92	0.88	0.88
Percent Heavy Veh, %	2	2	2	2	2	2	6	6	2	2	6	6
Cap, veh/h	151	12	208	55	21	114	40	1572	59	55	1630	34
Arrive On Green	0.08	0.14	0.14	0.03	0.08	0.08	0.02	0.46	0.46	0.03	0.47	0.47
Sat Flow, veh/h	1781	86	1512	1781	254	1370	1725	3382	126	1781	3447	71
Grp Volume(v), veh/h	42	0	93	27	0	32	19	368	383	27	652	681
Grp Sat Flow(s),veh/h/ln	1781	0	1598	1781	0	1624	1725	1721	1788	1781	1721	1798
Q Serve(g_s), s	1.2	0.0	2.9	0.8	0.0	1.0	0.6	7.8	7.8	0.8	17.2	17.3
Cycle Q Clear(g_c), s	1.2	0.0	2.9	0.8	0.0	1.0	0.6	7.8	7.8	0.8	17.2	17.3
Prop In Lane	1.00	0.0	0.95	1.00	0.0	0.84	1.00	1.0	0.07	1.00		0.04
Lane Grp Cap(c), veh/h	151	0	220	55	0	136	40	800	831	55	813	850
V/C Ratio(X)	0.28	0.00	0.42	0.49	0.00	0.24	0.48	0.46	0.46	0.49	0.80	0.80
Avail Cap(c_a), veh/h	598	0	909	183	0	545	161	800	831	169	979	1023
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	23.0	0.0	21.2	25.6	0.0	23.0	25.9	9.8	9.8	25.6	12.0	12.0
Incr Delay (d2), s/veh	1.0	0.0	1.3	6.6	0.0	0.9	8.7	0.4	0.4	6.6	4.1	3.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.5	0.0	1.1	0.4	0.0	0.4	0.3	2.1	2.2	0.4	5.4	5.6
Unsig. Movement Delay, s/veh		0.0	•••	0.1	0.0	0.1	0.0	2.1		0.1	0.1	0.0
LnGrp Delay(d),s/veh	24.0	0.0	22.5	32.2	0.0	23.8	34.6	10.2	10.2	32.2	16.0	15.9
LnGrp LOS	C C	Α	C	C	A	C	C	В	В	C	В	В
Approach Vol, veh/h		135			59			770			1360	
Approach Delay, s/veh		22.9			27.7			10.8			16.3	
Approach LOS		22.9 C			Z1.1			В			10.3 B	
Approach LOS		C			C			Ь			Ь	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	6.2	29.4	6.2	11.9	5.7	29.8	9.1	9.0				
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	5.1	20.9	5.5	30.5	5.0	30.5	18.0	18.0				
Max Q Clear Time (g_c+l1), s	2.8	9.8	2.8	4.9	2.6	19.3	3.2	3.0				
Green Ext Time (p_c), s	0.0	3.2	0.0	0.5	0.0	6.1	0.1	0.1				
Intersection Summary												
HCM 6th Ctrl Delay			15.1									
HCM 6th LOS			В									
Notes												

HCM 6th Signalized Intersection Summary 3: Valley Center Rd. & Park Circle

	٠	→	•	•	←	•	1	†	~	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	₽			4		*	^		*	↑ ↑	
Traffic Volume (veh/h)	57	0	88	1	0	1	52	820	1	1	1297	55
Future Volume (veh/h)	57	0	88	1	0	1	52	820	1	1	1297	55
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	40-0	No	40-0	10=0	No	10-0	10-0	No	10-0	10-0	No	10-0
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	62	0	96	1	0	1	57	891	1	1	1410	60
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	161	0	143	2	0	2	86	2337	3	3	2065	88
Arrive On Green	0.09	0.00	0.09	0.00	0.00	0.00	0.05	0.64	0.64	0.00	0.59	0.59
Sat Flow, veh/h	1781	0	1585	839	0	839	1781	3642	4	1781	3473	148
Grp Volume(v), veh/h	62	0	96	2	0	0	57	435	457	1	720	750
Grp Sat Flow(s),veh/h/ln	1781	0	1585	1677	0	0	1781	1777	1870	1781	1777	1844
Q Serve(g_s), s	2.2	0.0	4.0	0.1	0.0	0.0	2.1	7.9	7.9	0.0	18.9	19.0
Cycle Q Clear(g_c), s	2.2	0.0	4.0	0.1	0.0	0.0	2.1	7.9	7.9	0.0	18.9	19.0
Prop In Lane	1.00	•	1.00	0.50	•	0.50	1.00	4440	0.00	1.00	4055	0.08
Lane Grp Cap(c), veh/h	161	0	143	5	0	0	86	1140	1200	3	1057	1097
V/C Ratio(X)	0.38	0.00	0.67	0.44	0.00	0.00	0.66	0.38	0.38	0.38	0.68	0.68
Avail Cap(c_a), veh/h	472	0	420	442	0	0	138	1140	1200	133	1057	1097
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	29.3	0.0	30.1	34.0	0.0	0.0	31.9	5.8	5.8	34.1	9.4	9.5
Incr Delay (d2), s/veh	1.5 0.0	0.0	5.3 0.0	54.4	0.0	0.0	8.4 0.0	1.0 0.0	0.9	73.3	3.6	3.5 0.0
Initial Q Delay(d3),s/veh	1.0	0.0	1.7	0.0	0.0	0.0	1.1	2.2	0.0 2.3	0.0	0.0 6.0	6.3
%ile BackOfQ(50%),veh/ln Unsig. Movement Delay, s/veh		0.0	1.7	0.1	0.0	0.0	1.1	2.2	2.3	0.1	0.0	0.3
	30.8	0.0	35.3	88.4	0.0	0.0	40.3	6.8	6.7	107.3	13.0	12.9
LnGrp Delay(d),s/veh LnGrp LOS	30.6 C	0.0 A	33.3 D	60.4 F		0.0 A	40.3 D	0.6 A	Α	107.3 F	13.0 B	12.9 B
			U	Г	A	A	U	949	A	Г	1471	
Approach Vol, veh/h		158			88.4			8.8			13.0	
Approach Delay, s/veh Approach LOS		33.5 C			_						13.0 B	
Approach LOS		C			F			А			D	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	4.6	48.3		10.7	7.8	45.1		4.7				
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	5.1	40.8		18.1	5.3	40.6		18.0				
Max Q Clear Time (g_c+I1), s	2.0	9.9		6.0	4.1	21.0		2.1				
Green Ext Time (p_c), s	0.0	5.6		0.5	0.0	9.6		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			12.8									
HCM 6th LOS			В									

	•	•	†	-	1	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	W		†		*	^	
Traffic Volume (veh/h)	10	10	708	10	10	1163	
Future Volume (veh/h)	10	10	708	10	10	1163	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00		0.98	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No		No			No	
Adj Sat Flow, veh/h/ln	1945	1945	1811	1811	1788	1788	
Adj Flow Rate, veh/h	40	40	787	11	10	1187	
Peak Hour Factor	0.25	0.25	0.90	0.90	0.98	0.98	
Percent Heavy Veh, %	2	2	6	6	6	6	
Cap, veh/h	72	72	1419	20	23	1992	
Arrive On Green	0.08	0.08	0.41	0.41	0.01	0.59	
Sat Flow, veh/h	863	863	3564	49	1702	3486	
Grp Volume(v), veh/h	81	000	390	408	10	1187	
Grp Sat Flow(s), veh/h/ln	1747	0	1721	1801	1702	1698	
	1.2		4.7	4.7	0.2	6.1	
Q Serve(g_s), s	1.2	0.0	4.7		0.2		
Cycle Q Clear(g_c), s		0.0	4.7	4.7		6.1	
Prop In Lane	0.49	0.49	700	0.03	1.00	4000	
Lane Grp Cap(c), veh/h	147	0	703	736	23	1992	
V/C Ratio(X)	0.55	0.00	0.55	0.55	0.44	0.60	
Avail Cap(c_a), veh/h	1183	0	1102	1154	343	3419	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	12.0	0.0	6.2	6.2	13.4	3.6	
Incr Delay (d2), s/veh	3.2	0.0	0.7	0.7	12.7	0.3	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	0.5	0.0	0.6	0.6	0.1	0.1	
Unsig. Movement Delay, s/veh							
LnGrp Delay(d),s/veh	15.2	0.0	6.9	6.8	26.1	3.9	
LnGrp LOS	В	Α	Α	Α	С	Α	
Approach Vol, veh/h	81		798			1197	
Approach Delay, s/veh	15.2		6.9			4.1	
Approach LOS	В		Α			Α	
Timer - Assigned Phs	1	2				6	8
Phs Duration (G+Y+Rc), s	4.9	15.7				20.5	6.8
Change Period (Y+Rc), s	4.5	4.5				4.5	4.5
Max Green Setting (Gmax), s	5.5	17.5				27.5	18.5
Max Q Clear Time (g_c+l1), s	2.2	6.7				8.1	3.2
Green Ext Time (p_c), s	0.0	3.4				8.0	0.2
Intersection Summary							
HCM 6th Ctrl Delay			5.6				
HCM 6th LOS			3.0 A				
			A				
Notes							

User approved pedestrian interval to be less than phase max green.

User approved volume balancing among the lanes for turning movement.

	۶	*	1	1	Ţ	1
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥		7	^	†	
Traffic Volume (veh/h)	34	17	12	807	1203	27
Future Volume (veh/h)	34	17	12	807	1203	27
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	0.90	1.00			0.94
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No	No	
Adj Sat Flow, veh/h/ln	1870	1870	1847	1847	1847	1847
Adj Flow Rate, veh/h	37	18	13	877	1308	29
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2
Cap, veh/h	134	65	30	2186	1677	37
Arrive On Green	0.12	0.12	0.02	0.62	0.48	0.48
Sat Flow, veh/h	1093	532	1759	3601	3596	78
Grp Volume(v), veh/h	56	0	13	877	654	683
Grp Sat Flow(s), veh/h/ln	1654	0	1759	1754	1754	1827
Q Serve(g_s), s	1.1	0.0	0.3	4.4	11.0	11.0
Cycle Q Clear(g_c), s	1.1	0.0	0.3	4.4	11.0	11.0
Prop In Lane	0.66	0.32	1.00	7.4	11.0	0.04
Lane Grp Cap(c), veh/h	203	0.32	30	2186	840	874
V/C Ratio(X)	0.28	0.00	0.44	0.40	0.78	0.78
Avail Cap(c_a), veh/h	842	0.00	249	2780	918	956
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
	1.00	0.00	1.00	1.00	1.00	1.00
Upstream Filter(I)						
Uniform Delay (d), s/veh	14.1	0.0	17.2	3.4	7.7	7.7
Incr Delay (d2), s/veh	0.7	0.0	9.7	0.1	4.0	3.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.4	0.0	0.2	0.1	2.6	2.7
Unsig. Movement Delay, s/veh		0.0	00.0	0.5	44-	44.0
LnGrp Delay(d),s/veh	14.8	0.0	26.9	3.5	11.7	11.6
LnGrp LOS	В	A	С	A	В	В
Approach Vol, veh/h	56			890	1337	
Approach Delay, s/veh	14.8			3.8	11.6	
Approach LOS	В			Α	В	
Timer - Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		26.5		8.8	5.1	21.4
Change Period (Y+Rc), s		4.5		4.5	4.5	4.5
Max Green Setting (Gmax), s		28.0		18.0	5.0	18.5
Max Q Clear Time (g_c+I1), s		6.4		3.1	2.3	13.0
Green Ext Time (p_c), s		5.7		0.1	0.0	3.5
` ′		5.1		0.1	0.0	0.0
Intersection Summary						
HCM 6th Ctrl Delay			8.6			
HCM 6th LOS			Α			
Notes						

User approved volume balancing among the lanes for turning movement.

HCM 6th Signalized Intersection Summary 6: Valley Center Rd. & Lilac Rd.

	٠	→	*	•	←	•	1	†	~	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	4	7		4		44	^		Ť	↑ ↑	
Traffic Volume (veh/h)	304	0	264	2	0	0	194	568	0	0	921	400
Future Volume (veh/h)	304	0	264	2	0	0	194	568	0	0	921	400
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.98	1.00		1.00	1.00		1.00	1.00		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1841	1841	1914	1870	1870	1870	1746	1746	1816	1746	1746	1816
Adj Flow Rate, veh/h	406	0	185	8	0	0	218	638	0	0	1001	435
Peak Hour Factor	0.95	0.95	0.95	0.25	0.25	0.25	0.89	0.89	0.89	0.92	0.92	0.92
Percent Heavy Veh, %	4	4	4	2	2	2	4	4	4	4	4	4
Cap, veh/h	580	0	264	22	0	0	287	2130	0	2	1121	479
Arrive On Green	0.17	0.00	0.17	0.01	0.00	0.00	0.09	0.64	0.00	0.00	0.50	0.50
Sat Flow, veh/h	3506	0	1596	1781	0	0	3227	3406	0	1663	2260	965
Grp Volume(v), veh/h	406	0	185	8	0	0	218	638	0	0	730	706
Grp Sat Flow(s),veh/h/ln	1753	0	1596	1781	0	0	1613	1659	0	1663	1659	1566
Q Serve(g_s), s	9.4	0.0	9.4	0.4	0.0	0.0	5.7	7.3	0.0	0.0	34.0	35.5
Cycle Q Clear(g_c), s	9.4	0.0	9.4	0.4	0.0	0.0	5.7	7.3	0.0	0.0	34.0	35.5
Prop In Lane	1.00		1.00	1.00		0.00	1.00		0.00	1.00		0.62
Lane Grp Cap(c), veh/h	580	0	264	22	0	0	287	2130	0	2	823	777
V/C Ratio(X)	0.70	0.00	0.70	0.37	0.00	0.00	0.76	0.30	0.00	0.00	0.89	0.91
Avail Cap(c_a), veh/h	1258	0	573	643	0	0	305	2130	0	109	961	907
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00
Uniform Delay (d), s/veh	33.8	0.0	33.8	42.1	0.0	0.0	38.2	6.8	0.0	0.0	19.5	19.9
Incr Delay (d2), s/veh	0.6	0.0	1.3	3.9	0.0	0.0	8.7	0.0	0.0	0.0	8.3	10.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	3.7	0.0	3.5	0.2	0.0	0.0	2.5	2.0	0.0	0.0	12.9	13.2
Unsig. Movement Delay, s/veh				1-0			40.0					
LnGrp Delay(d),s/veh	34.4	0.0	35.1	45.9	0.0	0.0	46.9	6.8	0.0	0.0	27.8	30.7
LnGrp LOS	С	A	D	D	Α	A	D	A	A	A	С	<u>C</u>
Approach Vol, veh/h		591			8			856			1436	
Approach Delay, s/veh		34.6			45.9			17.0			29.2	
Approach LOS		С			D			В			С	
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		20.2	12.5	47.8		5.2	0.0	60.4				
Change Period (Y+Rc), s		6.0	4.9	5.3		4.2	4.9	5.3				
Max Green Setting (Gmax), s		30.8	8.1	49.7		31.0	5.6	52.2				
Max Q Clear Time (g_c+l1), s		11.4	7.7	37.5		2.4	0.0	9.3				
Green Ext Time (p_c), s		1.0	0.0	5.1		0.0	0.0	2.7				
Intersection Summary												
HCM 6th Ctrl Delay			26.7									
HCM 6th LOS			С									

Notes

User approved pedestrian interval to be less than phase max green.

User approved volume balancing among the lanes for turning movement.

User approved ignoring U-Turning movement.

MOVEMENT SUMMARY

▼ Site: 7 [Miller Road (Site Folder: Valley Center Road)]

ΑM

Site Category: Existing

Roundabout

Vehi	cle Mo	vement	Perform	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO\ [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed mph
Sout	h: Road	Name												
3	L2	72	3.0	78	3.0	0.215	10.3	LOS B	0.7	18.5	0.69	0.69	0.69	30.4
8	T1	1	3.0	1	3.0	0.215	10.3	LOS B	0.7	18.5	0.69	0.69	0.69	30.5
18	R2	25	3.0	27	3.0	0.215	10.3	LOS B	0.7	18.5	0.69	0.69	0.69	29.8
Appr	oach	98	3.0	107	3.0	0.215	10.3	LOS B	0.7	18.5	0.69	0.69	0.69	30.3
East	Valley	Center R	oad											
1	L2	64	3.0	70	3.0	0.547	9.0	LOS A	3.8	99.1	0.39	0.22	0.39	32.3
6	T1	1211	4.0	1275	4.0	0.547	9.1	LOS A	3.8	99.1	0.39	0.22	0.39	32.5
16	R2	14	4.0	15	4.0	0.547	9.1	LOS A	3.8	99.0	0.39	0.22	0.39	31.7
Appr	oach	1289	4.0	1359	3.9	0.547	9.1	LOS A	3.8	99.1	0.39	0.22	0.39	32.5
North	n: Miller	Road												
7	L2	20	2.0	23	2.0	0.364	16.0	LOS C	1.4	35.1	0.80	0.86	1.05	29.3
4	T1	1	3.0	1	3.0	0.364	16.1	LOS C	1.4	35.1	0.80	0.86	1.05	29.3
14	R2	103	2.0	120	2.0	0.364	16.0	LOS C	1.4	35.1	0.80	0.86	1.05	28.6
Appr	oach	124	2.0	144	2.0	0.364	16.0	LOS C	1.4	35.1	0.80	0.86	1.05	28.7
West	: Valley	Center F	Road											
5	L2	18	4.0	20	4.0	0.478	7.9	LOS A	3.0	77.9	0.34	0.18	0.34	33.0
2	T1	991	4.0	1113	4.0	0.478	7.9	LOS A	3.0	78.0	0.34	0.18	0.34	33.1
12	R2	56	3.0	61	3.0	0.478	7.9	LOS A	3.0	78.0	0.34	0.18	0.34	32.3
Appr	oach	1065	3.9	1195	3.9	0.478	7.9	LOSA	3.0	78.0	0.34	0.18	0.34	33.1
All V	ehicles	2576	3.8	2804	3.8	0.547	9.0	LOSA	3.8	99.1	0.40	0.25	0.41	32.4

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

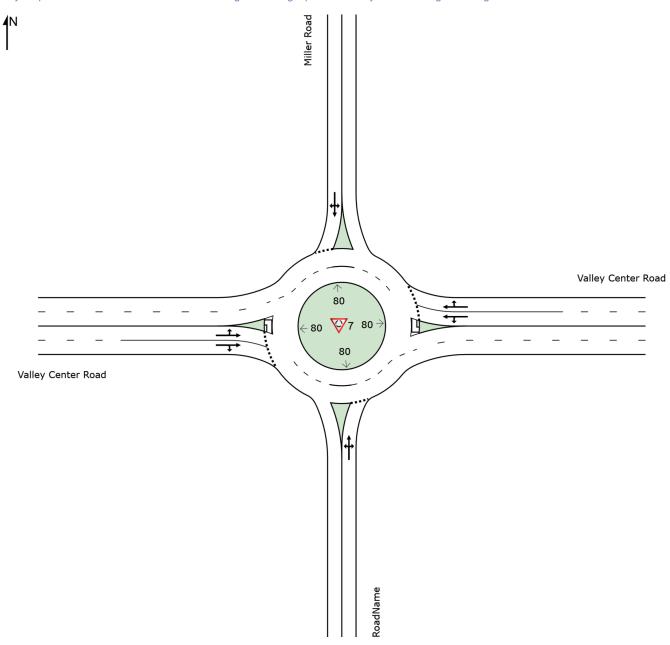
Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: MICHAEL BAKER INTERNATIONAL | Licence: NETWORK / 1PC | Processed: Friday, April 14, 2023 2:29:36 PM

Project: H:\PDATA\170071_Valley Center Corridor\Traffic\Concept Development\Synchro\Final Concept\2035\2035 Final_Option _AM - 2lanes


WVR.sip9

SITE LAYOUT

▼ Site: 7 [Miller Road (Site Folder: Valley Center Road)]

Site Category: Existing Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

04/14/2023

	۶	→	•	1	←	•	1	†	~	/	Ţ	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†		7	†		7	4		1	1	
Traffic Volume (veh/h)	0	918	2	2	1193	0	5	0	2	0	0	0
Future Volume (veh/h)	0	918	2	2	1193	0	5	0	2	0	0	0
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		0.93	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1811	1811	1811	1811	1870	1945	1870	1945	1870	1870	1870
Adj Flow Rate, veh/h	0	1020	2	2	1243	0	7	0	3	0	0	0
Peak Hour Factor	0.92	0.90	0.90	0.96	0.96	0.92	0.75	0.92	0.75	0.92	0.92	0.92
Percent Heavy Veh, %	2	6	6	6	6	2	2	2	2	2	2	2
Cap, veh/h	201	1862	4	380	1819	0	409	0	326	5	5	0
Arrive On Green	0.00	0.53	0.53	0.53	0.53	0.00	0.22	0.00	0.22	0.00	0.00	0.00
Sat Flow, veh/h	447	3523	7	534	3532	0	1853	0	1477	1781	1870	0
Grp Volume(v), veh/h	0	498	524	2	1243	0	7	0	3	0	0	0
Grp Sat Flow(s),veh/h/ln	447	1721	1810	534	1721	0	1853	0	1477	1781	1870	0
Q Serve(g_s), s	0.0	6.9	6.9	0.1	9.6	0.0	0.1	0.0	0.1	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.0	6.9	6.9	7.0	9.6	0.0	0.1	0.0	0.1	0.0	0.0	0.0
Prop In Lane	1.00		0.00	1.00		0.00	1.00		1.00	1.00		0.00
Lane Grp Cap(c), veh/h	201	909	956	380	1819	0	409	0	326	5	5	0
V/C Ratio(X)	0.00	0.55	0.55	0.01	0.68	0.00	0.02	0.00	0.01	0.00	0.00	0.00
Avail Cap(c_a), veh/h	282	1223	1286	478	2446	0	929	0	741	894	938	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.00	1.00	1.00	1.00	1.00	0.00	1.00	0.00	1.00	0.00	0.00	0.00
Uniform Delay (d), s/veh	0.0	5.6	5.6	7.9	6.2	0.0	10.9	0.0	10.9	0.0	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.5	0.5	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.0	1.3	1.3	0.0	1.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	0.0	6.1	6.1	7.9	6.7	0.0	11.0	0.0	10.9	0.0	0.0	0.0
LnGrp LOS	Α	Α	Α	Α	Α	Α	В	Α	В	Α	Α	A
Approach Vol, veh/h		1022			1245			10			0	
Approach Delay, s/veh		6.1			6.7			10.9			0.0	
Approach LOS		Α			Α			В				
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		12.4		23.5		0.0		23.5				
Change Period (Y+Rc), s		4.5		4.5		4.5		4.5				
Max Green Setting (Gmax), s		18.0		25.5		18.0		25.5				
Max Q Clear Time (g_c+I1), s		2.1		8.9		0.0		11.6				
Green Ext Time (p_c), s		0.0		6.0		0.0		7.4				
Intersection Summary												
HCM 6th Ctrl Delay			6.5									
HCM 6th LOS			Α									

HCM 6th Signalized Intersection Summary 9: Cole Grade Rd. & Valley Center Rd.

	۶	→	*	F	•	+	4	1	1	~	1	
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	37	^	7		A	^	7		4			र्स
Traffic Volume (veh/h)	405	492	31	1	14	451	158	30	11	11	253	28
Future Volume (veh/h)	405	492	31	1	14	451	158	30	11	11	253	28
Initial Q (Qb), veh	0	0	0		0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00		1.00		1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No				No			No			No
Adj Sat Flow, veh/h/ln	1811	1811	1811		1811	1811	1884	1811	1811	1811	1811	1811
Adj Flow Rate, veh/h	426	518	33		16	512	180	34	12	12	269	30
Peak Hour Factor	0.95	0.95	0.95		0.88	0.88	0.88	0.88	0.88	0.88	0.94	0.94
Percent Heavy Veh, %	6	6	6		6	6	6	6	6	6	6	6
Cap, veh/h	378	582	493		26	789	366	44	16	16	520	58
Arrive On Green	0.11	0.32	0.32		0.02	0.23	0.23	0.04	0.04	0.04	0.33	0.33
Sat Flow, veh/h	3346	1811	1535		1725	3441	1596	995	351	351	1559	174
Grp Volume(v), veh/h	426	518	33		16	512	180	58	0	0	299	0
Grp Sat Flow(s),veh/h/ln	1673	1811	1535		1725	1721	1596	1698	0	0	1733	0
Q Serve(g_s), s	8.1	19.5	1.1		0.7	9.7	7.0	2.4	0.0	0.0	10.0	0.0
Cycle Q Clear(g_c), s	8.1	19.5	1.1		0.7	9.7	7.0	2.4	0.0	0.0	10.0	0.0
Prop In Lane	1.00		1.00		1.00		1.00	0.59		0.21	0.90	
Lane Grp Cap(c), veh/h	378	582	493		26	789	366	75	0	0	578	0
V/C Ratio(X)	1.13	0.89	0.07		0.61	0.65	0.49	0.77	0.00	0.00	0.52	0.00
Avail Cap(c_a), veh/h	378	785	665		135	1372	636	686	0	0	826	0
HCM Platoon Ratio	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00		1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00
Uniform Delay (d), s/veh	31.8	23.1	16.9		35.1	25.0	24.0	33.9	0.0	0.0	19.3	0.0
Incr Delay (d2), s/veh	85.6	8.0	0.0		8.2	0.3	0.4	11.7	0.0	0.0	0.5	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	7.6	8.9	0.4		0.3	3.7	2.5	1.2	0.0	0.0	3.6	0.0
Unsig. Movement Delay, s/veh		• • •	100		10.0	0- 1		4= 0			10.0	
LnGrp Delay(d),s/veh	117.4	31.1	16.9		43.3	25.4	24.4	45.6	0.0	0.0	19.8	0.0
LnGrp LOS	F	С	В		D	С	С	D	Α	Α	В	A
Approach Vol, veh/h		977				708			58			1053
Approach Delay, s/veh		68.3				25.5			45.6			23.6
Approach LOS		Е				С			D			С
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	6.4	28.4		29.2	13.0	21.8		7.8				
Change Period (Y+Rc), s	5.3	* 5.3		5.3	4.9	5.3		4.6				
Max Green Setting (Gmax), s	5.6	* 31		34.2	8.1	28.6		29.0				
Max Q Clear Time (g_c+l1), s	2.7	21.5		20.5	10.1	11.7		4.4				
Green Ext Time (p_c), s	0.0	1.6		3.4	0.0	2.3		0.2				
Intersection Summary												
HCM 6th Ctrl Delay			40.2									
HCM 6th LOS			D									

User approved ignoring U-Turning movement.

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

	3.0
Movement	SBR
LaneConfigurations	77
Traffic Volume (veh/h)	709
Future Volume (veh/h)	709
Initial Q (Qb), veh	0
Ped-Bike Adj(A_pbT)	1.00
Parking Bus, Adj	1.00
Work Zone On Approach	
Adj Sat Flow, veh/h/ln	1811
Adj Flow Rate, veh/h	754
Peak Hour Factor	0.94
Percent Heavy Veh, %	6
Cap, veh/h	900
Arrive On Green	0.33
Sat Flow, veh/h	2701
Grp Volume(v), veh/h	754
Grp Sat Flow(s), veh/h/ln	1351
Q Serve(g_s), s	18.5
Cycle Q Clear(g_c), s	18.5
Prop In Lane	1.00
Lane Grp Cap(c), veh/h	900
V/C Ratio(X)	0.84
Avail Cap(c_a), veh/h	1288
HCM Platoon Ratio	1.00
Upstream Filter(I)	1.00
Uniform Delay (d), s/veh	22.1
Incr Delay (d2), s/veh	3.0
Initial Q Delay(d3),s/veh	0.0
%ile BackOfQ(50%),veh/ln	5.9
Unsig. Movement Delay, s/ve	
LnGrp Delay(d),s/veh	25.1
LnGrp LOS	С
Approach Vol, veh/h	
Approach Delay, s/veh	
Approach LOS	
Timer - Assigned Phs	
Timer - Assigned Firs	

	•	•	†	/	>	ţ			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	ሻሻ	7	^	7	ች	^			
Traffic Volume (veh/h)	83	115	1160	165	118	856			
Future Volume (veh/h)	83	115	1160	165	118	856			
nitial Q (Qb), veh	0	0	0	0	0	0			
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00				
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00			
Nork Zone On Approach	No		No			No			
Adj Sat Flow, veh/h/ln	1811	1811	1717	1717	1811	1811			
Adj Flow Rate, veh/h	92	128	1196	170	126	911			
Peak Hour Factor	0.90	0.90	0.97	0.97	0.94	0.94			
Percent Heavy Veh, %	6	6	6	6	6	6			
Cap, veh/h	408	187	1499	846	160	2254			
Arrive On Green	0.12	0.12	0.46	0.46	0.09	0.66			
Sat Flow, veh/h	3346	1535	3348	1455	1725	3532			
Grp Volume(v), veh/h	92	128	1196	170	126	911			
Grp Sat Flow(s),veh/h/ln	1673	1535	1631	1455	1725	1721			
Q Serve(g_s), s	1.2	3.8	14.9	2.6	3.4	5.9			
Cycle Q Clear(g_c), s	1.2	3.8	14.9	2.6	3.4	5.9			
Prop In Lane	1.00	1.00		1.00	1.00				
_ane Grp Cap(c), veh/h	408	187	1499	846	160	2254			
V/C Ratio(X)	0.23	0.68	0.80	0.20	0.79	0.40			
Avail Cap(c_a), veh/h	1866	856	2108	1117	265	3107			
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00			
Jpstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00			
Jniform Delay (d), s/veh	18.8	20.0	11.0	4.7	21.1	3.8			
ncr Delay (d2), s/veh	0.1	1.7	1.0	0.0	3.3	0.0			
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0			
%ile BackOfQ(50%),veh/ln	0.4	0.1	3.6	0.7	1.3	0.6			
Jnsig. Movement Delay, s/veh									
_nGrp Delay(d),s/veh	18.9	21.6	11.9	4.8	24.4	3.9			
_nGrp LOS	В	С	В	Α	С	Α			
Approach Vol, veh/h	220		1366			1037			
Approach Delay, s/veh	20.5		11.0			6.4			
Approach LOS	С		В			Α			
Timer - Assigned Phs				4		6	7	8	
Phs Duration (G+Y+Rc), s				36.4		11.1	9.3	27.1	ĺ
Change Period (Y+Rc), s				5.3		5.3	4.9	5.3	
Max Green Setting (Gmax), s				42.9		26.5	7.3	30.7	
Max Q Clear Time (g_c+l1), s				7.9		5.8	5.4	16.9	
Green Ext Time (p_c), s				4.1		0.3	0.0	5.0	
Intersection Summary									
HCM 6th Ctrl Delay			10.0						
HCM 6th LOS			Α						
IOW OUI LOO			\wedge						

04/14/2023

	۶	→	*	1	←	•	₹î	1	†	~	1	ļ
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL	SBT
Lane Configurations	7	7		*	7			*	†		7	↑ ↑
Traffic Volume (veh/h)	16	5	19	50	5	50	1	51	1233	50	50	1006
Future Volume (veh/h)	16	5	19	50	5	50	1	51	1233	50	50	1006
Initial Q (Qb), veh	0	0	0	0	0	0		0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00		1.00		0.99	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No				No			No
Adj Sat Flow, veh/h/ln	1870	1870	1945	1870	1870	1870		1811	1811	1870	1870	1811
Adj Flow Rate, veh/h	24	5	28	54	5	54		58	1401	54	54	1143
Peak Hour Factor	0.67	0.92	0.67	0.92	0.92	0.92		0.88	0.88	0.92	0.92	0.88
Percent Heavy Veh, %	2	2	2	2	2	2		6	6	2	2	6
Cap, veh/h	128	24	137	89	11	115		325	1656	64	89	2140
Arrive On Green	0.07	0.10	0.10	0.05	0.08	0.08		0.49	0.49	0.49	0.05	0.62
Sat Flow, veh/h	1781	246	1377	1781	136	1470		468	3377	130	1781	3463
Grp Volume(v), veh/h	24	0	33	54	0	59		58	713	742	54	568
Grp Sat Flow(s), veh/h/ln	1781	0	1623	1781	0	1606		468	1721	1787	1781	1721
Q Serve(g_s), s	0.7	0.0	1.1	1.7	0.0	2.0		4.7	20.9	21.0	1.7	10.9
Cycle Q Clear(g_c), s	0.7	0.0	1.1	1.7	0.0	2.0		8.2	20.9	21.0	1.7	10.9
Prop In Lane	1.00	0.0	0.85	1.00	0.0	0.92		1.00	20.0	0.07	1.00	10.0
Lane Grp Cap(c), veh/h	128	0	162	89	0	125		325	843	876	89	1063
V/C Ratio(X)	0.19	0.00	0.20	0.61	0.00	0.47		0.18	0.84	0.85	0.61	0.53
Avail Cap(c_a), veh/h	552	0.00	810	215	0.00	498		345	919	954	153	1063
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00		1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	25.4	0.0	24.0	27.0	0.0	25.6		10.8	12.9	12.9	27.0	6.3
Incr Delay (d2), s/veh	0.7	0.0	0.6	6.5	0.0	2.7		0.3	6.9	6.8	6.5	0.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.3	0.0	0.4	0.9	0.0	0.8		0.4	7.2	7.5	0.8	2.3
Unsig. Movement Delay, s/veh		0.0	0.4	0.9	0.0	0.0		0.4	1.2	1.5	0.0	2.0
LnGrp Delay(d),s/veh	26.1	0.0	24.6	33.5	0.0	28.4		11.0	19.7	19.7	33.5	6.9
LnGrp LOS	Z0.1	Α	24.0 C	33.3 C	Α	20.4 C		11.0 B	19.7 B	19.7 B	33.3 C	0.9 A
		57			113			D	1513	ט		1216
Approach Vol, veh/h												
Approach LOS		25.2			30.8				19.4			8.0
Approach LOS		С			С				В			Α
Timer - Assigned Phs	1	2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s	7.4	33.0	7.4	10.3		40.4	8.7	9.0				
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5		4.5	4.5	4.5				
Max Green Setting (Gmax), s	5.0	31.0	7.0	29.0		31.0	18.0	18.0				
Max Q Clear Time (g_c+l1), s	3.7	23.0	3.7	3.1		12.9	2.7	4.0				
Green Ext Time (p_c), s	0.0	5.4	0.0	0.1		6.8	0.0	0.2				
Intersection Summary												
HCM 6th Ctrl Delay			15.2									
HCM 6th LOS			В									
Notes												

User approved ignoring U-Turning movement.

	85.6
Movement	SBR
LareConfigurations	
Traffic Volume (veh/h)	17
Future Volume (veh/h)	17
Initial Q (Qb), veh	0
Ped-Bike Adj(A_pbT)	1.00
Parking Bus, Adj	1.00
Work Zone On Approach	1.50
Adj Sat Flow, veh/h/ln	1811
Adj Flow Rate, veh/h	19
Peak Hour Factor	0.88
Percent Heavy Veh, %	6
Cap, veh/h	36
Arrive On Green	0.62
	58
Sat Flow, veh/h	
Grp Volume(v), veh/h	594
Grp Sat Flow(s),veh/h/ln	1800
Q Serve(g_s), s	10.9
Cycle Q Clear(g_c), s	10.9
Prop In Lane	0.03
Lane Grp Cap(c), veh/h	1112
V/C Ratio(X)	0.53
Avail Cap(c_a), veh/h	1112
HCM Platoon Ratio	1.00
Upstream Filter(I)	1.00
Uniform Delay (d), s/veh	6.3
Incr Delay (d2), s/veh	0.5
Initial Q Delay(d3),s/veh	0.0
%ile BackOfQ(50%),veh/ln	2.4
Unsig. Movement Delay, s/ve	
LnGrp Delay(d),s/veh	6.8
LnGrp LOS	A
Approach Vol, veh/h	7.
Approach Delay, s/veh	
Approach LOS	
Timer - Assigned Phs	

	۶	→	*	•	←	•	1	†	~	/	Ţ	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	7			4		7	^		*	↑ ↑	
Traffic Volume (veh/h)	108	0	59	0	0	0	168	1454	0	0	1227	106
Future Volume (veh/h)	108	0	59	0	0	0	168	1454	0	0	1227	106
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	0	1870	1870	1870
Adj Flow Rate, veh/h	117	0	64	0	0	0	183	1580	0	0	1334	115
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	0	2	2	2
Cap, veh/h	341	0	167	0	197	0	338	2498	0	153	2328	200
Arrive On Green	0.11	0.00	0.11	0.00	0.00	0.00	0.70	0.70	0.00	0.00	0.70	0.70
Sat Flow, veh/h	1781	0	1585	0	1870	0	367	3647	0	324	3312	284
Grp Volume(v), veh/h	117	0	64	0	0	0	183	1580	0	0	714	735
Grp Sat Flow(s),veh/h/ln	1781	0	1585	0	1870	0	367	1777	0	324	1777	1819
Q Serve(g_s), s	3.0	0.0	1.8	0.0	0.0	0.0	23.2	11.2	0.0	0.0	9.4	9.5
Cycle Q Clear(g_c), s	3.0	0.0	1.8	0.0	0.0	0.0	32.7	11.2	0.0	0.0	9.4	9.5
Prop In Lane	1.00		1.00	0.00		0.00	1.00		0.00	1.00		0.16
Lane Grp Cap(c), veh/h	341	0	167	0	197	0	338	2498	0	153	1249	1279
V/C Ratio(X)	0.34	0.00	0.38	0.00	0.00	0.00	0.54	0.63	0.00	0.00	0.57	0.58
Avail Cap(c_a), veh/h	836	0	608	0	717	0	338	2498	0	153	1249	1279
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	0.00	0.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00
Uniform Delay (d), s/veh	20.1	0.0	19.6	0.0	0.0	0.0	11.6	3.7	0.0	0.0	3.5	3.5
Incr Delay (d2), s/veh	0.6	0.0	1.4	0.0	0.0	0.0	6.1	1.2	0.0	0.0	1.9	1.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.2	0.0	0.7	0.0	0.0	0.0	1.6	0.9	0.0	0.0	1.0	1.1
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	20.7	0.0	21.0	0.0	0.0	0.0	17.7	5.0	0.0	0.0	5.4	5.4
LnGrp LOS	С	Α	С	Α	Α	Α	В	Α	Α	Α	Α	A
Approach Vol, veh/h		181			0			1763			1449	
Approach Delay, s/veh		20.8			0.0			6.3			5.4	
Approach LOS		С						Α			Α	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		37.5		9.4		37.5		9.4				
Change Period (Y+Rc), s		4.5		4.5		4.5		4.5				
Max Green Setting (Gmax), s		33.0		18.0		33.0		18.0				
Max Q Clear Time (g_c+l1), s		34.7		5.0		11.5		0.0				
Green Ext Time (p_c), s		0.0		0.5		9.9		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			6.7									
			0.1									

04/14/2023

HCM 6th Ctrl Delay 5.1 HCM 6th LOS A		1	*	†	-	-	↓	
Tarefice Volume (veh/h) 10 10 1265 10 10 1046 Traffice Volume (veh/h) 10 10 1265 10 10 1046 Traffice Volume (veh/h) 10 10 1265 10 10 1046 Traffice Volume (veh/h) 10 10 1265 10 10 1046 Traffice Volume (veh/h) 10 10 1265 10 10 1046 Traffice Volume (veh/h) 10 10 10 1265 10 10 1046 Traffice Volume (veh/h) 10 10 100 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1	Movement	WBL	WBR	NBT	NBR	SBL	SBT	
rraffic Volume (veh/h) 10 10 1265 10 10 1046 uture Volume (veh/h) 10 10 1265 10 10 1046 uture Volume (veh/h) 10 10 1265 10 10 1046 uture Volume (veh/h) 10 10 1265 10 10 1046 uture Volume (veh/h) 10 10 1265 10 0 10 1046 uture Volume (veh/h) 10 10 1.00 0.98 1.00 Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 Nork Zone On Approach No								
Future Volume (veh/h)			10		10			
nitial Q (Qb), veh								
Ped-Bike Adj(A_pbT)	, ,							
Parking Bus, Adj							•	
Nork Zone On Ápproach kdj Sat Flow, veh/h/ln ddj Sat Flow, veh/h/ln ddj Flow Rate, veh/h 40 40 40 40 40 11 10 1067 Peak Hour Factor 0.25 0.25 0.90 0.90 0.90 0.98 0.98 0.98 0.98 0.99 0.90 0.90				1 00			1 00	
Adj Sat Flow, veh/h/In								
Adj Flow Rate, veh/h	• •		1945		1811	1788		
Deck Hour Factor 0.25 0.25 0.90 0.90 0.98 0.98 0.98								
Percent Heavy Veh, % 2 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6								
Cap, veh/h								
Arrive On Green								
Sat Flow, veh/h 863 863 3589 27 362 3486 Grp Volume(v), veh/h 81 0 691 726 10 1067 Grp Sat Flow(s), veh/h/ln 1747 0 1721 1805 362 1698 Q Serve(g_s), s 1.2 0.0 7.5 7.5 0.5 5.1 Cycle Q Clear(g_c), s 1.2 0.0 7.5 7.5 0.5 5.1 Cycle Q Clear(g_c), s 1.2 0.0 7.5 7.5 8.1 5.1 Prop In Lane 0.49 0.49 0.02 1.00 Jane GP Cap(c), veh/h 149 0 979 1027 378 1932 J/C Ratio(X) 0.54 0.00 0.71 0.71 0.03 0.55 Avail Cap(_a), veh/h 1208 0 1190 1249 422 2349 HCM Platon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00								
Gry Volume(v), veh/h 81 0 691 726 10 1067 Gry Sat Flow(s), veh/h/ln 1747 0 1721 1805 362 1698 Q Serve(g_s), s 1.2 0.0 7.5 7.5 0.5 5.1 Cycle Q Clear(g_c), s 1.2 0.0 7.5 7.5 8.1 5.1 Prop In Lane 0.49 0.49 0.02 1.00 Jane Gry Cap(c), veh/h 149 0 979 1027 378 1932 J/C Ratio(X) 0.54 0.00 0.71 0.71 0.03 0.55 Avail Cap(c_a), veh/h 1208 0 1190 1249 422 2349 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Jpstream Filter(I) 1.00 0.00 1.00 1.00 1.00 1.00 Jpstream Filter(I) 1.00 0.0 1.00 1.00 1.00 1.00 Jpstream Filter(I) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Sing Sat Flow(s), veh/h/ln 1747 0 1721 1805 362 1698 2 2 2 0.0 7.5 7.5 0.5 5.1 2 2 2 2 2 2 2 2 2								
Serve(g_s), s								
Cycle Q Clear(g_c), s 1.2 0.0 7.5 7.5 8.1 5.1 Prop In Lane 0.49 0.49 0.02 1.00 Jane Grp Cap(c), veh/h 149 0 979 1027 378 1932 J/C Ratio(X) 0.54 0.00 0.71 0.71 0.03 0.55 Avail Cap(c_a), veh/h 1208 0 1190 1249 422 2349 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Jpistream Filter(I) 1.00 0.00 1.00 1.00 1.00 1.00 Jpistream Filter(I) 1.00 0.00 1.00 1.00 1.00 0.00 Jniform Delay (d), s/veh 11.4 0.0 4.0 7.0 3.5 nor Delay (d2), s/veh 3.1 0.0 1.5 1.4 0.0 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Jinsig. Movement Delay, s/veh Jinsig. Movement Delay, s/veh Jinsig. Movement Delay, s/veh Jorg Delay(d),s/veh 14.5 0.0 5.5 5.5 7.0 3.8 Jane Delay (d), s/veh 14.5 5.5 3.8 A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A								
Prop In Lane								
Anne Grp Cap(c), veh/h				7.0			0.1	
Avail Cap(c_a), veh/h 1208 0 1190 1249 422 2349 HCM Platoon Ratio 1.00				979			1932	
Avail Cap(c_a), veh/h								
## Head of Platoon Ratio 1.00 1.0	. ,							
Upstream Filter(I)								
Juliform Delay (d), s/veh								
ncr Delay (d2), s/veh 3.1 0.0 1.5 1.4 0.0 0.2 nitial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 hille BackOfQ(50%),veh/ln 0.5 0.0 0.4 0.4 0.0 0.1 Unsig. Movement Delay, s/veh nnGrp Delay(d),s/veh 14.5 0.0 5.5 5.5 7.0 3.8 nnGrp LOS B A A A A A A Approach Vol, veh/h 81 1417 1077 Approach Delay, s/veh 14.5 5.5 3.8 Approach LOS B A A A A A A Timer - Assigned Phs 2 6 8 Phs Duration (G+Y+Rc), s 19.3 19.3 6.7 Change Period (Y+Rc), s 4.5 4.5 Aax Green Setting (Gmax), s 18.0 18.0 18.0 Aax Q Clear Time (g_c+I1), s 9.5 10.1 3.2 Green Ext Time (p_c), s 5.3 4.2 0.2 Intersection Summary HCM 6th Ctrl Delay	,							
Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.								
Wile BackOfQ(50%), veh/In 0.5 0.0 0.4 0.4 0.0 0.1 Junsig. Movement Delay, s/veh 14.5 0.0 5.5 5.5 7.0 3.8 LanGrp LOS B A A A A Approach Vol, veh/h 81 1417 1077 Approach Delay, s/veh 14.5 5.5 3.8 Approach LOS B A A A Phyroach LOS B A A A A B A A A Phyroach LOS B A A A A B A A A A Phyroach LOS B B								
Unsig. Movement Delay, s/veh UnGrp Delay(d),s/veh UnGrp Delay(d),s/veh UnGrp LOS UnGrp LOS UnGrp LOS UnGrp LOS UnGrp LOS UnGrp LOS Under								
Angro Delay(d),s/veh 14.5 0.0 5.5 5.5 7.0 3.8 Approach Vol, veh/h 81 1417 1077 Approach Delay, s/veh 14.5 5.5 3.8 Approach LOS B A A A A A A A A A A A A			3.0	J. 1	J.,	3.0	-	
Approach Vol, veh/h Approach Vol, veh/h Approach Delay, s/veh Approach LOS B A A A A A A A A A A A A A A A A A A			0.0	5.5	5.5	7.0	3.8	
Approach Vol, veh/h 81 1417 1077 Approach Delay, s/veh 14.5 5.5 3.8 Approach LOS B A A A Timer - Assigned Phs 2 6 8 Phs Duration (G+Y+Rc), s 19.3 19.3 6.7 Change Period (Y+Rc), s 4.5 4.5 Max Green Setting (Gmax), s 18.0 18.0 18.0 Max Q Clear Time (g_c+I1), s 9.5 10.1 3.2 Green Ext Time (p_c), s 5.3 4.2 0.2 Intersection Summary HCM 6th Ctrl Delay 5.1 HCM 6th LOS A								
Approach Delay, s/veh Approach LOS B A A A A A A A A A A A A A A A A A A								
Approach LOS B A A A Timer - Assigned Phs 2 6 8 Phs Duration (G+Y+Rc), s 19.3 19.3 6.7 Change Period (Y+Rc), s 4.5 4.5 Max Green Setting (Gmax), s 18.0 18.0 18.0 Max Q Clear Time (g_c+I1), s 9.5 10.1 3.2 Green Ext Time (p_c), s 5.3 4.2 0.2 Intersection Summary HCM 6th Ctrl Delay 5.1 HCM 6th LOS A								
Timer - Assigned Phs 2 6 8 Phs Duration (G+Y+Rc), s 19.3 19.3 6.7 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 18.0 18.0 18.0 Max Q Clear Time (g_c+l1), s 9.5 10.1 3.2 Green Ext Time (p_c), s 5.3 4.2 0.2 Intersection Summary HCM 6th Ctrl Delay 5.1 HCM 6th LOS A								
Phs Duration (G+Y+Rc), s 19.3 6.7 Change Period (Y+Rc), s 4.5 4.5 Max Green Setting (Gmax), s 18.0 18.0 Max Q Clear Time (g_c+l1), s 9.5 10.1 3.2 Green Ext Time (p_c), s 5.3 4.2 0.2 Intersection Summary HCM 6th Ctrl Delay 5.1 HCM 6th LOS A				,,				
Change Period (Y+Rc), s 4.5 4.5 Max Green Setting (Gmax), s 18.0 18.0 Max Q Clear Time (g_c+l1), s 9.5 10.1 3.2 Green Ext Time (p_c), s 5.3 4.2 0.2 Intersection Summary HCM 6th Ctrl Delay 5.1 HCM 6th LOS A	•							
Max Green Setting (Gmax), s 18.0 18.0 18.0 Max Q Clear Time (g_c+l1), s 9.5 10.1 3.2 Green Ext Time (p_c), s 5.3 4.2 0.2 Intersection Summary HCM 6th Ctrl Delay 5.1 HCM 6th LOS A	, , ,							
Max Q Clear Time (g_c+I1), s 9.5 10.1 3.2 Green Ext Time (p_c), s 5.3 4.2 0.2 Intersection Summary HCM 6th Ctrl Delay 5.1 HCM 6th LOS A								
ACM 6th LOS A 4.2 0.2 1.2 0.2 1.2 0.2 0.2 0.2 0	• ,							
ntersection Summary HCM 6th Ctrl Delay 5.1 HCM 6th LOS A								
HCM 6th Ctrl Delay 5.1 HCM 6th LOS A	Green Ext Time (p_c), s		5.3				4.2	0.2
HCM 6th LOS A	ntersection Summary							
	HCM 6th Ctrl Delay			5.1				
lotos	HCM 6th LOS			Α				
NOIGO	Notes							

User approved volume balancing among the lanes for turning movement.

2035 PM_VCRCCP 04/14/2023

	•	*	4	†	↓	1
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥		7	**	†	
Traffic Volume (veh/h)	12	12	19	1477	1347	19
Future Volume (veh/h)	12	12	19	1477	1347	19
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	0.89	1.00			0.94
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No	1.00	1.00	No	No	1.00
Adj Sat Flow, veh/h/ln	1870	1870	1847	1847	1847	1847
Adj Flow Rate, veh/h	13	13	21	1605	1464	21
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
	0.92		0.92	0.92	0.92	0.92
Percent Heavy Veh, %		2				
Cap, veh/h	73	73	45	2443	2005	29
Arrive On Green	0.10	0.10	0.03	0.70	0.57	0.57
Sat Flow, veh/h	761	761	1759	3601	3630	51
Grp Volume(v), veh/h	27	0	21	1605	725	760
Grp Sat Flow(s),veh/h/ln	1580	0	1759	1754	1754	1834
Q Serve(g_s), s	0.7	0.0	0.5	11.1	13.3	13.3
Cycle Q Clear(g_c), s	0.7	0.0	0.5	11.1	13.3	13.3
Prop In Lane	0.48	0.48	1.00			0.03
Lane Grp Cap(c), veh/h	152	0	45	2443	994	1039
V/C Ratio(X)	0.18	0.00	0.46	0.66	0.73	0.73
Avail Cap(c_a), veh/h	655	0	203	3477	1354	1416
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	18.0	0.00	20.8	3.7	6.9	7.0
• • • • • • • • • • • • • • • • • • • •	0.5		7.2		1.3	1.3
Incr Delay (d2), s/veh		0.0		0.3		
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.2	0.0	0.3	0.3	2.4	2.6
Unsig. Movement Delay, s/vel			• • •			
LnGrp Delay(d),s/veh	18.6	0.0	28.0	4.0	8.3	8.2
LnGrp LOS	В	A	С	A	A	A
Approach Vol, veh/h	27			1626	1485	
Approach Delay, s/veh	18.6			4.3	8.2	
Approach LOS	В			Α	Α	
Timer - Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		34.7		8.7	5.6	29.1
Change Period (Y+Rc), s		4.5		4.5	4.5	4.5
Max Green Setting (Gmax), s		43.0		18.0	5.0	33.5
Max Q Clear Time (g_c+l1), s		13.1		2.7	2.5	15.3
Green Ext Time (p_c), s		14.4		0.0	0.0	9.3
Intersection Summary						
HCM 6th Ctrl Delay			6.3			
HCM 6th LOS			Α			
Notes						

User approved volume balancing among the lanes for turning movement.

HCM 6th Signalized Intersection Summary 6: Valley Center Rd. & Lilac Rd.

	٠	→	*	•	•	•	1	1	~	L	/	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBU	SBL	SBT
Lane Configurations	*	4	7		4		44	†			7	↑ ↑
Traffic Volume (veh/h)	344	0	206	0	0	0	276	992	0	3	0	861
Future Volume (veh/h)	344	0	206	0	0	0	276	992	0	3	0	861
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0		0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		1.00	1.00		1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00
Work Zone On Approach		No			No			No				No
Adj Sat Flow, veh/h/ln	1811	1811	1884	1870	1870	1870	1717	1717	1786		1717	1717
Adj Flow Rate, veh/h	430	0	145	0	0	0	310	1115	0		0	936
Peak Hour Factor	0.95	0.95	0.95	0.25	0.25	0.25	0.89	0.89	0.89		0.92	0.92
Percent Heavy Veh, %	6	6	6	2	2	2	6	6	6		6	6
Cap, veh/h	590	0	270	0	2	0	392	2226	0		2	1076
Arrive On Green	0.17	0.00	0.17	0.00	0.00	0.00	0.12	0.68	0.00		0.00	0.50
Sat Flow, veh/h	3450	0	1579	0	1870	0	3172	3348	0		1635	2173
Grp Volume(v), veh/h	430	0	145	0	0	0	310	1115	0		0	699
Grp Sat Flow(s),veh/h/ln	1725	0	1579	0	1870	0	1586	1631	0		1635	1631
Q Serve(g_s), s	9.1	0.0	6.5	0.0	0.0	0.0	7.3	12.7	0.0		0.0	29.2
Cycle Q Clear(g_c), s	9.1	0.0	6.5	0.0	0.0	0.0	7.3	12.7	0.0		0.0	29.2
Prop In Lane	1.00		1.00	0.00		0.00	1.00		0.00		1.00	
Lane Grp Cap(c), veh/h	590	0	270	0	2	0	392	2226	0		2	808
V/C Ratio(X)	0.73	0.00	0.54	0.00	0.00	0.00	0.79	0.50	0.00		0.00	0.87
Avail Cap(c_a), veh/h	1423	0	652	0	752	0	539	2590	0		119	1136
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	0.00	0.00	0.00	1.00	1.00	0.00		0.00	1.00
Uniform Delay (d), s/veh	30.3	0.0	29.2	0.0	0.0	0.0	32.8	5.9	0.0		0.0	17.2
Incr Delay (d2), s/veh	0.7	0.0	0.6	0.0	0.0	0.0	3.6	0.1	0.0		0.0	4.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0
%ile BackOfQ(50%),veh/ln	3.4	0.0	2.3	0.0	0.0	0.0	2.8	2.8	0.0		0.0	9.8
Unsig. Movement Delay, s/veh							22.1					21.5
LnGrp Delay(d),s/veh	30.9	0.0	29.8	0.0	0.0	0.0	36.4	6.0	0.0		0.0	21.2
LnGrp LOS	С	A	С	A	Α	A	D	A	A		Α	<u>C</u>
Approach Vol, veh/h		575			0			1425				1370
Approach Delay, s/veh		30.6			0.0			12.6				21.8
Approach LOS		С						В				С
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		19.2	14.4	43.5		0.0	0.0	57.9				
Change Period (Y+Rc), s		6.0	4.9	5.3		4.2	4.9	5.3				
Max Green Setting (Gmax), s		31.8	13.1	53.7		31.0	5.6	61.2				
Max Q Clear Time (g_c+I1), s		11.1	9.3	32.1		0.0	0.0	14.7				
Green Ext Time (p_c), s		0.9	0.2	6.0		0.0	0.0	5.6				
Intersection Summary												
HCM 6th Ctrl Delay			19.4									
HCM 6th LOS			В									
N												

User approved volume balancing among the lanes for turning movement. User approved ignoring U-Turning movement.

HCM 6th Signalized Intersection Summary 6: Valley Center Rd. & Lilac Rd.

Movement	SBR
LareConfigurations	
Traffic Volume (veh/h)	399
Future Volume (veh/h)	399
Initial Q (Qb), veh	0
Ped-Bike Adj(A_pbT)	1.00
Parking Bus, Adj	1.00
Work Zone On Approach	
Adj Sat Flow, veh/h/ln	1786
Adj Flow Rate, veh/h	434
Peak Hour Factor	0.92
Percent Heavy Veh, %	6
Cap, veh/h	492
Arrive On Green	0.50
Sat Flow, veh/h	994
Grp Volume(v), veh/h	671
Grp Sat Flow(s), veh/h/ln	1536
	30.1
Q Serve(g_s), s	30.1
Cycle Q Clear(g_c), s	
Prop In Lane	0.65
Lane Grp Cap(c), veh/h	761
V/C Ratio(X)	0.88
Avail Cap(c_a), veh/h	1070
HCM Platoon Ratio	1.00
Upstream Filter(I)	1.00
Uniform Delay (d), s/veh	17.4
Incr Delay (d2), s/veh	5.0
Initial Q Delay(d3),s/veh	0.0
%ile BackOfQ(50%),veh/In	9.7
Unsig. Movement Delay, s/ve	
LnGrp Delay(d),s/veh	22.5
LnGrp LOS	С
Approach Vol, veh/h	
Approach Delay, s/veh	
Approach LOS	
Timor Assigned Dhe	
Timer - Assigned Phs	

MOVEMENT SUMMARY

▼ Site: 7 [Miller Road (Site Folder: Valley Center Road)]

PM

Site Category: Existing

Roundabout

Vehi	cle Mo	vement	Perform	nance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO\ [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed mph
Sout	h: Road	Name												
3	L2	92	3.0	100	3.0	0.419	21.1	LOS C	1.6	40.1	0.85	0.94	1.21	26.6
8	T1	1	3.0	1	3.0	0.419	21.1	LOS C	1.6	40.1	0.85	0.94	1.21	26.6
18	R2	31	3.0	34	3.0	0.419	21.1	LOS C	1.6	40.1	0.85	0.94	1.21	26.1
Appr	oach	124	3.0	135	3.0	0.419	21.1	LOS C	1.6	40.1	0.85	0.94	1.21	26.5
East	Valley	Center R	oad											
1	L2	64	3.0	70	3.0	0.597	10.6	LOS B	4.2	108.4	0.55	0.39	0.55	31.6
6	T1	1211	4.0	1275	4.0	0.597	10.7	LOS B	4.2	108.4	0.55	0.39	0.55	31.8
16	R2	28	4.0	29	4.0	0.597	10.7	LOS B	4.2	108.2	0.55	0.39	0.55	31.0
Appr	oach	1303	4.0	1374	3.9	0.597	10.7	LOS B	4.2	108.4	0.55	0.39	0.55	31.7
North	n: Miller	Road												
7	L2	1	2.0	1	2.0	0.155	11.7	LOS B	0.5	12.6	0.75	0.75	0.75	31.3
4	T1	1	3.0	1	3.0	0.155	11.8	LOS B	0.5	12.6	0.75	0.75	0.75	31.3
14	R2	50	2.0	58	2.0	0.155	11.7	LOS B	0.5	12.6	0.75	0.75	0.75	30.6
Appr	oach	52	2.0	60	2.0	0.155	11.7	LOS B	0.5	12.6	0.75	0.75	0.75	30.6
West	: Valley	Center F	Road											
5	L2	72	4.0	81	4.0	0.668	11.7	LOS B	6.1	158.3	0.42	0.21	0.42	31.2
2	T1	1391	4.0	1563	4.0	0.668	11.6	LOS B	6.1	158.5	0.42	0.21	0.42	31.3
12	R2	56	3.0	61	3.0	0.668	11.6	LOS B	6.1	158.5	0.42	0.21	0.42	30.6
Appr	oach	1519	4.0	1705	4.0	0.668	11.6	LOS B	6.1	158.5	0.42	0.21	0.42	31.3
All V	ehicles	2998	3.9	3274	3.9	0.668	11.6	LOS B	6.1	158.5	0.50	0.32	0.51	31.2

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

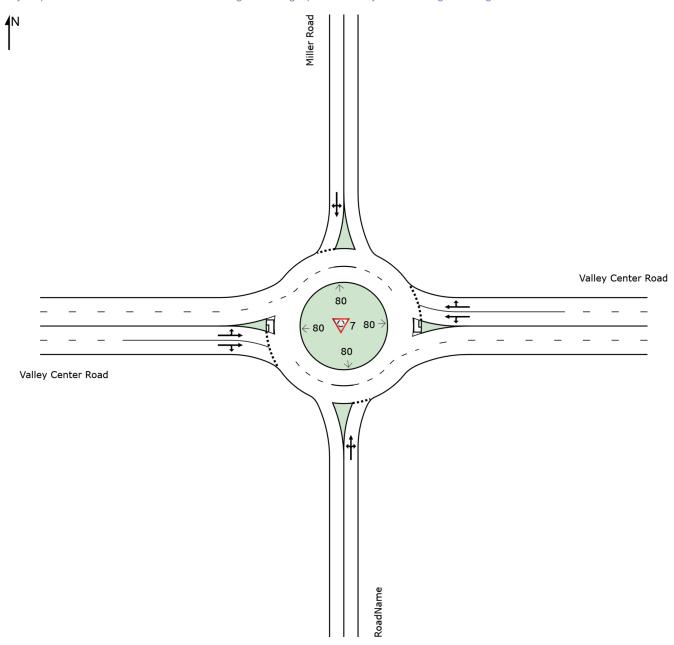
Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: MICHAEL BAKER INTERNATIONAL | Licence: NETWORK / 1PC | Processed: Friday, April 14, 2023 2:29:40 PM

Project: H:\PDATA\170071_Valley Center Corridor\Traffic\Concept Development\Synchro\Final Concept\2035\2035 Final_Option _PM - 2lanes


WVR.sip9

SITE LAYOUT

▼ Site: 7 [Miller Road (Site Folder: Valley Center Road)]

Site Category: Existing Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

	→	*	F	1	•	1	-	
Movement	EBT	EBR	WBU	WBL	WBT	NBL	NBR	
Lane Configurations	† ‡			*	^	W		
Traffic Volume (veh/h)	1304	6	1	1	1206	2	1	
Future Volume (veh/h)	1304	6	1	1	1206	2	1	
Initial Q (Qb), veh	0	0	•	0	0	0	0	
Ped-Bike Adj(A_pbT)	•	1.00		1.00		1.00	0.92	
Parking Bus, Adj	1.00	1.00		1.00	1.00	1.00	1.00	
Work Zone On Approach	No	1.00		1.00	No	No	1.00	
Adj Sat Flow, veh/h/ln	1811	1811		1811	1811	1945	1945	
Adj Flow Rate, veh/h	1449	7		1	1256	3	1	
Peak Hour Factor	0.90	0.90		0.96	0.96	0.75	0.75	
Percent Heavy Veh, %	6	6		6	6	2	2	
Cap, veh/h	1896	9		4	2182	194	65	
Arrive On Green	0.54	0.54		0.00	0.63	0.18	0.18	
Sat Flow, veh/h	3602	17		1725	3532	1073	358	
Grp Volume(v), veh/h	710	746		1723	1256	5	0	
	1721	1808		1725	1721	1789	0	
Grp Sat Flow(s), veh/h/ln								
Q Serve(g_s), s	15.7	15.7		0.0	10.2	0.1	0.0	
Cycle Q Clear(g_c), s	15.7	15.7		0.0	10.2	0.1	0.0	
Prop In Lane	929	0.01		1.00	0400	0.60 323	0.20	
Lane Grp Cap(c), veh/h		976		4	2182		0	
V/C Ratio(X)	0.76	0.76		0.28	0.58	0.02	0.00	
Avail Cap(c_a), veh/h	1151	1209		181	2981	696	0	
HCM Platoon Ratio	1.00	1.00		1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00		1.00	1.00	1.00	0.00	
Uniform Delay (d), s/veh	8.8	8.8		24.2	5.1	16.4	0.0	
Incr Delay (d2), s/veh	2.4	2.3		38.4	0.2	0.0	0.0	
Initial Q Delay(d3),s/veh	0.0	0.0		0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	4.4	4.6		0.0	1.9	0.0	0.0	
Unsig. Movement Delay, s/veh		44.4		00.0	F 4	40.4	0.0	
LnGrp Delay(d),s/veh	11.2	11.1		62.6	5.4	16.4	0.0	
LnGrp LOS	В	В		E	A	В	A	
Approach Vol, veh/h	1456				1257	5		
Approach Delay, s/veh	11.1				5.4	16.4		
Approach LOS	В				Α	В		
Timer - Assigned Phs		2	3	4				
Phs Duration (G+Y+Rc), s		13.3	4.6	30.7				35
Change Period (Y+Rc), s		4.5	4.5	4.5				4
Max Green Setting (Gmax), s		18.9	5.1	32.5				4:
Max Q Clear Time (g_c+l1), s		2.1	2.0	17.7				1
Green Ext Time (p_c), s		0.0	0.0	8.5				1′
Intersection Summary								
HCM 6th Ctrl Delay			8.5					
HCM 6th LOS			Α					
Notes								

User approved volume balancing among the lanes for turning movement. User approved ignoring U-Turning movement.

	•	→	*	F	•	•	4	4	†	1	-	ļ
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	37	†	7		1	^	7		4			र्स
Traffic Volume (veh/h)	725	594	37	2	23	576	114	68	24	27	128	14
Future Volume (veh/h)	725	594	37	2	23	576	114	68	24	27	128	14
Initial Q (Qb), veh	0	0	0		0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.97		1.00		0.97	1.00		0.93	1.00	
Parking Bus, Adj	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No				No			No			No
Adj Sat Flow, veh/h/ln	1811	1811	1811		1811	1811	1884	1811	1811	1811	1811	1811
Adj Flow Rate, veh/h	763	625	39		26	655	130	77	27	31	136	15
Peak Hour Factor	0.95	0.95	0.95		0.88	0.88	0.88	0.88	0.88	0.88	0.94	0.94
Percent Heavy Veh, %	6	6	6		6	6	6	6	6	6	6	6
Cap, veh/h	823	673	550		157	758	342	96	34	39	383	42
Arrive On Green	0.25	0.37	0.37		0.09	0.22	0.22	0.10	0.10	0.10	0.25	0.25
Sat Flow, veh/h	3346	1811	1481		1725	3441	1553	946	332	381	1561	172
Grp Volume(v), veh/h	763	625	39		26	655	130	135	0	0	151	0
Grp Sat Flow(s),veh/h/ln	1673	1811	1481		1725	1721	1553	1659	0	0	1733	0
Q Serve(g_s), s	23.9	35.6	1.8		1.5	19.7	7.7	8.6	0.0	0.0	7.7	0.0
Cycle Q Clear(g_c), s	23.9	35.6	1.8		1.5	19.7	7.7	8.6	0.0	0.0	7.7	0.0
Prop In Lane	1.00		1.00		1.00		1.00	0.57		0.23	0.90	
Lane Grp Cap(c), veh/h	823	673	550		157	758	342	169	0	0	425	0
V/C Ratio(X)	0.93	0.93	0.07		0.17	0.86	0.38	0.80	0.00	0.00	0.36	0.00
Avail Cap(c_a), veh/h	875	864	707		157	922	416	448	0	0	548	0
HCM Platoon Ratio	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00		1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00
Uniform Delay (d), s/veh	39.6	32.4	21.8		45.1	40.4	35.7	47.2	0.0	0.0	33.5	0.0
Incr Delay (d2), s/veh	14.7	12.4	0.0		0.2	6.4	0.3	6.4	0.0	0.0	0.4	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	11.3	17.3	0.6		0.6	8.8	2.9	3.9	0.0	0.0	3.2	0.0
Unsig. Movement Delay, s/veh	54.3	44.8	21.8		45.3	46.8	35.9	53.7	0.0	0.0	33.9	0.0
LnGrp Delay(d),s/veh	54.5 D	44.0 D	21.0 C		45.5 D		ან.9 D	55.7 D	0.0 A		33.9 C	
LnGrp LOS	U				U	D	U	U		A	<u> </u>	712
Approach Vol, veh/h		1427				811 45.0			135			44.9
Approach LOS		49.2 D				45.0 D			53.7 D			
Approach LOS									U			D
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	15.1	45.2		31.7	31.3	29.0		15.5				
Change Period (Y+Rc), s	5.3	* 5.3		5.3	4.9	5.3		4.6				
Max Green Setting (Gmax), s	5.6	* 51		34.0	28.1	28.8		29.0				
Max Q Clear Time (g_c+I1), s	3.5	37.6		24.5	25.9	21.7		10.6				
Green Ext Time (p_c), s	0.0	2.3		1.9	0.5	2.0		0.6				
Intersection Summary												
HCM 6th Ctrl Delay			47.3									
HCM 6th LOS			D									

Notes

User approved ignoring U-Turning movement.

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

	3516
Movement	SBR
Lane Configurations	77
Traffic Volume (veh/h)	527
Future Volume (veh/h)	527
Initial Q (Qb), veh	0
Ped-Bike Adj(A_pbT)	0.96
Parking Bus, Adj	1.00
Work Zone On Approach	
Adj Sat Flow, veh/h/ln	1811
Adj Flow Rate, veh/h	561
Peak Hour Factor	0.94
Percent Heavy Veh, %	6
Cap, veh/h	634
Arrive On Green	0.25
Sat Flow, veh/h	2586
Grp Volume(v), veh/h	561
Grp Sat Flow(s), veh/h/ln	1293
Q Serve(g_s), s	22.5
Cycle Q Clear(g_c), s	22.5
Prop In Lane	1.00
Lane Grp Cap(c), veh/h	634
V/C Ratio(X)	0.88
Avail Cap(c_a), veh/h	818
HCM Platoon Ratio	1.00
Upstream Filter(I)	1.00
Uniform Delay (d), s/veh	39.1
Incr Delay (d2), s/veh	8.8
Initial Q Delay(d3),s/veh	0.0
%ile BackOfQ(50%),veh/ln	7.9
Unsig. Movement Delay, s/ve	
LnGrp Delay(d),s/veh	47.9
LnGrp LOS	47.3 D
Approach Vol, veh/h	
Approach Delay, s/veh	
Approach LOS	
Approach LOS	
Timer - Assigned Phs	