FOCUSED SOIL AND SOIL VAPOR SCREENING SURVEY REPORT NEWLAND SIERRA, SAN MARCOS SAN DIEGO COUNTY, CALIFORNIA

Prepared For:

Newland Sierra, LLC

9820 Town Centre Drive, Suite 100 San Diego, California 92121

Project No. 10618.006

July 1, 2015

Leighton and Associates, Inc.

A LEIGHTON GROUP COMPANY

July 1, 2015

Project No. 10618.006

Newland Sierra, LLC 9820 Town Centre Drive, Suite 100 San Diego, California 92121

Attention: Ms. Rita Brandin

Subject: Focused Soil and Soil Vapor Screening Survey Report

Newland Sierra, San Marcos, San Diego County, California

INTRODUCTION

Leighton and Associates, Inc. (Leighton) is pleased to present Newland Sierra, LLC (Newland) this report summarizing the results of a focused soil and soil vapor screening survey for the Newland Sierra property located north of Deer Springs Road, west of Interstate 15, and east of Oaks Valley Road, in the area of San Marcos, San Diego County, California (site or subject site). Leighton understands that the subject site consists of approximately 1,985 acres proposed for a master planned community development.

Leighton has prepared this Focused Soil and Soil vapor Screening Survey Report to address specific comments and requirements for additional investigation as detailed in the referenced Hazardous Materials Review Letter (Letter) provided to Newland by the County of San Diego, Planning & Development Services, Project Planning Division (County). The Letter was prepared by County as a response to County review of a Phase I Environmental Site Assessment (ESA) Report prepared by Leighton dated 16 January 2014.

The purpose of this focused soil and soil vapor screening survey was to screen for the potential presence of hazardous substances and/or petroleum substances in 1) sites identified as illegal shooting sites involving potentially lead contaminated soil; 2) an

illegally dumped above ground storage tank (AST) containing used oil and surrounding stained soil; 3) soils located immediately to the west of the ARCO gas station on Mesa Rock Road; 4) the areas within the proposed K thru 8 school site; 5) areas of historic agricultural use that could have been impacted by historic application of organochlorine pesticides. These areas were identified in the 16 January 2014 Phase I ESA Report for the subject property. Activities were completed in accordance with the American Society for Testing and Materials (ASTM) Standard Practice for Phase II ESA Processes and the 2004 DEH SAM Manual (http://www.sdcounty.ca.gov/deh/water/sam manual.html). The focused areas of the site where borings were installed are depicted on Figure 2 and Figure 3. The results and conclusions of this report are limited to the areas investigated.

PREVIOUS ENVIRONMENTAL INVESTIGATIONS/REMEDIATION

References are provided in Appendix A.

January 2014 Phase I ESA

Leighton prepared a Phase I ESA Report dated 16 January 2014. This Focused Soil and Soil Vapor Screening Survey Report addresses specific comments and requirements for additional investigation resulting from County review of the findings from the Phase I ESA, as discussed above.

<u>February 2015 Removal of Abandoned AST from Assessor Parcel Number 178-101-16</u>

On behalf of Newland, Leighton oversaw the removal of one abandoned AST located on Assessor Parcel Number 178-101-16 in San Marcos, California (Figure 1 Site Location Map). Leighton provided a letter to the San Diego Department of Environmental Health (DEH) dated 30 April 2015 to provide details of the disposal actions completed to address the AST as well as copies of the waste characterization and manifest documents verifying the non-hazardous nature of the materials being disposed. On February 6, 2015 removal of visually impacted soil materials was completed under the direction of a Leighton geologist utilizing a tracked excavator and tracked skid steer tractor. Based on discussion with Mr. Brad Long, the DEH Environmental Specialist for the project, it was advised that removals of the impacted soil materials should extend until all visual indications of soil impact were removed. Removal operations were completed extending horizontally and vertically until no visual indications of petroleum

impacted soils were observed by Leighton personnel at the site. The report documenting the AST removal is provided in Appendix B.

INVESTIGATIVE METHODOLOGY

The investigative methodology developed for this project includes, and is limited to, the activities summarized below. Photographs taken during the field investigation are provided in Appendix C.

Pre-field Activities

Health and Safety Plan

A Site Specific Health and Safety Plan (HSP) was prepared for work performed at the Site. All onsite Leighton personnel signed the HSP acknowledging acceptance. The document was kept onsite at all times during the field activities. The HSP was prepared in compliance with Title 8 Section 5192 of the California Code of Regulations (CCR), and the Occupational Safety and Health Administration (OSHA) Chapter 29 of the Code of Federal Regulations (29 CFR) 1910.120.

<u>Underground Services Alert</u>

Underground Service Alert (USA; aka DigAlert) was contacted 48-hours prior to commencement of fieldwork to mark the location of public utilities that may enter the Site from nearby streets. The locations of the proposed borings were clearly marked in white paint or white flags prior to contacting USA.

Permits

A permit was not required from the DEH for the types of temporary shallow soil borings and temporary soil vapor probes installed during the survey.

Field Activities

Soil Investigation

On 21 May 2015, twenty (20) soil borings (SA-1-1 through SA-4-2 and A1 through A11) were advanced using hand auger equipment at locations depicted on Figure 3. Soil borings SA-1-1 through SA-4-2 were advanced to a depth of 18 inches bgs. Soil borings A1 through A11 were advanced to a depth of 6 inches bgs. Soil samples were

collected at 6 and 18 inches bgs. Soil samples were retained in 4 or 8 ounce glass jars. Each sample was labeled with sample point identification, and placed in an ice-cooled chest for temporary storage. The soil samples were submitted to a State of California Certified Laboratory for analysis under standard chain-of-custody documentation. The soil samples were analyzed for Title 22 metals using EPA method 6010B/7471A and Organochlorine Pesticides (OCPs) using EPA method 8081A.

On 19 June 2015, borings SVP-1 through SVP-5 were advanced using direct-push, truck-mounted equipment at the locations depicted on Figure 2. Soil borings SVP-1 through SVP-3 were advanced to a maximum depth of 5 feet bgs (depth of practical refusal). SVP-4 was advance to 9.5 feet bgs and SVP-5 was advanced to 12 feet bgs (depth of practical refusal). The purpose of the Soil Vapor Probe (SVP) borings was to facilitate installation of temporary soil vapor probes to sample soil vapor only and soil samples were not collected.

All non-disposable drilling and/or sampling equipment was decontaminated between boreholes by washing in a non-phosphate detergent and rinsing with deionized water.

Soil Vapor Survey

Soil vapor samples were collected from SVP-1 through SVP-5 on 19 June 2015.

Upon reaching the total depth of the borings, soil vapor probes were installed in each of the boreholes at the desired depth(s). Deeper soil vapor samples could not be collected from borings SVP-1 through SVP-5 because the drill rig met refusal on bedrock material around the total boring depth and could not be advanced further. The soil vapor probes were installed and sampled in general accordance with current ASTM "Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessments Process" E1527-13, the 2004 DEH Site Assessment and Mitigation (SAM) Manual, and the Department of Toxic Substances Control (DTSC) April, 2012 Advisory Active Soil Gas Investigations. The soil vapor probes installed using direct push equipment (SVP-1 through SVP-5) were allowed to equilibrate for two hours prior to soil vapor sampling.

At each sampling location an electric vacuum pump (set to draw 0.200 liters/min of soil vapor at a maximum vacuum of 100-inches of water) or dedicated disposable syringe was attached to the probe for purging prior to sampling. Soil vapor samples were obtained by drawing the sample through a luer lock connection which connects the sampling probe to the sample container.

A tracer gas/leak check compound (1,1-Difluoroethane) was applied to the soil vapor probes at each point of connection in which ambient air could potentially enter the sampling system. These points include the top of the sampling probe where the tubing meets the probe connection and the surface bentonite seals. No leaks were detected during the soil vapor sampling.

A purge volume test was conducted at the start of the soil vapor survey in order to determine the optimal purge volume for sampling. Duplicate soil vapor samples were obtained for soil vapor analyses from the gas chromatograph mass spectrometer instrument.

After sampling soil vapor, the probe tubing was pulled from the ground and the borings were backfilled with a cement and bentonite grout slurry, as needed.

Laboratory Analyses

A mobile laboratory (H&P Mobile Geochemistry) analyzed soil vapor samples onsite during the soil vapor survey conducted on 19 June 2015. Soil vapor samples were injected into the onsite mobile laboratory gas chromatograph/purge and trap system after collection. Samples were analyzed for the tracer gas, volatile organic compounds (VOCs) and total petroleum hydrocarbons (TPH) as gasoline by modified EPA Method 8260B with a laboratory reporting limit at or below the standard vapor reporting limits specified in the SAM Manual.

Soil samples were transported to a stationary laboratory for analysis (Eurofins-Calscience). Soil samples were analyzed for Title 22 metals by EPA method 6010B/7471A and OCPs by EPA Method 8081A.

Investigation-Derived Wastes (IDW)

No significant drill cuttings or other IDW were produced during the investigation activities conducted on 21 May 2015 and 19 June 2015.

<u>INVESTIGATIVE RESULTS</u>

Geologic and Hydrogeologic Conditions

Shallow soils encountered during the investigation consisted primarily of weathered bedrock derived silty sand and coarse sands and gravels. Stained or odorous soil was

not observed or noted. During boring advancement, the direct push drill rig met refusal in borings SVP-1 through SVP-5 at the total boring depth between 5 and 12 feet bgs. Groundwater was not encountered at any of the sample locations.

Analytical Results of Soil Samples

The laboratory analytical reports and chain-of-custody documentation are presented in Appendix D. The analytical test results for soil samples are summarized in Table 1. The soil sample analytical results were compared to U.S. EPA Region 9 Regional Screening Levels (RSLs) established for industrial and residential soil (January 2015), and Department of Toxics and Substances Control (DTSC) arsenic background levels established for Southern California school sites (DTSC January 16, 2008).

OCPs – OCPs were not detected above their respective laboratory method reporting limits in any of the soil samples analyzed.

Title 22 Metals – With the exception of arsenic and lead, metals were not detected at concentrations exceeding the U.S. EPA Region 9 RSLs referenced above. Arsenic levels were below California background concentrations. Total lead exceeded 80 milligrams per kilogram (mg/kg) in three soil samples obtained from areas where illegal shooting had occurred. The Threshold Limit Concentrations (TTLC) for total lead in boring SA2-1 at depths of 6 inches bgs and 18 inches bgs and in boring SA4-1 at a depth of 6 inches bgs were 1740, 337 and 983 mg/kg, respectively.

Samples with elevated lead were further analyzed by the Toxicity Characteristic Leaching Procedure (TCLP) or the Soluble Threshold Limit Concentration (STLC), which are used to determine if a waste is considered hazardous for disposal considerations. The leaching procedures, known as the TTLC and STLC methods, are intended to simulate the conditions that may be present in a landfill where water may pass through the landfill waste and travel into the groundwater, carrying the soluble materials with it. TCLP is designed to determine the mobility of analytes present in liquid, solid, and multiphase wastes. The soil at the subject site is not usually subject to landfill-type conditions. The TCLP and STLC results indicate that if waste soil is generated in the vicinity of SA2-1 and SA4-1, it should be segregated and further evaluated to determine if it needs to be handled and disposed as hazardous waste.

Leighton recommends limited excavation and further investigation of the SA2-1 and SA4-1 areas to refine the limits of the lead impacted soil.

<u>Analytical Results of Soil Vapor Samples</u>

The laboratory analytical reports are presented in Appendix D. The analytical test results for soil vapor samples are summarized in Table 2. On 19 June 2015, Leighton conducted soil vapor sampling. Benzene was detected in two soil vapor probes (Figure 2) and no other VOCs or TPH were detected in soil vapor. The laboratory analytical reports are presented in Appendix D.

Benzene - Benzene was detected in SVP-2 at 5 feet bgs and SVP-5 at 12 feet bgs, at concentrations of 0.15 and 0.10 micrograms per liter (μ g/L), respectively. The California Human Health Screening Levels (CHHSL) for benzene in soil vapor are 0.085 μ g/L and 0.28 μ g/L for residential and commercial land use scenarios, respectively. The benzene detections in the two probes slightly exceed the residential CHHSL screening level.

No other VOCs or TPH were detected above their respective laboratory method reporting limits in any of the soil vapor samples analyzed.

<u>SAM Vapor Intrusion Model – Soil Vapor Spreadsheet - Human Health Risk</u> <u>Assessment</u>

Using the County of San Diego Department of Environmental Health's (SDDEH) Vapor Risk Assessment Model (revised July 29, 2010), Leighton calculated the indoor vapor intrusion risk. The risk was calculated considering exposure to a child in a residential vapor risk exposure scenario as this scenario represents the most conservative scenario. The vapor risk assessment was performed for the following VOCs that were detected during the current soil vapor study (Table 2):

- 0.15 μg/L of benzene at 5 feet bgs
- 0.10 μg/L of benzene at 12 feet bgs

Assumptions:

- A residential child exposure scenario was used in which a child's exposure is 24 hours/day, 7 days/week for 30 years.
- An exchange rate of 0.5 exchanges per hour was used.
- The slab attenuation factor value of 0.01 was used assuming an engineered concrete slab.

Both carcinogenic and non-carcinogenic health risks were estimated. The DEH criterion used in this human health risk assessment is one in a million (1.0E-06). Non-carcinogenic toxicity is estimated by comparing the estimated dose to the dose required to trigger chronic toxicity. A value exceeding 1.0 is considered significant.

The estimated cancer risk from the human risk assessment is:

- 1.90E-07 for benzene in soil vapor at 5 feet bgs
- 5.29E-08 for benzene in soil vapor at 12 feet bgs

No other VOCs were detected in soil vapor samples. Based on these results, the maximum total cumulative cancer risk was calculated to be 1.90E-07 (i.e., excess lifetime cancer risk of 1.90 in a population of 10,000,000), which was less than the DEH criterion of 1.0E-06 (or excess lifetime cancer risk of 1 in a 1,000,000 population). Hence, the calculated cumulative carcinogenic risk from potential indoor vapor intrusion is within the acceptable range.

The calculated hazard index (HI) is:

- 5.16E-04 for benzene in soil vapor at 5 feet bgs
- 1.43E-04 for benzene in soil vapor at 12 feet bgs

Based on these results, the maximum cumulative non-carcinogenic hazard index was calculated to be 0.000516, which was significantly lower than the DEH criterion of 1.0. Based upon the calculated values, it appears no significant hazard is posed to residential occupants due to potential indoor vapor intrusion under the assumed conditions.

The human health risk calculation print outs are included in Appendix E.

CONCLUSIONS AND RECOMMENDATIONS

The purpose of the Focused Soil and Soil Vapor Screening Survey was to screen for the potential presence of hazardous substances and/or petroleum substances in 1) sites identified as illegal shooting sites involving lead contaminated soil; 2) above ground storage tank (AST) containing used oil and surrounding stained soil; 3) soils bordering along the ARCO gas station on Mesa Rock Road; 4) the areas within the proposed K

thru 8 school site; 5) areas of historic agricultural use that could have a significant impact on Newland's plans to redevelop the Site.

Although initially included in the specific comments and requirements for additional investigation as detailed in the referenced Hazardous Materials Review Letter provided to Newland by the County of San Diego, Planning & Development Services, Project Planning Division, further investigation of the proposed school site was deemed by DEH to be a separate issue and was removed from the requirements of the current investigation. As such, no sampling or laboratory analysis was completed in the area of the proposed K-8 school site.

With the exception of arsenic and lead, metals were not detected at concentrations exceeding the U.S. EPA Region 9 RSLs. Arsenic levels were below California background concentrations. Total lead exceeded 80 mg/kg in three samples. The Threshold Limit Concentration (TTLC) for total lead in boring SA2-1 at depths of 6 inches bgs and 18 inches bgs and in boring SA4-1 at a depth of 6 inches bgs were 1740, 337 and 983 mg/kg, respectively.

The lead RSL exceedances in the illegal shooting areas appear to be scattered and limited to shallow soil in these areas. The results of the laboratory analyses suggest that the lead exceedances detected could be directly related to sampling bias from minute pieces of lead projectile in specific samples.

The abandoned AST and surrounding stained soil was removed and disposed of in accordance with the requirements of the DEH Hazardous Materials Division and a report was submitted to DEH under separate cover dated April 30, 2015. A copy of this report is included as Appendix B. The County has approved no further action in this area.

With the exception of benzene, no VOCs or TPH were detected in soil vapor samples near the ARCO gas station on Mesa Rock Road. Soil vapor analytical results for benzene were compared to residential CHHSLs and applied to the SAM Vapor Intrusion Model and indicated that Benzene was not detected at concentrations that would pose a significant human health risk in a residential setting. Based on the result of the soil vapor survey, additional investigation is not warranted at this time for the areas investigated.

Based upon the results of this focused soil and soil vapor investigation, Leighton recommends the following:

- Further investigation of the SA2-1 and SA4-1 areas may be warranted based on future development plans to delineate the vertical and horizontal extant of lead impacted soil in these areas where illegal target shooting has occurred. Soil generated in the vicinity of SA2-1 and SA4-1 should be segregated and evaluated with regard to concentrations of lead to determine if it potentially needs to be handled and disposed as hazardous waste.
- No additional soil vapor sampling in the areas investigated near the ARCO gas station on Mesa Rock Road.

LIMITATIONS

This focused soil and soil vapor investigation was conducted in a manner consistent with the level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions.

The observations and conclusions presented in this report are professional opinions based on the scope of activities, work schedule, and information obtained through the activities described herein, and are limited to the portion of the Site investigated. Opinions presented herein apply to property conditions existing at the time of our study and cannot necessarily be taken to apply to property conditions outside of the area investigated or changes that we are not aware of or have not had the opportunity to evaluate. It must be recognized that conclusions drawn from these data are limited to the portion of the site investigated, and the amount, type, distribution, and integrity of the information collected at the time of the investigation, and the methods utilized to collect and evaluate the data. Although Leighton has taken steps to obtain true copies of available information, we make no representation or warranty with respect to the accuracy or completeness of the information provided by others.

We appreciate the opportunity to assist Newland for this project. Please do not hesitate to call the undersigned if you have any questions regarding this report.

Respectfully submitted,

LEIGHTON AND ASSOCIATES, INC.

Julie Harriman, PE 83894

Associate Engineer

Kevin Bryan, PG 6950

Senior Principal Geologist

JCH/KB/Ir

Attachments: Figure 1 – Site Location Map

Figure 2 - Site Plan with Soil Gas Data

Figure 3 – Site Plan with Soil Boring Locations

Table 1 – Summary of Soil Analytical Results – Title 22 Metals and OCPs

Table 2 - Summary of Soil Vapor Analytical Results

Appendix A - References

Appendix B – Report of Removal of Abandoned Above Ground Storage Tank, San Diego Department of Environmental Health Record #DEH2014-HHIRT-001443, Assessor's Parcel Number 178-101-16, San Marcos, California

Appendix C - Photographs

Appendix D – May and June 2015 Focused Soil and Soil vapor Survey – Laboratory Test Results and Chain-of-Custody Documents

Appendix E – Human Health Risk Calculation Printouts

Distribution: (1) Addressee

Summary of Soil Analytical Results - Title 22 Metals and OCPs

Newland Sierra, San Marcos, California

		Sample									Т	Title 22 M	letals (mg	/kg or mg	g/L)								OCPs
Sample ID	Sample Date	Type	Matrix	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium (Total)	Cobalt	Copper	Lead	Lead STLC	Lead TCLP	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	(µg/kg)
Grid Samples																							
SA1-1 @ 6"	5/21/2015	0	Soil	< 0.743	2.10	24.4	< 0.248	< 0.495	1.48	1.48	8.00	9.87			< 0.0806	0.698	0.759	< 0.743	< 0.248	< 0.743	6.64	13.1	
SA1-1 @ 18"	5/21/2015	0	Soil	1.11	3.00	40.0	0.352	< 0.490	4.30	2.50	7.80	29.4			< 0.0847	0.699	2.33	0.903	< 0.245	< 0.735	11.8	14.9	
SA2-1 @ 6"	5/21/2015	0	Soil	7.63	3.22	53.1	0.262	< 0.515	2.65	3.54	21.4	1740	211	54.1	< 0.0820	0.335	1.69	0.898	< 0.258	< 0.773	18.7	82.6	
SA2-1 @ 18"	5/21/2015	0	Soil	1.14	1.83	39.9	< 0.249	< 0.498	1.06	3.68	0.874	337	36.1	8.82	< 0.0833	< 0.249	0.731	< 0.746	< 0.249	< 0.746	13.6	22.7	
SA2-2 @ 6"	5/21/2015	0	Soil	0.960	1.19	31.4	< 0.246	< 0.493	1.95	2.33	9.49	77.8	1.38		< 0.0833	0.401	5.22	< 0.739	< 0.246	< 0.739	13.6	20.1	
SA2-2 @ 18"	5/21/2015	0	Soil	1.58	2.30	40.7	< 0.250	< 0.500	1.49	5.39	0.866	17.9			< 0.0847	1.24	0.772	0.976	< 0.250	< 0.750	27.2	30.8	
SA2-3 @ 6"	5/21/2015	0	Soil	< 0.735	1.20	47.7	< 0.245	< 0.490	4.83	3.64	1.62	52.5	1.43		< 0.0806	0.268	3.32	0.941	< 0.245	< 0.735	14.9	11.8	
SA2-3 @ 18"	5/21/2015	0	Soil	< 0.732	2.30	48.8	0.308	< 0.488	4.69	7.40	< 0.488	8.67			< 0.0820	0.346	2.48	< 0.732	< 0.244	< 0.732	20.0	9.03	
SA3-1 @ 6"	5/21/2015	0	Soil	1.23	3.35	116	0.406	< 0.498	6.73	5.15	1.48	13.8			< 0.0833	0.286	3.99	1.76	< 0.249	< 0.746	23.0	22.1	
SA3-1 @ 18"	5/21/2015	О	Soil	< 0.732	2.54	72.8	0.390	< 0.488	5.83	4.88	1.18	7.88			< 0.0833	0.411	3.52	< 0.732	< 0.244	< 0.732	21.6	20.5	
SA3-2 @ 6"	5/21/2015	0	Soil	< 0.750	1.95	143	0.361	< 0.500	5.02	4.64	1.93	5.31			< 0.0820	< 0.250	3.37	< 0.750	< 0.250	< 0.750	16.8	21.7	
SA3-2 @ 18"	5/21/2015	O	Soil	0.901	3.68	124	0.530	< 0.493	7.97	6.24	2.85	6.93			< 0.0847	0.406	5.17	< 0.739	< 0.246	< 0.739	26.9	25.5	
SA3-3 @ 6"	5/21/2015	O	Soil	< 0.750	2.13	59.1	0.390	< 0.500	5.85	5.01	0.621	24.5			< 0.0847	< 0.250	3.27	< 0.750	< 0.250	< 0.750	24.6	22.8	
SA3-3 @ 18"	5/21/2015	O	Soil	0.961	1.81	37.0	0.289	< 0.498	2.37	3.95	< 0.498	7.88			< 0.0820	< 0.249	1.27	< 0.746	< 0.249	< 0.746	18.8	21.4	
SA4-1 @ 6"	5/21/2015	O	Soil	4.63	3.28	30.1	0.365	< 0.493	0.347	1.05	10.6	983	171	144	< 0.0833	< 0.246	0.274	< 0.739	< 0.246	< 0.739	1.83	19.5	
SA4-1 @ 18"	5/21/2015	0	Soil	< 0.725	1.48	19.1	0.325	< 0.483	0.242	0.963	< 0.483	39.2			< 0.0833	< 0.242	0.269	< 0.725	< 0.242	< 0.725	1.89	10.7	
SA4-2 @ 6"	5/21/2015	О	Soil	0.866	1.43	51.1	0.340	< 0.490	1.27	2.29	< 0.490	34.0			< 0.0847	< 0.245	0.877	0.841	< 0.245	< 0.735	5.84	17.6	
SA4-2 @ 18"	5/21/2015	О	Soil	0.956	1.18	39.5	< 0.244	< 0.488	0.674	1.78	< 0.488	71.4	24.7		< 0.0820	< 0.244	1.08	< 0.732	< 0.244	< 0.732	3.83	15.4	
A1 @ 6"	5/21/2015	О	Soil																				ND
A2 @ 6"	5/21/2015	О	Soil																				ND
A3 @ 6"	5/21/2015	O	Soil	< 0.743	0.870	73.6	< 0.248	< 0.495	3.42	4.23	0.943	11.7			< 0.0833	0.300	2.27	< 0.743	< 0.248	< 0.743	15.5	20.3	ND
A4 @ 6"	5/21/2015	O	Soil																				ND
A5 @ 6"	5/21/2015	O	Soil																				ND
A6 @ 6"	5/21/2015	O	Soil																				ND
A7 @ 6"	5/21/2015	O	Soil																				ND
A8 @ 6"	5/21/2015	O	Soil																				ND
A9 @ 6"	5/21/2015	O	Soil						-					-									ND
A10 @ 6"	5/21/2015	0	Soil				-																ND
A11 @ 6"	5/21/2015	O	Soil																				ND
Screening																							
Criteria																							
DTSC HERO Note	e 3											80*											
EPA Region 9 Resi	EPA Region 9 Residential RSL (mg/kg)			31	0.67	15,000	160	70	120,000***	23	3,100	400			9.4	390	1,500	390	390	0.78	390	23,000	
Southern California	a Background Con-	centration (n	ng/kg)		12**																		
STLC (mg/L)				31	0.67	15,000	160	70	120,000***	23	3,100	400	5.0		9.4	390	1,500	390	390	0.78	390	23,000	
TCLP (mg/L)					12**									5.0									

Notes:

- O = Orignial Sample
- D = Duplicate Sample (duplicate of sample listed above in table)
- ND = Not detected above laboratory reporting limit
- RSL = USEPA Regional Screening Level (January 2015)

mg/kg = Milligrams per kilogram

mg/L = Milligrams per liter

- * = DTSC Office of Human and Ecological Risk (HERO) Note Number 3 (DTSC, 2014)
- ** = DTSC Determination of a Southern California Regional Background Arsenic Concentration in Soil (DTSC, 2008)
- *** = RSL for Chromium III
- <0.248 = Not detected above laboratory reporting limit as shown
 - -- = Not analyzed or not applicable
- STLC = Soluble threshold limit concentration
- TCLP = Toxicity characteristic leaching potential
- OCPs = Organochlorine pesticides

Bold concentrations were detected above laboratory reporting limit

TABLE 2 **Summary of Soil Vapor Analytical Results**

Newland Sierra, San Marcos, California

Sample ID	Sample Date	Matrix	Units	LCC	Benzene	DIPE	ETBE	Ethylbenzene	MTBE	m,p-Xylene	o-Xylene	TAME	TBA	Toluene	TPHv (C5 - C12)	Other VOCs
SV1-5'	6/19/2015	Soil Gas	μg/l	<0.5	<0.1	<1.0	<1.0	<0.5	<0.5	<0.5	<0.5	<1.0	<5.0	<1.0	<200	ND
SV2-5'	6/19/2015	Soil Gas	μg/l	<0.5	0.15	<1.0	<1.0	<0.5	<0.5	<0.5	<0.5	<1.0	<5.0	<1.0	<200	ND
SV3-5'	6/19/2015	Soil Gas	μg/l	<0.5	<0.1	<1.0	<1.0	<0.5	<0.5	<0.5	<0.5	<1.0	<5.0	<1.0	<200	ND
SV3-5' Rep	6/19/2015	Soil Gas	μg/l	<0.5	<0.1	<1.0	<1.0	<0.5	<0.5	<0.5	<0.5	<1.0	<5.0	<1.0	<200	ND
SV4-5'	6/19/2015	Soil Gas	μg/l	<0.5	<0.1	<1.0	<1.0	<0.5	<0.5	<0.5	<0.5	<1.0	<5.0	<1.0	<200	ND
SV4-9.5'	6/19/2015	Soil Gas	μg/l	<0.5	<0.1	<1.0	<1.0	<0.5	<0.5	<0.5	<0.5	<1.0	<5.0	<1.0	<200	ND
SV5-5'	6/19/2015	Soil Gas	μg/l	<0.5	<0.1	<1.0	<1.0	<0.5	<0.5	<0.5	<0.5	<1.0	<5.0	<1.0	<200	ND
SV5-12' 1PV	6/19/2015	Soil Gas	μg/l	<0.5	0.10	<1.0	<1.0	<0.5	<0.5	<0.5	<0.5	<1.0	<5.0	<1.0	<200	ND
SV5-12' 3PV	6/19/2015	Soil Gas	μg/l	<0.5	<0.1	<1.0	<1.0	<0.5	<0.5	<0.5	<0.5	<1.0	<5.0	<1.0	<200	ND
SV5-12' 10PV	6/19/2015	Soil Gas	μg/l	<0.5	<0.1	<1.0	<1.0	<0.5	<0.5	<0.5	<0.5	<1.0	<5.0	<1.0	<200	ND

Notes:

REP = Duplicate Sample (duplicate of sample listed above in table)

μg/L = Micrograms per liter

<0.50 = Not detected above laboratory reporting limit as shown

LCC = Leak check compound, '1,1-Difluoroethane

DIPE = Diisopropyl ether

ETBE = Ethyl tert-butyl ether MTBE = Methyl tertiary-butyl ether

TAME = Tertiary-amyl methyl ether

TBA = Tertiary-butyl alcohol

PV = Purge volume

ND = Not detected above laboratory reporting limit

Bold concentrations were detected above the laboratory reporting limit

No concentrations were detected above screening levels

One purge volume sampled, determined at SV5-12'

APPENDIX A REFERENCES

APPENDIX A

References

- Department of Toxic Substances Control (DTSC), Determination of a Southern California Regional Background Arsenic Concentration in Soil, by G. Chernoff, W. Bosan, and D. Oudiz, 2008.
- DTSC Advisory Active Soil Gas Investigations, by R. Abbasi, E. Allen, B. Bosan, and P. Chandler, 2012.
- Environmental Protection Agency (EPA) Region 9, Regional Screening Levels (RSL) for Chemical Contaminants at Superfund Sites, January 2015.
- Leighton and Associates, Inc., 2014, Phase I Environmental Site Assessment, Newland Sierra, San Marcos, San Diego County, California, dated 16 January 2014.
- Leighton and Associates, Inc., 2015, AST Removal Letter, letter to the San Diego Department of Environmental Health (DEH), 30 April 2015

APPENDIX B

REPORT OF REMOVAL OF ABANDONED ABOVE GROUND STORAGE TANK, SAN DIEGO DEPARTMENT OF ENVIRONMENTAL HEALTH RECORD #DEH2014-HHIRT-001443, ASSESSOR'S PARCEL NUMBER 178-101-16, SAN MARCOS, CALIFORNIA

April 30, 2015

Project Number: 10618.005

San Diego Department of Environmental Health Hazardous Materials Division P.O. Box 129261 San Diego, CA 92112-9261

Attention: Mr. Brad Long, EHS III

Subject: Report of Removal of Abandoned Above Ground Storage Tank, San

Diego Department of Environmental Health Record # DEH2014-HHIRT-001443, Assessor Parcel Number 178-101-16, San Marco,

California

INTRODUCTION

On behalf of Newland Sierra, LLC (Newland), Leighton and Associates, Inc., (Leighton) is pleased to present this report documenting the actions taken to address the removal of an abandoned above ground storage tank (AST) located on Assessor Parcel Number 178-101-16 in San Marco, California (Figure 1 Site Location Map). This letter provides the details of the disposal actions completed to address the AST as well as copies of the waste characterization and manifest documents verifying the non-hazardous nature of the materials being disposed.

BACKGROUND

In January 2015, Newland received an "Official Notice" (Record # DEH2014-HHIRT-001443) from the San Diego Department of Environmental Health (DEH) stating that on December 22, 2014, a representative from DEH observed an AST located on Assessor Parcel Number 178-101-16 in San Marco, California. As stated in the notice, the AST was located in open space (undeveloped land) approximately 1 mile past the end of Joni Lane and was on its side and appeared to have lost several gallons of oil. The DEH health specialist performed field tests which confirmed that the used oil portion of the contents remaining in the AST was non-chlorinated used oil. The notice stated that the owner of the subject site is responsible for removing the AST and any appurtenances

Project Number: 10618.005

and the associated stained soil in accordance with regulatory requirements. A copy of the official notice from DEH is attached to this report.

Leighton was contracted by Newland (property owner) to provide environmental consulting services associated with the removal of the AST and associated impacted materials under the review and approval of the DEH.

AST REMOVAL AND DISPOSAL OPERATIONS

On February 5, 2015 a representative of Leighton was onsite to observe the removal of the contents of the AST as well as the removal of the AST itself. A representative of the San Marcos Fire Department (SMFD) was also present at the site to confirm the removal of the AST under SMFD Permit # FIRE15-00084. A copy of the SMFD Field Inspection Record is attached with this report. Approximately 70 gallons of used oil and 25 gallons of rinseate was removed from the 250 gallon tank and stored in US Department of Transportation (DOT) approved 55-gallon steel drums pending results of laboratory analyses for waste characterization and disposal. The liquid wastes were identified as "Non-RCRA Hazardous Wastes, Liquid (oily water)" and transported under Uniform Hazardous Waste Manifest (manifest) #011174631 JJK by Pacific Trans Environmental Services, Inc., to the U.S. Ecology facility located at Highway 95, 12 miles South of Beatty, NV 89003. A copy of the waste manifest is attached with this report. The AST was purged of potentially flammable vapors using 5-lbs of dry ice and the lower explosive level (LEL) of the tank atmosphere measured prior to disposal. The LEL was measure and documented as 0% by the SMFD prior to removal and disposal of the AST from the site. The single walled, welded steel, AST was removed by truck from the site for recycling at Pacific Steel Inc. (PSI) located at 1700 Cleveland Avenue, National City, CA, 91950 under Certificate Number 174083. A copy of the PSI weighmaster certificate is attached with this report.

On February 6, 2015 removal of visually impacted soil materials was completed under the direction of a Leighton representative utilizing a tracked excavator and tracked skid steer tractor. Based on discussion with Mr. Brad Long, the DEH Environmental Specialist for the project, it was advised that removals of the impacted soil materials should extend until all visual indications of soil impact were removed. Removal operations were completed until no obvious signs of visual impacts were observed by Leighton personnel at the site. Representative site photographs depicting the soil conditions encountered during the excavation are attached with this report. Approximately 23 tons (± 14 cubic yards) of potentially impacted soil material was removed from the area previously identified by the DEH environmental specialist where

Project Number: 10618.005

the AST was previously located. Due to the difficulty associated with accessing the location of the impacted soil material with a dump truck, the soil materials were temporarily stockpiled onsite at a location more easily accessible for subsequent sampling and offsite disposal. The stockpiled soil materials were sampled and laboratory analyses completed in order to characterize the material for offsite disposal. Laboratory analyses indicated that the materials could be characterized as "Nonhazardous petroleum contaminated soil (Diesel and Waste Oil). The soil material has been accepted for disposal under special waste profile # 4531-15-4607at the Republic Services facility located at 1700 Maxwell Rd, Chula Vista, CA 91911. A copy of the Republic Services Special Waste Profile and waste transport manifest are attached with this report. Copies of the laboratory data used to profile the waste materials are attached with this report.

On behalf of Newland Sierra, LLC, Leighton Consulting, Inc. is respectfully requesting that based on the results of the removal and disposal actions detailed in this report, DEH provide written closure of this matter.

Project Number: 10618.005

Please do not hesitate to contact the undersigned should you have any questions or comments.

Respectfully submitted,

LEIGHTON AND ASSOCIATES, INC.

Kevin Bryan, PG, CEG Senior Principal Geologist

Bryan Voss, PG Project Geologist

Figure - Figure 1 Site Location Map

Attachments: Site Photographs

DEH Official Notice

SMFD Field Inspection Record PSI Weighmaster Certificate

Republic Services Special Waste Profile

Waste Manifests Laboratory Data

Distribution: (1) Addressee via email, brad.long@sdcounty.ca.gov

(1) Newland Real Estate Group Attn: Ms. Rita Brandin

Description: Sample Location of Leighton Ast remark.	Project Name: Nauland Stewart Project No.: 10618.005 Date 2/6/15 By: BV Page L of L
	North bottom Sample Locatus
12'-	
-2'	
Jane Jan	
West Same Lout	
8'	East Sidewall Sample Location
-3'	- South bottom Sample Location
	Not to Scale

SITE PHOTOGRAPHS

PHOTOGRAPHIC RECORD February 5, 2015

Client Name:

Newland Sierra, LLC

Site Location:

APN 178-101-16, San Marcos, CA

Project No. 10618.005

Photo No. 1

View Direction of Photo:

Northwest

Description:

View of triple rinsing the AST.

Photo No. 2

View Direction of Photo:

Northwest

Description:

View of AST, used oil, and rinseate 55-gallon drums loaded on trailer for disposal.

PHOTOGRAPHIC RECORD February 5, 2015

Client Name:

Newland Sierra, LLC

Site Location:

APN 178-101-16, San Marcos, CA

Project No. 10618.005

Photo No. 3

View Direction of Photo:
North

Description:

View of the excavation limits. Note: no visible stained soil was observed in the sidewall and bottom excavations.

Photo No. 4

View Direction of Photo: South

Description:

View of the excavation limits. Note: no visible stained soil was observed in the sidewall and bottom excavations.

DEH OFFICIAL NOTICE

177	À
(may	J

CITY/ZIP

COUNTY OF SAN DIEGO

OFFICIAL NOTICE NOTICE OF VIOLATION

PAGE	1	OF	2	DATE	12/23/2014	
RECO	RD	# DE	H201	14-HHIRT	Γ-001443	
TIME S	STA	RT			END	
SPECIA	٩LI	ST	B L	ong		
INSPE	CTI	ON O	CON	TACT		

FACILITY NAME APU 178 - 101 - 1600
ADDRESS N of Joni RD, San Marcos, Ca 92069

TITLE EHS III

OWNER'S NAME **NEWLAND SIERRA L L C**

PHONE

OWNER'S ADDRESS 9820 TOWNE CENTRE DR #100*SAN DIEGO CA\.

- -

CITY/ZIP / 92121

PHONE 858-505-6852

On the above date, the County inspected your business/facility/property under the authority of the California Health and Safety Code (H&SC), to determine compliance with applicable provisions of the H&SC, the California Code of Regulations (CCR), and the San Diego County Code of Regulatory Ordinances (SDCC). The following statements describe conditions which are violations of the law or that require further investigation. These observations require a formal response or immediate corrective action be taken, or both. Failure to correct violations or to provide information requested in a timely manner may be a factor in determining the course of further legal action.

On December 22 at approximately 9 AM DEH HIRT investigated the abandon above ground storage tank. The tank was abandoned in an open space approximately 1 mile past the end of Joni Lane in San Marcos, see Map. The tank was on its side and appeared to have lost several gallons of used oil. The tank was upbraided a sample of the contents collected and field tested. The tank contains approximately 35 gallon of used oil and water. Field testing indicated that the used oil portion of the contents was non-chlorinated used oil. The openings in the tank were secured to prevent rain water intrusion, and further release. Based on the location of a tank and soil staining it appears the tank was abandon sometime in the past two years. No markings on the tank were found to indicate who the responsible party, was or who owns the tank. The tank was marked with the contents of the letter will be sent to the property owner for removal of the tank, tank contents and contaminated soil.

Be Advised:

- Waste oil has been defined as a hazardous waste; Health and Safety code Section 25189(d).
- The property owner is ultimately responsible for any hazardous substances that are stored or discharged there. This is in accordance with Title 42 of the United States Code, Section 9607.
- You may self-haul the hazardous waste (Used Oil and Water) to a House Hold hazardous Waste facility; see the attached curtesy list for your Community. Call to get approval.
- For disposal of the contaminated soils you will likely need assistance of a Registered Hazardous Waste Hauler/Cleanup contractor See the attached curtesy list for companies. You may need an EPA I\D number see the attached handout for guidance. Also included is a handout for General hazardous waste requirements.
- Once the tanks us completely empty it may be re-sued of disposed of as scrap metal.

RESENTATIVE
ESENTATIVE
114
on response must demonstrate all violations have been. The County may initiate formal enforcement action

violations committed by a recalcitrant violator and Class I hazardous waste violations (CCR 66260.10 and H&SC 25110.8.5).

Department of Environmental Health, Hazardous Materials Division, P.O. Box 129261, San Diego, CA 92112-9261

these purposes, "significant violations" include violations that represent a significant threat to human health or safety or the environment, chronic violations.

Phone: (858) 505-6880 Toll Free: (800) 253-9933 http://www.sdcdeh.org

COUNTY OF SAN DIEGO

SUPPLEMENTAL COMPLIANCE INSPECTION REPORT

PERMIT # DEH2014-HHIRT-
001443
DATE <u>12/23/2</u> 014

|--|

FACILITY ADDRESS:	is of John RD, San Marcos,	Ga 92069	ZIP CODE:

Corrective Action:

- Within 5 Days sign and return a copy of this Official Notice, to acknowledge receipt.
- Within 30 days remove the tank and properly dispose of the contents (Used Oil and Water) as Hazardous Waste.
- Within 10 days of disposal of the used oil and contaminated soils as a hazardous waste, send a copy of the Hazardous Waste Manifests or a letter documenting how the waste was disposed of, to this office attention Brad long.

If you have any difficulty in locating an appropriate disposal site for your wastes, or if you have any questions concerning this matter, please call this office Monday through Friday from 9:00 a.m. to 4:00 p.m. at (858) 505-6852.

DEH2014-HHIRT-001443 On December 22 at approximately 9 AM DEH HIRT investigated the abandon above ground storage tank. The tank was abandoned in an open space approximately 1 mile past the end of Joni Lane in San Marcos, see Map. The tank was on its slde and appeared to have lost several gallons of used oil. The tank was upbraided a sample of the contents collected and field tested. The tank contains approximately 35 gallon of used oil and water. Field testing indicated that the used oil portion of the contents was non-chlorinated used oil. The openings in the tank were secured to prevent rain water intrusion, and further release. Based on the location of a tank and soil staining it appears the tank was abandon sometime in the past two years. No markings on the tank were found to indicate who the responsible party, was or who owns the tank. The tank was marked with the contents of the letter will be sent to the property owner for removal of the tank, tank contents and contaminated soil.

Photos By Brad Long

Tank, as found with two open ports, stained soil shows release.

4

Field Test Results- show the oil does not contain chlorinated solvents

SMFD FIELD INSPECTION RECORD

Inspection Line: 760-744-1050 ext 3408 or www.san-marcos.net San Marcos Fire Department

ADDRESS: 0 GIST RD OWNER: NEWLAND SIERRA L L C TYPE: FIRE

DESCRIPTION OF WORK: ABOVE GROUND TANK REMOVAL

FIELD INSPECTION RECORD

								Γ			П	T	T	T	Γ	Γ	П		П			T	T	T	7		T	T	T	٦
Date																														
Inspector																														
	FIRE ALARM	Alarre Rough Wiring	Final Rire Alarm		/											0														
Date								255							3500 011	RIVING 4:0														
Inspector												0	0		- INVINC	1.														
	FIRE SPRINKLER	Sprinkler Hydro	Final Sprinkler	Over Head TI	Final Sprinkler TI		отнек	ARNO CARRED THUK				TON.	NOTES	CIRS One I'M	3 C 14	100	10000													
Date																1		\												
Inspector						8				,				7441	-	1	16	//)										
	UNDERGROUND	Thrust Block	Underground Hydro	Underground Flush	Final Underground	1	SPECIAL SUPPRESSION	Hood Acceptance Test	Other					29784	216															

PSI WEIGHMASTER CERTIFICATES

WEIGHMASTER CERTIFICATE

WEIGHMASTER CERTIFICATE

WEIGHMASTER CERTIFICATE

WEIGHMASTER CERTIFICATE

WEIGHMASTER CERTIFICATE

Weighmaster, whose signature is on this certificate who is a recognized authority of the California Business and Professions code, administered by the Division of Meseurement Standards of the California Department of Food and Agriculture.

PEDDLERSD JOSHUA SCOTT FIELD 374 HEVX ST

1700 CLEVELAND AVENUE NATIONAL CITY, CALIFORNIA 91950 (619) 474-7081

02/05/2015

SPRING VALLEY

CA 91977

01:56:25 PM

VENDOR REFERENCE:

TICKET NUMBER:

207879 207879

7N30027

174083

CONTRACT NUMBER: CERTIFICATE NUMBER: COMMODITY DESCRIPTION GROSS lbs. TARE lbs. NET lbs. PRICE AMOUNT HMSU#1SD **HSM # 1 UNPREPARED** 11,180 10.800 380 100.00 / NT 19.00 380 **Totals** 19.00 WEIGHMASTER:

NT = Net Ton = 2000 lbs. • GT = Gross Ton = 2240 lbs. • MT = Metric Ton = 2204.6 lbs.

I HEREBY CERTIFY THAT I AM THE LAWFUL OWNER OF THE ABOVE MATERIAL, AND THIS MATERIAL IS FREE OF ENCUMBRANCES AND THAT I AM OF LEGAL AGE.

ACCEPTED:			
	CLISTOMER SIGNATURE		

REPUBLIC SERVICES SPECIAL WASTE PROFILE

Requested Disposal Facility: 4531	Otay LF CA			Wast	e Profile #
Saveable fill-in form. Restricted printing until all requi					
I. Generator Informatio			Sales Rep	#:	
Generator Name: Newland Sie					
	N: 178-101-1600 N. or Joni F	Rd.			
City: San Marcos	County: San Diego	State: 0	California		Zip: 92069
State ID/Reg No:	State Approval/Waste Code	:	(if a	ipplicable)	NAICS#:
Generator Mailing Address (if dit	fferent): 9820 Towne Cent	er Drive, Suite	e 100		
City: San Diego	County: San Diego	State:	California		Zip: 92121
Generator Contact Name: Rita	G. Brandin		Email: r	brandin@	newlandco.com
Phone Number: (858) 875-8219	Ext:	Fax Nu	ımber:		
II. Billing Information					
Bill To: Siboney Contracting Co.		Contac	t Name: Do	n Johnso	on
Billing Address: 1450 Centrepar	rk Blvd. Suite 100		Email: 0	djohnson(@siboneycc.com
City: West Palm Beach	State: FL	Zip: 33	401	Phone:	(619) 990-4443
III. Waste Stream Informa	tion				
Name of Waste: Non-hazardous	s petroleum contaminated soi	I (Diesel and \	Waste Oil)		
Process Generating Waste:					
Waste soils generated from exca	avation. Source of contaminat	ion is suspect	ed from abo	ve groun	d
storage tanks (A.S.T.)					
Type of Waste:	INDUSTRIAL PROCESS W		DLLUTION C	CONTRO	L WASTE
, , , , , , , , , , , , , , , , , , , ,	SOLID SEMI-SOLID	POWDER	LIQUIE)	
<u> </u>	BULK DRUM BAG		ΓHER:		
	00	Cubic Yards	i		
	ONE TIME ONGOING				
Disposal Consideration:	LANDFILL SOLIDIFICA	ATION LB	IOREMEDIA	ATION	
		_			
IV. Representative Sampl			MPLE TAKE	N	
Is the representative sample coll collected in accordance with U.S.				?	✓ YES or NO
Type of Sample: COMPOSIT				·	
Sample Date: 02/09/2015	-				
SP-1 to SP-	-4. 96-hour Fishbioassy condu	ucted on SP-3	and SP-4.		

					Was	te Pro	file#
\/ P!!	d Chamatadata	W4-					
	Components	waste		0/ h·	, \Maiabt /-	ongo'	
Characteristic (Components			% by 99.9	<u>r Weight (r</u> 99	ange)	
	drocarbons: diesel and was	ste oil		0.00			
3.							
4.							
5. Color	Odor (describe)	Does Waste Contain Free Liquids?	% Solids		pH:		Flash Point
Brown	None	☐ YES or NO	100		Neutral		NI/A
Attach La		port (and/or Material Safety Data		cludi		of Cus	F
71112077 20		quired Parameters Provided for					
Herbicides: Chlo		ain regulated concentrations of the follo and its epoxides), Lindane, Methoxych 3?				□Y	es or 🗾 No
	contain reactive sulfides (gr 40 CFR 261.23(a)(5)]?	reater than 500 ppm) or reactive cyanio	de (greater t	han 2	50	□Y	es or No
Does this waste Part 761?	contain regulated concentra	ations of Polychlorinated Biphenyls (PC	CBs) as defi	ned in	40 CFR	□Y	es or No
	contain concentrations of lis F-Listed Solvents?	sted hazardous wastes defined in 40 C	FR 261.31,	261.3	2, 261.33,	□Y	es or No
Does this waste	exhibit a Hazardous Charac	cteristic as defined by Federal and/or S	State regulat	ions?		□Y	es or 🔽 No
	contain regulated concentra efined in 40 CFR 261.31?	ations of 2,3,7,8-Tetrachlorodibenzodic	oxin (2,3,7,8	-TCCE)), or any	□Y	es or No
Is this a regulate	d Radioactive Waste as def	fined by Federal and/or State regulatio	ns?			□Y	es or No
Is this a regulate	d Medical or Infectious Was	ste as defined by Federal and/or State	regulations?	?		□Y	es or No
Is this waste a re	eactive or heat generating w	vaste?					es or No
Does the waste	contain sulfur or sulfur by-p	roducts?				$\vdash = -$	es or No
Is this waste gen	nerated at a Federal Superfu	und Clean Up Site?				$\vdash \equiv \vdash$	es or No
Is this waste from	n a TSD facility, TSD like fa	cility or consolidator?				<u> </u> Y	es or No
VI. Certifica							
description of the Results/Material I further certify the deliver for disposed facility is prohibit	e waste material being offer Safety Data Sheets submit nat by utilizing this profile, no sal any waste which is class and from accepting by law. Our company hereby agre	edge and belief, the information contained for disposal and all known or suspeted are truthful and complete and are reither myself nor any other employee clified as toxic waste, hazardous waste. I shall immediately give written notice cles to fully indemnify this disposal facilities.	cted hazard epresentation of the compa or infectious of any chang	ls have ve of thany will s waste ge or c	e been disclose waste. I deliver for e, or any othorition per	osed. dispos ner was taining	All Analytical al or attempt to ste material this to the waste not
I further certify th	nat the company has not alto	ered the form or content of this profile	sheet as pro	vided	by Republic	Servi	ces Inc.
Rita G. Bra	andin, Senior Vice Presid	ent, Development Director		New	and Sierra	, LLC	
Auth	norized Representative Name A	And Title (Type or Print)		C	Company Nan	ne	
	Authorized Representati	ve Signature			Date		

SPECIAL WASTE PROFILE - CHANGE

Saveable fill-in form Restricted printing until all required (yellow) fields are completed

	2anarata	r Informa	tion
I. (3enerato	rintorma	ITION

This form may be used to re	equest changes to an existing Special Wa	ste Profile	
Generator Name:	Newland Sierra, LLC	77	
Name of Waste	Non-Haz petroleum contaminated soil	Waste Profile #	4531154607
II. Purpose of Change			
Description of Change Requ requested following the app	uested and Reason for Change: (Provide ropriate checked box below).	detailed explanatio	n of why the change is
	tted with the Profile representative of the volume Incre	ease? Yes	No If No, complete Section III, below
☐ Extend Expiration Date:☐ Change or Add Landfill:			
	ry Reports: Complete Representative S	ample Certification	n. Section III. below
Add MSDS:		empre e e a me e a c	in, collon in, bolon.
☐ Generator Name Change	e;		
West Palm Ace Excava 1020 Greer	ing information from: Siboney Contracting Beach, FL, Don Johnson 619-990-4443 o ating nfield Dr., E1, El Cajon, CA 92021Larry G sdcoxmail.com	ljohnson@siboney	cc.com to:
III. Representative Sample	Certification		No Sample Taken
Is the representative sample	e Certification e collected to prepare this profile and labo n U.S. EPA 40 CFR 261.20(c) guidelines of	ratory analysis, or equivalent	■ No Sample Taken YES or NO
Is the representative sample collected in accordance with	e collected to prepare this profile and labo n U.S. EPA 40 CFR 261.20(c) guidelines o	ratory analysis, or equivalent	
Is the representative sample collected in accordance with rules?	e collected to prepare this profile and labo n U.S. EPA 40 CFR 261.20(c) guidelines o	ratory analysis, or equivalent	
Is the representative sample collected in accordance with rules? Type of Sample: COMPO	e collected to prepare this profile and labo n U.S. EPA 40 CFR 261.20(c) guidelines o	ratory analysis, or equivalent	
Is the representative sample collected in accordance with rules? Type of Sample: COMPO Sample Date:	e collected to prepare this profile and labo n U.S. EPA 40 CFR 261.20(c) guidelines o	ratory analysis, or equivalent	
Is the representative sample collected in accordance with rules? Type of Sample: COMPO Sample Date:	e collected to prepare this profile and labo n U.S. EPA 40 CFR 261.20(c) guidelines o	ratory analysis, or equivalent	
Is the representative sample collected in accordance with rules? Type of Sample: COMPO Sample Date:	e collected to prepare this profile and labo n U.S. EPA 40 CFR 261.20(c) guidelines o	ratory analysis, or equivalent	
Is the representative sample collected in accordance with rules? Type of Sample: COMPO Sample Date: Sample ID Numbers:	e collected to prepare this profile and labo n U.S. EPA 40 CFR 261.20(c) guidelines o	or equivalent	☐ YES or ☐ NO
Is the representative sample collected in accordance with rules? Type of Sample: COMPO Sample Date: Sample ID Numbers: IV. Certification I hereby certify that the wast in the original profile.	e collected to prepare this profile and labo n U.S. EPA 40 CFR 261.20(c) guidelines of DSITE SAMPLE	or equivalent	☐ YES or ☐ NO
Is the representative sample collected in accordance with rules? Type of Sample: COMPC Sample Date: Sample ID Numbers: IV. Certification I hereby certify that the wast in the original profile. Rita G. Brandin, Sr. Vice II	e collected to prepare this profile and labor U.S. EPA 40 CFR 261.20(c) guidelines of DSITE SAMPLE GRAB SAMPLE	are unchanged and Newland Sierra, L	☐ YES or ☐ NO
Is the representative sample collected in accordance with rules? Type of Sample: COMPC Sample Date: Sample ID Numbers: IV. Certification I hereby certify that the wast in the original profile. Rita G. Brandin, Sr. Vice II	e collected to prepare this profile and labor U.S. EPA 40 CFR 261.20(c) guidelines of DSITE SAMPLE GRAB SAMPLE GRAB SAMPLE The and the process generating the waste a President, Development Director	are unchanged and Newland Sierra, L	☐ YES or ☐ NO are accurately represented

WASTE MANIFESTS

UNIFURIN HAZAKUUUS	Generator ID Number		1 of 3. Emergency Respon	se Phone	4. Manifest			LIV
WASTE MANIFEST	CAC002802371	1	18004249300 Generator's Site Addres	on (if all losses the			4631	JJK
	WLAND SIERRA LLC E DR STE 100 SAN DIEGO, CA	ALIFORNIA 92121	SITE OF PICK L NORTH OF JON	IP		0.0	IIA 92069	
Generator's Phone: 858,875			1					
 Transporter 1 Company Name PACIFIC TRANS EM 					U.S. EPAID N			
7. Transporter 2 Company Name					U.S. EPAID N			
r. Hanspures 2 Company rease	**				1	ANT INCH		
8. Designated Facility Name and	Site Address				U.S. EPA ID N	lumber		
HWY 95, 12 MILE SO BEATTY, NEVADA 89	UTH OF #003				I NVT3300	240000		
Facility's Phone: 800-239-3						710000		
9a. 9b. U.S. DOT Description and Packing Group (if a	on (including Proper Shipping Name, Hazard ny))	l Class, ID Number,	10. Cont	ainers Type	11. Total Quantity	12. Unit Wt./Vol		ste Codes
1- NON-RORA HA	ZARDOUS WASTE, LIQUID (O	ILY WATER)		1		þ	NR	
			002	DM	0700		331	
2							\$	
3								
4_								
7 10						1		
14. Special Handling Instruction	s and Additional Information		GV-		EMERGE 1:N/A	ENCY RE	SPONSE (3UIDE
15. GENERATOR'S/OFFERO marked and labeled/placar Exporter, I certify that the c	R'S CERTIFICATION: I hereby declare that ded, and are in all respects in proper condition that so the format of th	ion for transport according to terms of the attached EPA Ac	applicable international and n knowledgment of Consent.	ational governm	1:N/A WORK C by the proper sh ental regulations.	ROER:	61778	ied, packaged,
15. GENERATOR'S/OFFERO marked and labeled/placar Exporter, I certify that the clertify that the waste mini	R'S CERTIFICATION: I hereby declare that ded, and are in all respects in proper conditiontents of this consignment conform to the mization statement identified in 40 CFR 262	ion for transport according to terms of the attached EPA Ac 2.27(a) (if I am a large quantity	applicable international and n knowledgment of Consent. y generator) or (b) (if I am a si	ational governm	1:N/A WORK C by the proper sh ental regulations.	ROER:	61778 , and are classi ipment and I am	ied, packaged, the Primary
15. GENERATOR'S/OFFERO marked and labeled/placar Exporter, I certify that the clertify that the waste mini	R'S CERTIFICATION: I hereby declare that ded, and are in all respects in proper conditiontents of this consignment conform to the mization statement identified in 40 CFR 262	ion for transport according to terms of the attached EPA Ac 2.27(a) (if I am a large quantity	applicable international and n knowledgment of Consent. y generator) or (b) (if I am a si Signature	ational governm	1:N/A WORK Construction by the proper she ental regulations.	ROER:	61778 , and are classif pment and I am	ied, packaged, the Primary
15. GENERATOR'S/OFFERO marked and labeled/placar Exporter, I certify that the clertify that the waste mini	R'S CERTIFICATION: I hereby declare that ded, and are in all respects in proper conditiontents of this consignment conform to the mization statement identified in 40 CFR 262 ped Name	ion for transport according to terms of the attached EPA Ac 2.27(a) (if I am a large quantity	applicable international and n knowledgment of Consent. y generator) or (b) (if I am a si Signature	ational governm	1:N/A WORK Construction by the proper she ental regulations.	ROER:	61778 , and are classif pment and I am	ied, packaged, the Primary
15. GENERATOR'S/OFFERO marked and labeled/placar Exporter, I certify that the c I certify that the waste mini Generator's/Offeror's Printed/Typ	R'S CERTIFICATION: I hereby declare that ded, and are in all respects in proper conditiontents of this consignment conform to the mization statement identified in 40 CFR 262 ped Name	ion for transport according to terms of the attached EPA Ac 2.27(a) (if I am a large quantity	applicable international and n knowledgment of Consent. y generator) or (b) (if I am a si Signature port of the Consent of Consent of the Consent of Consent of the Consent	ational governm	1:N/A WORK Construction by the proper she ental regulations.	ROER:	61778 , and are classif pment and I am	ied, packaged, the Primary
15. GENERATOR'S/OFFERO marked and labeled/placar Exporter, I certify that the collection of the certify that the waste mini Generator's/Offeror's Printed/Tyj 16. International Shipments Transporter signature (for export	R'S CERTIFICATION: I hereby declare that ded, and are in all respects in proper conditiontents of this consignment conform to the finization statement identified in 40 CFR 262 ped Name DOC	ion for transport according to terms of the attached EPA Ac 2.27(a) (if I am a large quantity	applicable international and n knowledgment of Consent. y generator) or (b) (if I am a si Signature rom U.S. Port of Date lea	ational governm mall quantity ger	1:N/A WORK Construction by the proper she ental regulations.	ROER:	61778 a, and are classif pment and I am	ied, packaged, the Primary
15. GENERATOR'S/OFFERO marked and labeled/placar Exporter, I certify that the c I certify that the waste mini Generator's/Offeror's Printed/Tyr 16. International Shipments Transporter signature (for exporter Signature) 17. Transporter Acknowledgment	R'S CERTIFICATION: I hereby declare that ded, and are in all respects in proper conditiontents of this consignment conform to the imization statement identified in 40 CFR 262 ped Name Import to U.S. ts only):	ion for transport according to terms of the attached EPA Ac 2.27(a) (if I am a large quantity	applicable international and n knowledgment of Consent. y generator) or (b) (if I am a sr Signature rom U.S. Port of Date lea	ational governm mall quantity ger	1:N/A WORK Construction by the proper she ental regulations.	ROER:	61778 a, and are classifipment and I am Mooth	ied, packaged, the Primary Day Y Day Y
15. GENERATOR'S/OFFERO marked and labeled/placar Exporter, I certify that the color certify that the waste mini Generator's/Offeror's Printed/Tyj 16. International Shipments Transporter signature (for export 17. Transporter Acknowledgment)	R'S CERTIFICATION: I hereby declare that ded, and are in all respects in proper conditiontents of this consignment conform to the imization statement identified in 40 CFR 262 ped Name Import to U.S. ts only):	ion for transport according to terms of the attached EPA Ac 2.27(a) (if I am a large quantity	applicable international and n knowledgment of Consent. y generator) or (b) (if I am a si Signature rom U.S. Port of Date lea	ational governm mall quantity ger	1:N/A WORK Construction by the proper she ental regulations.	ROER:	61778 a, and are classifipment and I am	ied, packaged, the Primary Day Y
15. GENERATOR'S/OFFERO marked and labeled/placar Exporter, I certify that the collectify that the waste mini Generator's/Offeror's Printed/Typed 16. International Shipments Transporter signature (for exporter 17. Transporter Acknowledgment 17. Transporter 2 Printed/Typed Narransporter 3 Printed/Typed Narransporter 4 Printed/Typed Nar	R'S CERTIFICATION: I hereby declare that ded, and are in all respects in proper conditiontents of this consignment conform to the 1 mization statement identified in 40 CFR 262 ped Name Import to U.S. Import to U.S. Its only):	ion for transport according to terms of the attached EPA Ac 2.27(a) (if I am a large quantity	applicable international and n knowledgment of Consent. y generator) or (b) (if I am a sr Signature rom U.S. Port of Date lea	ational governm mall quantity ger	1:N/A WORK Construction by the proper she ental regulations.	ROER:	61778 a, and are classifipment and I am Mooth	ied, packaged, the Primary Day Y Day Y
15. GENERATOR'S/OFFERO marked and labeled/placar Exporter, I certify that the colored locality that the waste mini Generator's/Offeror's Printed/Type 16. International Shipments Transporter signature (for export 17. Transporter Acknowledgment 17. Transporter 2 Printed/Typed Nar	R'S CERTIFICATION: I hereby declare that ded, and are in all respects in proper conditiontents of this consignment conform to the 1 mization statement identified in 40 CFR 262 ped Name Import to U.S. Import to U.S. Its only):	ion for transport according to terms of the attached EPA Ac 2.27(a) (if I am a large quantity	applicable international and n knowledgment of Consent. y generator) or (b) (if I am a sr Signature rom U.S. Port of Date lea	ational governm mall quantity ger	1:N/A WORK Construction by the proper she ental regulations.	PROER:	61778 a, and are classifipment and I am Mooth	ied, packaged, the Primary Day Y Day Y
15 GENERATOR'S/OFFERO marked and labeled/placar Exporter, I certify that the clerify that the waste mini Generator's/Offeror's Printed/Typed 16. International Shipments Transporter signature (for export 17. Transporter Acknowledgment 17. Transporter 2 Printed/Typed Narransporter 2 Printed/Typed Narransporter 2 Printed/Typed Narransporter 3 Printed/Typed Narransporter 4 Printed/Typed Narransporter 5 Printed/Typed Narransporter 6 Printed/Typed Narransporter 7 Printed/Typed Narransporter 7 Printed/Typed Narransporter 8 Printed/Typed Narransporter 9 Printed/Typed Narranspo	R'S CERTIFICATION: I hereby declare that ded, and are in all respects in proper conditiontents of this consignment conform to the imization statement identified in 40 CFR 262 ped Name Declaration Declaration	ion for transport according to terms of the attached EPA Ac 2.27(a) (if I am a large quantity Export f	applicable international and n knowledgment of Consent. y generator) or (b) (if I am a sr Signature rom U.S. Port of Date lea	ational governm mall quantity ger	1:N/A WORK C	ipping name if export sh	61778 a, and are classifipment and I am Mooth	ied, packaged, the Primary Day Y Day Y Day Y Day Y
15 GENERATOR'S/OFFERO marked and labeled/placar Exporter, I certify that the cleritify that the waste mini Generator's/Offeror's Printed/Type 16. International Shipments Transporter signature (for export 17. Transporter Acknowledgment 17. Transporter 2 Printed/Typed Narransporter 3 Printed/Typed Narransporter 4 Printed/Typed Narransporter 4 Printed/Typed Narransporter 5 Printed/Typed Narransporter 6 Printed/Typed Narransporter 7 Printed/Typed Narransporter 8 Printed/Typed Narransporter 9 Printed/Typed Narransp	R'S CERTIFICATION: I hereby declare that ded, and are in all respects in proper conditiontents of this consignment conform to the imization statement identified in 40 CFR 262 ped Name Declaration Declaration	ion for transport according to terms of the attached EPA Ac 2.27(a) (if I am a large quantity Export f	applicable international and n knowledgment of Consent. y generator) or (b) (if I am a sr Signature rom U.S. Port of Date leases Signature Residue	ational governm mall quantity ger	1:N/A WORK C	ipping name if export sh	61778 a, and are classifipment and I am Mooth	ied, packaged, the Primary Day Y Day Y Day Y Day Y
15. GENERATOR'S/OFFERO marked and labeled/placar Exporter, I certify that the control I certify that the waste mini Generator's/Offeror's Printed/Type 16. International Shipments Transporter signature (for export 17. Transporter Acknowledgment 17. Transporter 2 Printed/Typed Narransporter 2 Printed/Typed	R'S CERTIFICATION: I hereby declare that ded, and are in all respects in proper condition tents of this consignment conform to the tentization statement identified in 40 CFR 262 and Name Import to U.S. Import to U.S. ts only): t of Receipt of Materials Quantity ator)	ion for transport according to terms of the attached EPA Ac 2.27(a) (if I am a large quantity Export f	applicable international and n knowledgment of Consent. y generator) or (b) (if I am a sr Signature rom U.S. Port of Date leases Signature Residue	ational governm mall quantity ger	1:N/A WORK C	ipping name if export sh	61778 a, and are classifipment and I am Mooth	Day Y
15. GENERATOR'S/OFFERO marked and labeled/placar Exporter, I certify that the color certify that the waste mini Generator's/Offeror's Printed/Type 16. International Shipments Transporter signature (for export 17. Transporter Acknowledgment 18. Discrepancy 18a. Discrepancy Indication Spatial Properties of Alternate Facility's Phone: 18c. Signature of Alternate Facility (or General Properties of Alternate Facility (or General Recommendation) and the properties of Alternate Facility (or General Recommendation) and the properties of Alternate Facility (or General Recommendation) and the properties of Alternate Facility (or General Recommendation) and the properties of Alternate Facility (or General Recommendation) and the properties of Alternate Facility (or General Recommendation) and the properties of Alternate Facility (or General Recommendation) and the properties of Alternate Facility (or General Recommendation) and the properties of Alternate Facility (or General Recommendation) and the properties of Alternate Facility (or General Recommendation) and the properties of the properties of Alternate Facility (or General Recommendation) and the properties of the prop	R'S CERTIFICATION: I hereby declare that ded, and are in all respects in proper condition tents of this consignment conform to the tentization statement identified in 40 CFR 262 and Name Import to U.S. Import to U.S. ts only): t of Receipt of Materials Quantity ator)	ion for transport according to terms of the attached EPA Ac 2.27(a) (if I am a large quantity Export f	applicable international and n knowledgment of Consent. y generator) or (b) (if I am a sr Signature Port of Date lease Signature Residue Manifest Reference	ational governm mall quantity ger entry/exit: aving U.S.:	1:N/A WORK C	ipping name if export sh	Month	Day Y
15. GENERATOR'S/OFFERO marked and labeled/placar Exporter, I certify that the color certify that the waste mini Generator's/Offeror's Printed/Type 16. International Shipments Transporter signature (for export 17. Transporter Acknowledgment 18. Discrepancy 18a. Discrepancy Indication Spatial Properties of Alternate Facility's Phone: 18c. Signature of Alternate Facility (or General Properties of Alternate Facility (or General Recommendation) and the properties of Alternate Facility (or General Recommendation) and the properties of Alternate Facility (or General Recommendation) and the properties of Alternate Facility (or General Recommendation) and the properties of Alternate Facility (or General Recommendation) and the properties of Alternate Facility (or General Recommendation) and the properties of Alternate Facility (or General Recommendation) and the properties of Alternate Facility (or General Recommendation) and the properties of Alternate Facility (or General Recommendation) and the properties of Alternate Facility (or General Recommendation) and the properties of the properties of Alternate Facility (or General Recommendation) and the properties of the prop	R'S CERTIFICATION: I hereby declare that ded, and are in all respects in proper conditiontents of this consignment conform to the imization statement identified in 40 CFR 262 ped Name Declaration Declaration	ion for transport according to terms of the attached EPA Ac 2.27(a) (if I am a large quantity Export f	applicable international and n knowledgment of Consent. y generator) or (b) (if I am a sr Signature	ational governm mall quantity ger entry/exit: aving U.S.:	1:N/A WORK C	ipping name if export sh	Month	Day Y
15 GENERATOR'S/OFFERO marked and labeled/placar Exporter, I certify that the c I certify that the waste mini Generator's/Offeror's Printed/Type 16 International Shipments Transporter signature (for export 17. Transporter Acknowledgment 18. Discrepancy 18a. Discrepancy Indication Span 18b. Alternate Facility's Phone: 18c. Signature of Alternate Facility 19 Hazardous Waste Report Market 19 Hazar	R'S CERTIFICATION: I hereby declare that ded, and are in all respects in proper conditiontents of this consignment conform to the imization statement identified in 40 CFR 262 ped Name Declaration Declaration	ion for transport according to terms of the attached EPA Ac .2.27(a) (if I am a large quantity	applicable international and n knowledgment of Consent. y generator) or (b) (if I am a sr Signature	ational government gov	1:N/A WORK C by the proper shental regulations. herator) is true., Partial Rejut.	ipping name if export sh	Month	Day Y
15. GENERATOR'S/OFFERO marked and labeled/placar Exporter, I certify that the c I certify that the waste mini Generator's/Offeror's Printed/Type 16. International Shipments Transporter signature (for export 17. Transporter Acknowledgment 17. Transporter 2 Printed/Typed Narransporter 3 Printed/Typed Narran	R'S CERTIFICATION: I hereby declare that ded, and are in all respects in proper conditiontents of this consignment conform to the timization statement identified in 40 CFR 262 and Name Import to U.S. Import to U.S. Its only): I of Receipt of Materials I o Quantity ator) Ity (or Generator) anagement Method Codes (i.e., codes for harmagement Method Codes (i.e.,	ion for transport according to terms of the attached EPA Ac .2.27(a) (if I am a large quantity	applicable international and n knowledgment of Consent. y generator) or (b) (if I am a sr Signature	ational government gov	1:N/A WORK C by the proper shental regulations. herator) is true., Partial Rejut.	ipping name if export sh	Month	Day M Day Y Day Y Day Y Day Y

CERTIFICATE OF DISPOSAL

March 02,2015

RITA G BRANDIN NEWLAND SIERRA LLC NORTH OF NONI RD SAN MARCOS, CA 92121

This is to certify that waste as defined on Waste Manifest number <u>011174631JJK</u>/011174631JJK was received by U.S. Ecology, Inc., on <u>02/20/2015</u>. The waste(s) were subsequently treated, if required by 40 CFR Part 268 and U.S. Ecology's permits and disposed of by <u>02/24/2015</u> in accordance with permits and laws regulating this facility.

Reference Number: 15021901403-011174631JJK-1-1

Material: 2 55 GALLON DRUM

Process: Solidification

Facility: U.S. ECOLOGY NEVADA, INC.

HWY 95 11 MILES S. OF BEATTY

BEATTY, NV 89003 EPA ID: NVT330010000

Waste Type: NON-RCRA WASTE

Customer: PACIFIC TRANS ENV. SVCS.

Printed Name: REBECCA HOGABOAM

Signature:

Title: COMPLIANCE MANAGER

NON-HAZARDOUS SPECIAL WASTE & ASBESTOS MANIFEST

2034983

If waste is asbestos waste, complete Sections I, II, III and IV If waste is NOT asbestos waste, complete Sections I, II and III

	er	b. Manifest Docu	ment Number _{N↓A}		c. Page	1 of	
d. Generator's Name and Locatio	n;	-	e. Generator's Mailing	Address:			
AFIN 178: 178-101-160				owne Center	Deve Sud	e 100	
San Marcos, CA 92069		8219	ASS 0177 ALC	ego, CA 9212		80-1966	
. Phone:		1000	g. Phone:		9.1		
f owner of the generating facility.	differs from the gener	ator, provide:			856 875	8249	
n. Owner's Name:	## T		i. Owner's Phone No.:		000.010	0210	
, Waste Profile #	k. Exp. Date	. I. Waste Shi	pping Name and		ntainers	n. Total	o. Unit
110000110111011	in Exp. Dan	Description	BETT & TOTAL OF THE STATE OF TH	No.	Туре	Quantity	Wt/Vol
		Non Haz	ardous TPH		-537		
4531 15 4607	3/24/201	0.0000111		+	RO	15	CY
					3526		30
	8			-			
	1						
GENERATOR'S CERTIFICATION	d: I horoby costify that	the shows seemed mat-	orial is not a hornodore	mete ne dollar	d bu 40.0	ED 261 or any and	dinable
vaste is a treatment residue of a seen treated in accordance with the							ste has
. Generator Authorized Agent Na	ame (Print)	q. Signature			r. Date	-1	
the state of the s		- the state of the	nsporter completes	llc-e)			
1020 Greenfield Drive		A0000					
1020 Greenfield Drive El Cajon, CA 92021	619 441	4900	~				
1020 Greenfield Drive El Cajon, CA 92021 D. Phone:	619 441	4900 Signature		e. Date	100	1	
1020 Greenfield Drive El Cajon, CA 92021 b. Phone:	619 441 d.:	Signature	ation Site completes	THE RESERVE AND ADDRESS OF	/12	h 1	W. /
Disposal Facility and Site Address (Chuia Vista, CA 91912)	d.: Generator complet 619.421.3773	Signature e Illa-c and Destin c. US EPA Nur CAD962431	mber d. Discrepancy In	s IIId-g) idication Space	/	12-02 12542 curate. /20	85 25
Disposal Facility and Site Addr 1700 Maxwell Road Chuia Vista, CA 91917 Thereby certify that the above for	d.: Generator complet 619.421.3773 ACF Acct# 490164 Sat Intel material has been	Signature e Illa-c and Destin c. US EPA Nur CAD962431	mber d. Discrepancy In	s IIId-g) edication Space	/	12.02 12.542 curate. /20	85 25
El Cajon, CA 92021 b. Phone: Driver Name (Print) III. DESTINATION (G. Disposal Facility and Site Address of Authorized Agent (Print) Destination of Authorized Agent (Print)	d.senerator completed in the second of the s	Signature e Illa-c and Destin c. US EPA Nur CAD962431	mber d. Discrepancy In	s IIId-g) idication Space	/	12-02 12-02 12542 curate. /20	35
Driver Name (Print) II. DESTINATION (Go. Disposal Facility and Site Adding Landing Inc. Photography Landing Inc. Photogr	d. Senerator completess. 421 3773 (CF Acct# 400164 Sitemeter and the senerator completes are senerator completes).	Signature e Illa-c and Destin c. US EPA Nur CAD962431	mber d. Discrepancy In	foregoing is tr	ue and acc	12-02 12542 curate. /20	35
Driver Name (Print) DESTINATION (G. Disposal Facility and Site Address: 1700 Maxwell Road Chuia Vista, CA 91917 hereby certify that the above har Name of Authorized Agent (Print) V. ASBESTOS (General Control of Application of	d. Senerator completess. 421 3773 (CF Acct# 400164 Sitemeter and the senerator completes are senerator completes).	Signature e Illa-c and Destin c. US EPA Nur CAD962431	est of my knowledge the complete IVg-I) c. Responsible Agency	foregoing is tr	ue and acc	12.02 12542 curate. /20	35
Driver Name (Print) DESTINATION (G. Disposal Facility and Site Address: 1700 Maxwell Road Chuia Vista, CA 91917 Name of Authorized Agent (Print) Name of Authorized Agent (Print) ASBESTOS (General Control of Application of Appl	d.: Generator complete PSS 421 3773 (CF Acct# 490164 Sat Intid material has been int) f. S erator completes	Signature e Illa-c and Destin c. US EPA Nur CAD962431 n accepted and to the b ignature IVa-f and Operator	mber d. Discrepancy In	foregoing is tr	ue and acc	12-02 12542 curate. /20	35
Driver Name (Print) II. DESTINATION (G. Disposal Facility and Site Address 1700 Maxwell Road Chuia Vista, CA 91917 Inhereby certify that the above nate of Authorized Agent (Print) II. DESTINATION (G. Disposal Facility and Site Address 1700 Maxwell Road Chuia Vista, CA 91917 II. Name of Authorized Agent (Print) III. DESTINATION (G. Disposal Facility and Site Address 1700 Maxwell Road Chuia Vista, CA 91917 III. DESTINATION (G. Disposal Facility and Site Address 1700 Maxwell Road Chuia Vista, CA 91917 III. DESTINATION (G. Disposal Facility and Site Address 1700 Maxwell Road Chuia Vista, CA 91917 III. DESTINATION (G. Disposal Facility and Site Address 1700 Maxwell Road Chuia Vista, CA 91917 III. DESTINATION (G. Disposal Facility and Site Address 1700 Maxwell Road Chuia Vista, CA 91917 III. DESTINATION (G. Disposal Facility and Site Address 1700 Maxwell Road Chuia Vista, CA 91917 III. DESTINATION (G. Disposal Facility and Site Address 1700 Maxwell Road Chuia Vista, CA 91917 III. DESTINATION (G. Disposal Facility and Site Address 1700 Maxwell Road Chuia Vista, CA 91917 III. DESTINATION (G. Disposal Facility and Site Address 1700 Maxwell Road Chuia Vista, CA 91917 III. DESTINATION (G. Disposal Facility and Site Address 1700 Maxwell Road Chuia Vista, CA 91917 III. DESTINATION (G. Disposal Facility and Site Address 1700 Maxwell Road Chuia Vista, CA 91917 III. DESTINATION (G. Disposal Facility and Site Address 1700 Maxwell Road Chuia Vista, CA 91917 III. DESTINATION (G. Disposal Facility and Site Address 1700 Maxwell Road Chuia Vista, CA 91917 III. DESTINATION (G. Disposal Facility and Site Address 1700 Maxwell Road Chuia Vista, CA 91917 III. DESTINATION (G. Disposal Facility and Site Address 1700 Maxwell Road Chuia Vista, CA 91917 III. DESTINATION (G. Disposal Facility and Sit	d. senerator completes d. senerator c. s	Signature e Illa-c and Destin c. US EPA Nur CAD962431 n accepted and to the b ignature IVa-f and Operator	est of my knowledge the complete IVg-I) c. Responsible Agency	foregoing is tr	ue and acc	12-02 12542 curate. /20	35
Driver Name (Print) II. DESTINATION (G. Disposal Facility and Site Address Chuia Vista, CA 91912 Inc. Disposal Facility and Site Address Chuia Vista, CA 9	d. Senerator completes Generator completes Generator completes Generator completes Generator completes Actil 400164 Situation of the senerator completes I hereby declare that inked and labeled/place	Signature e Illa-c and Destin c. US EPA Nur CAD962431 coney n accepted and to the b grature IVa-f and Operator tion:	d. Discrepancy In 793 est of my knowledge the complete IVg-I) c. Responsible Agency d. Phone:	foregoing is tr	dress:	e by the proper sh	
Driver Name (Print) II. DESTINATION (G. Disposal Facility and Site Address of Authorized Agent (Print) III. DESTINATION (G. Disposal Facility and Site Address of Authorized Agent (Print) III. DESTINATION (G. Disposal Facility and Site Address of Authorized Agent (Print) III. DESTINATION (G. Disposal Facility and Site Address of Authorized Agent (Print) III. DESTINATION (G. Disposal Facility and Site Address of Agent (Print) III. DESTINATION (G. Disposal Facility and Site Address of Agent (Print) III. DESTINATION (G. Disposal Facility and Site Address of Agent (Print) III. DESTINATION (G. Disposal Facility and Site Address of Agent (Print) III. DESTINATION (G. Disposal Facility and Site Address of Agent (Print) III. DESTINATION (G. Disposal Facility and Site Address of Agent (Print) III. DESTINATION (G. Disposal Facility and Site Address of Agent (Print) III. DESTINATION (G. Disposal Facility and Site Address of Agent (Print) III. DESTINATION (G. Disposal Facility and Site Address of Agent (Print) III. DESTINATION (G. Disposal Facility and Site Address of Agent (Print) III. DESTINATION (G. Disposal Facility and Site Address of Agent (Print) III. DESTINATION (G. Disposal Facility and Site Address of Agent (Print) III. DESTINATION (G. Disposal Facility and Site Address of Agent (Print) III. DESTINATION (G. Disposal Facility and Site Address of Agent (Print) III. DESTINATION (G. Disposal Facility and Site Address of Agent (Print) III. DESTINATION (G. Disposal Facility and Site Address of Agent (Print) III. DESTINATION (G. Disposal Facility and Site Address of Agent (Print) III. DESTINATION (G. Disposal Facility and Site Address of Agent (Print) III. DESTINATION (G. Disposal Facility and Site Address of Agent (Print) III. DESTINATION (G. Disposal Facility and Site Address of Agent (Print) III. DESTINATION (G. Disposal Facility and Site Address of Agent (Print) III. DESTINATION (G. Disposal Facility and Site Address of Agent (Print) III. DESTINATION (G. Disposal Facility and Site Address of	d. Senerator completes Generator completes Generator completes Generator completes Generator completes Actil 400164 Situation of the senerator completes I hereby declare that inked and labeled/place	Signature e Illa-c and Destin c. US EPA Nur CAD962431 coney n accepted and to the b grature IVa-f and Operator tion:	d. Discrepancy In 793 est of my knowledge the complete IVg-I) c. Responsible Agency d. Phone:	foregoing is tr	dress:	e by the proper sh	
Disposal Facility and Site Address: Description of Authorized Agent (Print) Description of Authorized Agent (Print) Name of Authorized Agent (Print) ASBESTOS (General Agent Address: NOT APPLICABLE Phone: Special Handling Instructions a	d.senerator completes Generator completes GENERAL ADDIGATION ACET ADDIG	Signature e Illa-c and Destin c. US EPA Nur CAD962431 coney n accepted and to the b dignature IVa-f and Operator tion: % Friable the contents of this con arded, and are in all res	d. Discrepancy In 793 est of my knowledge the complete IVg-I) c. Responsible Agency d. Phone: % Non-Friable signment are fully and ac pects in proper condition	foregoing is tr g. Date Name and Ad courately descriptor transport a	dress:	e by the proper sho applicable intern	ational a

NON-HAZARDOUS SPECIAL WASTE & ASBESTOS MANIFEST

-2064889

 If waste is asbestos waste, complete Sections I, II, III and IV If waste is <u>NOT</u> asbestos waste, complete Sections I, II and III

a. Generator's US EPA ID Number	erator completes	b. Manifest Docu	ment Number		c. Page	1 of -	
					5435,556	OTREATE TR	
d. Generator's Name and Location: AFN 178-178-101-1600 Sun Mercos, CA 92069 f. Phone:	N of Jons Rd 3075 85	219		Address: Towne Center Jego, CA 9212		te 100	
If owner of the generating facility diff	fers from the generate	or, provide:			856 875	8219	
h. Owner's Name: i. Waste Profile #	k. Exp. Date	I Waete Shi	i. Owner's Phone No.: pping Name and	T m Co	ntainers	n. Total	o. Unit
j. tvaste r tolle w	k. Exp. Date	Description	pping reams and	No.	Туре	Quantity	Wt/Vol
		Non Haz	ardous TPH				
4531 15 4607	3/24/2016	Containe	ng Sofi	1	RO	15	CY
GENERATOR'S CERTIFICATION:	I hereby certify that th	ne above named mate	erial is not a hazardous w	vaste as define	ed by 40 C	FR 261 or any app	olicable
state law, has been properly describ waste is a treatment residue of a pre- been treated in accordance with the	ed, classified and pace eviously restricted haz	ckaged, and is in prop zardous waste subjec	per condition for transport t to the Land Disposal Re	tation accordin	ng to applientify and v	cable regulations; a	AND, if this
Dyan VUS	> +	Tom	V-2-	-	7/	16/15 .	
p. Generator Authorized Agent Nam		q. Signature			r. Date		
II. TRANSPORTER (C a. Transporter's Name and Address:		tes lla-b and Tra	nsporter completes	llc-e)			
1020 Greenfield Drive El Cajon, CA 92021 b. Phone:	619 441 48	2	20-	110			£
c. Driver Name (Print)	d. Sig	gnature		e. Date			24
III. DESTINATION (Ger	nerator complete	Illa-c and Destina	ation Site completes	IIId-g)		A 000	-71.7
Disposal Facility and Site Address Nay Lahoffil, Inc. Phil 6 1700 Maxwell Road Chula Viata, CA 91911 (U.b. I hereby certify that the above name	F Acct# 400164 Sibo	X / /	190 # 125	450	41	1150	-
Thereby certaly that the above harms			est of my knowledge are	toregoing is to	7	you plus. / /	
e. Name of Authorized Agent (Print)		nature		g. Date			
IV. ASBESTOS (Genera	ator completes IV	a-f and Operator			*:		
a. Operator's Name and Address: NOT APPLICABLE	*		c. Responsible Agency	Name and Ad	dress:		
b. Phone:	er.		d. Phone:				
e. Special Handling Instructions and	Additional Information	n:			,		
f. Friable Non-Friable OPERATOR'S CERTIFICATION: I h and are classified, packaged, market national governmental regulations.	ereby declare that the	Friable e contents of this con- led, and are in all res	% Non-Friable signment are fully and ac pects in proper condition	curately descr for transport a	ibed abov according t	e by the proper sh to applicable intern	ipping name lational and
g. Operator's Name and Title (Print) "Operator refers to the company white renovation operation or both		gnature rates, controls, or sup	ervises the facility being	i. Date demolished or	renovate	d, or the demolition	n or

LABORATORY DATA

Calscience

Supplemental Report 5

Additional requested analyses have been added to the original report.

WORK ORDER NUMBER: 15-02-0661

The difference is service

ResultLink)

Email your PM >

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: LEIGHTON AND ASSOCIATES, INC.

Client Project Name: Newland Sierra

Attention: Bryan Voss

3934 Murphy Canyon Road, Suite B205

San Diego, CA 92123-4425

Robert Villey

Approved for release on 03/18/2015 by: Richard Villafania

Project Manager

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to

otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or

Contents

Client Project Name: Newland Sierra Work Order Number: 15-02-0661

1	Work Order Narrative	3
2	Client Sample Data	4
	2.1 CA Fish and Game 96-Hour Acute Aquatic Bioassay (Solid)	4
	2.2 EPA 8015B (M) C6-C44 (Solid)	6
	2.3 EPA 6010B/7471A CAC Title 22 Metals (Solid)	15
	2.4 EPA 7471A Mercury (Solid)	20
	2.5 EPA 8082 PCB Aroclors (Solid)	21
	2.6 EPA 8270C Semi-Volatile Organics (Solid)	25
	2.7 EPA 8270C SIM PAHs (Solid)	40
	2.8 EPA 8260B Volatile Organics (Solid)	42
3	Quality Control Sample Data	52
	3.1 MS/MSD	52
	3.2 LCS/LCSD	60
4	Sample Analysis Summary	68
5	Glossary of Terms and Qualifiers	69
6	Chain-of-Custody/Sample Receipt Form	70

Work Order Narrative

Work Order: 15-02-0661 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 02/09/15. They were assigned to Work Order 15-02-0661.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425

Work Order: Preparation:

Date Received:

N/A CA Fish and Game

Page 1 of 2

Mean Weight:

02/09/15

15-02-0661

Project: Newland Sierra

Mean Length:

43 mm 02/09/15 20:05:00 0.46 g

Test Species: Sample Collected: Fathead Minnow (Pimephales Promelas) 02/09/15 07:15:00

Sample Received: Test End:

03/17/15 18:00:00

Test Start:

03/13/15 18:00:00

Method:

19.8 °C

Residual Chlorine: < 0.01 mg/L рН: 7.66 units Dissolved Oxygen (D.O.): 7.2 mg/L Hardness: 40 mg/L

Temperature: Conductivity: 900 umhos/cm Alkanlinity: 186 mg/L Ammonia: N/A

Sample Preparation

Initial Water Quality Parameters

The sample was adjusted to test temperature.

Sample Adjustment During Analysis

No Supplemental aeration needed.

If needed, supplemental aeration to maintain required Dissolved Oxygen level is supplied via a low pressure oil-free pump connected to individual lines for each tank/chamber from a common manifold. Individual valves at each tank/chamber control the flow rate as required.

Client Sample Number	Lab Sample Nun	nber Date Collected	Matrix	Date Prepared	Date/Time Analyzed	QC Batch ID
SP-3	15-02-0661-7	02/09/15	Solid	03/13/15	03/17/15 18:00:00	
<u>Parameter</u>	<u>Result</u>	<u>Units</u>				
Bioassay 750 mg/L (% Mortality)	0	%				
Bioassay 250 mg/L (% Mortality)	0	%				

Laboratory Notes

Sample analysis was performed after recommended holding time.

All testing was within method protocol.

LC 50 Results

24.20 SRT sample (mg/L): Upper 95% confidence limit: 25.70 Lower 95% confidence limit: 22.80

02/09/15

N/A

Analytical Report

LEIGHTON AND ASSOCIATES, INC. Date Received: Work Order: 15-02-0661 3934 Murphy Canyon Road, Suite B205 Preparation:

San Diego, CA 92123-4425 Method: CA Fish and Game

Project: Newland Sierra Page 2 of 2

Test Species: Fathead Minnow (Pimephales Promelas) Mean Length: Mean Weight: 43 mm 0.47 g

Sample Collected: 02/09/15 07:30:00 Sample Received: 02/09/15 20:05:00

Test Start: 02/23/15 19:00:00 Test End: 02/27/15 19:00:00

Initial Water Quality Parameters

Residual Chlorine: < 0.01 mg/L Temperature: 19.8 °C рН: 7.76 units Conductivity: 910 umhos/cm Dissolved Oxygen (D.O.): 7.18 mg/L Alkanlinity: 192 mg/L Hardness: 42 mg/L Ammonia: N/A

Sample Preparation

The sample was adjusted to test temperature.

Sample Adjustment During Analysis

No Supplemental aeration needed.

If needed, supplemental aeration to maintain required Dissolved Oxygen level is supplied via a low pressure oil-free pump connected to individual lines for each tank/chamber from a common manifold. Individual valves at each tank/chamber control the flow rate as required.

Client Sample Number	Lab Sample Nun	nber Date Collected	Matrix	Date Prepared	Date/Time Analyzed	QC Batch ID
SP-4	15-02-0661-8	02/09/15	Solid	02/23/15	02/27/15 19:00:00	
Parameter	Result	<u>Units</u>				
Bioassay 750 mg/L (% Mortality)	0	%				
Bioassay 250 mg/L (% Mortality)	0	%				

Laboratory Notes

Sample was received within recommended holding time.

All testing was within method protocol.

LC 50 Results

22.50 SRT sample (mg/L): Upper 95% confidence limit: 23.90 Lower 95% confidence limit: 21.10

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received:
Work Order:
Preparation:
Method:

15-02-0661 EPA 3550B

02/09/15

Units:

EPA 8015B (M) mg/kg

Project: Newland Sierra

Page 1 of 9

Client Sample N	lumber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
South Bottom		15-02-0661-1-A	02/06/15 15:45	Solid	GC 45	02/10/15	02/11/15 22:38	150210B16
Comment(s):	- The total concentration is	ncludes individual car	bon range cond	entrations (es	stimated), if any	, below the RL	reported as ND.	
<u>Parameter</u>			Result	RL	:	<u>DF</u>	<u>Qua</u>	<u>llifiers</u>
C6			ND	50		10.0		
C7			ND	50		10.0		
C8			ND	50		10.0		
C9-C10			ND	50		10.0		
C11-C12			110	50		10.0		
C13-C14			170	50		10.0		
C15-C16			190	50		10.0		
C17-C18			230	50		10.0		
C19-C20			270	50		10.0		
C21-C22			620	50		10.0		
C23-C24			950	50		10.0		
C25-C28			1400	50		10.0		
C29-C32			1700	50		10.0		
C33-C36			1200	50		10.0		
C37-C40			690	50		10.0		
C41-C44			280	50		10.0		
C6-C44 Total			7800	5.0)	1.00		
<u>Surrogate</u>			Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
n-Octacosane			87	61-	-145			

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received:
Work Order:
Preparation:

02/09/15 15-02-0661 EPA 3550B

Method: Units: EPA 8015B (M) mg/kg

Project: Newland Sierra

Page 2 of 9

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
East Sidewall		15-02-0661-2-A	02/06/15 16:00	Solid	GC 45	02/10/15	02/13/15 02:30	150210B16
Comment(s):	- The total concentration	includes individual car	rbon range cond	centrations (es	timated), if any	, below the RL	reported as ND.	
<u>Parameter</u>			<u>Result</u>	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
C6			ND	5.0		1.00		
C7			ND	5.0		1.00		
C8			ND	5.0		1.00		
C9-C10			ND	5.0		1.00		
C11-C12			ND	5.0		1.00		
C13-C14			ND	5.0		1.00		
C15-C16			ND	5.0		1.00		
C17-C18			ND	5.0		1.00		
C19-C20			ND	5.0		1.00		
C21-C22			ND	5.0		1.00		
C23-C24			ND	5.0		1.00		
C25-C28			7.7	5.0		1.00		
C29-C32			9.6	5.0		1.00		
C33-C36			5.9	5.0		1.00		
C37-C40			ND	5.0		1.00		
C41-C44			ND	5.0		1.00		
C6-C44 Total			35	5.0		1.00		
Surrogate			Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
n-Octacosane			62	61-	145			

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method: 02/09/15 15-02-0661 EPA 3550B

Method: EPA 8015B (M) Units: mg/kg

Project: Newland Sierra Page 3 of 9

Client Sample N	lumber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
North Bottom		15-02-0661-3-A	02/06/15 16:15	Solid	GC 45	02/10/15	02/11/15 16:47	150210B16
Comment(s):	- The total concentration in	ncludes individual car	bon range cond	centrations (es	stimated), if any	, below the RL	reported as ND.	
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
C6			ND	5.0)	1.00		
C7			ND	5.0)	1.00		
C8			ND	5.0)	1.00		
C9-C10			ND	5.0)	1.00		
C11-C12			ND	5.0)	1.00		
C13-C14			ND	5.0)	1.00		
C15-C16			ND	5.0)	1.00		
C17-C18			ND	5.0)	1.00		
C19-C20			ND	5.0)	1.00		
C21-C22			ND	5.0)	1.00		
C23-C24			ND	5.0)	1.00		
C25-C28			ND	5.0)	1.00		
C29-C32			5.9	5.0)	1.00		
C33-C36			ND	5.0)	1.00		
C37-C40			ND	5.0)	1.00		
C41-C44			ND	5.0)	1.00		
C6-C44 Total			17	5.0)	1.00		
<u>Surrogate</u>			Rec. (%)	<u>Co</u>	ntrol Limits	<u>Qualifiers</u>		
n-Octacosane			70	61-	-145			

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method: 02/09/15 15-02-0661 EPA 3550B

Units:

EPA 8015B (M) mg/kg

Project: Newland Sierra

Page 4 of 9

Client Sample N	lumber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
West Sidewall		15-02-0661-4-A	02/06/15 16:30	Solid	GC 45	02/10/15	02/13/15 02:49	150210B16
Comment(s):	- The total concentration is	ncludes individual car	rbon range cond	centrations (es	timated), if any	, below the RL	reported as ND.	_
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
C6			ND	5.0		1.00		
C7			ND	5.0		1.00		
C8			ND	5.0		1.00		
C9-C10			ND	5.0		1.00		
C11-C12			ND	5.0		1.00		
C13-C14			ND	5.0		1.00		
C15-C16			ND	5.0		1.00		
C17-C18			ND	5.0		1.00		
C19-C20			ND	5.0		1.00		
C21-C22			5.9	5.0		1.00		
C23-C24			7.1	5.0		1.00		
C25-C28			12	5.0		1.00		
C29-C32			17	5.0		1.00		
C33-C36			20	5.0		1.00		
C37-C40			5.7	5.0		1.00		
C41-C44			ND	5.0		1.00		
C6-C44 Total			74	5.0		1.00		
<u>Surrogate</u>			Rec. (%)	<u>Cor</u>	ntrol Limits	Qualifiers		
n-Octacosane			62	61-	145			

n-Octacosane

Analytical Report

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received:
Work Order:
Preparation:
Method:

15-02-0661 EPA 3550B

EPA 8015B (M)

02/09/15

Units: mg/kg

Project: Newland Sierra Page 5 of 9

Client Sample I	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SP-1		15-02-0661-5-A	02/09/15 07:00	Solid	GC 45	02/10/15	02/12/15 18:37	150210B16
Comment(s):	- The total concentration in	ncludes individual car	bon range cond	centrations (es	stimated), if any	, below the RL	reported as ND.	
<u>Parameter</u>			Result	<u>RL</u>	:	<u>DF</u>	<u>Qua</u>	<u>llifiers</u>
C6			ND	49		10.0		
C7			ND	49		10.0		
C8			ND	49		10.0		
C9-C10			ND	49		10.0		
C11-C12			140	49		10.0		
C13-C14			260	49		10.0		
C15-C16			290	49		10.0		
C17-C18			350	49		10.0		
C19-C20			430	49		10.0		
C21-C22			1100	49		10.0		
C23-C24			1500	49		10.0		
C25-C28			2600	49		10.0		
C29-C32			2900	49		10.0		
C33-C36			2100	49		10.0		
C37-C40			1300	49		10.0		
C41-C44			750	49		10.0		
C6-C44 Total			14000	5.0)	1.00		
<u>Surrogate</u>			Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		

111

61-145

n-Octacosane

Analytical Report

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received:
Work Order:
Preparation:
Method:

61-145

15-02-0661 EPA 3550B EPA 8015B (M)

02/09/15

mg/kg

Units:

Project: Newland Sierra Page 6 of 9

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SP-2		15-02-0661-6-A	02/09/15 07:10	Solid	GC 45	02/10/15	02/11/15 19:15	150210B16
Comment(s):	- The total concentration is	ncludes individual car	bon range cond	centrations (es	stimated), if any	, below the RL	reported as ND.	
<u>Parameter</u>			Result	<u>RL</u>	:	<u>DF</u>	Qua	<u>lifiers</u>
C6			ND	50		10.0		
C7			ND	50		10.0		
C8			ND	50		10.0		
C9-C10			ND	50		10.0		
C11-C12			53	50		10.0		
C13-C14			130	50		10.0		
C15-C16			180	50		10.0		
C17-C18			210	50		10.0		
C19-C20			260	50		10.0		
C21-C22			530	50		10.0		
C23-C24			730	50		10.0		
C25-C28			1400	50		10.0		
C29-C32			1800	50		10.0		
C33-C36			1600	50		10.0		
C37-C40			1100	50		10.0		
C41-C44			410	50		10.0		
C6-C44 Total			8400	5.0)	1.00		
<u>Surrogate</u>			Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		

82

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received:
Work Order:
Preparation:
Method:

15-02-0661 EPA 3550B EPA 8015B (M)

02/09/15

Units:

its: mg/kg

Project: Newland Sierra Page 7 of 9

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SP-3		15-02-0661-7-A	02/09/15 07:15	Solid	GC 45	02/10/15	02/12/15 18:54	150210B16
Comment(s):	- The total concentration i	ncludes individual car	rbon range cond	centrations (e	stimated), if any	, below the RL	reported as ND.	
<u>Parameter</u>			<u>Result</u>	RI	=	<u>DF</u>	Qua	<u>llifiers</u>
C6			ND	50)	10.0		
C7			ND	50)	10.0		
C8			ND	50)	10.0		
C9-C10			ND	50)	10.0		
C11-C12			160	50)	10.0		
C13-C14			270	50)	10.0		
C15-C16			340	50)	10.0		
C17-C18			430	50)	10.0		
C19-C20			520	50)	10.0		
C21-C22			1100	50)	10.0		
C23-C24			1500	50)	10.0		
C25-C28			2900	50)	10.0		
C29-C32			3200	50)	10.0		
C33-C36			2100	50		10.0		
C37-C40			1400	50)	10.0		
C41-C44			860	50		10.0		
C6-C44 Total			15000	5.0	0	1.00		
<u>Surrogate</u>			Rec. (%)	Co	ontrol Limits	Qualifiers		
n-Octacosane			112	61	-145			

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received:
Work Order:
Preparation:
Method:

15-02-0661 EPA 3550B

02/09/15

Units:

EPA 8015B (M) mg/kg

Project: Newland Sierra

Page 8 of 9

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SP-4		15-02-0661-8-A	02/09/15 07:30	Solid	GC 45	02/10/15	02/11/15 20:29	150210B16
Comment(s):	- The total concentrati	ion includes individual car	rbon range cond	centrations (est	timated), if any	, below the RL	reported as ND.	
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
C6			ND	49		10.0		
C7			ND	49		10.0		
C8			ND	49		10.0		
C9-C10			ND	49		10.0		
C11-C12			140	49		10.0		
C13-C14			230	49		10.0		
C15-C16			240	49		10.0		
C17-C18			290	49		10.0		
C19-C20			380	49		10.0		
C21-C22			800	49		10.0		
C23-C24			1100	49		10.0		
C25-C28			2000	49		10.0		
C29-C32			2400	49		10.0		
C33-C36			1800	49		10.0		
C37-C40			1100	49		10.0		
C41-C44			430	49		10.0		
C6-C44 Total			11000	5.0		1.00		
Surrogate			Rec. (%)	<u>Cor</u>	ntrol Limits	Qualifiers		
n-Octacosane			84	61-	145			

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method:

Units:

02/09/15 15-02-0661 EPA 3550B EPA 8015B (M)

mg/kg Page 9 of 9

Project: Newland Sierra

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-490-1426	N/A	Solid	GC 45	02/10/15	02/11/15 14:23	150210B16
Parameter		Result	RL	•	<u>DF</u>	Qualit	fiers
C6		ND	5.0)	1.00		
C7		ND	5.0)	1.00		
Co		ND	E (1	1.00		

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method:

15-02-0661 EPA 3050B EPA 6010B mg/kg

02/09/15

Units:

Page 1 of 5

Project: Newland Sierra

Zinc

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SP-1	15-02-0661-5-A	02/09/15 07:00	Solid	ICP 7300	02/12/15	02/16/15 18:06	150212L04
<u>Parameter</u>		<u>Result</u>	ļ	<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	(0.758	1.01		
Arsenic		1.76	(0.758	1.01		
Barium		47.4	(0.505	1.01		
Beryllium		0.281	(0.253	1.01		
Cadmium		ND	(0.505	1.01		
Chromium		4.97	(0.253	1.01		
Cobalt		4.65	(0.253	1.01		
Copper		4.58	(0.505	1.01		
Lead		17.7	(0.505	1.01		
Molybdenum		ND	(0.253	1.01		
Nickel		2.53	(0.253	1.01		
Selenium		ND	(0.758	1.01		
Silver		ND	(0.253	1.01		
Thallium		ND	(0.758	1.01		
Vanadium		18.5	(0.253	1.01		

1.01

1.01

51.6

Project: Newland Sierra

Analytical Report

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425

Date Received: Work Order: Preparation: Method:

02/09/15 15-02-0661 **EPA 3050B EPA 6010B**

mg/kg

Units:

Page 2 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SP-2	15-02-0661-6-A	02/09/15 07:10	Solid	ICP 7300	02/12/15	02/16/15 18:07	150212L04
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	0	0.765	1.02		
Arsenic		1.50	0	0.765	1.02		
Barium		47.7	0).510	1.02		
Demillione		0.007	^	. 055	4.00		

Beryllium 0.297 0.255 1.02 Cadmium ND 0.510 1.02 Chromium 5.24 0.255 1.02 Cobalt 4.95 0.255 1.02 1.02 Copper 2.99 0.510 Lead 21.5 0.510 1.02 Molybdenum ND 0.255 1.02 Nickel 2.36 0.255 1.02 Selenium ND 0.765 1.02 Silver ND 0.255 1.02 Thallium ND 0.765 1.02 Vanadium 20.7 0.255 1.02 Zinc 37.5 1.02 1.02

Project: Newland Sierra

Analytical Report

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method: 02/09/15 15-02-0661 EPA 3050B EPA 6010B

mg/kg

Units:

Page 3 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SP-3	15-02-0661-7-A	02/09/15 07:15	Solid	ICP 7300	02/12/15	02/16/15 18:09	150212L04
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Antimony		ND		0.732	0.976		
Arsenic		2.06		0.732	0.976		
Barium		52.2		0.488	0.976		
Beryllium		0.323		0.244	0.976		
Cadmium		ND		0.488	0.976		
Chromium		6.04		0.244	0.976		
Cobalt		5.53		0.244	0.976		
Copper		4.97		0.488	0.976		
Lead		6.32		0.488	0.976		
Molybdenum		ND		0.244	0.976		
Nickel		2.91		0.244	0.976		
Selenium		ND		0.732	0.976		
Silver		ND		0.244	0.976		
Thallium		ND		0.732	0.976		
Vanadium		21.0		0.244	0.976		
Zinc		55.8		0.976	0.976		

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method: 02/09/15 15-02-0661 EPA 3050B EPA 6010B

mg/kg

Units:

Page 4 of 5

Project: Newland Sierra

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SP-4	15-02-0661-8-A	02/09/15 07:30	Solid	ICP 7300	02/12/15	02/16/15 18:10	150212L04
<u>Parameter</u>		<u>Result</u>		<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND		0.750	1.00		
Arsenic		1.82		0.750	1.00		
Barium		45.5		0.500	1.00		
Beryllium		0.314		0.250	1.00		
Cadmium		ND		0.500	1.00		
Chromium		5.52		0.250	1.00		
Cobalt		5.24		0.250	1.00		
Copper		3.95		0.500	1.00		
Lead		11.0		0.500	1.00		
Molybdenum		0.392		0.250	1.00		
Nickel		2.78		0.250	1.00		
Selenium		ND		0.750	1.00		
Silver		ND		0.250	1.00		
Thallium		ND		0.750	1.00		
Vanadium		20.9		0.250	1.00		
Zinc		46.6		1.00	1.00		

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method: 02/09/15 15-02-0661 EPA 3050B EPA 6010B

Units: mg/kg

Project: Newland Sierra Page 5 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-01-002-20394	N/A	Solid	ICP 7300	02/12/15	02/16/15 16:52	150212L04
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	().750	1.00		
Arsenic		ND	().750	1.00		
Barium		ND	(0.500	1.00		
Beryllium		ND	().250	1.00		
Cadmium		ND	(0.500	1.00		
Chromium		ND	().250	1.00		
Cobalt		ND	().250	1.00		
Copper		ND	(0.500	1.00		
Lead		ND	(0.500	1.00		
Molybdenum		ND	().250	1.00		
Nickel		ND	(0.250	1.00		
Selenium		ND	().750	1.00		
Silver		ND	(0.250	1.00		
Thallium		ND	().750	1.00		
Vanadium		ND	(0.250	1.00		
Zinc		ND	1	.00	1.00		

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425

Date Received: Work Order: Preparation: Method:

Units:

15-02-0661 EPA 7471A Total EPA 7471A mg/kg

02/09/15

Project: Newland Sierra

<u>Parameter</u>

Mercury

Qualifiers

Project: Newland Sierra						Pa	ige 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SP-1	15-02-0661-5-A	02/09/15 07:00	Solid	Mercury 05	02/16/15	02/16/15 17:18	150216L04
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qualifiers	
Mercury		ND		0.0847	1.00		
SP-2	15-02-0661-6-A	02/09/15 07:10	Solid	Mercury 05	02/16/15	02/16/15 17:20	150216L04
Parameter		Result		<u>RL</u> <u>DF</u>		<u>Qualifiers</u>	
Mercury		ND		0.0820	1.00		
SP-3	15-02-0661-7-A	02/09/15 07:15	Solid	Mercury 05	02/16/15	02/16/15 17:27	150216L04
Parameter	·	Result		RL	<u>DF</u>	Qualifiers	
Mercury		ND		0.0820	1.00		
SP-4	15-02-0661-8-A	02/09/15 07:30	Solid	Mercury 05	02/16/15	02/16/15 17:29	150216L04
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qualifiers	
Mercury		ND		0.0806	1.00		
Method Blank	099-16-272-982	N/A	Solid	Mercury 05	02/16/15	02/16/15 17:00	150216L04

Result

ND

<u>RL</u>

0.0833

<u>DF</u>

1.00

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method:

Units:

15-02-0661 EPA 3545 EPA 8082 ug/kg

02/09/15

Project: Newland Sierra

Page 1 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
South Bottom	15-02-0661-1-A	02/06/15 15:45	Solid	GC 58	02/18/15	02/19/15 11:12	150218L01
Parameter		<u>Result</u>	RI	<u> </u>	<u>DF</u>	Qua	<u>alifiers</u>
Aroclor-1016		ND	50)	1.00		
Aroclor-1221		ND	50)	1.00		
Aroclor-1232		ND	50)	1.00		
Aroclor-1242		ND	50)	1.00		
Aroclor-1248		ND	50)	1.00		
Aroclor-1254		ND	50)	1.00		
Aroclor-1260		ND	50)	1.00		
Aroclor-1262		ND	50)	1.00		
Surrogate		Rec. (%)	<u>C</u>	ontrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		82	24	I-168			
2,4,5,6-Tetrachloro-m-Xylene		85	25	5-145			

SP-1	15-02-0661-5-A	02/09/15 07:00	Solid	GC 58	02/13/15	02/13/15 19:00	150213L05
Parameter		<u>Result</u>	<u>RL</u>	=	<u>DF</u>	<u>Qu</u>	<u>ialifiers</u>
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Surrogate		Rec. (%)	Co	ontrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		73	24	-168			
2,4,5,6-Tetrachloro-m-Xylene		61	25	-145			

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method:

Units:

15-02-0661 EPA 3545 EPA 8082 ug/kg

02/09/15

Project: Newland Sierra

Page 2 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SP-2	15-02-0661-6-A	02/09/15 07:10	Solid	GC 58	02/13/15	02/13/15 19:18	150213L05
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Aroclor-1016		ND	5	60	1.00		
Aroclor-1221		ND	5	60	1.00		
Aroclor-1232		ND	5	60	1.00		
Aroclor-1242		ND	5	60	1.00		
Aroclor-1248		ND	5	60	1.00		
Aroclor-1254		ND	5	60	1.00		
Aroclor-1260		ND	5	60	1.00		
Aroclor-1262		ND	5	60	1.00		
Surrogate		Rec. (%)	<u>0</u>	Control Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		72	2	4-168			
2,4,5,6-Tetrachloro-m-Xylene		68	2	25-145			

SP-3	15-02-0661-7-A	02/09/15 07:15	Solid GC	58 02/13/15	02/13/15 19:36	150213L05
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qı</u>	<u>ualifiers</u>
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1248		ND	50	1.00		
Aroclor-1254		ND	50	1.00		
Aroclor-1260		ND	50	1.00		
Aroclor-1262		ND	50	1.00		
Surrogate		Rec. (%)	<u>Control</u>	<u>Limits</u> <u>Qualifiers</u>	i	
Decachlorobiphenyl		62	24-168			
2,4,5,6-Tetrachloro-m-Xylene		69	25-145			

Project: Newland Sierra

Analytical Report

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method:

15-02-0661 EPA 3545 EPA 8082 ug/kg

02/09/15

Units: u
Page 3 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SP-4	15-02-0661-8-A	02/09/15 07:30	Solid	GC 58	02/13/15	02/13/15 19:54	150213L05
Parameter		Result	RL	=	<u>DF</u>	Qua	<u>llifiers</u>
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Surrogate		Rec. (%)	<u>Cc</u>	ontrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		69	24	-168			
2,4,5,6-Tetrachloro-m-Xylene		70	25	-145			

Method Blank	099-12-535-3061	N/A	Solid	GC 58	02/13/15	02/13/15 16:54	150213L05
Parameter		Result	<u>RL</u>		<u>DF</u>	<u>Qu</u>	<u>ialifiers</u>
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Surrogate		Rec. (%)	Cont	rol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		81	24-1	68			
2,4,5,6-Tetrachloro-m-Xylene		84	25-1-	45			

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method:

15-02-0661 EPA 3545 EPA 8082

02/09/15

ug/kg

Units:

Page 4 of 4

Project: Newland Sierra

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-535-3067	N/A	Solid	GC 58	02/18/15	02/18/15 12:35	150218L01
Parameter		Result	RL	=	<u>DF</u>	Qua	<u>llifiers</u>
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Surrogate		Rec. (%)	<u>Cc</u>	ontrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		86	24	-168			
2,4,5,6-Tetrachloro-m-Xylene		83	25	-145			

Project: Newland Sierra

Analytical Report

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received:
Work Order:
Preparation:
Method:

02/09/15 15-02-0661 EPA 3545 EPA 8270C

Units: mg/kg
Page 1 of 15

15-02-0661-5-A 02/0915 Solid GC/MS SS 02/13/15 02/13/15 150213L02	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Acenaphthene ND 0.50 1.00 Acenaphthylene ND 0.50 1.00 Acenaphthylene ND 0.50 1.00 Anthracene ND 0.50 1.00 Anthracene ND 0.50 1.00 Archaracene ND 0.50 1.00 Archaracene ND 0.50 1.00 Benzo (a) Anthracene ND 0.50 1.00 Benzo (a) Anthracene ND 0.50 1.00 Benzo (a) Pyrene ND 0.50 1.00 Benzo (b) Fluoranthene ND 0.50 1.00 Benzo (b) Fluoranthene ND 0.50 1.00 Benzo (b) Fluoranthene ND 0.50 1.00 Benzo (k) Fluoranthene ND 0.50 1.00 Benz	SP-1	15-02-0661-5-A	02/09/15 07:00	Solid	GC/MS SS	02/13/15	02/13/15 22:58	150213L02
Acenaphthylene ND 0.50 1.00 Anlline ND 0.50 1.00 Anthracene ND 0.50 1.00 Azobenzene ND 0.50 1.00 Benzú (a) Anthracene ND 10 1.00 Benzo (a) Pyrene ND 0.50 1.00 Benzo (b) Fluoranthene ND 0.50 1.00 Benzo (k), il Perylene ND 0.50 1.00 Benzo (k), il Portylene ND 0.50 1.00 Benzo (acid ND 0.50 1.00 Benzo (acid <th< td=""><td>Parameter</td><td></td><td>Result</td><td><u> </u></td><td><u>RL</u></td><td>DF</td><td>Qua</td><td><u>llifiers</u></td></th<>	Parameter		Result	<u> </u>	<u>RL</u>	DF	Qua	<u>llifiers</u>
Anithracene ND 0.50 1.00 Anthracene ND 0.50 1.00 Anthracene ND 0.50 1.00 Benzolane ND 10 1.00 Benzolane ND 10 1.00 Benzolane ND 10 1.00 Benzolane ND 0.50 1.00 B	Acenaphthene		ND	C	0.50	1.00		
Anthracene ND 0.50 1.00 Azobenzene ND 0.50 1.00 Benzo (a) Anthracene ND 0.50 1.00 Benzo (a) Pyrene ND 0.50 1.00 Benzo (b) Fluoranthene ND 0.50 1.00 Benzo (b, ii) Perylene ND 0.50 1.00 Benzo (k), ii) Perylene ND 0.50 1.00 Benzo (k), ii) Perylene ND 0.50 1.00 Benzo (k), iii) Furylene ND 0.50 1.00 Benzo (a), iii) Forylene ND 0.50 1.00 Benzo (a), iii) Forylene ND 0.50 1.00 Benzy (a), iii) Forylene ND 0.50 1.00 Benzy (a), iii) Forylene ND 0.50 1.00 Bis(2-Chlorostoxy) Methane ND <th< td=""><td>Acenaphthylene</td><td></td><td>ND</td><td>C</td><td>0.50</td><td>1.00</td><td></td><td></td></th<>	Acenaphthylene		ND	C	0.50	1.00		
Azobenzene ND 0.50 1.00 Benzidine ND 10 1.00 Benzidine ND 0.50 1.00 Benzo (a) Anthracene ND 0.50 1.00 Benzo (b) Fluoranthene ND 0.50 1.00 Benzo (b) Fluoranthene ND 0.50 1.00 Benzo (b) Fluoranthene ND 0.50 1.00 Benzo (c) Fluoranthene ND 0.50 1.00 Bis (2-Chlorospropyl) Ether ND 0.50 1.00 Bis (2-Chlorospropyl	Aniline		ND	C	0.50	1.00		
Benzidine ND 10 1.00 Benzo (a) Anthracene ND 0.50 1.00 Benzo (b) Fluoranthene ND 0.50 1.00 Benzo (g), Il) Perylene ND 0.50 1.00 Benzo (g), Il) Perylene ND 0.50 1.00 Benzo (g), Fluoranthene ND 0.50 1.00 Benzol Acid ND 0.50 1.00 Benzyl Alcohol ND 0.50 1.00 Bis(2-Chloroethoxy) Methane ND 0.50 1.00 Bis(2-Chloroethyl) Ether ND 0.50 1.00 Bis(2-Chloroethyl) Ether ND 0.50 1.00 Bis(2-Ethylhexyl) Phthalate ND 0.50 1.00 4-Bromophenyl-Phenyl Ether ND 0.50 1.00 Butyl Benzyl Phthalate ND 0.50 1.00 4-Chloroaphthalene ND 0.50 1.00 2-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1	Anthracene		ND	C).50	1.00		
Benzo (a) Anthracene ND 0.50 1.00 Benzo (a) Pyrene ND 0.50 1.00 Benzo (b) Fluoranthene ND 0.50 1.00 Benzo (k, h) Perylene ND 0.50 1.00 Benzo (k) Fluoranthene ND 0.50 1.00 Benzolc Acid ND 2.5 1.00 Benzyl Alcohal ND 0.50 1.00 Bis(2-Chloreethxy) Methane ND 0.50 1.00 Bis(2-Chloreothy) Ether ND 0.50 1.00 Bis(2-Chlorospropyl) Ether ND 0.50 1.00 Bis(2-Chlorospropyl) Ether ND 0.50 1.00 Bis(2-Ethylhexyl) Phthalate ND 0.50 1.00 4-Bromphenyl-Phenyl Ether ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 2-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50<	Azobenzene		ND	C	0.50	1.00		
Benzo (a) Pyrene ND 0.50 1.00 Benzo (b) Fluoranthene ND 0.50 1.00 Benzo (k), i) Perylene ND 0.50 1.00 Benzo (k) Fluoranthene ND 0.50 1.00 Benzoic Acid ND 2.5 1.00 Benzyl Alcohol ND 0.50 1.00 Bis(2-Chloroethoxy) Methane ND 0.50 1.00 Bis(2-Chloroethoxy) Ether ND 0.50 1.00 Bis(2-Chloroethoxy) Ether ND 0.50 1.00 Bis(2-Chloroethoxy) Ether ND 0.50 1.00 Bis(2-Chloroethoxy) Pthalate ND 0.50 1.00 4-Bromophenyl-Phenyl Ether ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chlorophenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50	Benzidine		ND	1	0	1.00		
Benzo (b) Fluoranthene ND 0.50 1.00 Benzo (g,h,i) Perylene ND 0.50 1.00 Benzo (k) Fluoranthene ND 0.50 1.00 Benzol (k) Fluoranthene ND 0.50 1.00 Benzyl Alcohol ND 0.50 1.00 Bis (2-Chloroethoxy) Methane ND 0.50 1.00 Bis (2-Chloroethoxy) Ether ND 0.50 1.00 Bis (2-Chloroethoxy) Ether ND 0.50 1.00 Bis (2-Chlorospropyl) Ether ND 0.50 1.00 Bis (2-Chlorospropyl) Ether ND 0.50 1.00 4-Bromophenyl-Phenyl Ether ND 0.50 1.00 4-Bromophenyl-Phenyl Ether ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 1-n-Butyl Phthalate	Benzo (a) Anthracene		ND	C	0.50	1.00		
Benzo (gh,i) Perylene ND 0.50 1.00 Benzo (k) Fluoranthene ND 0.50 1.00 Benzoic Acid ND 2.5 1.00 Benzyl Alcohol ND 0.50 1.00 Bis(2-Chloroethoxy) Methane ND 0.50 1.00 Bis(2-Chloroethyl) Ether ND 0.50 1.00 Bis(2-Chloroisporpoyl) Ether ND 0.50 1.00 Bis(2-Chloroisporpoyl) Ether ND 0.50 1.00 4-Bromophenyl-Phenyl Ether ND 0.50 1.00 4-Bromophenyl-Phenyl Ether ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chlorophenol ND 0.50 1.00 4-Chlorophenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50	Benzo (a) Pyrene		ND	C	0.50	1.00		
Benzo (k) Fluoranthene ND 0.50 1.00 Benzoic Acid ND 2.5 1.00 Benzyl Alcohol ND 0.50 1.00 Bis(2-Chloroethxy)) Methane ND 0.50 1.00 Bis(2-Chloroisopropyl) Ether ND 0.50 1.00 Bis(2-Chloroisopropyl) Ether ND 0.50 1.00 Bis(2-Ethylhexyl) Phthalate ND 0.50 1.00 4-Bromophenyl-Phenyl Ether ND 0.50 1.00 Butyl Benzyl Phthalate ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloroaphthalene ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Din-Butyl Phthalate ND 0.50 1.00 Di-n-Dctyl Phthalate ND 0.50 1.00 Di-n-Dctyl Phthalate ND 0.50	Benzo (b) Fluoranthene		ND	C	0.50	1.00		
Benzoic Acid ND 2.5 1.00 Benzyl Alcohol ND 0.50 1.00 Bis(2-Chloroethoxy) Methane ND 0.50 1.00 Bis(2-Chloroethyl) Ether ND 0.50 1.00 Bis(2-Chloroispropyl) Ether ND 0.50 1.00 Bis(2-Ethylhexyl) Phthalate ND 0.50 1.00 4-Bromophenyl-Phenyl Ether ND 0.50 1.00 4-Bromophenyl-Phenyl Ether ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloropahthalene ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 2-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Cotyl Phthalate ND 0.50 1.00 Dibenzofuran ND 0.50	Benzo (g,h,i) Perylene		ND	C	0.50	1.00		
Benzyl Alcohol ND 0.50 1.00 Bis(2-Chloroethoxy) Methane ND 0.50 1.00 Bis(2-Chloroethyl) Ether ND 2.5 1.00 Bis(2-Chloroisopropyl) Ether ND 0.50 1.00 Bis(2-Ethylhexyl) Phthalate ND 0.50 1.00 4-Bromophenyl-Phenyl Ether ND 0.50 1.00 Butyl Benzyl Phthalate ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloropaphthalene ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 2-Chlorophenyl-Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Cotyl Phthalate ND 0.50 1.00 Di-nestofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1	Benzo (k) Fluoranthene		ND	C	0.50	1.00		
Bis(2-Chloroethoxy) Methane ND 0.50 1.00 Bis(2-Chloroethyl) Ether ND 0.50 1.00 Bis(2-Chloroisopropyl) Ether ND 0.50 1.00 Bis(2-Ethylhexyl) Phthalate ND 0.50 1.00 4-Bromophenyl-Phenyl Ether ND 0.50 1.00 Butyl Benzyl Phthalate ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloropaphthalene ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Ctyl Phthalate ND 0.50 1.00 Di-n-Ctyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenz (a,b) Anthracene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50	Benzoic Acid		ND	2	2.5	1.00		
Bis(2-Chloroethoxy) Methane ND 0.50 1.00 Bis(2-Chloroethyl) Ether ND 0.50 1.00 Bis(2-Chloroisopropyl) Ether ND 0.50 1.00 Bis(2-Ethylhexyl) Phthalate ND 0.50 1.00 4-Bromophenyl-Phenyl Ether ND 0.50 1.00 Butyl Benzyl Phthalate ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloropaphthalene ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Ctyl Phthalate ND 0.50 1.00 Di-n-Ctyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenz (a,b) Anthracene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50	Benzyl Alcohol		ND	C	0.50	1.00		
Bis(2-Chloroethyl) Ether ND 2.5 1.00 Bis(2-Chloroisopropyl) Ether ND 0.50 1.00 Bis(2-Ethylhexyl) Phthalate ND 0.50 1.00 4-Bromophenyl-Phenyl Ether ND 0.50 1.00 Butyl Benzyl Phthalate ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloroaniline ND 0.50 1.00 2-Chloroaphthalene ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Ctyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenz (blorobenzene ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50			ND	C	0.50	1.00		
Bis(2-Chloroisopropyl) Ether ND 0.50 1.00 Bis(2-Ethylhexyl) Phthalate ND 0.50 1.00 4-Bromophenyl-Phenyl Ether ND 0.50 1.00 Butyl Benzyl Phthalate ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloroaniline ND 0.50 1.00 2-Chloroaphthalene ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Cotyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofutran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 0.50 1.00			ND	2	2.5	1.00		
Bis(2-Ethylhexyl) Phthalate ND 0.50 1.00 4-Bromophenyl-Phenyl Ether ND 0.50 1.00 Butyl Benzyl Phthalate ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloroaniline ND 0.50 1.00 2-Chloroaphthalene ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Din-Butyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 3,3-Dichlorobenzidine ND 0.50 1.00 3,3-Dichlorophenol ND 0.50 1.00 <td>• • • • • • • • • • • • • • • • • • • •</td> <td></td> <td></td> <td></td> <td></td> <td>1.00</td> <td></td> <td></td>	• • • • • • • • • • • • • • • • • • • •					1.00		
Butyl Benzyl Phthalate ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloroanilline ND 0.50 1.00 2-Chloroaphthalene ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzidine ND 0.50 1.00 2,4-Dichlorophenol ND 0.50 1.00			ND	C	0.50	1.00		
4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloroanilline ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	4-Bromophenyl-Phenyl Ether		ND	C	0.50	1.00		
4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloroanilline ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	Butyl Benzyl Phthalate		ND	C	0.50	1.00		
4-Chloroaniline ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 0.50 1.00 2,4-Dichlorophenol ND 0.50 1.00			ND	C	0.50	1.00		
2-Chlorophenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	• •			C	0.50	1.00		
2-Chlorophenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	2-Chloronaphthalene		ND	C	0.50	1.00		
4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00			ND					
Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	•		ND					
Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00								
Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	•							
Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00								
Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	·							
1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	(· ,							
1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00								
1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	·							
3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00								
2,4-Dichlorophenol ND 0.50 1.00	•							
DEUX FUNDAME IND UND LOU	Diethyl Phthalate		ND).50	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

 LEIGHTON AND ASSOCIATES, INC.
 Date Received:
 02/09/15

 3934 Murphy Canyon Road, Suite B205
 Work Order:
 15-02-0661

 San Diego, CA 92123-4425
 Preparation:
 EPA 3545

 Method:
 EPA 8270C

 Units:
 mg/kg

 Project: Newland Sierra
 Page 2 of 15

<u> </u>				
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Dimethyl Phthalate	ND	0.50	1.00	
2,4-Dimethylphenol	ND	0.50	1.00	
4,6-Dinitro-2-Methylphenol	ND	2.5	1.00	
2,4-Dinitrophenol	ND	2.5	1.00	
2,4-Dinitrotoluene	ND	0.50	1.00	
2,6-Dinitrotoluene	ND	0.50	1.00	
Fluoranthene	ND	0.50	1.00	
Fluorene	ND	0.50	1.00	
Hexachloro-1,3-Butadiene	ND	0.50	1.00	
Hexachlorobenzene	ND	0.50	1.00	
Hexachlorocyclopentadiene	ND	2.5	1.00	
Hexachloroethane	ND	0.50	1.00	
Indeno (1,2,3-c,d) Pyrene	ND	0.50	1.00	
Isophorone	ND	0.50	1.00	
2-Methylnaphthalene	ND	0.50	1.00	
1-Methylnaphthalene	ND	0.50	1.00	
2-Methylphenol	ND	0.50	1.00	
3/4-Methylphenol	ND	0.50	1.00	
N-Nitroso-di-n-propylamine	ND	0.50	1.00	
N-Nitrosodimethylamine	ND	0.50	1.00	
N-Nitrosodiphenylamine	ND	0.50	1.00	
Naphthalene	ND	0.50	1.00	
4-Nitroaniline	ND	0.50	1.00	
3-Nitroaniline	ND	0.50	1.00	
2-Nitroaniline	ND	0.50	1.00	
Nitrobenzene	ND	2.5	1.00	
4-Nitrophenol	ND	0.50	1.00	
2-Nitrophenol	ND	0.50	1.00	
Pentachlorophenol	ND	2.5	1.00	
Phenanthrene	ND	0.50	1.00	
Phenol	ND	0.50	1.00	
Pyrene	0.59	0.50	1.00	
Pyridine	ND	0.50	1.00	
1,2,4-Trichlorobenzene	ND	0.50	1.00	
2,4,6-Trichlorophenol	ND	0.50	1.00	
2,4,5-Trichlorophenol	ND	0.50	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
2-Fluorobiphenyl	64	27-120		

LEIGHTON AND ASSOCIATES, INC.	Date Received:	02/09/15
3934 Murphy Canyon Road, Suite B205	Work Order:	15-02-0661
San Diego, CA 92123-4425	Preparation:	EPA 3545
	Method:	EPA 8270C
	Units:	mg/kg
Project: Newland Sierra		Page 3 of 15

Surrogate	Rec. (%)	Control Limits	Qualifiers
2-Fluorophenol	59	25-120	
Nitrobenzene-d5	49	33-123	
p-Terphenyl-d14	96	27-159	
Phenol-d6	58	26-122	
2,4,6-Tribromophenol	84	18-138	

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method:

Units:

EPA 3545 EPA 8270C mg/kg

02/09/15

15-02-0661

Project: Newland Sierra

Page 4 of 15

Parameter Result RL DE Qualifiers	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Acenaphthene ND 0.50 1.00 Acenaphthylene ND 0.50 1.00 Anthracene ND 0.50 1.00 Anthracene ND 0.50 1.00 Azobenzene ND 0.50 1.00 Benzo (a) Anthracene ND 0.50 1.00 Benzo (a) Pyrene ND 0.50 1.00 Benzo (b) Fluoranthene ND 0.50 1.00 Benzo (c) Acid ND 0.50 1.00 Benzo (c) Acid ND 0.50 1.00 Benzo (c) Acid ND 0.50 1.00 Benzo (c) Fluorethoxy) Methane ND 0.50 1.00 Bis(2-Chlorotency) Ether ND 0.50 1.00 Bis(2-Ei	SP-2	15-02-0661-6-A		Solid	GC/MS SS	02/13/15	02/13/15 23:17	150213L02
Acenaphthylene ND 0.50 1.00 Anline ND 0.50 1.00 Anline ND 0.50 1.00 Azobenzene ND 0.50 1.00 Benzdiline ND 10 1.00 Benzo (a) Pyrene ND 0.50 1.00 Benzo (b) Fluoranthene ND 0.50 1.00 Benzo (gh,j) Perylene ND 0.50 1.00 Benzo (gh,j) P	<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	lifiers
Aniline ND 0.50 1.00 Anthracene ND 0.50 1.00 Anthracene ND 0.50 1.00 Anthracene ND 0.50 1.00 Benzolane ND 10 1.00 Benzolane ND 10 1.00 Benzolane ND 10 1.00 Benzo (a) Anthracene ND 0.50 1.00 Benzo (a) Pyrene ND 0.50 1.00 Benzo (b) Fluoranthene ND 0.50 1.00 Benzo (g,h.i) Perylene ND 0.50 1.00 Benzo (g,h.i) Perylene ND 0.50 1.00 Benzola (b) Fluoranthene ND 0.50 1.00 Benzola (b) Fluoranthene ND 0.50 1.00 Benzola (c) Fluoranthene ND 0.50 1.00 Bis (2-Chloroethy) Ether ND 0.50 1.00 Bis (2-Chloroethy) Ether ND 0.50 1.00 Bis (2-Chloroethy) Fluoranthene ND 0.50 1.00 Bis (2-Chloroethy) Fluoranthene ND 0.50 1.00 Charlester ND 0.50 1.00 Charlester ND 0.50 1.00 Charlester ND 0.50 1.00 Chrysene ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50	Acenaphthene		ND	0.	50	1.00		
Anthracene ND 0.50 1.00 Azobenzene ND 0.50 1.00 Benzo (a) Anthracene ND 0.50 1.00 Benzo (a) Anthracene ND 0.50 1.00 Benzo (a) Anthracene ND 0.50 1.00 Benzo (a) Pyrene ND 0.50 1.00 Benzo (b) Fluoranthene ND 0.50 1.00 Benzo (g), i) Perylene ND 0.50 1.00 Benzo (g), ii) Perylene ND 0.50 1.00 Benzo (g), ii) Perylene ND 0.50 1.00 Benzo (g), ii) Perylene ND 0.50 1.00 Benzo (k) Fluoranthene ND 0.50 1.00 Den-Buryl Phthalate ND 0.50 1.00 Den-Denyl Phthalate ND 0.50 1.00 Denyl Pht	Acenaphthylene		ND	0.	50	1.00		
Azobenzene ND 0.50 1.00 Benzidine ND 10 1.00 Benzo (a) Pyrene ND 0.50 1.00 Benzo (b) Fluoranthene ND 0.50 1.00 Benzo (b) Fluoranthene ND 0.50 1.00 Benzo (c) Acid ND 0.50 1.00 Bis (2-Chlorosephyl) Ether ND 0.50 1.00 Bis (2-Ch	Aniline		ND	0.	50	1.00		
Benzidine ND 10 1.00 Benzo (a) Anthracene ND 0.50 1.00 Benzo (b) Fluoranthene ND 0.50 1.00 Benzo (g,h,i) Perylene ND 0.50 1.00 Benzo (g,h,i) Perylene ND 0.50 1.00 Benzo (g,h,i) Perylene ND 0.50 1.00 Benzo (a,h) Anthracene ND 0.50 1.00 Benzo (a,h) Anthracene ND 0.50 1.00 Benzol Acid ND 0.50 1.00 Benzyl Alcohol ND 0.50 1.00 Benzyl Alcohol ND 0.50 1.00 Bis(2-Chloroethoxy) Methane ND 0.50 1.00 Bis(2-Chloroethyl) Ether ND 0.50	Anthracene		ND	0.	50	1.00		
Benzo (a) Anthracene ND 0.50 1.00 Benzo (a) Pyrene ND 0.50 1.00 Benzo (g.h.j) Perylene ND 0.50 1.00 Benzo (k) Fluoranthene ND 0.50 1.00 Benzo (k) Fluoranthene ND 0.50 1.00 Benzol Acid ND 0.50 1.00 Benzyl Alcohol ND 0.50 1.00 Bis(2-Chloroethoxy) Methane ND 0.50 1.00 Bis(2-Chloroethoxy) Methane ND 0.50 1.00 Bis(2-Chlorospropy) Ether ND 0.50 1.00 Bis(2-Chlorospropy) Ether ND 0.50 1.00 Bis(2-Ethylhexyl) Phthalate 2.0 0.50 1.00 4-Bromophenyl-Phenyl Ether ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chlorophenyl-Phenyl Ether ND <td>Azobenzene</td> <td></td> <td>ND</td> <td>0.</td> <td>50</td> <td>1.00</td> <td></td> <td></td>	Azobenzene		ND	0.	50	1.00		
Benzo (a) Pyrene ND 0.50 1.00 Benzo (b) Fluoranthene ND 0.50 1.00 Benzo (k), Fluoranthene ND 0.50 1.00 Benzo (k) Fluoranthene ND 0.50 1.00 Benzoic Acid ND 2.5 1.00 Benzyl Alcohol ND 0.50 1.00 Bis(2-Chloroethoxy) Methane ND 0.50 1.00 Bis(2-Chloroethoxy) Ether ND 0.50 1.00 Bis(2-Chlorostopropyl) Ether ND 0.50 1.00 Bis(2-Ethylhexyl) Phthalate 2.0 0.50 1.00 4-Bromophenyl-Phenyl Ether ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND	Benzidine		ND	10)	1.00		
Benzo (b) Fluoranthene ND 0.50 1.00 Benzo (g,h,i) Perylene ND 0.50 1.00 Benzo (k) Fluoranthene ND 0.50 1.00 Benzol Acid ND 2.5 1.00 Benzyl Alcohol ND 0.50 1.00 Bis(2-Chloroethoxy) Methane ND 0.50 1.00 Bis(2-Chloroethyl) Ether ND 0.50 1.00 Bis(2-Chlorosty) Methalate 2.0 0.50 1.00 Bis(2-Chlorosty) Phthalate 2.0 0.50 1.00 4-Bromophenyl-Phenyl Ether ND 0.50 1.00 4-Bromophenyl-Phenyl Ether ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND	Benzo (a) Anthracene		ND	0.	50	1.00		
Benzo (g,h,i) Perylene ND 0.50 1.00 Benzo (k) Fluoranthene ND 0.50 1.00 Benzoic Acid ND 0.50 1.00 Benzyl Alcohol ND 0.50 1.00 Bis(2-Chloroethoxy) Methane ND 0.50 1.00 Bis(2-Chloroethyl) Ether ND 0.50 1.00 Bis(2-Chloroispropyl) Ether ND 0.50 1.00 Bis(2-Ethylhexyl) Phthalate 2.0 0.50 1.00 4-Bromophenyl-Phenyl Ether ND 0.50 1.00 4-Bromophenyl-Phenyl Ether ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloropa-Methylphenol ND 0.50 1.00 4-Chlorophenol ND 0.50 1.00 4-Chlorophenol ND 0.50 1.00 4-Chlorophenol ND 0.50 1.00 4-Chlorophenol ND 0.50 1.00 Din-D-Ctyl Phthalate ND 0.50 <	Benzo (a) Pyrene		ND	0.	50	1.00		
Benzo (k) Fluoranthene ND 0.50 1.00 Benzoic Acid ND 2.5 1.00 Benzyl Alcohol ND 0.50 1.00 Bisi(2-Chloroethxy) Methane ND 0.50 1.00 Bisi(2-Chloroethyl) Ether ND 0.50 1.00 Bis(2-Chloroethyl) Pither ND 0.50 1.00 Bis(2-Ethylhexyl) Phthalate 2.0 0.50 1.00 4-Bromophenyl-Phenyl Ether ND 0.50 1.00 Butyl Benzyl Phthalate ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloroaphiline ND 0.50 1.00 4-Chlorophenol ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00<	Benzo (b) Fluoranthene		ND	0.	50	1.00		
Benzoic Acid ND 2.5 1.00 Benzyl Alcohol ND 0.50 1.00 Bis(2-Chloroethoxy) Methane ND 0.50 1.00 Bis(2-Chloroisphyl) Ether ND 2.5 1.00 Bis(2-Chloroispropyl) Ether ND 0.50 1.00 Bis(2-Ethylhexyl) Phthalate 2.0 0.50 1.00 4-Bromophenyl-Phenyl Ether ND 0.50 1.00 4-Bromophenyl-Phenyl Ether ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloropahithalene ND 0.50 1.00 2-Chloropahithalene ND 0.50 1.00 2-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 <	Benzo (g,h,i) Perylene		ND	0.	50	1.00		
Benzyl Alcohol ND 0.50 1.00 Bis(2-Chloroethoxy) Methane ND 0.50 1.00 Bis(2-Chloroethyl) Ether ND 2.5 1.00 Bis(2-Chloroisopropyl) Ether ND 0.50 1.00 Bis(2-Ethylhexyl) Phthalate 2.0 0.50 1.00 4-Bromophenyl-Phenyl Ether ND 0.50 1.00 Butyl Benzyl Phthalate ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloropaphthalene ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 2-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 <td>Benzo (k) Fluoranthene</td> <td></td> <td>ND</td> <td>0.</td> <td>50</td> <td>1.00</td> <td></td> <td></td>	Benzo (k) Fluoranthene		ND	0.	50	1.00		
Bis(2-Chloroethoxy) Methane ND 0.50 1.00 Bis(2-Chloroethyl) Ether ND 2.5 1.00 Bis(2-Chloroisopropyl) Ether ND 0.50 1.00 Bis(2-Ethylhexyl) Phthalate 2.0 0.50 1.00 4-Bromophenyl-Phenyl Ether ND 0.50 1.00 Butyl Benzyl Phthalate ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloroanjlline ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Cyt Phthalate ND 0.50 1.00 Di-n-Cyt Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00	Benzoic Acid		ND	2.	5	1.00		
Bis(2-Chloroethyl) Ether ND 2.5 1.00 Bis(2-Chloroisopropyl) Ether ND 0.50 1.00 Bis(2-Ethylhexyl) Phthalate 2.0 0.50 1.00 4-Bromophenyl-Phenyl Ether ND 0.50 1.00 Butyl Benzyl Phthalate ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloroanilline ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Cytyl Phthalate ND 0.50 1.00 Di-n-Cytyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 <td>Benzyl Alcohol</td> <td></td> <td>ND</td> <td>0.</td> <td>50</td> <td>1.00</td> <td></td> <td></td>	Benzyl Alcohol		ND	0.	50	1.00		
Bis(2-Chloroisopropyl) Ether ND 0.50 1.00 Bis(2-Ethylhexyl) Phthalate 2.0 0.50 1.00 4-Bromophenyl-Phenyl Ether ND 0.50 1.00 Butyl Benzyl Phthalate ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloroaniline ND 0.50 1.00 2-Chloronaphthalene ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Cotyl Phthalate ND 0.50 1.00 Di-benzofuran ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00	Bis(2-Chloroethoxy) Methane		ND	0.	50	1.00		
Bis(2-Ethylhexyl) Phthalate 2.0 0.50 1.00 4-Bromophenyl-Phenyl Ether ND 0.50 1.00 Butyl Benzyl Phthalate ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloroaniline ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Cotyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenz (browner ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 0.50 1.00	Bis(2-Chloroethyl) Ether		ND	2.	5	1.00		
4-Bromophenyl-Phenyl Ether ND 0.50 1.00 Butyl Benzyl Phthalate ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloroaniline ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 0.50 1.00 2,4-Dichlorophenol ND 0.50 1.00	Bis(2-Chloroisopropyl) Ether		ND	0.	50	1.00		
Butyl Benzyl Phthalate ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloroanilline ND 0.50 1.00 2-Chloronaphthalene ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 0.50 1.00 2,4-Dichlorophenol ND 0.50 1.00	Bis(2-Ethylhexyl) Phthalate		2.0	0.	50	1.00		
4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloroaniline ND 0.50 1.00 2-Chloronaphthalene ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 0.50 1.00 2,4-Dichlorophenol ND 0.50 1.00	4-Bromophenyl-Phenyl Ether		ND	0.	50	1.00		
4-Chloroaniline ND 0.50 1.00 2-Chloronaphthalene ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 0.50 1.00 2,4-Dichlorophenol ND 0.50 1.00	Butyl Benzyl Phthalate		ND	0.	50	1.00		
2-Chloronaphthalene ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 0.50 1.00 2,4-Dichlorophenol ND 0.50 1.00	4-Chloro-3-Methylphenol		ND	0.	50	1.00		
2-Chlorophenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	4-Chloroaniline		ND	0.	50	1.00		
4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	2-Chloronaphthalene		ND	0.	50	1.00		
Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	2-Chlorophenol		ND	0.	50	1.00		
Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	4-Chlorophenyl-Phenyl Ether		ND	0.	50	1.00		
Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	Chrysene		ND	0.	50	1.00		
Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	Di-n-Butyl Phthalate		ND	0.	50	1.00		
Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	Di-n-Octyl Phthalate		ND	0.	50	1.00		
1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	Dibenz (a,h) Anthracene		ND	0.	50	1.00		
1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	Dibenzofuran		ND	0.	50	1.00		
1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	1,2-Dichlorobenzene					1.00		
1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	1,3-Dichlorobenzene		ND	0.	50	1.00		
2,4-Dichlorophenol ND 0.50 1.00	1,4-Dichlorobenzene							
2,4-Dichlorophenol ND 0.50 1.00	3,3'-Dichlorobenzidine		ND	10)	1.00		
Diethyl Phthalate ND 0.50 1.00	2,4-Dichlorophenol					1.00		
	Diethyl Phthalate		ND	0.	50	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

 LEIGHTON AND ASSOCIATES, INC.
 Date Received:
 02/09/15

 3934 Murphy Canyon Road, Suite B205
 Work Order:
 15-02-0661

 San Diego, CA 92123-4425
 Preparation:
 EPA 3545

 Method:
 EPA 8270C

 Units:
 mg/kg

 Project: Newland Sierra
 Page 5 of 15

				. age e ee
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
Dimethyl Phthalate	ND	0.50	1.00	
2,4-Dimethylphenol	ND	0.50	1.00	
4,6-Dinitro-2-Methylphenol	ND	2.5	1.00	
2,4-Dinitrophenol	ND	2.5	1.00	
2,4-Dinitrotoluene	ND	0.50	1.00	
2,6-Dinitrotoluene	ND	0.50	1.00	
Fluoranthene	ND	0.50	1.00	
Fluorene	ND	0.50	1.00	
Hexachloro-1,3-Butadiene	ND	0.50	1.00	
Hexachlorobenzene	ND	0.50	1.00	
Hexachlorocyclopentadiene	ND	2.5	1.00	
Hexachloroethane	ND	0.50	1.00	
Indeno (1,2,3-c,d) Pyrene	ND	0.50	1.00	
Isophorone	ND	0.50	1.00	
2-Methylnaphthalene	ND	0.50	1.00	
1-Methylnaphthalene	ND	0.50	1.00	
2-Methylphenol	ND	0.50	1.00	
3/4-Methylphenol	ND	0.50	1.00	
N-Nitroso-di-n-propylamine	ND	0.50	1.00	
N-Nitrosodimethylamine	ND	0.50	1.00	
N-Nitrosodiphenylamine	ND	0.50	1.00	
Naphthalene	ND	0.50	1.00	
4-Nitroaniline	ND	0.50	1.00	
3-Nitroaniline	ND	0.50	1.00	
2-Nitroaniline	ND	0.50	1.00	
Nitrobenzene	ND	2.5	1.00	
4-Nitrophenol	ND	0.50	1.00	
2-Nitrophenol	ND	0.50	1.00	
Pentachlorophenol	ND	2.5	1.00	
Phenanthrene	ND	0.50	1.00	
Phenol	ND	0.50	1.00	
Pyrene	ND	0.50	1.00	
Pyridine	ND	0.50	1.00	
1,2,4-Trichlorobenzene	ND	0.50	1.00	
2,4,6-Trichlorophenol	ND	0.50	1.00	
2,4,5-Trichlorophenol	ND	0.50	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2-Fluorobiphenyl	64	27-120		

LEIGHTON AND ASSOCIATES, INC.	Date Received:	02/09/15
3934 Murphy Canyon Road, Suite B205	Work Order:	15-02-0661
San Diego, CA 92123-4425	Preparation:	EPA 3545
	Method:	EPA 8270C
	Units:	mg/kg
Project: Newland Sierra		Page 6 of 15

Surrogate	Rec. (%)	Control Limits	Qualifiers
2-Fluorophenol	59	25-120	
Nitrobenzene-d5	49	33-123	
p-Terphenyl-d14	92	27-159	
Phenol-d6	59	26-122	
2,4,6-Tribromophenol	83	18-138	

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425

Date Received: Work Order: Preparation: Method:

02/09/15 15-02-0661 EPA 3545 EPA 8270C

Units:

mg/kg Page 7 of 15

Project: Newland Sierra

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SP-3	15-02-0661-7-A	02/09/15 07:15	Solid	GC/MS SS	02/13/15	02/13/15 23:36	150213L02
<u>Parameter</u>		<u>Result</u>	<u>F</u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
Acenaphthene		ND	C).50	1.00		
Acenaphthylene		ND	C).50	1.00		
Aniline		ND	C).50	1.00		
Anthracene		ND	C).50	1.00		
Azobenzene		ND	C).50	1.00		
Benzidine		ND	1	0	1.00		
Benzo (a) Anthracene		ND	C).50	1.00		
Benzo (a) Pyrene		ND	C	0.50	1.00		
Benzo (b) Fluoranthene		ND	C	0.50	1.00		
Benzo (g,h,i) Perylene		ND	C	0.50	1.00		
Benzo (k) Fluoranthene		ND	C	0.50	1.00		
Benzoic Acid		ND	2	2.5	1.00		
Benzyl Alcohol		ND	C).50	1.00		
Bis(2-Chloroethoxy) Methane		ND	C).50	1.00		
Bis(2-Chloroethyl) Ether		ND	2	2.5	1.00		
Bis(2-Chloroisopropyl) Ether		ND	C).50	1.00		
Bis(2-Ethylhexyl) Phthalate		ND	C).50	1.00		
4-Bromophenyl-Phenyl Ether		ND	C	0.50	1.00		
Butyl Benzyl Phthalate		ND	C).50	1.00		
4-Chloro-3-Methylphenol		ND	C).50	1.00		
4-Chloroaniline		ND	C	0.50	1.00		
2-Chloronaphthalene		ND	C).50	1.00		
2-Chlorophenol		ND	C	0.50	1.00		
4-Chlorophenyl-Phenyl Ether		ND	C	0.50	1.00		
Chrysene		ND		0.50	1.00		
Di-n-Butyl Phthalate		ND		0.50	1.00		
Di-n-Octyl Phthalate		ND	C	0.50	1.00		
Dibenz (a,h) Anthracene		ND		0.50	1.00		
Dibenzofuran		ND		0.50	1.00		
1,2-Dichlorobenzene		ND		0.50	1.00		
1,3-Dichlorobenzene		ND		0.50	1.00		
1,4-Dichlorobenzene		ND		0.50	1.00		
3,3'-Dichlorobenzidine		ND		0	1.00		
2,4-Dichlorophenol		ND).50	1.00		
Diethyl Phthalate		ND).50	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

 LEIGHTON AND ASSOCIATES, INC.
 Date Received:
 02/09/15

 3934 Murphy Canyon Road, Suite B205
 Work Order:
 15-02-0661

 San Diego, CA 92123-4425
 Preparation:
 EPA 3545

 Method:
 EPA 8270C

 Units:
 mg/kg

 Project: Newland Sierra
 Page 8 of 15

<u> </u>				
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Dimethyl Phthalate	ND	0.50	1.00	
2,4-Dimethylphenol	ND	0.50	1.00	
4,6-Dinitro-2-Methylphenol	ND	2.5	1.00	
2,4-Dinitrophenol	ND	2.5	1.00	
2,4-Dinitrotoluene	ND	0.50	1.00	
2,6-Dinitrotoluene	ND	0.50	1.00	
Fluoranthene	ND	0.50	1.00	
Fluorene	ND	0.50	1.00	
Hexachloro-1,3-Butadiene	ND	0.50	1.00	
Hexachlorobenzene	ND	0.50	1.00	
Hexachlorocyclopentadiene	ND	2.5	1.00	
Hexachloroethane	ND	0.50	1.00	
Indeno (1,2,3-c,d) Pyrene	ND	0.50	1.00	
Isophorone	ND	0.50	1.00	
2-Methylnaphthalene	ND	0.50	1.00	
1-Methylnaphthalene	ND	0.50	1.00	
2-Methylphenol	ND	0.50	1.00	
3/4-Methylphenol	ND	0.50	1.00	
N-Nitroso-di-n-propylamine	ND	0.50	1.00	
N-Nitrosodimethylamine	ND	0.50	1.00	
N-Nitrosodiphenylamine	ND	0.50	1.00	
Naphthalene	ND	0.50	1.00	
4-Nitroaniline	ND	0.50	1.00	
3-Nitroaniline	ND	0.50	1.00	
2-Nitroaniline	ND	0.50	1.00	
Nitrobenzene	ND	2.5	1.00	
4-Nitrophenol	ND	0.50	1.00	
2-Nitrophenol	ND	0.50	1.00	
Pentachlorophenol	ND	2.5	1.00	
Phenanthrene	ND	0.50	1.00	
Phenol	ND	0.50	1.00	
Pyrene	0.59	0.50	1.00	
Pyridine	ND	0.50	1.00	
1,2,4-Trichlorobenzene	ND	0.50	1.00	
2,4,6-Trichlorophenol	ND	0.50	1.00	
2,4,5-Trichlorophenol	ND	0.50	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
2-Fluorobiphenyl	59	27-120		

LEIGHTON AND ASSOCIATES, INC.	Date Received:	02/09/15
3934 Murphy Canyon Road, Suite B205	Work Order:	15-02-0661
San Diego, CA 92123-4425	Preparation:	EPA 3545
	Method:	EPA 8270C
	Units:	mg/kg
Project: Newland Sierra		Page 9 of 15

Surrogate	Rec. (%)	Control Limits	Qualifiers
2-Fluorophenol	53	25-120	
Nitrobenzene-d5	44	33-123	
p-Terphenyl-d14	93	27-159	
Phenol-d6	53	26-122	
2,4,6-Tribromophenol	76	18-138	

Units:

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received:
Work Order:
Preparation:
Method:

EPA 3545 EPA 8270C mg/kg

02/09/15

15-02-0661

Project: Newland Sierra

Page 10 of 15

Parameter Result RL DE Qualifiers	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Accenaphthene ND 2.5 5.00 Accenaphthylene ND 2.5 5.00 Anthracene ND 2.5 5.00 Anthracene ND 2.5 5.00 Accobancene ND 2.5 5.00 Benzo (a) Anthracene ND 2.5 5.00 Benzo (a) Pyrene ND 2.5 5.00 Benzo (b) Fluoranthene ND 2.5 5.00 Benzo (b) Fluoranthene ND 2.5 5.00 Benzo (k) Fluoranthene ND 2.5 5.00 Benzo (k	SP-4	15-02-0661-8-A		Solid	GC/MS SS	02/13/15	02/16/15 12:54	150213L02
Accinaphthylene Andiline Andiline Andiline And 2.5 5.00 Andiline Andiline And 2.5 5.00 Andiline Andili	<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>alifiers</u>
Aniline ND 2.5 5.00 Anthracene ND 2.5 5.00 Anthracene ND 2.5 5.00 Anthracene ND 2.5 5.00 Benzolane ND 50 5.00 Benzolane ND 50 5.00 Benzolane ND 50 5.00 Benzolane ND 2.5 5.00 Benzola Niller Northele ND 2.5 5.00 Benzola Niller NIII Niller NIII NIII Niller NIII N	Acenaphthene		ND	2.5	5	5.00		
Anthracene ND 2.5 5.00 Azobenzene ND 2.5 5.00 Benzo (a) Anthracene ND 50 5.00 Benzo (a) Anthracene ND 2.5 5.00 Benzo (a) Anthracene ND 2.5 5.00 Benzo (a) Pyrene ND 2.5 5.00 Benzo (a) Pyrene ND 2.5 5.00 Benzo (b) Fluoranthene ND 2.5 5.00 Benzo (b) Fluoranthene ND 2.5 5.00 Benzo (c), J.) Perylene ND 2.5 5.00 Benzo (c),	Acenaphthylene		ND	2.5	5	5.00		
Azobenzene ND 2.5 5.00 Benzidine ND 50 5.00 Benzo (a) Anthracene ND 2.5 5.00 Benzo (b) Fluoranthene ND 2.5 5.00 Benzo (b) Fluoranthene ND 2.5 5.00 Benzo (b) Fluoranthene ND 2.5 5.00 Benzo (c) Fluoranthene ND 2.5 5.00 Benzo (c) Gdid ND 13 5.00 Benzo (c) Acid ND 2.5 5.00 Benzo (c) Acid ND 2.5 5.00 Benzy (a) Kloshol ND 2.5 5.00 Benzo (c) Acid ND 2.5 5.00 Bis(2-Chlorosteptyl) Ether ND 2.5 5.00 Bis(2-Chlorosteptyl) Ether ND 2.5 5.00 Bury (c) Benzy (c) Phinalate	Aniline		ND	2.5	5	5.00		
Senzidine ND 50 5.00	Anthracene		ND	2.5	5	5.00		
Senzo (a) Anthracene ND 2.5 5.00	Azobenzene		ND	2.5	5	5.00		
Senzo (a) Pyrene ND 2.5 5.00	Benzidine		ND	50		5.00		
Senzo (b) Fluoranthene ND 2.5 5.00 Senzo (g,h,i) Perylene ND 2.5 5.00 Senzo (g,h,i) Perylene ND 2.5 5.00 Senzo (k) Fluoranthene ND 2.5 5.00 Senzo (k) Fluoranthene ND 13 5.00 Senzo (chaid ND 13 5.00 Senzo (chaid ND 2.5 5.00 Senzo (chaid ND 2.5 5.00 Selz (-Chloroethoxy) Methane ND 2.5 5.00 Sis (2-Chloroethoxy) Methane ND 2.5 5.00 Sis (2-Chlorostopropyl) Ether ND 13 5.00 Sis (2-Chlorostopropyl) Ether ND 2.5 5.00 Sis (2-Chlorostophenol ND 2.5 5.00 Sis (2	Benzo (a) Anthracene		ND	2.5	5	5.00		
Senzo (g,h,i) Perylene ND 2.5 5.00	Benzo (a) Pyrene		ND	2.5	5	5.00		
Benzo (k) Fluoranthene ND 2.5 5.00 Benzoic Acid ND 13 5.00 Benzyl Alcohol ND 2.5 5.00 Bisi(2-Chloroethxy) Methane ND 2.5 5.00 Bisi(2-Chloroethyl) Ether ND 13 5.00 Bis(2-Chloroethyl) Phthalate ND 2.5 5.00 Bis(2-Ethylhexyl) Phthalate 2.7 2.5 5.00 4-Bromophenyl-Phenyl Ether ND 2.5 5.00 Butyl Benzyl Phthalate ND 2.5 5.00 4-Chloro-3-Methylphenol ND 2.5 5.00 4-Chloroaphthalene ND 2.5 5.00 2-Chlorophenol ND 2.5 5.00 2-Chlorophenyl-Phenyl Ether ND 2.5 5.00 2-Chlorophenol ND 2.5 5.00 2-Chrysene ND 2.5 5.00 2-Chrysene ND 2.5 5.00 2-In-Butyl Phthalate ND 2.5 5.00 <t< td=""><td>Benzo (b) Fluoranthene</td><td></td><td>ND</td><td>2.5</td><td>5</td><td>5.00</td><td></td><td></td></t<>	Benzo (b) Fluoranthene		ND	2.5	5	5.00		
Senzoic Acid ND 13 5.00 Senzyl Alcohol ND 2.5 5.00 Senzyl Alcohol Senzyl Ether ND 13 5.00 Senzyl Ether ND 13 5.00 Senzyl Ether ND 2.5 5.00 Senzyl Phthalate 2.7 2.5 5.00 Senzyl Phthalate 2.7 2.5 5.00 Senzyl Ether ND 2.5 5.00 Senzyl Benzyl Phthalate ND 2.5 5.00 Senzyl Benzyl	Benzo (g,h,i) Perylene		ND	2.5	5	5.00		
Senzyl Alcohol ND 2.5 5.00	Benzo (k) Fluoranthene		ND	2.5	5	5.00		
Sis(2-Chloroethoxy) Methane ND 2.5 5.00 Sis(2-Chloroethyl) Ether ND 13 5.00 Sis(2-Chloroisopropyl) Ether ND 2.5 5.00 Sis(2-Ethylhexyl) Phthalate 2.7 2.5 5.00 Sis(2-Ethylhexyl) Phthalate 2.7 2.5 5.00 Sis(2-Ethylhexyl) Phthalate 2.7 2.5 5.00 Sis(2-Ethylhexyl) Phthalate ND 2.5 5.0	Benzoic Acid		ND	13		5.00		
Bis(2-Chloroethyl) Ether ND 13 5.00 Bis(2-Chloroisopropyl) Ether ND 2.5 5.00 Bis(2-Ethylhexyl) Phthalate 2.7 2.5 5.00 4-Bromophenyl-Phenyl Ether ND 2.5 5.00 Butyl Benzyl Phthalate ND 2.5 5.00 4-Chloro-3-Methylphenol ND 2.5 5.00 4-Chloroanjltine ND 2.5 5.00 2-Chloronaphthalene ND 2.5 5.00 2-Chlorophenol ND 2.5 5.00 4-Chlorophenyl-Phenyl Ether ND 2.5 5.00 Chrysene ND 2.5 5.00 Di-n-Butyl Phthalate ND 2.5 5.00 Di-n-Butyl Phthalate ND 2.5 5.00 Di-n-Cytyl Phthalate ND 2.5 5.00 Di-n-Cytyl Phthalate ND 2.5 5.00 Di-n-Cytyl Phthalate ND 2.5 5.00 Dibenzo (a,h) Anthracene ND 2.5 5.00 Dibenzo (a,h) Anthracene ND 2.5 5.00 </td <td>Benzyl Alcohol</td> <td></td> <td>ND</td> <td>2.5</td> <td>5</td> <td>5.00</td> <td></td> <td></td>	Benzyl Alcohol		ND	2.5	5	5.00		
Sis(2-Chloroisopropyl) Ether ND 2.5 5.00 Sis(2-Ethylhexyl) Phthalate 2.7 2.5 5.00 Sis(2-Ethylhexyl) Phthalate 2.7 2.5 5.00 Sis(2-Ethylhexyl) Phthalate ND 2.5 5.00 Sis(2-Ethylhexyl) Phthalate	Bis(2-Chloroethoxy) Methane		ND	2.5	5	5.00		
Sis (2-Ethylhexyl) Phthalate 2.7 2.5 5.00 4-Bromophenyl-Phenyl Ether ND 2.5 5.00 5-Butyl Benzyl Phthalate ND 2.5 5.00 4-Chloro-3-Methylphenol ND 2.5 5.00 4-Chloroaniline ND 2.5 5.00 4-Chloroaniline ND 2.5 5.00 4-Chlorophenol ND 2.5 5.00 4-Chlorophenol ND 2.5 5.00 4-Chlorophenol ND 2.5 5.00 4-Chlorophenyl-Phenyl Ether ND 2.5 5.00 5-In-Butyl Phthalate ND 2.5 5.00 5-In-Butyl Phthalate ND 2.5 5.00 5-In-Octyl Phthalate ND 2.5 5.00 5-In-Octyl Phthalate ND 2.5 5.00 5-In-Octyl Phthalate ND 2.5 5.00 6-In-Octyl Phthalate ND 2.5 5.00 7-In-Octyl Phthalate	Bis(2-Chloroethyl) Ether		ND	13		5.00		
#Bromophenyl-Phenyl Ether ND 2.5 5.00 #Butyl Benzyl Phthalate ND 2.5 5.00 #Chloro-3-Methylphenol ND 2.5 5.00 #Chloroaniline ND 2.5 5.00 #Chloroaniline ND 2.5 5.00 #Chlorophenol ND 2.5 5.00 #Chlorophenol ND 2.5 5.00 #Chlorophenol ND 2.5 5.00 #Chlorophenyl-Phenyl Ether ND 2.5 5.00 #Chlorophenyl-Phenyl Ether ND 2.5 5.00 #Chrysene ND 2.5 5.00 #Chlorophenol ND 2.5 5.00 #Chlorophenol ND 2.5 5.00 #Chlorophenol ND 50 5.00 #Chlorophenol ND 2.5 5.00 #Chloropheno	Bis(2-Chloroisopropyl) Ether		ND	2.5	5	5.00		
Sutyl Benzyl Phthalate	Bis(2-Ethylhexyl) Phthalate		2.7	2.5	5	5.00		
A-Chloro-3-Methylphenol ND 2.5 5.00 A-Chloro-3-Methylphenol ND 2.5 5.00 A-Chloroaphthalene ND 2.5 5.00 A-Chlorophenol ND 2.5 5.00 A-Chlorophenol ND 2.5 5.00 A-Chlorophenyl-Phenyl Ether ND 2.5 5.00 Chrysene ND 2.5 5.00 Di-n-Butyl Phthalate ND 2.5 5.00 Di-n-Octyl Phthalate ND 2.5 5.00 Di-n-Octyl Phthalate ND 2.5 5.00 Di-n-Octyl Phthalate ND 2.5 5.00 Dibenz (a,h) Anthracene ND 2.5 5.00 Dibenz (a,h) Anthracene ND 2.5 5.00 Dishorophenyl-Phenyl Ether ND 2.5 5.00 Dishorophenol ND 2.5 5.00	4-Bromophenyl-Phenyl Ether		ND	2.5	5	5.00		
A-Chloroaniline A-Chloroaphthalene A-Chlorophenol A-Chlorophenol A-Chlorophenol A-Chlorophenol A-Chlorophenol A-Chlorophenol A-Chlorophenyl-Phenyl Ether A-Dichlorophenyl-Phenyl Ether A-Chlorophenyl-Phenyl Ether A-Chlorophenyl-Phenyl Ether A-Chlorophenyl-Phenyl Ether A-Chlorophenyl-	Butyl Benzyl Phthalate		ND	2.5	5	5.00		
2-Chloronaphthalene 2-Chlorophenol ND 2.5 5.00 2-Chlorophenol ND 2.5 5.00 4-Chlorophenyl-Phenyl Ether ND 2.5 5.00 Chrysene ND 2.5 5.00	4-Chloro-3-Methylphenol		ND	2.5	5	5.00		
2-Chlorophenol ND 2.5 5.00 4-Chlorophenyl-Phenyl Ether ND 2.5 5.00 Chrysene ND 2.5 5.00 Di-n-Butyl Phthalate ND 2.5 5.00 Di-n-Octyl Phthalate ND 2.5 5.00 Dibenz (a,h) Anthracene ND 2.5 5.00 Dibenzofuran ND 2.5 5.00 1,2-Dichlorobenzene ND 2.5 5.00 1,3-Dichlorobenzene ND 2.5 5.00 1,4-Dichlorobenzene ND 2.5 5.00 3,3'-Dichlorobenzidine ND 50 5.00 2,4-Dichlorophenol ND 2.5 5.00	4-Chloroaniline		ND	2.5	5	5.00		
A-Chlorophenyl-Phenyl Ether ND 2.5 5.00 Chrysene ND 2.5 5.00 Di-n-Butyl Phthalate ND 2.5 5.00 Di-n-Octyl Phthalate ND 2.5 5.00 Dibenz (a,h) Anthracene ND 2.5 5.00 Dibenzofuran ND 2.5 5.00 Dibenzofuran ND 2.5 5.00 1,2-Dichlorobenzene ND 2.5 5.00 1,3-Dichlorobenzene ND 2.5 5.00 1,4-Dichlorobenzene ND 2.5 5.00 1,4-Dichlorobenzidine ND 2.5 5.00 2,4-Dichlorophenol ND 2.5 5.00 5.00 5.00 5.00	2-Chloronaphthalene		ND	2.5	5	5.00		
Chrysene ND 2.5 5.00 Di-n-Butyl Phthalate ND 2.5 5.00 Di-n-Octyl Phthalate ND 2.5 5.00 Dibenz (a,h) Anthracene ND 2.5 5.00 Dibenzofuran ND 2.5 5.00 1,2-Dichlorobenzene ND 2.5 5.00 1,3-Dichlorobenzene ND 2.5 5.00 1,4-Dichlorobenzene ND 2.5 5.00 3,3'-Dichlorobenzidine ND 50 5.00 2,4-Dichlorophenol ND 2.5 5.00	2-Chlorophenol		ND	2.5	5	5.00		
Di-n-Butyl Phthalate ND 2.5 5.00 Di-n-Octyl Phthalate ND 2.5 5.00 Dibenz (a,h) Anthracene ND 2.5 5.00 Dibenzofuran ND 2.5 5.00 1,2-Dichlorobenzene ND 2.5 5.00 1,3-Dichlorobenzene ND 2.5 5.00 1,4-Dichlorobenzene ND 2.5 5.00 3,3'-Dichlorobenzidine ND 50 5.00 2,4-Dichlorophenol ND 2.5 5.00	4-Chlorophenyl-Phenyl Ether		ND	2.5	5	5.00		
Di-n-Octyl Phthalate ND 2.5 5.00 Dibenz (a,h) Anthracene ND 2.5 5.00 Dibenzofuran ND 2.5 5.00 1,2-Dichlorobenzene ND 2.5 5.00 1,3-Dichlorobenzene ND 2.5 5.00 1,4-Dichlorobenzene ND 2.5 5.00 3,3'-Dichlorobenzidine ND 50 5.00 2,4-Dichlorophenol ND 2.5 5.00	Chrysene		ND	2.5	5	5.00		
Dibenz (a,h) Anthracene ND 2.5 5.00 Dibenzofuran ND 2.5 5.00 1,2-Dichlorobenzene ND 2.5 5.00 1,3-Dichlorobenzene ND 2.5 5.00 1,4-Dichlorobenzene ND 2.5 5.00 3,3'-Dichlorobenzidine ND 50 5.00 2,4-Dichlorophenol ND 2.5 5.00	Di-n-Butyl Phthalate		ND	2.5	5	5.00		
Dibenzofuran ND 2.5 5.00 1,2-Dichlorobenzene ND 2.5 5.00 1,3-Dichlorobenzene ND 2.5 5.00 1,4-Dichlorobenzene ND 2.5 5.00 3,3'-Dichlorobenzidine ND 50 5.00 2,4-Dichlorophenol ND 2.5 5.00	Di-n-Octyl Phthalate		ND	2.5	5	5.00		
1,2-Dichlorobenzene ND 2.5 5.00 1,3-Dichlorobenzene ND 2.5 5.00 1,4-Dichlorobenzene ND 2.5 5.00 3,3'-Dichlorobenzidine ND 50 5.00 2,4-Dichlorophenol ND 2.5 5.00	Dibenz (a,h) Anthracene		ND	2.5	5	5.00		
1,3-Dichlorobenzene ND 2.5 5.00 1,4-Dichlorobenzene ND 2.5 5.00 3,3'-Dichlorobenzidine ND 50 5.00 2,4-Dichlorophenol ND 2.5 5.00	Dibenzofuran		ND	2.5	5	5.00		
1,4-Dichlorobenzene ND 2.5 5.00 3,3'-Dichlorobenzidine ND 50 5.00 2,4-Dichlorophenol ND 2.5 5.00	1,2-Dichlorobenzene		ND			5.00		
1,4-Dichlorobenzene ND 2.5 5.00 3,3'-Dichlorobenzidine ND 50 5.00 2,4-Dichlorophenol ND 2.5 5.00	1,3-Dichlorobenzene		ND	2.5	5	5.00		
2,4-Dichlorophenol ND 2.5 5.00	1,4-Dichlorobenzene		ND					
2,4-Dichlorophenol ND 2.5 5.00	3,3'-Dichlorobenzidine		ND	50		5.00		
Diethyl Phthalate ND 2.5 5.00	2,4-Dichlorophenol					5.00		
	Diethyl Phthalate		ND	2.5	5	5.00		

RL: Reporting Limit.

DF: Dilution Factor.

 LEIGHTON AND ASSOCIATES, INC.
 Date Received:
 02/09/15

 3934 Murphy Canyon Road, Suite B205
 Work Order:
 15-02-0661

 San Diego, CA 92123-4425
 Preparation:
 EPA 3545

 Method:
 EPA 8270C

 Units:
 mg/kg

 Project: Newland Sierra
 Page 11 of 15

Project. Newland Sierra				Page 11 01 15
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Dimethyl Phthalate	ND	2.5	5.00	
2,4-Dimethylphenol	ND	2.5	5.00	
4,6-Dinitro-2-Methylphenol	ND	13	5.00	
2,4-Dinitrophenol	ND	13	5.00	
2,4-Dinitrotoluene	ND	2.5	5.00	
2,6-Dinitrotoluene	ND	2.5	5.00	
Fluoranthene	ND	2.5	5.00	
Fluorene	ND	2.5	5.00	
Hexachloro-1,3-Butadiene	ND	2.5	5.00	
Hexachlorobenzene	ND	2.5	5.00	
Hexachlorocyclopentadiene	ND	13	5.00	
Hexachloroethane	ND	2.5	5.00	
Indeno (1,2,3-c,d) Pyrene	ND	2.5	5.00	
Isophorone	ND	2.5	5.00	
2-Methylnaphthalene	ND	2.5	5.00	
1-Methylnaphthalene	ND	2.5	5.00	
2-Methylphenol	ND	2.5	5.00	
3/4-Methylphenol	ND	2.5	5.00	
N-Nitroso-di-n-propylamine	ND	2.5	5.00	
N-Nitrosodimethylamine	ND	2.5	5.00	
N-Nitrosodiphenylamine	ND	2.5	5.00	
Naphthalene	ND	2.5	5.00	
4-Nitroaniline	ND	2.5	5.00	
3-Nitroaniline	ND	2.5	5.00	
2-Nitroaniline	ND	2.5	5.00	
Nitrobenzene	ND	13	5.00	
4-Nitrophenol	ND	2.5	5.00	
2-Nitrophenol	ND	2.5	5.00	
Pentachlorophenol	ND	13	5.00	
Phenanthrene	ND	2.5	5.00	
Phenol	ND	2.5	5.00	
Pyrene	ND	2.5	5.00	
Pyridine	ND	2.5	5.00	
1,2,4-Trichlorobenzene	ND	2.5	5.00	
2,4,6-Trichlorophenol	ND	2.5	5.00	
2,4,5-Trichlorophenol	ND	2.5	5.00	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2-Fluorobiphenyl	90	27-120		

IGHTON AND ASSOCIATES, INC.	Date Received:	02/09/15
34 Murphy Canyon Road, Suite B205	Work Order:	15-02-0661
n Diego, CA 92123-4425	Preparation:	EPA 3545
	Method:	EPA 8270C
	Units:	mg/kg
oject: Newland Sierra		Page 12 of 15

Surrogate	Rec. (%)	Control Limits	Qualifiers
2-Fluorophenol	80	25-120	
Nitrobenzene-d5	68	33-123	
p-Terphenyl-d14	89	27-159	
Phenol-d6	80	26-122	
2,4,6-Tribromophenol	104	18-138	

Units:

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received:
Work Order:
Preparation:
Method:

02/09/15 15-02-0661 EPA 3545 EPA 8270C

mg/kg

Project: Newland Sierra

Page 13 of 15

Client Sample Number Lab Sample Date/Time Matrix Instrument Date Date/Time QC Number Collected Prepared Analyzed	Batch ID
Method Blank 099-12-549-3202 N/A Solid GC/MS SS 02/13/15 02/13/15 150	0213L02
Parameter Result RL DF Qualifiers	
Acenaphthene ND 0.50 1.00	
Acenaphthylene ND 0.50 1.00	
Aniline ND 0.50 1.00	
Anthracene ND 0.50 1.00	
Azobenzene ND 0.50 1.00	
Benzidine ND 10 1.00	
Benzo (a) Anthracene ND 0.50 1.00	
Benzo (a) Pyrene ND 0.50 1.00	
Benzo (b) Fluoranthene ND 0.50 1.00	
Benzo (g,h,i) Perylene ND 0.50 1.00	
Benzo (k) Fluoranthene ND 0.50 1.00	
Benzoic Acid ND 2.5 1.00	
Benzyl Alcohol ND 0.50 1.00	
Bis(2-Chloroethoxy) Methane ND 0.50 1.00	
Bis(2-Chloroethyl) Ether ND 2.5 1.00	
Bis(2-Chloroisopropyl) Ether ND 0.50 1.00	
Bis(2-Ethylhexyl) Phthalate ND 0.50 1.00	
4-Bromophenyl-Phenyl Ether ND 0.50 1.00	
Butyl Benzyl Phthalate ND 0.50 1.00	
4-Chloro-3-Methylphenol ND 0.50 1.00	
4-Chloroaniline ND 0.50 1.00	
2-Chloronaphthalene ND 0.50 1.00	
2-Chlorophenol ND 0.50 1.00	
4-Chlorophenyl-Phenyl Ether ND 0.50 1.00	
Chrysene ND 0.50 1.00	
Di-n-Butyl Phthalate ND 0.50 1.00	
Di-n-Octyl Phthalate ND 0.50 1.00	
Dibenz (a,h) Anthracene ND 0.50 1.00	
Dibenzofuran ND 0.50 1.00	
1,2-Dichlorobenzene ND 0.50 1.00	
1,3-Dichlorobenzene ND 0.50 1.00	
1,4-Dichlorobenzene ND 0.50 1.00	
3,3'-Dichlorobenzidine ND 10 1.00	
2,4-Dichlorophenol ND 0.50 1.00	
Diethyl Phthalate ND 0.50 1.00	

RL: Reporting Limit.

DF: Dilution Factor.

 LEIGHTON AND ASSOCIATES, INC.
 Date Received:
 02/09/15

 3934 Murphy Canyon Road, Suite B205
 Work Order:
 15-02-0661

 San Diego, CA 92123-4425
 Preparation:
 EPA 3545

 Method:
 EPA 8270C

 Units:
 mg/kg

 Project: Newland Sierra
 Page 14 of 15

Project: Newland Sierra				Page 14 of 15
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Dimethyl Phthalate	ND	0.50	1.00	
2,4-Dimethylphenol	ND	0.50	1.00	
4,6-Dinitro-2-Methylphenol	ND	2.5	1.00	
2,4-Dinitrophenol	ND	2.5	1.00	
2,4-Dinitrotoluene	ND	0.50	1.00	
2,6-Dinitrotoluene	ND	0.50	1.00	
Fluoranthene	ND	0.50	1.00	
Fluorene	ND	0.50	1.00	
Hexachloro-1,3-Butadiene	ND	0.50	1.00	
Hexachlorobenzene	ND	0.50	1.00	
Hexachlorocyclopentadiene	ND	2.5	1.00	
Hexachloroethane	ND	0.50	1.00	
Indeno (1,2,3-c,d) Pyrene	ND	0.50	1.00	
Isophorone	ND	0.50	1.00	
2-Methylnaphthalene	ND	0.50	1.00	
1-Methylnaphthalene	ND	0.50	1.00	
2-Methylphenol	ND	0.50	1.00	
3/4-Methylphenol	ND	0.50	1.00	
N-Nitroso-di-n-propylamine	ND	0.50	1.00	
N-Nitrosodimethylamine	ND	0.50	1.00	
N-Nitrosodiphenylamine	ND	0.50	1.00	
Naphthalene	ND	0.50	1.00	
4-Nitroaniline	ND	0.50	1.00	
3-Nitroaniline	ND	0.50	1.00	
2-Nitroaniline	ND	0.50	1.00	
Nitrobenzene	ND	2.5	1.00	
4-Nitrophenol	ND	0.50	1.00	
2-Nitrophenol	ND	0.50	1.00	
Pentachlorophenol	ND	2.5	1.00	
Phenanthrene	ND	0.50	1.00	
Phenol	ND	0.50	1.00	
Pyrene	ND	0.50	1.00	
Pyridine	ND	0.50	1.00	
1,2,4-Trichlorobenzene	ND	0.50	1.00	
2,4,6-Trichlorophenol	ND	0.50	1.00	
2,4,5-Trichlorophenol	ND	0.50	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2-Fluorobiphenyl	67	27-120		

GHTON AND ASSOCIATES, INC.	Date Received:	02/09/15
4 Murphy Canyon Road, Suite B205	Work Order:	15-02-0661
Diego, CA 92123-4425	Preparation:	EPA 3545
	Method:	EPA 8270C
	Units:	mg/kg
ect: Newland Sierra		Page 15 of 15

Surrogate	Rec. (%)	Control Limits	Qualifiers
2-Fluorophenol	74	25-120	
Nitrobenzene-d5	60	33-123	
p-Terphenyl-d14	63	27-159	
Phenol-d6	75	26-122	
2,4,6-Tribromophenol	84	18-138	

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method:

15-02-0661 EPA 3545 EPA 8270C SIM PAHs

02/09/15

Units: mg/kg

Project: Newland Sierra Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
South Bottom	15-02-0661-1-A	02/06/15 15:45	Solid	GC/MS EEE	02/18/15	02/18/15 20:47	150218L03
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
Naphthalene		ND	(0.10	5.00		
2-Methylnaphthalene		ND	(0.10	5.00		
1-Methylnaphthalene		ND	(0.10	5.00		
Acenaphthylene		ND	(0.10	5.00		
Acenaphthene		ND	(0.10	5.00		
Fluorene		ND	(0.10	5.00		
Phenanthrene		ND	(0.10	5.00		
Anthracene		ND	(0.10	5.00		
Fluoranthene		ND	(0.10	5.00		
Pyrene		0.15	(0.10	5.00		
Benzo (a) Anthracene		ND	(0.10	5.00		
Chrysene		ND	(0.10	5.00		
Benzo (k) Fluoranthene		ND	(0.10	5.00		
Benzo (b) Fluoranthene		ND	(0.10	5.00		
Benzo (a) Pyrene		ND	(0.10	5.00		
Indeno (1,2,3-c,d) Pyrene		ND	(0.10	5.00		
Dibenz (a,h) Anthracene		ND	(0.10	5.00		
Benzo (g,h,i) Perylene		ND	(0.10	5.00		
Surrogate		Rec. (%)	<u>(</u>	Control Limits	Qualifiers		
2-Fluorobiphenyl		127	2	22-130			
Nitrobenzene-d5		122	2	20-145			
p-Terphenyl-d14		78	;	33-147			

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method:

15-02-0661 EPA 3545 EPA 8270C SIM PAHs

02/09/15

Units: mg/kg

Project: Newland Sierra Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-06-010-2325	N/A	Solid	GC/MS EEE	02/18/15	02/18/15 19:26	150218L03
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	alifiers
Naphthalene		ND	(0.020	1.00		
2-Methylnaphthalene		ND	(0.020	1.00		
1-Methylnaphthalene		ND	(0.020	1.00		
Acenaphthylene		ND	(0.020	1.00		
Acenaphthene		ND	(0.020	1.00		
Fluorene		ND	(0.020	1.00		
Phenanthrene		ND	(0.020	1.00		
Anthracene		ND	(0.020	1.00		
Fluoranthene		ND	(0.020	1.00		
Pyrene		ND	(0.020	1.00		
Benzo (a) Anthracene		ND	(0.020	1.00		
Chrysene		ND	(0.020	1.00		
Benzo (k) Fluoranthene		ND	(0.020	1.00		
Benzo (b) Fluoranthene		ND	(0.020	1.00		
Benzo (a) Pyrene		ND	(0.020	1.00		
Indeno (1,2,3-c,d) Pyrene		ND	(0.020	1.00		
Dibenz (a,h) Anthracene		ND	(0.020	1.00		
Benzo (g,h,i) Perylene		ND	(0.020	1.00		
Surrogate		Rec. (%)	<u>(</u>	Control Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl		89	2	22-130			
Nitrobenzene-d5		66	2	20-145			
p-Terphenyl-d14		83	3	33-147			

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received:
Work Order:
Preparation:
Method:

15-02-0661 EPA 5030C EPA 8260B

02/09/15

ug/kg

Units:

Page 1 of 10

Project: Newland Sierra

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SP-1	15-02-0661-5-B	02/09/15 07:00	Solid	GC/MS Q	02/10/15	02/11/15 19:35	150211L002
Parameter		Result	E	<u>RL</u>	<u>DF</u>	Qua	lifiers
Acetone		ND	1	20	1.00		
Benzene		ND	4	.9	1.00		
Bromobenzene		ND	4	.9	1.00		
Bromochloromethane		ND	4	l.9	1.00		
Bromodichloromethane		ND	4	.9	1.00		
Bromoform		ND	4	.9	1.00		
Bromomethane		ND	2	24	1.00		
2-Butanone		ND	4	9	1.00		
n-Butylbenzene		ND	4	.9	1.00		
sec-Butylbenzene		ND	4	.9	1.00		
tert-Butylbenzene		ND	4	.9	1.00		
Carbon Disulfide		ND	4	9	1.00		
Carbon Tetrachloride		ND	4	l.9	1.00		
Chlorobenzene		ND	4	l.9	1.00		
Chloroethane		ND	4	.9	1.00		
Chloroform		ND	4	l.9	1.00		
Chloromethane		ND	2	24	1.00		
2-Chlorotoluene		ND	4	l.9	1.00		
4-Chlorotoluene		ND	4	.9	1.00		
Dibromochloromethane		ND	4	.9	1.00		
1,2-Dibromo-3-Chloropropane		ND	9	0.8	1.00		
1,2-Dibromoethane		ND	4	.9	1.00		
Dibromomethane		ND	4	.9	1.00		
1,2-Dichlorobenzene		ND	4	.9	1.00		
1,3-Dichlorobenzene		ND	4	.9	1.00		
1,4-Dichlorobenzene		ND	4	.9	1.00		
Dichlorodifluoromethane		ND	4	.9	1.00		
1,1-Dichloroethane		ND	4	.9	1.00		
1,2-Dichloroethane		ND	4	.9	1.00		
1,1-Dichloroethene		ND	4	.9	1.00		
c-1,2-Dichloroethene		ND	4	.9	1.00		
t-1,2-Dichloroethene		ND	4	.9	1.00		
1,2-Dichloropropane		ND	4	.9	1.00		
1,3-Dichloropropane		ND	4	.9	1.00		
2,2-Dichloropropane		ND	4	.9	1.00		

 LEIGHTON AND ASSOCIATES, INC.
 Date Received:
 02/09/15

 3934 Murphy Canyon Road, Suite B205
 Work Order:
 15-02-0661

 San Diego, CA 92123-4425
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/kg

 Project: Newland Sierra
 Page 2 of 10

				1 0.91 = 01 10
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,1-Dichloropropene	ND	4.9	1.00	
c-1,3-Dichloropropene	ND	4.9	1.00	
t-1,3-Dichloropropene	ND	4.9	1.00	
Ethylbenzene	ND	4.9	1.00	
2-Hexanone	ND	49	1.00	
Isopropylbenzene	ND	4.9	1.00	
p-Isopropyltoluene	ND	4.9	1.00	
Methylene Chloride	ND	49	1.00	
4-Methyl-2-Pentanone	ND	49	1.00	
Naphthalene	ND	49	1.00	
n-Propylbenzene	ND	4.9	1.00	
Styrene	ND	4.9	1.00	
1,1,1,2-Tetrachloroethane	ND	4.9	1.00	
1,1,2,2-Tetrachloroethane	ND	4.9	1.00	
Tetrachloroethene	ND	4.9	1.00	
Toluene	ND	4.9	1.00	
1,2,3-Trichlorobenzene	ND	9.8	1.00	
1,2,4-Trichlorobenzene	ND	4.9	1.00	
1,1,1-Trichloroethane	ND	4.9	1.00	
1,1,2-Trichloroethane	ND	4.9	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	49	1.00	
Trichloroethene	ND	4.9	1.00	
1,2,3-Trichloropropane	ND	4.9	1.00	
1,2,4-Trimethylbenzene	ND	4.9	1.00	
Trichlorofluoromethane	ND	49	1.00	
1,3,5-Trimethylbenzene	ND	4.9	1.00	
Vinyl Acetate	ND	49	1.00	
Vinyl Chloride	ND	4.9	1.00	
p/m-Xylene	ND	4.9	1.00	
o-Xylene	ND	4.9	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	4.9	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	99	60-132		
Dibromofluoromethane	92	63-141		
1,2-Dichloroethane-d4	103	62-146		
Toluene-d8	99	80-120		

Project: Newland Sierra

Analytical Report

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received:
Work Order:
Preparation:
Method:

15-02-0661 EPA 5030C EPA 8260B

02/09/15

Units: ug/kg
Page 3 of 10

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SP-2	15-02-0661-6-B	02/09/15 07:10	Solid	GC/MS Q	02/10/15	02/11/15 20:02	150211L002
Parameter		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>llifiers</u>
Acetone		ND	13	30	1.00		
Benzene		ND	5.	2	1.00		
Bromobenzene		ND	5.	2	1.00		
Bromochloromethane		ND	5.	2	1.00		
Bromodichloromethane		ND	5.	2	1.00		
Bromoform		ND	5.	2	1.00		
Bromomethane		ND	26	6	1.00		
2-Butanone		ND	52	2	1.00		
n-Butylbenzene		ND	5.	2	1.00		
sec-Butylbenzene		ND	5.	2	1.00		
tert-Butylbenzene		ND	5.	2	1.00		
Carbon Disulfide		ND	52	2	1.00		
Carbon Tetrachloride		ND	5.	2	1.00		
Chlorobenzene		ND	5.	2	1.00		
Chloroethane		ND	5.	2	1.00		
Chloroform		ND	5.	2	1.00		
Chloromethane		ND	26	6	1.00		
2-Chlorotoluene		ND	5.	2	1.00		
4-Chlorotoluene		ND	5.	2	1.00		
Dibromochloromethane		ND	5.	2	1.00		
1,2-Dibromo-3-Chloropropane		ND	10)	1.00		
1,2-Dibromoethane		ND	5.	2	1.00		
Dibromomethane		ND	5.	2	1.00		
1,2-Dichlorobenzene		ND	5.	2	1.00		
1,3-Dichlorobenzene		ND	5.	2	1.00		
1,4-Dichlorobenzene		ND	5.	2	1.00		
Dichlorodifluoromethane		ND	5.	2	1.00		
1,1-Dichloroethane		ND	5.	2	1.00		
1,2-Dichloroethane		ND	5.	2	1.00		
1,1-Dichloroethene		ND	5.	2	1.00		
c-1,2-Dichloroethene		ND	5.		1.00		
t-1,2-Dichloroethene		ND	5.		1.00		
1,2-Dichloropropane		ND	5.	2	1.00		
1,3-Dichloropropane		ND	5.	2	1.00		
2,2-Dichloropropane		ND	5.	2	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

LEIGHTON AND ASSOCIATES, INC.

3934 Murphy Canyon Road, Suite B205

San Diego, CA 92123-4425

Method:
Units:

02/09/15

15-02-0661

Freparation:
EPA 5030C

Method:
ug/kg

	0 11.	4.9/		
Project: Newland Sierra				Page 4 of 10
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	5.2	1.00	
c-1,3-Dichloropropene	ND	5.2	1.00	
t-1,3-Dichloropropene	ND	5.2	1.00	
Ethylbenzene	ND	5.2	1.00	
2-Hexanone	ND	52	1.00	
Isopropylbenzene	ND	5.2	1.00	
p-Isopropyltoluene	ND	5.2	1.00	
Methylene Chloride	ND	52	1.00	
4-Methyl-2-Pentanone	ND	52	1.00	
Naphthalene	ND	52	1.00	
n-Propylbenzene	ND	5.2	1.00	
Styrene	ND	5.2	1.00	
1,1,1,2-Tetrachloroethane	ND	5.2	1.00	
1,1,2,2-Tetrachloroethane	ND	5.2	1.00	
Tetrachloroethene	ND	5.2	1.00	
Toluene	ND	5.2	1.00	
1,2,3-Trichlorobenzene	ND	10	1.00	
1,2,4-Trichlorobenzene	ND	5.2	1.00	
1,1,1-Trichloroethane	ND	5.2	1.00	
1,1,2-Trichloroethane	ND	5.2	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	52	1.00	
Trichloroethene	ND	5.2	1.00	
1,2,3-Trichloropropane	ND	5.2	1.00	
1,2,4-Trimethylbenzene	ND	5.2	1.00	
Trichlorofluoromethane	ND	52	1.00	
1,3,5-Trimethylbenzene	ND	5.2	1.00	
Vinyl Acetate	ND	52	1.00	
Vinyl Chloride	ND	5.2	1.00	
p/m-Xylene	ND	5.2	1.00	
o-Xylene	ND	5.2	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	5.2	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	101	60-132		
Dibromofluoromethane	92	63-141		
1,2-Dichloroethane-d4	101	62-146		
Toluene-d8	100	80-120		

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425

Date Received: Work Order: Preparation: Method:

15-02-0661 **EPA 5030C EPA 8260B**

02/09/15

Units:

ug/kg

Project: Newland Sierra

Page 5 of 10 Date/Time Lab Sample Date Prepared QC Batch ID Client Sample Number Matrix Instrument Date/Time Number Collected Analyzed 02/09/15 07:15 02/11/15 20:29 SP-3 15-02-0661-7-B Solid GC/MS Q 02/10/15 150211L002 **Parameter** Result <u>RL</u> <u>DF</u> Qualifiers ND 120 1.00 Acetone ND Benzene 5.0 1.00 ND Bromobenzene 5.0 1.00 ND 5.0 1.00 Bromochloromethane Bromodichloromethane ND 5.0 1.00 **Bromoform** ND 5.0 1.00 **Bromomethane** ND 25 1.00 2-Butanone ND 50 1.00 n-Butylbenzene ND 5.0 1.00 sec-Butylbenzene ND 5.0 1.00 tert-Butylbenzene ND 5.0 1.00 Carbon Disulfide ND 50 1.00 Carbon Tetrachloride ND 5.0 1.00 Chlorobenzene ND 5.0 1.00 Chloroethane ND 5.0 1.00 Chloroform ND 5.0 1.00 Chloromethane ND 25 1.00 2-Chlorotoluene ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.00 Dibromochloromethane ND 5.0 1.00 1,2-Dibromo-3-Chloropropane ND 10 1.00 1,2-Dibromoethane ND 5.0 1.00 Dibromomethane ND 5.0 1.00 1,2-Dichlorobenzene ND 5.0 1.00 1,3-Dichlorobenzene ND 5.0 1.00 1,4-Dichlorobenzene ND 5.0 1.00 Dichlorodifluoromethane ND 5.0 1.00 1,1-Dichloroethane ND 5.0 1.00 ND 5.0 1,2-Dichloroethane 1.00 1,1-Dichloroethene ND 5.0 1.00 c-1,2-Dichloroethene ND 5.0 1.00

RL: Reporting Limit.

t-1,2-Dichloroethene

1,2-Dichloropropane 1,3-Dichloropropane

2,2-Dichloropropane

DF: Dilution Factor.

MDL: Method Detection Limit.

5.0

5.0

5.0

5.0

1.00

1.00

1.00

1.00

ND

ND

ND

ND

LEIGHTON AND ASSOCIATES, INC.

3934 Murphy Canyon Road, Suite B205

San Diego, CA 92123-4425

Preparation:

Method:

Units:

Date Received:

02/09/15

15-02-0661

FPA 5030C

Method:

EPA 8260B

Units:

Page 6 of 40

Project: Newland Sierra Page 6 of 10

Project: Newland Sierra				Page 6 of 10
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	5.0	1.00	
c-1,3-Dichloropropene	ND	5.0	1.00	
t-1,3-Dichloropropene	ND	5.0	1.00	
Ethylbenzene	ND	5.0	1.00	
2-Hexanone	ND	50	1.00	
Isopropylbenzene	ND	5.0	1.00	
p-Isopropyltoluene	ND	5.0	1.00	
Methylene Chloride	ND	50	1.00	
4-Methyl-2-Pentanone	ND	50	1.00	
Naphthalene	ND	50	1.00	
n-Propylbenzene	ND	5.0	1.00	
Styrene	ND	5.0	1.00	
1,1,1,2-Tetrachloroethane	ND	5.0	1.00	
1,1,2,2-Tetrachloroethane	ND	5.0	1.00	
Tetrachloroethene	5.2	5.0	1.00	
Toluene	ND	5.0	1.00	
1,2,3-Trichlorobenzene	ND	10	1.00	
1,2,4-Trichlorobenzene	ND	5.0	1.00	
1,1,1-Trichloroethane	ND	5.0	1.00	
1,1,2-Trichloroethane	ND	5.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	50	1.00	
Trichloroethene	ND	5.0	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	5.0	1.00	
Trichlorofluoromethane	ND	50	1.00	
1,3,5-Trimethylbenzene	ND	5.0	1.00	
Vinyl Acetate	ND	50	1.00	
Vinyl Chloride	ND	5.0	1.00	
p/m-Xylene	ND	5.0	1.00	
o-Xylene	ND	5.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	100	60-132		
Dibromofluoromethane	93	63-141		
1,2-Dichloroethane-d4	103	62-146		
Toluene-d8	99	80-120		

Project: Newland Sierra

Analytical Report

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received:
Work Order:
Preparation:
Method:

15-02-0661 EPA 5030C EPA 8260B

02/09/15

ug/kg

Units:

Page 7 of 10

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SP-4	15-02-0661-8-B	02/09/15 07:30	Solid	GC/MS Q	02/10/15	02/11/15 20:57	150211L002
Parameter		Result	R	<u>L</u>	<u>DF</u>	Qua	<u>llifiers</u>
Acetone		ND	1	30	1.00		
Benzene		ND	5	.1	1.00		
Bromobenzene		ND	5	.1	1.00		
Bromochloromethane		ND	5	.1	1.00		
Bromodichloromethane		ND	5	.1	1.00		
Bromoform		ND	5	.1	1.00		
Bromomethane		ND	2	5	1.00		
2-Butanone		ND	5	1	1.00		
n-Butylbenzene		ND	5	.1	1.00		
sec-Butylbenzene		ND	5	.1	1.00		
tert-Butylbenzene		ND	5	.1	1.00		
Carbon Disulfide		ND	5	1	1.00		
Carbon Tetrachloride		ND	5	.1	1.00		
Chlorobenzene		ND	5	.1	1.00		
Chloroethane		ND	5	.1	1.00		
Chloroform		ND	5	.1	1.00		
Chloromethane		ND	2	5	1.00		
2-Chlorotoluene		ND	5	.1	1.00		
4-Chlorotoluene		ND	5	.1	1.00		
Dibromochloromethane		ND	5	.1	1.00		
1,2-Dibromo-3-Chloropropane		ND	1	0	1.00		
1,2-Dibromoethane		ND	5	.1	1.00		
Dibromomethane		ND	5	.1	1.00		
1,2-Dichlorobenzene		ND	5	.1	1.00		
1,3-Dichlorobenzene		ND	5	.1	1.00		
1,4-Dichlorobenzene		ND	5	.1	1.00		
Dichlorodifluoromethane		ND	5	.1	1.00		
1,1-Dichloroethane		ND	5	.1	1.00		
1,2-Dichloroethane		ND	5	.1	1.00		
1,1-Dichloroethene		ND		.1	1.00		
c-1,2-Dichloroethene		ND		.1	1.00		
t-1,2-Dichloroethene		ND		.1	1.00		
1,2-Dichloropropane		ND		.1	1.00		
1,3-Dichloropropane		ND		.1	1.00		
2,2-Dichloropropane		ND	5	.1	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

 LEIGHTON AND ASSOCIATES, INC.
 Date Received:
 02/09/15

 3934 Murphy Canyon Road, Suite B205
 Work Order:
 15-02-0661

 San Diego, CA 92123-4425
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/kg

 Project: Newland Sierra
 Page 8 of 10

Project: Newland Sierra				Page 8 of 10
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	5.1	1.00	
c-1,3-Dichloropropene	ND	5.1	1.00	
t-1,3-Dichloropropene	ND	5.1	1.00	
Ethylbenzene	ND	5.1	1.00	
2-Hexanone	ND	51	1.00	
Isopropylbenzene	ND	5.1	1.00	
p-Isopropyltoluene	ND	5.1	1.00	
Methylene Chloride	ND	51	1.00	
4-Methyl-2-Pentanone	ND	51	1.00	
Naphthalene	ND	51	1.00	
n-Propylbenzene	ND	5.1	1.00	
Styrene	ND	5.1	1.00	
1,1,1,2-Tetrachloroethane	ND	5.1	1.00	
1,1,2,2-Tetrachloroethane	ND	5.1	1.00	
Tetrachloroethene	ND	5.1	1.00	
Toluene	ND	5.1	1.00	
1,2,3-Trichlorobenzene	ND	10	1.00	
1,2,4-Trichlorobenzene	ND	5.1	1.00	
1,1,1-Trichloroethane	ND	5.1	1.00	
1,1,2-Trichloroethane	ND	5.1	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	51	1.00	
Trichloroethene	ND	5.1	1.00	
1,2,3-Trichloropropane	ND	5.1	1.00	
1,2,4-Trimethylbenzene	ND	5.1	1.00	
Trichlorofluoromethane	ND	51	1.00	
1,3,5-Trimethylbenzene	ND	5.1	1.00	
Vinyl Acetate	ND	51	1.00	
Vinyl Chloride	ND	5.1	1.00	
p/m-Xylene	ND	5.1	1.00	
o-Xylene	ND	5.1	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	5.1	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	101	60-132		
Dibromofluoromethane	94	63-141		
1,2-Dichloroethane-d4	103	62-146		
Toluene-d8	99	80-120		

Units:

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received:
Work Order:
Preparation:
Method:

15-02-0661 EPA 5030C EPA 8260B ug/kg

02/09/15

Project: Newland Sierra

Page 9 of 10

Parameter	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Acatone	Method Blank	099-12-796-9377	N/A	Solid	GC/MS Q	02/11/15	02/11/15 11:32	150211L002
Benzane ND 5.0 1.00 Bromobenzene ND 5.0 1.00 Bromobenzene ND 5.0 1.00 Bromoblenomethane ND 5.0 1.00 Bromodichloromethane ND 5.0 1.00 Bez-Butylbenzene ND 5.0 1.00 Besc-Butylbenzene ND 5.0 1.00 Be	<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	alifiers
Bromobenzene ND 5.0 1.00 Bromochloromethane ND 5.0 1.00 Bromochloromethane ND 5.0 1.00 Bromodichloromethane ND 5.0 1.00 Bromomethane ND 5.0 1.00 -Butanone ND 5.0 1.00 -Butylbenzene ND 5.0 1.00 sec-Butylbenzene ND 5.0 1.00 sec-Butylbenzene ND 5.0 1.00 sec-Butylbenzene ND 5.0 1.00 carbon Disulfide ND 5.0 1.00 Carbon Disulfide ND 5.0 1.00 Carbon Tetrachloride ND 5.0 1.00 Chlorochance ND 5.0 1.00 Chlorochance ND 5.0 1.00 Chlorochance ND 5.0 1.00 Chlorochoune ND 5.0 1.00 Chlorochorochrane ND 5.0 <	Acetone		ND	12	20	1.00		
Bromochloromethane ND 5.0 1.00 Bromodichloromethane ND 5.0 1.00 Bromoform ND 5.0 1.00 Bromomethane ND 5.0 1.00 2-Butanone ND 5.0 1.00 n-Butylbenzene ND 5.0 1.00 seer-Butylbenzene ND 5.0 1.00 carbon Disulfide ND 5.0 1.00 Carbon Disulfide ND 5.0 1.00 Carbon Disulfide ND 5.0 1.00 Carbon Tetrachloride ND 5.0 1.00 Chlorobethane ND 5.0 1.00 Chlorotethane ND 5.0 1.00<	Benzene		ND	5.	0	1.00		
Bromodichloromethane ND 5.0 1.00 Bromodrom ND 5.0 1.00 Bromomethane ND 5.0 1.00 2-Butlanone ND 5.0 1.00 n-Butylbenzene ND 5.0 1.00 sec-Butylbenzene ND 5.0 1.00 Carbon Disulfide ND 5.0 1.00 Carbon Tetrachloride ND 5.0 1.00 Chlorobenzene ND 5.0 1.00 Chloroform ND 5.0 1.00 Chloroform ND 5.0 1.00 Chloroformethane ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.00 1,2-Dichloroethane ND 5.0 1	Bromobenzene		ND	5.	0	1.00		
Bromoform ND 5.0 1.00 Bromomethane ND 25 1.00 Bromomethane ND 50 1.00 ABUylbenzene ND 5.0 1.00 see-Butylbenzene ND 5.0 1.00 carbon Disulfide ND 5.0 1.00 Chlorosteriane ND 5.0 1.00 Chlorosteriane ND 5.0 1.00 Chloroform ND 5.0 1.00 Chlorosteriane ND 5.0 1.00 Chlorotoluene ND 5.0 1.00 Chlorotoluene ND 5.0 1.00 L,2-Dibromoethane ND 5.0 1.00 L,2-Dibromoethane ND 5.0 1.00 L,2-Dichlorotenzene ND 5.0 1.00	Bromochloromethane		ND	5.	0	1.00		
Bromomethane ND 25 1.00 2-Butanone ND 50 1.00 n-Butylbenzene ND 5.0 1.00 seer-Butylbenzene ND 5.0 1.00 cerb-Butylbenzene ND 5.0 1.00 Carbon Disulfide ND 5.0 1.00 Carbon Tetrachloride ND 5.0 1.00 Chlorobenzene ND 5.0 1.00 Chlorobenzene ND 5.0 1.00 Chloroform ND 5.0 1.00 Chloroformethane ND 5.0 1.00 1,2-Dibromoethane ND 5.0 1.00 1,2-Dibromoethane ND 5.0 1.00 1,4-Dichlorobenzene ND 5.0	Bromodichloromethane		ND	5.	0	1.00		
2- Butanone ND 50 1.00 n-Butylbenzene ND 5.0 1.00 seer-Butylbenzene ND 5.0 1.00 cert-Butylbenzene ND 5.0 1.00 Carbon Disulfide ND 5.0 1.00 Carbon Tetrachloride ND 5.0 1.00 Chlorobenzene ND 5.0 1.00 Chlorodethane ND 5.0 1.00 Chlorodethane ND 5.0 1.00 Chlorodoluene ND 5.0 1.00 Chlorodoluene ND 5.0 1.00 Chlorodoluene ND 5.0 1.00 Chloromethane ND 5.0 1.00 1,2-Dibromochane ND 5.0 1.00 1,2-Dibromochane ND 5.0 1.00 1,2-Dichlorobenzene ND 5.0 1.00 1,3-Dichlorobenzene ND 5.0 1.00 1,4-Dichlorobenzene ND 5.0	Bromoform		ND	5.	0	1.00		
n-Butylbenzene ND 5.0 1.00 sec-Butylbenzene ND 5.0 1.00 carbon Disulfide ND 5.0 1.00 Carbon Disulfide ND 5.0 1.00 Chlorobenzene ND 5.0 1.00 Chlorobenzene ND 5.0 1.00 Chloroform ND 5.0 1.00 Chloroform ND 5.0 1.00 Chlorofolune ND 5.0 1.00 4-Chlorotolune ND 5.0 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dichlorobenzene ND 5.0	Bromomethane		ND	25	5	1.00		
sec-Butylbenzene ND 5.0 1.00 cert-Butylbenzene ND 5.0 1.00 Carbon Tetrachloride ND 5.0 1.00 Carbon Tetrachloride ND 5.0 1.00 Chloroebanee ND 5.0 1.00 Chloroethane ND 5.0 1.00 Chlorotolume ND 5.0 1.00 Chlorotoluene ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dichlorobenzene ND 5.0 1.00 1,2-Dichlorobenzene ND 5.0 1.00 1,4-Dichloroethane <t< td=""><td>2-Butanone</td><td></td><td>ND</td><td>50</td><td>)</td><td>1.00</td><td></td><td></td></t<>	2-Butanone		ND	50)	1.00		
Part Butylbenzene ND 5.0 1.00	n-Butylbenzene		ND	5.	0	1.00		
Carbon Disulfide ND 50 1.00 Carbon Tetrachloride ND 5.0 1.00 Chlorobenzene ND 5.0 1.00 Chlorotethane ND 5.0 1.00 Chlorotorem ND 5.0 1.00 Chlorotoluene ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.00 4-Chlorotopropane ND 5.0 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dichlorobenzene ND 5.0 1.00 1,2-Dichlorobenzene ND 5.0 1.00 1,4-Dichlorobenzene ND 5.0 1.00 1,4-Dichlorothane ND 5.0 1.00 1,1-Dichlorothane ND	sec-Butylbenzene		ND	5.	0	1.00		
Carbon Tetrachloride ND 5.0 1.00 Chlorobenzene ND 5.0 1.00 Chlorotethane ND 5.0 1.00 Chloroform ND 5.0 1.00 Chlorotethane ND 5.0 1.00 Chlorotoluene ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dichlorotethane ND 5.0 1.00 1,3-Dichlorotethane ND 5.0 1.00 1,4-Dichlorotethane ND 5.0 1.00 1,1-Dichlorotethane ND 5.0 1.00 1,2-Dichlorotethane ND 5.0 1.00 1,2-Dichlorotethane	tert-Butylbenzene		ND	5.	0	1.00		
Chlorobenzene ND 5.0 1.00 Chloroethane ND 5.0 1.00 Chloromethane ND 5.0 1.00 Chlorotoluene ND 25 1.00 2-Chlorotoluene ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.00 Dibromochloromethane ND 5.0 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromoethane ND 5.0 1.00 1,2-Dibromoethane ND 5.0 1.00 1,2-Dichlorobenzene ND 5.0 1.00 1,3-Dichlorobenzene ND 5.0 1.00 1,4-Dichlorodifluoromethane ND 5.0 1.00 1,1-Dichloroethane ND 5.0 1.00 1,1-Dichloroethane ND 5.0 1.00 1,1-Dichloroethane ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 1,2-Dichloroethene	Carbon Disulfide		ND	50)	1.00		
Chloroethane ND 5.0 1.00 Chloroform ND 5.0 1.00 Chloromethane ND 5.0 1.00 2-Chlorotoluene ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.00 Dibromochloromethane ND 5.0 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromoethane ND 5.0 1.00 1,2-Dibromoethane ND 5.0 1.00 1,2-Dichlorobenzene ND 5.0 1.00 1,3-Dichlorobenzene ND 5.0 1.00 1,4-Dichloroethane ND 5.0 1.00 1,1-Dichloroethane ND 5.0 1.00 1,1-Dichloroethane ND 5.0 1.00 1,1-Dichloroethane ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 1,2-Dichloroethene	Carbon Tetrachloride		ND	5.	0	1.00		
Chloroform ND 5.0 1.00 Chloromethane ND 25 1.00 2-Chlorotoluene ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.00 4-Chloromethane ND 5.0 1.00 1,2-Dibromo-3-Chloropropane ND 10 1.00 1,2-Dibromothane ND 5.0 1.00 Dibromomethane ND 5.0 1.00 1,2-Dichlorobenzene ND 5.0 1.00 1,3-Dichlorobenzene ND 5.0 1.00 1,4-Dichlorobenzene ND 5.0 1.00 1,4-Dichloroethane ND 5.0 1.00 1,1-Dichloroethane ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 1,2-Dichloroethene ND 5.0 1.00 1,2-Dichloroethene ND 5.0 1.00 1,2-Dichloropropane <t< td=""><td>Chlorobenzene</td><td></td><td>ND</td><td>5.</td><td>0</td><td>1.00</td><td></td><td></td></t<>	Chlorobenzene		ND	5.	0	1.00		
Chloromethane ND 25 1.00 2-Chlorotoluene ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.00 4-Chloromethane ND 5.0 1.00 1,2-Dibromo-3-Chloropropane ND 10 1.00 1,2-Dibromoethane ND 5.0 1.00 1,2-Dichlorobenzene ND 5.0 1.00 1,3-Dichlorobenzene ND 5.0 1.00 1,4-Dichlorobenzene ND 5.0 1.00 1,4-Dichloroethane ND 5.0 1.00 1,1-Dichloroethane ND 5.0 1.00 1,1-Dichloroethane ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 1,2-Dichloropropane ND 5.0 1.00 1,2-Dichloropropane ND </td <td>Chloroethane</td> <td></td> <td>ND</td> <td>5.</td> <td>0</td> <td>1.00</td> <td></td> <td></td>	Chloroethane		ND	5.	0	1.00		
ND S.0 1.00	Chloroform		ND	5.	0	1.00		
A-Chlorotoluene ND 5.0 1.00 Dibromochloromethane ND 5.0 1.00 1,2-Dibromo-3-Chloropropane ND 10 1.00 1,2-Dibromoethane ND 5.0 1.00 Dibromomethane ND 5.0 1.00 Dibromomethane ND 5.0 1.00 1,2-Dichlorobenzene ND 5.0 1.00 1,3-Dichlorobenzene ND 5.0 1.00 1,4-Dichlorobenzene ND 5.0 1.00 1,4-Dichlorobenzene ND 5.0 1.00 1,1-Dichlorotethane ND 5.0 1.00 1,1-Dichlorotethane ND 5.0 1.00 1,1-Dichlorotethane ND 5.0 1.00 1,2-Dichlorotethane ND 5.0 1.00 1,2-Dichlorotethane ND 5.0 1.00 1,1-Dichlorotethane ND 5.0 1.00 1,2-Dichlorotethane ND 5.0 1.00 1,2-Dichlorotethane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00	Chloromethane		ND	25	5	1.00		
Dibromochloromethane ND 5.0 1.00 1,2-Dibromo-3-Chloropropane ND 10 1.00 1,2-Dibromoethane ND 5.0 1.00 Dibromomethane ND 5.0 1.00 1,2-Dichlorobenzene ND 5.0 1.00 1,3-Dichlorobenzene ND 5.0 1.00 1,4-Dichlorobenzene ND 5.0 1.00 1,1-Dichloroethane ND 5.0 1.00 1,2-Dichloroethane ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 1,2-Dichloroethene ND 5.0 1.00 1,2-Dichloropropane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00	2-Chlorotoluene		ND	5.	0	1.00		
1,2-Dibromo-3-Chloropropane ND 10 1.00 1,2-Dibromoethane ND 5.0 1.00 Dibromomethane ND 5.0 1.00 1,2-Dichlorobenzene ND 5.0 1.00 1,3-Dichlorobenzene ND 5.0 1.00 1,4-Dichlorobenzene ND 5.0 1.00 1,1-Dichlorodifluoromethane ND 5.0 1.00 1,2-Dichloroethane ND 5.0 1.00 1,1-Dichloroethane ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 1,2-Dichloropropane ND 5.0 1.00 1,2-Dichloropropane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00	4-Chlorotoluene		ND	5.	0	1.00		
1,2-Dibromoethane ND 5.0 1.00 Dibromomethane ND 5.0 1.00 1,2-Dichlorobenzene ND 5.0 1.00 1,3-Dichlorobenzene ND 5.0 1.00 1,4-Dichlorobenzene ND 5.0 1.00 Dichlorodifluoromethane ND 5.0 1.00 1,1-Dichloroethane ND 5.0 1.00 1,2-Dichloroethane ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 1,2-Dichloroethene ND 5.0 1.00 1,2-Dichloroethene ND 5.0 1.00 1,2-Dichloropropane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00	Dibromochloromethane		ND	5.	0	1.00		
Dibromomethane ND 5.0 1.00 1,2-Dichlorobenzene ND 5.0 1.00 1,3-Dichlorobenzene ND 5.0 1.00 1,4-Dichlorobenzene ND 5.0 1.00 Dichlorodifluoromethane ND 5.0 1.00 1,1-Dichloroethane ND 5.0 1.00 1,2-Dichloroethane ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 1-1,2-Dichloroethene ND 5.0 1.00 1-1,2-Dichloroethene ND 5.0 1.00 1,2-Dichloropropane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00	1,2-Dibromo-3-Chloropropane		ND	10)	1.00		
1,2-Dichlorobenzene ND 5.0 1.00 1,3-Dichlorobenzene ND 5.0 1.00 1,4-Dichlorobenzene ND 5.0 1.00 Dichlorodifluoromethane ND 5.0 1.00 1,1-Dichloroethane ND 5.0 1.00 1,2-Dichloroethane ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 1-1,2-Dichloroethene ND 5.0 1.00 1-1,2-Dichloroethene ND 5.0 1.00 1,2-Dichloropropane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00	1,2-Dibromoethane		ND	5.	0	1.00		
1,3-Dichlorobenzene ND 5.0 1.00 1,4-Dichlorobenzene ND 5.0 1.00 Dichlorodifluoromethane ND 5.0 1.00 1,1-Dichloroethane ND 5.0 1.00 1,2-Dichloroethane ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 1-1,2-Dichloroethene ND 5.0 1.00 1-1,2-Dichloroethene ND 5.0 1.00 1,2-Dichloropropane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00	Dibromomethane		ND	5.	0	1.00		
1,4-Dichlorobenzene ND 5.0 1.00 Dichlorodifluoromethane ND 5.0 1.00 1,1-Dichloroethane ND 5.0 1.00 1,2-Dichloroethane ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 c-1,2-Dichloroethene ND 5.0 1.00 t-1,2-Dichloroethene ND 5.0 1.00 1,2-Dichloropropane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00	1,2-Dichlorobenzene		ND	5.	0	1.00		
Dichlorodifluoromethane ND 5.0 1.00 1,1-Dichloroethane ND 5.0 1.00 1,2-Dichloroethane ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 c-1,2-Dichloroethene ND 5.0 1.00 t-1,2-Dichloroethene ND 5.0 1.00 1,2-Dichloropropane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00	1,3-Dichlorobenzene		ND	5.	0	1.00		
1,1-Dichloroethane ND 5.0 1.00 1,2-Dichloroethane ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 c-1,2-Dichloroethene ND 5.0 1.00 i-1,2-Dichloroethene ND 5.0 1.00 1,2-Dichloropropane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00	1,4-Dichlorobenzene		ND	5.	0	1.00		
1,2-Dichloroethane ND 5.0 1.00 1,1-Dichloroethene ND 5.0 1.00 c-1,2-Dichloroethene ND 5.0 1.00 t-1,2-Dichloroethene ND 5.0 1.00 1,2-Dichloropropane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00	Dichlorodifluoromethane		ND	5.	0	1.00		
1,1-Dichloroethene ND 5.0 1.00 c-1,2-Dichloroethene ND 5.0 1.00 t-1,2-Dichloroethene ND 5.0 1.00 1,2-Dichloropropane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00	1,1-Dichloroethane		ND	5.	0	1.00		
c-1,2-Dichloroethene ND 5.0 1.00 t-1,2-Dichloroethene ND 5.0 1.00 1,2-Dichloropropane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00	1,2-Dichloroethane		ND	5.	0	1.00		
t-1,2-Dichloroethene ND 5.0 1.00 1,2-Dichloropropane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00	1,1-Dichloroethene		ND	5.	0	1.00		
t-1,2-Dichloroethene ND 5.0 1.00 1,2-Dichloropropane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00	c-1,2-Dichloroethene		ND	5.	0	1.00		
1,2-Dichloropropane ND 5.0 1.00 1,3-Dichloropropane ND 5.0 1.00	t-1,2-Dichloroethene		ND			1.00		
1,3-Dichloropropane ND 5.0 1.00	·		ND					
	1,3-Dichloropropane							
	2,2-Dichloropropane		ND			1.00		

RL: Reporting Limit.

DF: Dilution Factor.

 LEIGHTON AND ASSOCIATES, INC.
 Date Received:
 02/09/15

 3934 Murphy Canyon Road, Suite B205
 Work Order:
 15-02-0661

 San Diego, CA 92123-4425
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/kg

 Project: Newland Sierra
 Page 10 of 10

Project: Newland Sierra				Page 10 of 10
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	5.0	1.00	
c-1,3-Dichloropropene	ND	5.0	1.00	
t-1,3-Dichloropropene	ND	5.0	1.00	
Ethylbenzene	ND	5.0	1.00	
2-Hexanone	ND	50	1.00	
Isopropylbenzene	ND	5.0	1.00	
p-Isopropyltoluene	ND	5.0	1.00	
Methylene Chloride	ND	50	1.00	
4-Methyl-2-Pentanone	ND	50	1.00	
Naphthalene	ND	50	1.00	
n-Propylbenzene	ND	5.0	1.00	
Styrene	ND	5.0	1.00	
1,1,1,2-Tetrachloroethane	ND	5.0	1.00	
1,1,2,2-Tetrachloroethane	ND	5.0	1.00	
Tetrachloroethene	ND	5.0	1.00	
Toluene	ND	5.0	1.00	
1,2,3-Trichlorobenzene	ND	10	1.00	
1,2,4-Trichlorobenzene	ND	5.0	1.00	
1,1,1-Trichloroethane	ND	5.0	1.00	
1,1,2-Trichloroethane	ND	5.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	50	1.00	
Trichloroethene	ND	5.0	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	5.0	1.00	
Trichlorofluoromethane	ND	50	1.00	
1,3,5-Trimethylbenzene	ND	5.0	1.00	
Vinyl Acetate	ND	50	1.00	
Vinyl Chloride	ND	5.0	1.00	
p/m-Xylene	ND	5.0	1.00	
o-Xylene	ND	5.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	94	60-132		
Dibromofluoromethane	99	63-141		
1,2-Dichloroethane-d4	107	62-146		
Toluene-d8	97	80-120		

 LEIGHTON AND ASSOCIATES, INC.
 Date Received:
 02/09/15

 3934 Murphy Canyon Road, Suite B205
 Work Order:
 15-02-0661

 San Diego, CA 92123-4425
 Preparation:
 EPA 3550B

 Method:
 EPA 8015B (M)

Project: Newland Sierra Page 1 of 8

Quality Control Sample ID	Type		Matrix	Matrix Instrument		Date Prepared Date Analy		yzed	zed MS/MSD Batch Number		
15-02-0650-1	Sample		Solid	GC	45	02/10/15	02/11/15	15:34	150210S16		
15-02-0650-1	Matrix Spike		Solid	GC 45		02/10/15	02/11/15	14:59	150210S16		
15-02-0650-1	Matrix Spike Duplicate		Solid	GC 45		02/10/15	02/11/15	15:16	150210S16		
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers	
TPH as Diesel	15.81	400.0	400.5	96	460.6	111	64-130	14	0-15		

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method: 02/09/15 15-02-0661 EPA 3050B EPA 6010B

Project: Newland Sierra Page 2 of 8

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	d Date Ana	alyzed	MS/MSD Ba	atch Number
15-02-0811-1	Sample		Solid	ICP	7300	02/12/15	02/16/15	18:26	150212S04	
15-02-0811-1	Matrix Spike		Solid	ICP	7300	02/12/15	02/16/15	18:31	150212S04	
15-02-0811-1	Matrix Spike	Duplicate	Solid	ICP	7300	02/12/15	02/16/15	18:32	150212S04	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Antimony	ND	25.00	4.420	18	4.000	16	50-115	10	0-20	3
Arsenic	5.917	25.00	32.42	106	33.34	110	75-125	3	0-20	
Barium	100.0	25.00	127.4	4X	119.5	4X	75-125	4X	0-20	Q
Beryllium	0.3629	25.00	26.59	105	26.34	104	75-125	1	0-20	
Cadmium	ND	25.00	25.46	102	25.93	104	75-125	2	0-20	
Chromium	18.65	25.00	47.36	115	48.49	119	75-125	2	0-20	
Cobalt	9.346	25.00	36.47	108	36.91	110	75-125	1	0-20	
Copper	15.76	25.00	43.73	112	44.07	113	75-125	1	0-20	
Lead	2.775	25.00	27.96	101	28.49	103	75-125	2	0-20	
Molybdenum	ND	25.00	23.40	94	23.90	96	75-125	2	0-20	
Nickel	15.11	25.00	42.20	108	42.91	111	75-125	2	0-20	
Selenium	ND	25.00	23.48	94	24.02	96	75-125	2	0-20	
Silver	ND	12.50	13.24	106	13.16	105	75-125	1	0-20	
Thallium	ND	25.00	8.526	34	10.58	42	75-125	22	0-20	3,4
Vanadium	31.41	25.00	59.02	110	58.37	108	75-125	1	0-20	
Zinc	43.36	25.00	72.42	116	73.37	120	75-125	1	0-20	

LEIGHTON AND ASSOCIATES, INC.

3934 Murphy Canyon Road, Suite B205

San Diego, CA 92123-4425

Preparation:

Method:

Date Received:

02/09/15

15-02-0661

EPA 7471A Total

Method:

EPA 7471A

Project: Newland Sierra Page 3 of 8

Quality Control Sample ID	Туре	Matrix	Instrument		Date Prepared	Date Anal	yzed	MS/MSD Bat	ch Number
15-02-0811-1	Sample	Solid	Mercu	ry 05	02/16/15	02/16/15	17:05	150216S04	
15-02-0811-1	Matrix Spike	Solid	Mercury 05		02/16/15	02/16/15	17:07	150216S04	
15-02-0811-1	Matrix Spike Duplicate	Solid	Solid Mercury 05		02/16/15	02/16/15	17:09	150216S04	
Parameter	Sample Spike Conc. Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	ND 0.8350	0.9590	115	0.9871	118	71-137	3	0-14	

LEIGHTON AND ASSOCIATES, INC.

3934 Murphy Canyon Road, Suite B205

San Diego, CA 92123-4425

Work Order:

Preparation:

EPA 3545

Method:

EPA 8082

Project: Newland Sierra Page 4 of 8

Quality Control Sample ID	Туре		Matrix	Matrix Instrument		Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
15-02-0849-1	Sample		Solid	GC	58	02/13/15	02/13/15	17:30	150213S05	
15-02-0849-1	Matrix Spike		Solid	GC	58	02/13/15	02/13/15	18:24	150213S05	
15-02-0849-1	Matrix Spike Duplicate		Solid	GC 58		02/13/15	02/13/15	18:42	150213S05	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Aroclor-1016	ND	100.0	138.7	139	129.0	129	50-135	7	0-20	3
Aroclor-1260	80.09	100.0	152.6	72	154.4	74	50-135	1	0-25	

LEIGHTON AND ASSOCIATES, INC.

3934 Murphy Canyon Road, Suite B205

San Diego, CA 92123-4425

Work Order:

Preparation:

EPA 3545

Method:

EPA 8082

Project: Newland Sierra Page 5 of 8

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
15-02-0662-28	Sample		Solid	GC	58	02/18/15	02/18/15	12:53	150218S01	
15-02-0662-28	Matrix Spike		Solid	GC	58	02/18/15	02/18/15	13:11	150218S01	
15-02-0662-28	Matrix Spike	Duplicate	Solid	GC	58	02/18/15	02/18/15	13:29	150218S01	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Aroclor-1016	ND	100.0	83.88	84	89.78	90	50-135	7	0-20	
Aroclor-1260	ND	100.0	92.51	93	93.42	93	50-135	1	0-25	

Quality Control - Spike/Spike Duplicate

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method: 02/09/15 15-02-0661 EPA 3545 EPA 8270C

Project: Newland Sierra Page 6 of 8

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepare	ed Date Ana	lyzed	MS/MSD Ba	tch Number
SP-2	Sample		Solid	GC	/MS SS	02/13/15	02/13/15	23:17	150213S02	
SP-2	Matrix Spike		Solid	GC	/MS SS	02/13/15	02/13/15	22:19	150213S02	
SP-2	Matrix Spike	Duplicate	Solid	GC	/MS SS	02/13/15	02/13/15	22:39	150213S02	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Acenaphthene	ND	10.00	6.643	66	7.326	73	34-148	10	0-20	
Acenaphthylene	ND	10.00	6.660	67	7.350	73	53-120	10	0-20	
Butyl Benzyl Phthalate	ND	10.00	6.476	65	7.523	75	15-189	15	0-20	
4-Chloro-3-Methylphenol	ND	10.00	5.877	59	6.163	62	32-120	5	0-20	
2-Chlorophenol	ND	10.00	5.954	60	6.465	65	53-120	8	0-20	
1,4-Dichlorobenzene	ND	10.00	5.893	59	6.565	66	43-120	11	0-26	
Dimethyl Phthalate	ND	10.00	6.347	63	7.119	71	44-122	11	0-20	
2,4-Dinitrotoluene	ND	10.00	7.062	71	7.862	79	28-120	11	0-20	
Fluorene	ND	10.00	6.775	68	7.402	74	12-186	9	0-20	
N-Nitroso-di-n-propylamine	ND	10.00	5.156	52	5.227	52	38-140	1	0-20	
Naphthalene	ND	10.00	5.894	59	6.440	64	20-140	9	0-20	
4-Nitrophenol	ND	10.00	5.793	58	5.754	58	14-128	1	0-59	
Pentachlorophenol	ND	10.00	6.561	66	7.287	73	10-124	10	0-20	
Phenol	ND	10.00	5.433	54	5.720	57	22-124	5	0-20	
Pyrene	ND	10.00	7.778	78	9.985	100	31-169	25	0-20	4
1,2,4-Trichlorobenzene	ND	10.00	6.391	64	7.220	72	56-120	12	0-20	

Project: Newland Sierra

Quality Control - Spike/Spike Duplicate

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation:

15-02-0661 EPA 3545

02/09/15

Method:

EPA 8270C SIM PAHs

Page 7 of 8

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepare	d Date Ana	lyzed	MS/MSD Ba	tch Number
South Bottom	Sample		Solid	GC	MS EEE	02/18/15	02/18/15	20:47	150218S03	
South Bottom	Matrix Spike		Solid	GC	MS EEE	02/18/15	02/18/15	20:06	150218 S 03	
South Bottom	Matrix Spike	Duplicate	Solid	GC	MS EEE	02/18/15	02/18/15	20:26	150218S03	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Naphthalene	ND	0.2000	0.2849	142	0.2527	126	20-150	12	0-33	
2-Methylnaphthalene	ND	0.2000	0.2432	122	0.2117	106	29-137	14	0-31	
1-Methylnaphthalene	ND	0.2000	0.2833	142	0.2390	120	34-136	17	0-29	3
Acenaphthylene	ND	0.2000	0.1936	97	0.1810	90	29-131	7	0-32	
Acenaphthene	ND	0.2000	0.2004	100	0.2033	102	29-137	1	0-28	
Fluorene	ND	0.2000	0.1926	96	0.1771	89	36-132	8	0-27	
Phenanthrene	ND	0.2000	0.2060	103	0.1858	93	20-144	10	0-27	
Anthracene	ND	0.2000	0.1487	74	0.1139	57	26-134	27	0-27	
Fluoranthene	ND	0.2000	0.1693	85	0.1699	85	20-151	0	0-26	
Pyrene	0.1473	0.2000	0.3343	94	0.3119	82	20-150	7	0-32	
Benzo (a) Anthracene	ND	0.2000	0.1828	91	0.1759	88	24-150	4	0-24	
Chrysene	ND	0.2000	0.1884	94	0.1895	95	25-145	1	0-28	
Benzo (k) Fluoranthene	ND	0.2000	0.1672	84	0.1442	72	28-148	15	0-26	
Benzo (b) Fluoranthene	ND	0.2000	0.1920	96	0.1619	81	21-153	17	0-26	
Benzo (a) Pyrene	ND	0.2000	0.2057	103	0.1545	77	29-149	28	0-22	4
Indeno (1,2,3-c,d) Pyrene	ND	0.2000	0.1752	88	0.1657	83	20-154	6	0-25	
Dibenz (a,h) Anthracene	ND	0.2000	0.1829	91	0.1706	85	20-132	7	0-26	
Benzo (g,h,i) Perylene	ND	0.2000	0.2011	101	0.1865	93	20-148	8	0-27	

Quality Control - Spike/Spike Duplicate

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation:

15-02-0661 EPA 5030C

02/09/15

Method:

EPA 8260B

Project: Newland Sierra

Page 8 of 8

Quality Control Sample ID	Туре		Matrix	Ins	trument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
15-02-0714-8	Sample		Solid	GC	/MS Q	02/10/15	02/11/15	12:25	150211S001	
15-02-0714-8	Matrix Spike		Solid	GC	/MS Q	02/10/15	02/11/15	12:52	150211S001	
15-02-0714-8	Matrix Spike	Duplicate	Solid	GC	/MS Q	02/10/15	02/11/15	13:18	150211S001	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Benzene	ND	50.00	40.47	81	41.24	82	61-127	2	0-20	
Carbon Tetrachloride	ND	50.00	38.66	77	40.43	81	51-135	4	0-29	
Chlorobenzene	ND	50.00	34.49	69	35.30	71	57-123	2	0-20	
1,2-Dibromoethane	ND	50.00	42.70	85	43.91	88	64-124	3	0-20	
1,2-Dichlorobenzene	ND	50.00	24.71	49	24.37	49	35-131	1	0-25	
1,2-Dichloroethane	ND	50.00	45.78	92	46.22	92	80-120	1	0-20	
1,1-Dichloroethene	ND	50.00	43.57	87	45.36	91	47-143	4	0-25	
Ethylbenzene	ND	50.00	31.18	62	30.39	61	57-129	3	0-22	
Toluene	ND	50.00	35.88	72	36.38	73	63-123	1	0-20	
Trichloroethene	ND	50.00	37.24	74	37.30	75	44-158	0	0-20	
Vinyl Chloride	ND	50.00	41.55	83	41.60	83	49-139	0	0-47	
p/m-Xylene	ND	100.0	62.33	62	56.46	56	70-130	10	0-30	3
o-Xylene	ND	50.00	31.86	64	30.78	62	70-130	3	0-30	3
Methyl-t-Butyl Ether (MTBE)	ND	50.00	46.38	93	49.10	98	57-123	6	0-21	

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method:

15-02-0661 EPA 3550B EPA 8015B (M)

02/09/15

Project: Newland Sierra

Page 1 of 8

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	d Date Analyzed	LCS Batch Number
099-15-490-1426	LCS	Solid	GC 45	02/10/15	02/11/15 14:40	150210B16
<u>Parameter</u>		Spike Added	Conc. Recover	red LCS %F	Rec. %Rec	c. CL Qualifiers
TPH as Diesel		400.0	439.1	110	75-12	3

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method:

15-02-0661 EPA 3050B EPA 6010B

02/09/15

Project: Newland Sierra

Page 2 of 8

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepa	red Date Analyz	ed LCS Batch N	lumber
097-01-002-20394	LCS	Solid	ICP 7300	02/12/15	02/16/15 16	:53 150212L04	
<u>Parameter</u>		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Antimony		25.00	25.35	101	80-120	73-127	
Arsenic		25.00	25.58	102	80-120	73-127	
Barium		25.00	24.14	97	80-120	73-127	
Beryllium		25.00	24.71	99	80-120	73-127	
Cadmium		25.00	26.71	107	80-120	73-127	
Chromium		25.00	26.21	105	80-120	73-127	
Cobalt		25.00	26.88	108	80-120	73-127	
Copper		25.00	26.24	105	80-120	73-127	
Lead		25.00	26.32	105	80-120	73-127	
Molybdenum		25.00	25.78	103	80-120	73-127	
Nickel		25.00	26.79	107	80-120	73-127	
Selenium		25.00	25.36	101	80-120	73-127	
Silver		12.50	11.58	93	80-120	73-127	
Thallium		25.00	27.11	108	80-120	73-127	
Vanadium		25.00	25.57	102	80-120	73-127	
Zinc		25.00	26.67	107	80-120	73-127	

Total number of LCS compounds: 16
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method:

15-02-0661 EPA 7471A Total EPA 7471A

02/09/15

Project: Newland Sierra

Page 3 of 8

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-16-272-982	LCS	Solid	Mercury 05	02/16/15	02/16/15 17:02	150216L04
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
Mercury		0.8350	0.9616	115	85-12°	1

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation:

15-02-0661 EPA 3545

02/09/15

Method:

EPA 8082

Project: Newland Sierra

Page 4 of 8

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-12-535-3061	LCS	Solid	GC 58	02/13/15	02/13/15 16:36	150213L05
<u>Parameter</u>		Spike Added	Conc. Recover	red LCS %R	ec. %Rec.	. CL Qualifiers
Aroclor-1016		100.0	91.72	92	50-135	5
Aroclor-1260		100.0	91.71	92	50-135	5

LEIGHTON AND ASSOCIATES, INC.

3934 Murphy Canyon Road, Suite B205

San Diego, CA 92123-4425

Work Order:

Preparation:

Method:

EPA 3545 EPA 8082

02/09/15

15-02-0661

Project: Newland Sierra Page 5 of 8

Quality Control Sample ID	Туре	Matrix	Instrument D	Date Prepared	Date Analyzed	LCS Batch Number
099-12-535-3067	LCS	Solid	GC 58 0	2/18/15	02/18/15 12:17	150218L01
Parameter		Spike Added	Conc. Recovered	d LCS %Re	ec. %Rec	. CL Qualifiers
Aroclor-1016		100.0	83.35	83	50-13	5
Aroclor-1260		100.0	85.28	85	50-13	5

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method:

15-02-0661 EPA 3545 EPA 8270C

02/09/15

Project: Newland Sierra Page 6 of 8

Quality Control Sample ID	Туре	Matrix	Instrumer	nt Date Prep	pared Date Analy	zed LCS Batch	n Number
099-12-549-3202	LCS	Solid	GC/MS S	S 02/13/15	02/13/15 2	2:00 150213L0	2
Parameter		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Acenaphthene		10.00	7.901	79	51-123	39-135	
Acenaphthylene		10.00	7.809	78	52-120	41-131	
Butyl Benzyl Phthalate		10.00	8.069	81	43-139	27-155	
4-Chloro-3-Methylphenol		10.00	7.312	73	55-121	44-132	
2-Chlorophenol		10.00	7.463	75	58-124	47-135	
1,4-Dichlorobenzene		10.00	6.887	69	42-132	27-147	
Dimethyl Phthalate		10.00	7.864	79	51-123	39-135	
2,4-Dinitrotoluene		10.00	9.303	93	51-129	38-142	
Fluorene		10.00	8.046	80	54-126	42-138	
N-Nitroso-di-n-propylamine		10.00	6.645	66	40-136	24-152	
Naphthalene		10.00	6.780	68	32-146	13-165	
4-Nitrophenol		10.00	7.999	80	24-126	7-143	
Pentachlorophenol		10.00	7.030	70	23-131	5-149	
Phenol		10.00	6.927	69	40-130	25-145	
Pyrene		10.00	7.227	72	47-143	31-159	
1,2,4-Trichlorobenzene		10.00	7.192	72	45-129	31-143	

Total number of LCS compounds: 16
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

Project: Newland Sierra

Quality Control - LCS

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation:

15-02-0661 EPA 3545

02/09/15

Method:

EPA 8270C SIM PAHs Page 7 of 8

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-06-010-2325	LCS	Solid	GC/MS EEE	02/18/15	02/18/15 18:26	150218L03
Parameter	<u>S</u> pi	ke Added Cond	. Recovered LCS	8 %Rec.	ec. CL ME	CL Qualifiers
Naphthalene	0.2	000 0.197	77 99	51- ⁻	129 38	-142
2-Methylnaphthalene	0.2	000 0.217	72 109	50-	127 37	-140
1-Methylnaphthalene	0.2	000 0.188	31 94	54-	132 41	-145
Acenaphthylene	0.2	000 0.22	53 113	50-	123 38	-135
Acenaphthene	0.2	000 0.236	61 118	53-	125 41	-137
Fluorene	0.2	000 0.233	36 117	55-	127 43	-139
Phenanthrene	0.2	000 0.222	29 111	50-	122 38	-134
Anthracene	0.2	000 0.200	68 103	50-	132 36	-146
Fluoranthene	0.2	000 0.21	13 106	55-	127 43	-139
Pyrene	0.2	000 0.21	12 106	50-	134 36	-148
Benzo (a) Anthracene	0.2	000 0.202	29 101	50-	133 36	-147
Chrysene	0.2	000 0.218	35 109	51- ⁻	129 38	-142
Benzo (k) Fluoranthene	0.2	000 0.212	29 106	49-	150 32	-167
Benzo (b) Fluoranthene	0.2	000 0.200	03 100	50-	142 35	-157
Benzo (a) Pyrene	0.2	000 0.208	33 104	50-	134 36	-148
Indeno (1,2,3-c,d) Pyrene	0.2	000 0.208	33 104	50-	148 34	-164
Dibenz (a,h) Anthracene	0.2	000 0.209	95 105	50-	133 36	-147
Benzo (g,h,i) Perylene	0.2	000 0.213	35 107	50-	130 37	-143

Total number of LCS compounds: 18

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425

Date Received: Work Order: Preparation: Method:

15-02-0661 EPA 5030C **EPA 8260B**

02/09/15

Project: Newland Sierra

Page 8 of 8

Quality Control Sample ID	Type	Matrix	Instrumen	t Date Prep	ared Date Anal	yzed LCS Batcl	h Number
099-12-796-9377	LCS	Solid	GC/MS Q	02/11/15	02/11/15	10:35 150211L0	002
<u>Parameter</u>		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	<u>Qualifiers</u>
Benzene		50.00	44.81	90	78-120	71-127	
Carbon Tetrachloride		50.00	51.39	103	49-139	34-154	
Chlorobenzene		50.00	47.15	94	79-120	72-127	
1,2-Dibromoethane		50.00	47.18	94	80-120	73-127	
1,2-Dichlorobenzene		50.00	45.26	91	75-120	68-128	
1,2-Dichloroethane		50.00	46.89	94	80-120	73-127	
1,1-Dichloroethene		50.00	46.47	93	74-122	66-130	
Ethylbenzene		50.00	45.64	91	76-120	69-127	
Toluene		50.00	45.49	91	77-120	70-127	
Trichloroethene		50.00	44.79	90	80-120	73-127	
Vinyl Chloride		50.00	41.15	82	68-122	59-131	
p/m-Xylene		100.0	96.59	97	75-125	67-133	
o-Xylene		50.00	48.40	97	75-125	67-133	
Methyl-t-Butyl Ether (MTBE)		50.00	44.58	89	77-120	70-127	

Total number of LCS compounds: 14 Total number of ME compounds: 0 Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

RPD: Relative Percent Difference. CL: Control Limits

Sample Analysis Summary Report

Work Order: 15-02-0661	/ork Order: 15-02-0661							
Method	Extraction	Chemist ID	Instrument	Analytical Location				
CA Fish and Game	N/A	691	TANK	1				
EPA 6010B	EPA 3050B	935	ICP 7300	1				
EPA 7471A	EPA 7471A Total	915	Mercury 05	1				
EPA 8015B (M)	EPA 3550B	421	GC 45	1				
EPA 8015B (M)	EPA 3550B	682	GC 45	1				
EPA 8082	EPA 3545	944	GC 58	1				
EPA 8260B	EPA 5030C	905	GC/MS Q	2				
EPA 8270C	EPA 3545	923	GC/MS SS	1				
EPA 8270C SIM PAHs	EPA 3545	966	GC/MS EEE	1				

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Glossary of Terms and Qualifiers

Work Order: 15-02-0661 Page 1 of 1

<u>Qualifiers</u>	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike

- to not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
- SG The sample extract was subjected to Silica Gel treatment prior to analysis.
- Χ % Recovery and/or RPD out-of-range.
- Ζ Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

to Contents

Richard Villafania

From: Bryan Voss [bvoss@leightongroup.com]
Sent: Wednesday, February 18, 2015 7:42 AM

To: Richard Villafania
Cc: Richard Villafania
Kevin Bryan; Kris Lutton

Subject: FW: Newland Sierra / 10618.005 / ECI 15-02-0661 Report

Attachments: 15-02-0661.pdf; 15020661.xls

Richard,

Please run PCBs (8082) and SIM PAHs (8270S SIM) on sample "South Bottom" on a 72 hr. TAT please.

If you have any question please let me know.

Bryan Voss

From: Richard Villafania [mailto:RichardVillafania@eurofinsUS.com]

Sent: Tuesday, February 17, 2015 4:18 PM

To: Bryan Voss

Subject: Newland Sierra / 10618.005 / ECI 15-02-0661 Report

Regards.

Richard Villafania Project Manager

Eurofins Calscience, Inc.

7440 Lincoln Way GARDEN GROVE, CA 92841 USA

Phone: +1 714 895 5494 Website: www.calscience.com

The information transmitted is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon this information by persons or entities other than the intended recipient is prohibited. If you receive this in error, please contact the sender and delete the material from any computer. Email transmission cannot be guaranteed to be secure or error free as information could be intercepted, corrupted, lost, destroyed, arrive late or incomplete. The sender therefore is in no way liable for any errors or omissions in the content of this message which may arrise as a result of email transmission. If verification is required, please request a hard copy. We take reasonable precautions to ensure our emails are free from viruses. You need, however, to verify that this email and any attachments are free of viruses, as we can take no responsibility for any computer viruses, which might be transferred by way of this email. We may monitor all email communication through our networks. If you contact us by email, we may store your name and address to facilitate communication.

Notify us **here** to report this email as spam.

to Contents

Richard Villafania

From: Bryan Voss [bvoss@leightongroup.com]
Sent: Monday, February 23, 2015 12:35 PM

To: Richard Villafania
Cc: Revin Bryan; Kris Lutton

Subject: RE: Newland Sierra / 10618.005 / ECI 15-02-0661 Supplement Report

Richard,

In review the current analytical test results, we need to order the 96-hour Acute Bioassay for sample SP-4.

If you have any question please let me know.

Bryan Voss

From: Richard Villafania [mailto:RichardVillafania@eurofinsUS.com]

Sent: Friday, February 20, 2015 1:30 PM

To: Bryan Voss

Cc: Kevin Bryan; Kris Lutton

Subject: Newland Sierra / 10618.005 / ECI 15-02-0661 Supplement Report

Bryan,

Supplement report attached regarding the additional analyses.

Regards.

Richard Villafania Project Manager

Eurofins Calscience, Inc.

7440 Lincoln Way GARDEN GROVE, CA 92841 USA

Phone: +1 714 895 5494 Website: www.calscience.com

Richard Villafania

Bryan Voss [bvoss@leightongroup.com] Friday, March 13, 2015 9:17 AM From:

Sent:

Richard Villafania To:

Subject: RE: Newland Sierra / ECI 15-02-0661 revised report

Please run 96hr Bioassay on SP-3 the highest concentration of the stockpile material.

Bryan Voss

From: Richard Villafania [mailto:RichardVillafania@eurofinsUS.com]

Sent: Friday, March 13, 2015 9:14 AM

To: Bryan Voss

Subject: RE: Newland Sierra / ECI 15-02-0661 revised report

Bryan,

Revised report attached, please confirm which sample you require the 96hr Bioassay.

Regards.

Richard Villafania **Project Manager**

Eurofins Calscience, Inc.

7440 Lincoln Way GARDEN GROVE, CA 92841 USA

Phone: +1 714 895 5494 Website: www.calscience.com

]

Calscience

WORK ORDER #: 15-02-0 6 6 7

SAMPLE RECEIPT FORM

Cooler of

CLIENT: LEIGHTON DATE: _	02/09	<u>/ 15</u>
TEMPERATURE: Thermometer ID: SC4 (Criteria: 0.0 °C – 6.0 °C, not frozen except se	diment/tissu	ie)
Temperature 1.6 °C + 0.2 °C (CF) = 1.8 °C Blank	☐ Samp	
☐ Sample(s) outside temperature criteria (PM/APM contacted by:)	•	
☐ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampli	ina	
☐ Received at ambient temperature, placed on ice for transport by Courier.		
	Checked b	671
Ambient Temperature: ☐ Air ☐ Filter	Checked r	/y·
CUSTODY SEALS INTACT:	7 - XV	10 mg/mm 1
□ Cooler □ □ No (Not Intact) ☑ Not Present □ N/A	Checked b	y: <u>67</u>]
□ Sample □ □ No (Not Intact) ☑ Not Present	Checked b	
SAMPLE CONDITION: Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples		
COC document(s) received complete		
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.		
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.		
Sampler's name indicated on COC		
Sample container label(s) consistent with COC		
Sample container(s) intact and good condition		
Proper containers and sufficient volume for analyses requested		
Analyses received within holding time		
Aqueous samples received within 15-minute holding time		
□ pH □ Residual Chlorine □ Dissolved Sulfides □ Dissolved Oxygen □		ď
Proper preservation noted on COC or sample container		Ø
☐ Unpreserved vials received for Volatiles analysis		
Volatile analysis container(s) free of headspace □		d
Tedlar bag(s) free of condensation □ CONTAINER TYPE:		
Solid: ☐4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCores® □Terra	Cores [®] □_	
Aqueous: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp □1AGB □	∃1AGB na₂ l	□1AGB s
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs □1PB [□1PB na □]500PB
□250PB □250PBn □125PB □125PB znna □100PJ □100PJ na ₂ □ □		
Air: Tedlar® Canister Other: Trip Blank Lot#: Labeled/ Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Envelope R	/Checked by Reviewed by	

Preservative: h: HCL n: HNO3 na2:Na2S2O3 na: NaOH p: H3PO4 s: H2SO4 u: Ultra-pure znna: ZnAc2+NaOH f: Filtered

Scanned by:

APPENDIX C PHOTOGRAPHS

Client Name:

Newland Sierra, LLC

Site Location:

APN 178-101-16, San Marcos, CA

Project No. 10618.006

Photo No. 1

View Direction of Photo:

Northwest

Description:View of Shooting Area SA4.

Photo No. 2

View Direction of Photo:

Northeast

Description:

View of shooting Area SA4, note spent shotgun shells and target debris.

Client Name:

Newland Sierra, LLC

Site Location:

APN 178-101-16, San Marcos, CA

Project No. 10618.006

Photo No. 3

View Direction of Photo:
North

Description:

View of the Shooting Area SA1. Note: Spent shotgun shells.

Photo No. 4

View Direction of Photo: North

Description:

View of the Shooting Area SA3. Note: Showing ammunition boxes and spent rounds.

Client Name:

Newland Sierra, LLC

Site Location:

APN 178-101-16, San Marcos, CA

Project No. 10618.006

Photo No. 5

View Direction of Photo:

East

Description:

View of target area in shooting area SA2. Note location of hand auger, this is the sample location for Shooting area SA2.

Photo No. 6

View Direction of Photo:

North

Description:

Typical shooting debris noted in shooting area SA3.

Client Name:

Newland Sierra, LLC

Site Location:

APN 178-101-16, San Marcos, CA

Project No. 10618.006

Photo No. 7

View Direction of Photo:
North

Description:

Photo showing assumed agricultural sample location A3. Note: Title 22 Metal were also screened in this area as a result of target debris.

Photo No. 8

View Direction of Photo:

West

Description:

Typical view of assumed agricultural area that was screened for pesticides.

Client Name:

Newland Sierra, LLC

Site Location:

APN 178-101-16, San Marcos, CA

Project No. 10618.006

Photo No. 9

View Direction of Photo:

West

Description:

Photo of SA4 agricultural screening area sample location. Note: typical native vegetation.

Photo No. 10

View Direction of Photo:

South

Description:

Showing sample area A11. Note native grasses and shrubs.

APPENDIX D

MAY AND JUNE 2015 FOCUSED SOIL AND SOIL VAPOR SURVEY – LABORATORY TEST RESULTS AND CHAIN-OF-CUSTODY DOCUMENTS

Calscience

WORK ORDER NUMBER: 15-05-1860

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: LEIGHTON AND ASSOCIATES, INC.

Client Project Name: Newland Sierra

Attention: Bryan Voss

3934 Murphy Canyon Road, Suite B205

San Diego, CA 92123-4425

Rund Udlas

Approved for release on 06/01/2015 by:

Richard Villafania Project Manager

ResultLink >

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: Newland Sierra Work Order Number: 15-05-1860

1	Work Order Narrative	3
2	Client Sample Data	24 27
3	Quality Control Sample Data3.1 MS/MSD3.2 LCS/LCSD	39 39 42
4	Sample Analysis Summary	45
5	Glossary of Terms and Qualifiers	46
6	Chain-of-Custody/Sample Receipt Form	47

Work Order Narrative

Work Order: 15-05-1860 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 05/22/15. They were assigned to Work Order 15-05-1860.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Project: Newland Sierra

Analytical Report

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method: 05/22/15 15-05-1860 EPA 3050B EPA 6010B

Units: mg/kg
Page 1 of 20

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SA4-1@6"	15-05-1860-1-A	05/21/15 09:30	Solid	ICP 7300	05/27/15	05/28/15 19:51	150527L05
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		4.63	(0.739	0.985		
Arsenic		3.28	(0.739	0.985		
Barium		30.1	(0.493	0.985		
Beryllium		0.365	(0.246	0.985		
Cadmium		ND	(0.493	0.985		
Chromium		0.347	(0.246	0.985		
Cobalt		1.05	(0.246	0.985		
Copper		10.6	(0.493	0.985		
Lead		983	(0.493	0.985		
Molybdenum		ND	(0.246	0.985		
Nickel		0.274	(0.246	0.985		
Selenium		ND	(0.739	0.985		
Silver		ND	(0.246	0.985		
Thallium		ND	(0.739	0.985		
Vanadium		1.83	(0.246	0.985		
Zinc		19.5	(0.985	0.985		

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method:

15-05-1860 EPA 3050B EPA 6010B

05/22/15

Units:

mg/kg Page 2 of 20

Project: Newland Sierra

Fime OC Betch ID

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SA4-1@18"	15-05-1860-2-A	05/21/15 09:35	Solid	ICP 7300	05/27/15	05/28/15 19:55	150527L05
<u>Parameter</u>		Result	E	<u> </u>	<u>DF</u>	Qua	alifiers
Antimony		ND	C).725	0.966		
Arsenic		1.48	C).725	0.966		
Barium		19.1	C	0.483	0.966		
Beryllium		0.325	C).242	0.966		
Cadmium		ND	C	0.483	0.966		
Chromium		0.242	C).242	0.966		
Cobalt		0.963	C).242	0.966		
Copper		ND	C	0.483	0.966		
Lead		39.2	C	0.483	0.966		
Molybdenum		ND	C).242	0.966		
Nickel		0.269	C).242	0.966		
Selenium		ND	C).725	0.966		
Silver		ND	C).242	0.966		
Thallium		ND	C).725	0.966		
Vanadium		1.89	C).242	0.966		
Zinc		10.7	C).966	0.966		

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method:

0.735

0.245

0.980

Units:

15-05-1860 EPA 3050B EPA 6010B

05/22/15

mg/kg Page 3 of 20

0.980

0.980

0.980

Project: Newland Sierra

Thallium

Zinc

Vanadium

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SA4-2@6"	15-05-1860-3-A	05/21/15 09:35	Solid	ICP 7300	05/27/15	05/28/15 19:56	150527L05
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		0.866		0.735	0.980		
Arsenic		1.43		0.735	0.980		
Barium		51.1		0.490	0.980		
Beryllium		0.340		0.245	0.980		
Cadmium		ND		0.490	0.980		
Chromium		1.27		0.245	0.980		
Cobalt		2.29		0.245	0.980		
Copper		ND		0.490	0.980		
Lead		34.0		0.490	0.980		
Molybdenum		ND		0.245	0.980		
Nickel		0.877		0.245	0.980		
Selenium		0.841		0.735	0.980		
Silver		ND		0.245	0.980		

ND

5.84

17.6

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received:
Work Order:
Preparation:
Method:

15-05-1860 EPA 3050B EPA 6010B

05/22/15

Units:

mg/kg

Project: Newland Sierra

Page 4 of 20

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SA4-2@18"	15-05-1860-4-A	05/21/15 09:45	Solid	ICP 7300	05/27/15	05/28/15 19:57	150527L05
<u>Parameter</u>		Result	E	<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Antimony		0.956	0).732	0.976		
Arsenic		1.18	0).732	0.976		
Barium		39.5	0).488	0.976		
Beryllium		ND	0).244	0.976		
Cadmium		ND	0).488	0.976		
Chromium		0.674	0).244	0.976		
Cobalt		1.78	0).244	0.976		
Copper		ND	0	0.488	0.976		
Lead		71.4	0	0.488	0.976		
Molybdenum		ND	0).244	0.976		
Nickel		1.08	0).244	0.976		
Selenium		ND	0).732	0.976		
Silver		ND	0).244	0.976		
Thallium		ND	0).732	0.976		
Vanadium		3.83	0).244	0.976		
Zinc		15.4	0).976	0.976		

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method:

15-05-1860 EPA 3050B EPA 6010B

05/22/15

Units:

mg/kg Page 5 of 20

Project: Newland Sierra

Fime OC Batch ID

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SA1-1@6"	15-05-1860-5-A	05/21/15 10:30	Solid	ICP 7300	05/27/15	05/28/15 19:59	150527L05
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	().743	0.990		
Arsenic		2.10	().743	0.990		
Barium		24.4	().495	0.990		
Beryllium		ND	().248	0.990		
Cadmium		ND	().495	0.990		
Chromium		1.48	().248	0.990		
Cobalt		1.48	().248	0.990		
Copper		8.00	().495	0.990		
Lead		9.87	().495	0.990		
Molybdenum		0.698	().248	0.990		
Nickel		0.759	().248	0.990		
Selenium		ND	().743	0.990		
Silver		ND	().248	0.990		
Thallium		ND	().743	0.990		
Vanadium		6.64	().248	0.990		
Zinc		13.1	().990	0.990		

Project: Newland Sierra

Analytical Report

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method: 05/22/15 15-05-1860 EPA 3050B EPA 6010B

Units: mg/kg
Page 6 of 20

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SA1-1@18"	15-05-1860-6-A	05/21/15 10:35	Solid	ICP 7300	05/27/15	05/28/15 20:00	150527L05
<u>Parameter</u>		<u>Result</u>		<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		1.11	(0.735	0.980		
Arsenic		3.00	(0.735	0.980		
Barium		40.0	(0.490	0.980		
Beryllium		0.352	(0.245	0.980		
Cadmium		ND	(0.490	0.980		
Chromium		4.30	(0.245	0.980		
Cobalt		2.50	(0.245	0.980		
Copper		7.80	(0.490	0.980		
Lead		29.4	(0.490	0.980		
Molybdenum		0.699	(0.245	0.980		
Nickel		2.33	(0.245	0.980		
Selenium		0.903	(0.735	0.980		
Silver		ND	(0.245	0.980		
Thallium		ND	(0.735	0.980		
Vanadium		11.8	(0.245	0.980		
Zinc		14.9	(0.980	0.980		

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method: 05/22/15 15-05-1860 EPA 3050B EPA 6010B

Units:

mg/kg Page 7 of 20

Project: Newland Sierra

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SA3-1@6"	15-05-1860-7-A	05/21/15 11:11	Solid	ICP 7300	05/27/15	05/28/15 20:01	150527L05
Parameter		Result	<u>F</u>	<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		1.23	C).746	0.995		
Arsenic		3.35	C).746	0.995		
Barium		116	C).498	0.995		
Beryllium		0.406	C	0.249	0.995		
Cadmium		ND	C).498	0.995		
Chromium		6.73	C).249	0.995		
Cobalt		5.15	C).249	0.995		
Copper		1.48	C).498	0.995		
Lead		13.8	C).498	0.995		
Molybdenum		0.286	C	0.249	0.995		
Nickel		3.99	C).249	0.995		
Selenium		1.76	C).746	0.995		
Silver		ND	C	0.249	0.995		
Thallium		ND	C).746	0.995		
Vanadium		23.0	C).249	0.995		
Zinc		22.1	C).995	0.995		

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method: 05/22/15 15-05-1860 EPA 3050B EPA 6010B

Units:

mg/kg Page 8 of 20

Project: Newland Sierra

ima OC Batab II

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SA3-1@18"	15-05-1860-8-A	05/21/15 11:14	Solid	ICP 7300	05/27/15	05/28/15 20:02	150527L05
Parameter		<u>Result</u>	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	().732	0.976		
Arsenic		2.54	().732	0.976		
Barium		72.8	(0.488	0.976		
Beryllium		0.390	().244	0.976		
Cadmium		ND	(0.488	0.976		
Chromium		5.83	().244	0.976		
Cobalt		4.88	().244	0.976		
Copper		1.18	(0.488	0.976		
Lead		7.88	(0.488	0.976		
Molybdenum		0.411	().244	0.976		
Nickel		3.52	().244	0.976		
Selenium		ND	().732	0.976		
Silver		ND	().244	0.976		
Thallium		ND	().732	0.976		
Vanadium		21.6	().244	0.976		
Zinc		20.5	().976	0.976		

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method: 05/22/15 15-05-1860 EPA 3050B EPA 6010B

Units:

mg/kg Page 9 of 20

Project: Newland Sierra

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SA3-2@6"	15-05-1860-10-A	05/21/15 11:10	Solid	ICP 7300	05/27/15	05/28/15 20:08	150527L05
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	().750	1.00		
Arsenic		1.95	().750	1.00		
Barium		143	(0.500	1.00		
Beryllium		0.361	(0.250	1.00		
Cadmium		ND	(0.500	1.00		
Chromium		5.02	(0.250	1.00		
Cobalt		4.64	(0.250	1.00		
Copper		1.93	(0.500	1.00		
Lead		5.31	(0.500	1.00		
Molybdenum		ND	(0.250	1.00		
Nickel		3.37	(0.250	1.00		
Selenium		ND	().750	1.00		
Silver		ND	(0.250	1.00		
Thallium		ND	().750	1.00		
Vanadium		16.8	().250	1.00		
Zinc		21.7	1	1.00	1.00		

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received:
Work Order:
Preparation:
Method:

15-05-1860 EPA 3050B EPA 6010B

05/22/15

Units:

mg/kg Page 10 of 20

Project: Newland Sierra

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SA3-2@18"	15-05-1860-11-A	05/21/15 11:15	Solid	ICP 7300	05/27/15	05/28/15 20:09	150527L05
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		0.901	(0.739	0.985		
Arsenic		3.68	(0.739	0.985		
Barium		124	(0.493	0.985		
Beryllium		0.530	(0.246	0.985		
Cadmium		ND	(0.493	0.985		
Chromium		7.97	(0.246	0.985		
Cobalt		6.24	(0.246	0.985		
Copper		2.85	(0.493	0.985		
Lead		6.93	(0.493	0.985		
Molybdenum		0.406	(0.246	0.985		
Nickel		5.17	(0.246	0.985		
Selenium		ND	().739	0.985		
Silver		ND	(0.246	0.985		
Thallium		ND	(0.739	0.985		
Vanadium		26.9	(0.246	0.985		
Zinc		25.5	(0.985	0.985		

Project: Newland Sierra

Analytical Report

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425

Date Received: Work Order: Preparation: Method:

15-05-1860 **EPA 3050B EPA 6010B**

05/22/15

Units:

mg/kg Page 11 of 20

Lab Sample Number Date Prepared Date/Time Analyzed Client Sample Number QC Batch ID Date/Time Matrix Instrument Collected 05/28/15 20:10 05/21/15 11:23 05/27/15 SA3-3@6" 15-05-1860-13-A **ICP 7300** 150527L05 Solid **Parameter** Result <u>RL</u> <u>DF</u> Qualifiers

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method:

15-05-1860 EPA 3050B EPA 6010B

05/22/15

mg/kg

Units:

Page 12 of 20

Project: Newland Sierra

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SA3-3@18"	15-05-1860-14-A	05/21/15 11:27	Solid	ICP 7300	05/27/15	05/28/15 20:11	150527L05
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		0.961	(0.746	0.995		
Arsenic		1.81	(0.746	0.995		
Barium		37.0	(0.498	0.995		
Beryllium		0.289	(0.249	0.995		
Cadmium		ND	(0.498	0.995		
Chromium		2.37	(0.249	0.995		
Cobalt		3.95	(0.249	0.995		
Copper		ND	(0.498	0.995		
Lead		7.88	(0.498	0.995		
Molybdenum		ND	(0.249	0.995		
Nickel		1.27	(0.249	0.995		
Selenium		ND	(0.746	0.995		
Silver		ND	(0.249	0.995		
Thallium		ND	(0.746	0.995		
Vanadium		18.8	(0.249	0.995		
Zinc		21.4	(0.995	0.995		

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received:
Work Order:
Preparation:
Method:

1.03

1.03

05/22/15 15-05-1860 EPA 3050B EPA 6010B

mg/kg

Units:

Page 13 of 20

Project: Newland Sierra

Zinc

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SA2-1@6"	15-05-1860-15-A	05/21/15 12:04	Solid	ICP 7300	05/27/15	05/28/15 20:12	150527L05
Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		7.63	(0.773	1.03		
Arsenic		3.22	(0.773	1.03		
Barium		53.1	(0.515	1.03		
Beryllium		0.262	(0.258	1.03		
Cadmium		ND	(0.515	1.03		
Chromium		2.65	(0.258	1.03		
Cobalt		3.54	(0.258	1.03		
Copper		21.4	(0.515	1.03		
Lead		1740	(0.515	1.03		
Molybdenum		0.335	(0.258	1.03		
Nickel		1.69	(0.258	1.03		
Selenium		0.898	(0.773	1.03		
Silver		ND	(0.258	1.03		
Thallium		ND	(0.773	1.03		
Vanadium		18.7	(0.258	1.03		

82.6

Units:

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received:
Work Order:
Preparation:
Method:

EPA 3050B EPA 6010B mg/kg

15-05-1860

05/22/15

Project: Newland Sierra

Page 14 of 20

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SA2-1@18"	15-05-1860-16-A	05/21/15 12:08	Solid	ICP 7300	05/27/15	05/28/15 20:13	150527L05
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		1.14	(0.746	0.995		
Arsenic		1.83	(0.746	0.995		
Barium		39.9	(0.498	0.995		
Beryllium		ND	(0.249	0.995		
Cadmium		ND	(0.498	0.995		
Chromium		1.06	(0.249	0.995		
Cobalt		3.68	(0.249	0.995		
Copper		0.874	(0.498	0.995		
Lead		337	(0.498	0.995		
Molybdenum		ND	(0.249	0.995		
Nickel		0.731	(0.249	0.995		
Selenium		ND	(0.746	0.995		
Silver		ND	(0.249	0.995		
Thallium		ND	(0.746	0.995		
Vanadium		13.6	(0.249	0.995		
Zinc		22.7	(0.995	0.995		

Project: Newland Sierra

Analytical Report

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received:
Work Order:
Preparation:
Method:

15-05-1860 EPA 3050B EPA 6010B

05/22/15

mg/kg

Units:

Page 15 of 20

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SA2-2@6"	15-05-1860-18-A	05/21/15 12:18	Solid	ICP 7300	05/27/15	05/28/15 20:14	150527L05
Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		0.960	(0.739	0.985		
Arsenic		1.19	(0.739	0.985		
Barium		31.4	(0.493	0.985		
Beryllium		ND	(0.246	0.985		
Cadmium		ND	(0.493	0.985		
Chromium		1.95	(0.246	0.985		
Cobalt		2.33	(0.246	0.985		
Copper		9.49	(0.493	0.985		
Lead		77.8	(0.493	0.985		
Molybdenum		0.401	(0.246	0.985		
Nickel		5.22	(0.246	0.985		
Selenium		ND	(0.739	0.985		
Silver		ND	(0.246	0.985		
Thallium		ND	(0.739	0.985		
Vanadium		13.6	(0.246	0.985		
Zinc		20.1	(0.985	0.985		

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method:

Units:

15-05-1860 EPA 3050B EPA 6010B mg/kg

05/22/15

Project: Newland Sierra

Page 16 of 20

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SA2-2@18"	15-05-1860-19-A	05/21/15 12:20	Solid	ICP 7300	05/27/15	05/28/15 20:16	150527L05
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		1.58	().750	1.00		
Arsenic		2.30	().750	1.00		
Barium		40.7	(0.500	1.00		
Beryllium		ND	().250	1.00		
Cadmium		ND	(0.500	1.00		
Chromium		1.49	(0.250	1.00		
Cobalt		5.39	(0.250	1.00		
Copper		0.866	(0.500	1.00		
Lead		17.9	(0.500	1.00		
Molybdenum		1.24	(0.250	1.00		
Nickel		0.772	(0.250	1.00		
Selenium		0.976	().750	1.00		
Silver		ND	(0.250	1.00		
Thallium		ND	().750	1.00		
Vanadium		27.2	().250	1.00		
Zinc		30.8		.00	1.00		

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received:
Work Order:
Preparation:
Method:

0.980

0.980

15-05-1860 EPA 3050B EPA 6010B

05/22/15

Units:

mg/kg Page 17 of 20

Project: Newland Sierra

Zinc

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SA2-3@6"	15-05-1860-20-A	05/21/15 12:30	Solid	ICP 7300	05/27/15	05/28/15 20:17	150527L05
Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND		0.735	0.980		
Arsenic		1.20		0.735	0.980		
Barium		47.7		0.490	0.980		
Beryllium		ND		0.245	0.980		
Cadmium		ND		0.490	0.980		
Chromium		4.83		0.245	0.980		
Cobalt		3.64		0.245	0.980		
Copper		1.62		0.490	0.980		
Lead		52.5		0.490	0.980		
Molybdenum		0.268		0.245	0.980		
Nickel		3.32		0.245	0.980		
Selenium		0.941		0.735	0.980		
Silver		ND		0.245	0.980		
Thallium		ND		0.735	0.980		
Vanadium		14.9		0.245	0.980		

11.8

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received:
Work Order:
Preparation:
Method:

05/22/15 15-05-1860 EPA 3050B EPA 6010B

Units:

mg/kg

Project: Newland Sierra

Page 18 of 20

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SA2-3@18"	15-05-1860-21-A	05/21/15 12:34	Solid	ICP 7300	05/27/15	05/28/15 20:18	150527L05
Parameter	·	Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	(0.732	0.976		
Arsenic		2.30	(0.732	0.976		
Barium		48.8	(0.488	0.976		
Beryllium		0.308	().244	0.976		
Cadmium		ND	(0.488	0.976		
Chromium		4.69	().244	0.976		
Cobalt		7.40	(0.244	0.976		
Copper		ND	(0.488	0.976		
Lead		8.67	(0.488	0.976		
Molybdenum		0.346	().244	0.976		
Nickel		2.48	().244	0.976		
Selenium		ND	().732	0.976		
Silver		ND	().244	0.976		
Thallium		ND	(0.732	0.976		
Vanadium		20.0	().244	0.976		
Zinc		9.03	().976	0.976		

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received:
Work Order:
Preparation:
Method:

05/22/15 15-05-1860 EPA 3050B

Units:

EPA 6010B mg/kg

Project: Newland Sierra

Page 19 of 20

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
A3@6"	15-05-1860-29-A	05/21/15 13:50	Solid	ICP 7300	05/27/15	05/28/15 20:23	150527L05
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	(0.743	0.990		
Arsenic		0.870	(0.743	0.990		
Barium		73.6	(0.495	0.990		
Beryllium		ND	(0.248	0.990		
Cadmium		ND	(0.495	0.990		
Chromium		3.42	(0.248	0.990		
Cobalt		4.23	(0.248	0.990		
Copper		0.943	(0.495	0.990		
Lead		11.7	(0.495	0.990		
Molybdenum		0.300	(0.248	0.990		
Nickel		2.27	(0.248	0.990		
Selenium		ND	(0.743	0.990		
Silver		ND	(0.248	0.990		
Thallium		ND	(0.743	0.990		
Vanadium		15.5	().248	0.990		
Zinc		20.3	(0.990	0.990		

Project: Newland Sierra

Analytical Report

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received:
Work Order:
Preparation:
Method:

05/22/15 15-05-1860 EPA 3050B EPA 6010B

Units: mg/kg
Page 20 of 20

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-01-002-21083	N/A	Solid	ICP 7300	05/27/15	05/29/15 14:18	150527L05
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	().750	1.00		
Arsenic		ND	().750	1.00		
Barium		ND	().500	1.00		
Beryllium		ND	().250	1.00		
Cadmium		ND	().500	1.00		
Chromium		ND	().250	1.00		
Cobalt		ND	().250	1.00		
Copper		ND	().500	1.00		
Lead		ND	(0.500	1.00		
Molybdenum		ND	().250	1.00		
Nickel		ND	().250	1.00		
Selenium		ND	().750	1.00		
Silver		ND	(0.250	1.00		
Thallium		ND	().750	1.00		
Vanadium		ND	(0.250	1.00		
Zinc		ND	1	1.00	1.00		

 LEIGHTON AND ASSOCIATES, INC.
 Date Received:
 05/22/15

 3934 Murphy Canyon Road, Suite B205
 Work Order:
 15-05-1860

 San Diego, CA 92123-4425
 Preparation:
 EPA 7471A Total

 Method:
 EPA 7471A

 Units:
 mg/kg

 Project: Newland Sierra
 Page 1 of 3

Project: Newland Sierra						Pa	ige 1 of 3
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SA4-1@6"	15-05-1860-1-A	05/21/15 09:30	Solid	Mercury 05	05/29/15	05/29/15 21:21	150529L05
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0833	1.00		
SA4-1@18"	15-05-1860-2-A	05/21/15 09:35	Solid	Mercury 05	05/29/15	05/29/15 21:28	150529L05
<u>Parameter</u>		<u>Result</u>		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Mercury		ND		0.0833	1.00		
SA4-2@6"	15-05-1860-3-A	05/21/15 09:35	Solid	Mercury 05	05/29/15	05/29/15 21:30	150529L05
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0847	1.00		
SA4-2@18"	15-05-1860-4-A	05/21/15 09:45	Solid	Mercury 05	05/29/15	05/29/15 21:32	150529L05
<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	<u>alifiers</u>
Mercury		ND		0.0820	1.00		
SA1-1@6"	15-05-1860-5-A	05/21/15 10:30	Solid	Mercury 05	05/29/15	05/29/15 21:34	150529L05
<u>Parameter</u>	,	Result		<u>RL</u>	DF	Qua	alifiers
Mercury		ND		0.0806	1.00		
SA1-1@18"	15-05-1860-6-A	05/21/15 10:35	Solid	Mercury 05	05/29/15	05/29/15 21:37	150529L05
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0847	1.00		
SA3-1@6"							
	15-05-1860-7-A	05/21/15 11:11	Solid	Mercury 05	05/29/15	05/29/15 21:39	150529L05
<u>Parameter</u>	15-05-1860-7-A		Solid	Mercury 05	05/29/15 DF	21:39	150529L05
	15-05-1860-7-A	11:11	Solid			21:39	
Mercury	15-05-1860-7-A 15-05-1860-8-A	11:11 Result	Solid Solid	RL	DF	21:39	
Parameter Mercury SA3-1@18"		11:11 Result ND 05/21/15		RL 0.0833	<u>DF</u> 1.00	21:39 Qua 05/29/15 21:46	alifiers

LEIGHTON AND ASSOCIATES, INC.

3934 Murphy Canyon Road, Suite B205

San Diego, CA 92123-4425

Work Order:

Preparation:

Method:

Units:

Date Received:

05/22/15

Preparation:

EPA 7471A Total

Method:

EPA 7471A

mg/kg

Project: Newland Sierra Page 2 of 3

Froject. Newland Sierra						raye 2 0i 3	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SA3-2@6"	15-05-1860-10-A	05/21/15 11:10	Solid	Mercury 05	05/29/15	05/29/15 21:48	150529L05
<u>Parameter</u>	·	Result		<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>	
Mercury		ND		0.0820	1.00		
SA3-2@18"	15-05-1860-11-A	05/21/15 11:15	Solid	Mercury 05	05/29/15	05/29/15 21:50	150529L05
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0847	1.00		
SA3-3@6"	15-05-1860-13-A	05/21/15 11:23	Solid	Mercury 05	05/29/15	05/29/15 21:52	150529L05
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0847	1.00		
SA3-3@18"	15-05-1860-14-A	05/21/15 11:27	Solid	Mercury 05	05/29/15	05/29/15 21:54	150529L05
<u>Parameter</u>		Result		<u>RL</u> <u>DF</u>		Qua	alifiers
Mercury		ND		0.0820	1.00		
SA2-1@6"	15-05-1860-15-A	05/21/15 12:04	Solid	Mercury 05	05/29/15	05/29/15 21:57	150529L05
<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0820	1.00		
SA2-1@18"	15-05-1860-16-A	05/21/15 12:08	Solid	Mercury 05	05/29/15	05/29/15 21:59	150529L05
<u>Parameter</u>		Result	-	RL	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0833	1.00		
SA2-2@6"	15-05-1860-18-A	05/21/15 12:18	Solid	Mercury 05	05/29/15	05/29/15 22:01	150529L05
<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0833	1.00		
SA2-2@18"	15-05-1860-19-A	05/21/15 12:20	Solid	Mercury 05	05/29/15	05/29/15 22:03	150529L05
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0847	1.00		

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425

Date Received: Work Order: Preparation: Method:

Units:

EPA 7471A Total EPA 7471A

05/22/15

mg/kg

15-05-1860

Project: Newland Sierra

Method Blank

Parameter

Mercury

Page 3 of 3

05/29/15 21:12

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SA2-3@6"	15-05-1860-20-A	05/21/15 12:30	Solid	Mercury 05	05/29/15	05/29/15 22:05	150529L05
Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
Mercury		ND		0.0806	1.00		
SA2-3@18"	15-05-1860-21-A	05/21/15 12:34	Solid	Mercury 05	05/29/15	05/29/15 22:12	150529L05
Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
Mercury		ND		0.0820	1.00		
A3@6"	15-05-1860-29-A	05/21/15 13:50	Solid	Mercury 05	05/29/15	05/29/15 22:14	150529L05
Parameter		Result	-	RL	<u>DF</u>	Qua	<u>lifiers</u>
Mercury		ND		0.0833	1.00		

Solid

<u>RL</u>

0.0833

Mercury 05

05/29/15

<u>DF</u>

1.00

150529L05

Qualifiers

099-16-272-1306

N/A

Result

ND

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method:

Units:

15-05-1860 EPA 3545 EPA 8081A ug/kg

05/22/15

Project: Newland Sierra

Page 1 of 12

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
A1@6"	15-05-1860-23-A	05/21/15 13:21	Solid	GC 41	05/27/15	05/28/15 16:50	150527L01
<u>Parameter</u>		Result	RI	<u>L</u>	<u>DF</u>	Qua	<u>llifiers</u>
Aldrin		ND	5.	0	1.00		
Alpha-BHC		ND	10)	1.00		
Beta-BHC		ND	5.	0	1.00		
Chlordane		ND	50)	1.00		
4,4'-DDD		ND	5.	0	1.00		
4,4'-DDE		ND	5.	0	1.00		
4,4'-DDT		ND	5.	0	1.00		
Delta-BHC		ND	10)	1.00		
Dieldrin		ND	5.	0	1.00		
Endosulfan I		ND	5.	0	1.00		
Endosulfan II		ND	5.	0	1.00		
Endosulfan Sulfate		ND	5.	0	1.00		
Endrin		ND	5.	0	1.00		
Endrin Aldehyde		ND	5.	0	1.00		
Endrin Ketone		ND	5.	0	1.00		
Gamma-BHC		ND	5.	0	1.00		
Heptachlor		ND	5.	0	1.00		
Heptachlor Epoxide		ND	10)	1.00		
Methoxychlor		ND	5.	0	1.00		
Toxaphene		ND	10	00	1.00		
Surrogate		Rec. (%)	<u>C</u>	ontrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		95	24	1-168			
2,4,5,6-Tetrachloro-m-Xylene		86	25	5-145			

Project: Newland Sierra

Analytical Report

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method: 05/22/15 15-05-1860 EPA 3545 EPA 8081A

Units: ug/kg
Page 2 of 12

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
A2@6"	15-05-1860-26-A	05/21/15 13:34	Solid	GC 41	05/27/15	05/28/15 13:36	150527L01
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	<u>DF</u>	<u>Qua</u>	<u>llifiers</u>
Aldrin		ND	Ę	5.0	1.00		
Alpha-BHC		ND	1	10	1.00		
Beta-BHC		ND	5	5.0	1.00		
Chlordane		ND	Ę	50	1.00		
4,4'-DDD		ND	5	5.0	1.00		
4,4'-DDE		ND	5	5.0	1.00		
4,4'-DDT		ND	5	5.0	1.00		
Delta-BHC		ND	1	10	1.00		
Dieldrin		ND	5	5.0	1.00		
Endosulfan I		ND	5	5.0	1.00		
Endosulfan II		ND	5	5.0	1.00		
Endosulfan Sulfate		ND	5	5.0	1.00		
Endrin		ND	5	5.0	1.00		
Endrin Aldehyde		ND	5	5.0	1.00		
Endrin Ketone		ND	5	5.0	1.00		
Gamma-BHC		ND	5	5.0	1.00		
Heptachlor		ND	5	5.0	1.00		
Heptachlor Epoxide		ND	1	10	1.00		
Methoxychlor		ND	5	5.0	1.00		
Toxaphene		ND	1	100	1.00		
Surrogate		Rec. (%)	<u>(</u>	Control Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		114	2	24-168			
2,4,5,6-Tetrachloro-m-Xylene		97	2	25-145			

RL: Reporting Limit. DF: Dilution Factor.

MDL: Method Detection Limit.

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method: 05/22/15 15-05-1860 EPA 3545 EPA 8081A ug/kg

Units:

Page 3 of 12

Project: Newland Sierra

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
A3@6"	15-05-1860-29-A	05/21/15 13:50	Solid	GC 41	05/27/15	05/28/15 17:06	150527L01
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	<u>DF</u>	<u>Qua</u>	<u>llifiers</u>
Aldrin		ND	Ę	5.0	1.00		
Alpha-BHC		ND	1	10	1.00		
Beta-BHC		ND	Ę	5.0	1.00		
Chlordane		ND	Ę	50	1.00		
4,4'-DDD		ND	5	5.0	1.00		
4,4'-DDE		ND	5	5.0	1.00		
4,4'-DDT		ND	5	5.0	1.00		
Delta-BHC		ND	1	10	1.00		
Dieldrin		ND	5	5.0	1.00		
Endosulfan I		ND	Ę	5.0	1.00		
Endosulfan II		ND	5	5.0	1.00		
Endosulfan Sulfate		ND	5	5.0	1.00		
Endrin		ND	Ę	5.0	1.00		
Endrin Aldehyde		ND	Ę	5.0	1.00		
Endrin Ketone		ND	5	5.0	1.00		
Gamma-BHC		ND	Ę	5.0	1.00		
Heptachlor		ND	Ę	5.0	1.00		
Heptachlor Epoxide		ND	1	10	1.00		
Methoxychlor		ND	Ę	5.0	1.00		
Toxaphene		ND	1	100	1.00		
Surrogate		Rec. (%)	<u>(</u>	Control Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		110	2	24-168			
2,4,5,6-Tetrachloro-m-Xylene		98	2	25-145			

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method:

Units:

05/22/15 15-05-1860 EPA 3545 EPA 8081A ug/kg

Project: Newland Sierra

Page 4 of 12

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
A4@6"	15-05-1860-32-A	05/21/15 13:58	Solid	GC 41	05/27/15	05/28/15 17:21	150527L01
Parameter		Result	E	<u> </u>	DF	Qua	alifiers
Aldrin		ND	5	5.0	1.00		
Alpha-BHC		ND	1	10	1.00		
Beta-BHC		ND	5	5.0	1.00		
Chlordane		ND	5	50	1.00		
4,4'-DDD		ND	5	5.0	1.00		
4,4'-DDE		ND	5	5.0	1.00		
4,4'-DDT		ND	5	5.0	1.00		
Delta-BHC		ND	1	10	1.00		
Dieldrin		ND	5	5.0	1.00		
Endosulfan I		ND	5	5.0	1.00		
Endosulfan II		ND	5	5.0	1.00		
Endosulfan Sulfate		ND	5	5.0	1.00		
Endrin		ND	5	5.0	1.00		
Endrin Aldehyde		ND	5	5.0	1.00		
Endrin Ketone		ND	5	5.0	1.00		
Gamma-BHC		ND	5	5.0	1.00		
Heptachlor		ND	5	5.0	1.00		
Heptachlor Epoxide		ND	1	10	1.00		
Methoxychlor		ND	5	5.0	1.00		
Toxaphene		ND	1	100	1.00		
Surrogate		Rec. (%)	<u>(</u>	Control Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		118	2	24-168			
2,4,5,6-Tetrachloro-m-Xylene		98	2	25-145			

Project: Newland Sierra

Analytical Report

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method: 05/22/15 15-05-1860 EPA 3545 EPA 8081A

Units: ug/kg
Page 5 of 12

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
A5@6"	15-05-1860-35-A	05/21/15 14:08	Solid	GC 41	05/27/15	05/28/15 17:51	150527L01	
Parameter	·	Result	<u>R</u>	L	<u>DF</u>	Qua	<u>llifiers</u>	
Aldrin		ND	5.	0	1.00			
Alpha-BHC		ND	9.	9	1.00			
Beta-BHC		ND	5.	0	1.00			
Chlordane		ND	50)	1.00			
4,4'-DDD		ND	5.	0	1.00			
4,4'-DDE		ND	5.	0	1.00			
4,4'-DDT		ND	5.	0	1.00			
Delta-BHC		ND	9.	9	1.00			
Dieldrin		ND	5.	0	1.00			
Endosulfan I		ND	5.	0	1.00			
Endosulfan II		ND	5.	0	1.00			
Endosulfan Sulfate		ND	5.	0	1.00			
Endrin		ND	5.	0	1.00			
Endrin Aldehyde		ND	5.	0	1.00			
Endrin Ketone		ND	5.	0	1.00			
Gamma-BHC		ND	5.	0	1.00			
Heptachlor		ND	5.	0	1.00			
Heptachlor Epoxide		ND	9.	9	1.00			
Methoxychlor		ND	5.	0	1.00			
Toxaphene		ND	99)	1.00			
<u>Surrogate</u>		Rec. (%)	C	ontrol Limits	Qualifiers			

RL: Reporting Limit.

Decachlorobiphenyl

2,4,5,6-Tetrachloro-m-Xylene

DF: Dilution Factor.

MDL: Method Detection Limit.

135

110

24-168

25-145

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method:

Units:

05/22/15 15-05-1860 EPA 3545 EPA 8081A ug/kg

Project: Newland Sierra

Page 6 of 12

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
A6@6"	15-05-1860-38-A	05/21/15 14:21	Solid	GC 41	05/27/15	05/28/15 18:06	150527L01
Parameter		Result	<u>R</u>	<u>L</u>	DF	Qua	lifiers
Aldrin		ND	5	.0	1.00		
Alpha-BHC		ND	1	0	1.00		
Beta-BHC		ND	5	.0	1.00		
Chlordane		ND	5	0	1.00		
4,4'-DDD		ND	5	.0	1.00		
4,4'-DDE		ND	5	.0	1.00		
4,4'-DDT		ND	5	.0	1.00		
Delta-BHC		ND	1	0	1.00		
Dieldrin		ND	5	.0	1.00		
Endosulfan I		ND	5	.0	1.00		
Endosulfan II		ND	5	.0	1.00		
Endosulfan Sulfate		ND	5	.0	1.00		
Endrin		ND	5	.0	1.00		
Endrin Aldehyde		ND	5	.0	1.00		
Endrin Ketone		ND	5	.0	1.00		
Gamma-BHC		ND	5	.0	1.00		
Heptachlor		ND	5	.0	1.00		
Heptachlor Epoxide		ND	1	0	1.00		
Methoxychlor		ND	5	.0	1.00		
Toxaphene		ND	1	00	1.00		
Surrogate		Rec. (%)	<u>C</u>	ontrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		108	2	4-168			
2,4,5,6-Tetrachloro-m-Xylene		99	2	5-145			

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425

Date Received: Work Order: Preparation: Method:

05/22/15 15-05-1860 **EPA 3545 EPA 8081A**

Units:

ug/kg Page 7 of 12

Project: Newland Sierra

Date Prepared Date/Time Date/Time QC Batch ID Client Sample Number Lab Sample Matrix Instrument Number Collected Analyzed 05/28/15 18:21 05/21/15 14:37 GC 41 A7@6" 15-05-1860-41-A Solid 05/27/15 150527L01 Result <u>RL</u> <u>DF</u> Qualifiers ND 5.0 1.00

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method:

Units:

05/22/15 15-05-1860 EPA 3545 EPA 8081A ug/kg

Project: Newland Sierra

Page 8 of 12

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
A8@6"	15-05-1860-44-A	05/21/15 14:54	Solid	GC 41	05/27/15	05/28/15 18:36	150527L01
Parameter		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>lifiers</u>
Aldrin		ND	5	.0	1.00		
Alpha-BHC		ND	10	0	1.00		
Beta-BHC		ND	5	.0	1.00		
Chlordane		ND	5	0	1.00		
4,4'-DDD		ND	5	.0	1.00		
4,4'-DDE		ND	5	.0	1.00		
4,4'-DDT		ND	5	.0	1.00		
Delta-BHC		ND	10	0	1.00		
Dieldrin		ND	5	.0	1.00		
Endosulfan I		ND	5	.0	1.00		
Endosulfan II		ND	5	.0	1.00		
Endosulfan Sulfate		ND	5	.0	1.00		
Endrin		ND	5	.0	1.00		
Endrin Aldehyde		ND	5	.0	1.00		
Endrin Ketone		ND	5	.0	1.00		
Gamma-BHC		ND	5	.0	1.00		
Heptachlor		ND	5	.0	1.00		
Heptachlor Epoxide		ND	10	0	1.00		
Methoxychlor		ND	5	.0	1.00		
Toxaphene		ND	1	00	1.00		
Surrogate		Rec. (%)	<u>C</u>	ontrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		110	2	4-168			
2,4,5,6-Tetrachloro-m-Xylene		99	2	5-145			

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

Project: Newland Sierra

Analytical Report

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425

Date Received: Work Order: Preparation: Method:

05/22/15 15-05-1860 EPA 3545 **EPA 8081A**

Units: ug/kg Page 9 of 12

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
A9@6"	15-05-1860-46-A	05/21/15 15:01	Solid	GC 41	05/27/15	05/28/15 18:52	150527L01
<u>Parameter</u>		Result	R	<u>L</u>	<u>DF</u>	Qua	<u>llifiers</u>
Aldrin		ND	5	.0	1.00		
Alpha-BHC		ND	1	0	1.00		
Beta-BHC		ND	5	.0	1.00		
Chlordane		ND	5	0	1.00		
4,4'-DDD		ND	5	.0	1.00		
4,4'-DDE		ND	5	.0	1.00		
4,4'-DDT		ND	5	.0	1.00		
Delta-BHC		ND	1	0	1.00		
Dieldrin		ND	5	.0	1.00		
Endosulfan I		ND	5	.0	1.00		
Endosulfan II		ND	5	.0	1.00		
Endosulfan Sulfate		ND	5	.0	1.00		
Endrin		ND	5	.0	1.00		
Endrin Aldehyde		ND	5	.0	1.00		
Endrin Ketone		ND	5	.0	1.00		
Gamma-BHC		ND	5	.0	1.00		
Heptachlor		ND	5	.0	1.00		
Heptachlor Epoxide		ND	1	0	1.00		
Methoxychlor		ND	5	.0	1.00		
Toxaphene		ND	1	00	1.00		
Surrogate		Rec. (%)	<u>C</u>	Control Limits	Qualifiers		
Decachlorobiphenyl		109	2	4-168			

RL: Reporting Limit. DF: Dilution Factor.

2,4,5,6-Tetrachloro-m-Xylene

MDL: Method Detection Limit.

101

25-145

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received:
Work Order:
Preparation:
Method:

Units:

15-05-1860 EPA 3545 EPA 8081A ug/kg

05/22/15

Project: Newland Sierra

Page 10 of 12

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
A10@6"	15-05-1860-49-A	05/21/15 15:17	Solid	GC 41	05/27/15	05/28/15 20:43	150527L01
<u>Parameter</u>	•	Result	RL	=	<u>DF</u>	Qua	<u>lifiers</u>
Aldrin		ND	5.0)	1.00		
Alpha-BHC		ND	9.9	9	1.00		
Beta-BHC		ND	5.0)	1.00		
Chlordane		ND	50		1.00		
4,4'-DDD		ND	5.0)	1.00		
4,4'-DDE		ND	5.0)	1.00		
4,4'-DDT		ND	5.0)	1.00		
Delta-BHC		ND	9.9	9	1.00		
Dieldrin		ND	5.0)	1.00		
Endosulfan I		ND	5.0)	1.00		
Endosulfan II		ND	5.0)	1.00		
Endosulfan Sulfate		ND	5.0)	1.00		
Endrin		ND	5.0)	1.00		
Endrin Aldehyde		ND	5.0)	1.00		
Endrin Ketone		ND	5.0)	1.00		
Gamma-BHC		ND	5.0)	1.00		
Heptachlor		ND	5.0)	1.00		
Heptachlor Epoxide		ND	9.9	9	1.00		
Methoxychlor		ND	5.0)	1.00		
Toxaphene		ND	99		1.00		
Surrogate		Rec. (%)	<u>Cc</u>	ontrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		106	24	-168			
2,4,5,6-Tetrachloro-m-Xylene		111	25	-145			

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method:

Units:

05/22/15 15-05-1860 EPA 3545 EPA 8081A ug/kg

Project: Newland Sierra

Page 11 of 12

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
A11@6"	15-05-1860-52-A	05/21/15 15:39	Solid	GC 41	05/27/15	05/28/15 20:59	150527L01
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>llifiers</u>
Aldrin		ND	5.	0	1.00		
Alpha-BHC		ND	9.	9	1.00		
Beta-BHC		ND	5.	0	1.00		
Chlordane		ND	50)	1.00		
4,4'-DDD		ND	5.	0	1.00		
4,4'-DDE		ND	5.	0	1.00		
4,4'-DDT		ND	5.	0	1.00		
Delta-BHC		ND	9.	9	1.00		
Dieldrin		ND	5.	0	1.00		
Endosulfan I		ND	5.	0	1.00		
Endosulfan II		ND	5.	0	1.00		
Endosulfan Sulfate		ND	5.	0	1.00		
Endrin		ND	5.	0	1.00		
Endrin Aldehyde		ND	5.	0	1.00		
Endrin Ketone		ND	5.	0	1.00		
Gamma-BHC		ND	5.	0	1.00		
Heptachlor		ND	5.	0	1.00		
Heptachlor Epoxide		ND	9.	9	1.00		
Methoxychlor		ND	5.	0	1.00		
Toxaphene		ND	99	9	1.00		
Surrogate		Rec. (%)	<u>C</u>	ontrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		160	24	1-168			
2,4,5,6-Tetrachloro-m-Xylene		137	25	5-145			

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method:

Units:

05/22/15 15-05-1860 EPA 3545 EPA 8081A ug/kg

Project: Newland Sierra

Page 12 of 12

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-537-2117	N/A	Solid	GC 41	05/27/15	05/27/15 17:01	150527L01
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
Aldrin		ND	5.0		1.00		
Alpha-BHC		ND	10		1.00		
Beta-BHC		ND	5.0		1.00		
Chlordane		ND	50		1.00		
4,4'-DDD		ND	5.0		1.00		
4,4'-DDE		ND	5.0		1.00		
4,4'-DDT		ND	5.0		1.00		
Delta-BHC		ND	10		1.00		
Dieldrin		ND	5.0		1.00		
Endosulfan I		ND	5.0		1.00		
Endosulfan II		ND	5.0		1.00		
Endosulfan Sulfate		ND	5.0		1.00		
Endrin		ND	5.0		1.00		
Endrin Aldehyde		ND	5.0		1.00		
Endrin Ketone		ND	5.0		1.00		
Gamma-BHC		ND	5.0		1.00		
Heptachlor		ND	5.0		1.00		
Heptachlor Epoxide		ND	10		1.00		
Methoxychlor		ND	5.0		1.00		
Toxaphene		ND	100)	1.00		
Surrogate		Rec. (%)	Cor	ntrol Limits	Qualifiers		
Decachlorobiphenyl		89	24-	168			
2,4,5,6-Tetrachloro-m-Xylene		84	25-	145			

Quality Control - Spike/Spike Duplicate

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method: 05/22/15 15-05-1860 EPA 3050B

EPA 6010B

Project: Newland Sierra Page 1 of 3

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	d Date Ana	lyzed	MS/MSD Ba	tch Number
SA4-1@6"	Sample		Solid	ICP	7300	05/27/15	05/28/15	19:51	150527S05	
SA4-1@6"	Matrix Spike		Solid	ICP	7300	05/27/15	05/28/15	19:53	150527S05	
SA4-1@6"	Matrix Spike	Duplicate	Solid	ICP	7300	05/27/15	05/28/15	19:54	150527S05	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Antimony	4.630	25.00	15.78	45	51.65	188	50-115	106	0-20	3,4
Arsenic	3.284	25.00	26.31	92	44.49	165	75-125	51	0-20	3,4
Barium	30.10	25.00	54.45	97	56.87	107	75-125	4	0-20	
Beryllium	0.3650	25.00	24.69	97	24.33	96	75-125	1	0-20	
Cadmium	ND	25.00	24.99	100	24.53	98	75-125	2	0-20	
Chromium	0.3474	25.00	26.06	103	25.67	101	75-125	2	0-20	
Cobalt	1.055	25.00	26.89	103	26.10	100	75-125	3	0-20	
Copper	10.64	25.00	38.21	110	39.10	114	75-125	2	0-20	
Lead	983.1	25.00	1209	4X	3910	4X	75-125	4X	0-20	Q
Molybdenum	ND	25.00	23.94	96	22.95	92	75-125	4	0-20	
Nickel	0.2744	25.00	26.25	104	25.70	102	75-125	2	0-20	
Selenium	ND	25.00	24.33	97	24.05	96	75-125	1	0-20	
Silver	ND	12.50	11.96	96	12.15	97	75-125	2	0-20	
Thallium	ND	25.00	17.14	69	24.17	97	75-125	34	0-20	3,4
Vanadium	1.829	25.00	26.28	98	25.68	95	75-125	2	0-20	
Zinc	19.48	25.00	49.13	119	43.45	96	75-125	12	0-20	

RPD: Relative Percent Difference. CL: Control Limits

05/22/15

15-05-1860

EPA 7471A Total

Project: Newland Sierra

Quality Control - Spike/Spike Duplicate

LEIGHTON AND ASSOCIATES, INC.

3934 Murphy Canyon Road, Suite B205

San Diego, CA 92123-4425

Date Received:

Work Order:

Preparation:

Method: EPA 7471A Page 2 of 3

Quality Control Sample ID	Type		Matrix	Instr	ument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
SA4-1@6"	Sample		Solid	Merc	cury 05	05/29/15	05/29/15	21:21	150529S05	
SA4-1@6"	Matrix Spike		Solid	Merc	cury 05	05/29/15	05/29/15	21:23	150529\$05	
SA4-1@6"	Matrix Spike D	Duplicate	Solid	Merc	cury 05	05/29/15	05/29/15	21:25	150529\$05	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	ND	0.8350	0.7700	92	0.8011	96	71-137	4	0-14	

Quality Control - Spike/Spike Duplicate

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation:

Method:

05/22/15 15-05-1860 EPA 3545 EPA 8081A

Project: Newland Sierra Page 3 of 3

Quality Control Sample ID	Туре		Matrix	Insti	ument	Date Prepare	d Date Ana	lyzed	MS/MSD Ba	tch Number
A2@6"	Sample		Solid	GC	41	05/27/15	05/28/15	13:36	150527S01	
A2@6"	Matrix Spike		Solid	GC	41	05/27/15	05/28/15	12:30	150527S01	
A2@6"	Matrix Spike	Duplicate	Solid	GC	41	05/27/15	05/28/15	12:46	150527S01	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Aldrin	ND	25.00	20.92	84	15.11	60	50-135	32	0-25	4
Alpha-BHC	ND	25.00	20.94	84	15.04	60	50-135	33	0-25	4
Beta-BHC	ND	25.00	22.88	92	16.88	68	50-135	30	0-25	4
4,4'-DDD	ND	25.00	30.89	124	25.12	100	50-135	21	0-25	
4,4'-DDE	ND	25.00	27.12	108	20.08	80	50-135	30	0-25	4
4,4'-DDT	ND	25.00	15.66	63	8.333	33	50-135	61	0-25	3,4
Delta-BHC	ND	25.00	23.40	94	17.24	69	50-135	30	0-25	4
Dieldrin	ND	25.00	25.17	101	18.84	75	50-135	29	0-25	4
Endosulfan I	ND	25.00	21.65	87	16.33	65	50-135	28	0-25	4
Endosulfan II	ND	25.00	22.44	90	17.48	70	50-135	25	0-25	
Endosulfan Sulfate	ND	25.00	21.04	84	16.59	66	50-135	24	0-25	
Endrin	ND	25.00	24.01	96	17.09	68	50-135	34	0-25	4
Endrin Aldehyde	ND	25.00	15.34	61	2.548	10	50-135	143	0-25	3,4
Gamma-BHC	ND	25.00	21.69	87	15.55	62	50-135	33	0-25	4
Heptachlor	ND	25.00	20.18	81	13.39	54	50-135	40	0-25	4
Heptachlor Epoxide	ND	25.00	21.56	86	16.32	65	50-135	28	0-25	4
Methoxychlor	ND	25.00	14.75	59	8.298	33	50-135	56	0-25	3,4

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - LCS

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method: 05/22/15 15-05-1860 EPA 3050B EPA 6010B

Project: Newland Sierra

Page 1 of 3

Quality Control Sample ID	Type	Matrix	Instrumen	t Date Prep	pared Date Ana	lyzed LCS Bate	ch Number
097-01-002-21083	LCS	Solid	ICP 7300	05/27/15	05/28/15	19:22 150527L	05
Parameter		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Antimony		25.00	23.38	94	80-120	73-127	
Arsenic		25.00	21.67	87	80-120	73-127	
Barium		25.00	25.21	101	80-120	73-127	
Beryllium		25.00	21.98	88	80-120	73-127	
Cadmium		25.00	23.61	94	80-120	73-127	
Chromium		25.00	24.50	98	80-120	73-127	
Cobalt		25.00	24.24	97	80-120	73-127	
Copper		25.00	23.16	93	80-120	73-127	
Lead		25.00	23.74	95	80-120	73-127	
Molybdenum		25.00	22.93	92	80-120	73-127	
Nickel		25.00	25.06	100	80-120	73-127	
Selenium		25.00	21.97	88	80-120	73-127	
Silver		12.50	12.00	96	80-120	73-127	
Thallium		25.00	22.62	90	80-120	73-127	
Vanadium		25.00	23.68	95	80-120	73-127	
Zinc		25.00	23.41	94	80-120	73-127	

Total number of LCS compounds: 16
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - LCS

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method:

15-05-1860 EPA 7471A Total EPA 7471A

05/22/15

Project: Newland Sierra

Page 2 of 3

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-16-272-1306	LCS	Solid	Mercury 05	05/29/15	05/29/15 21:19	150529L05
<u>Parameter</u>		Spike Added	Conc. Recover	red LCS %R	ec. %Rec	. CL Qualifiers
Mercury		0.8350	0.8800	105	85-12	1

Quality Control - LCS

LEIGHTON AND ASSOCIATES, INC. 3934 Murphy Canyon Road, Suite B205 San Diego, CA 92123-4425 Date Received: Work Order: Preparation: Method: 05/22/15 15-05-1860 EPA 3545 EPA 8081A

Project: Newland Sierra Page 3 of 3

Quality Control Sample ID	Туре	Matrix	Instrumen	t Date Prep	ared Date Analy	zed LCS Batch N	lumber
099-12-537-2117	LCS	Solid	GC 41	05/27/15	05/27/15 1	6:46 150527L01	
Parameter		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Aldrin		25.00	13.83	55	50-135	36-149	
Alpha-BHC		25.00	14.48	58	50-135	36-149	
Beta-BHC		25.00	15.37	61	50-135	36-149	
4,4'-DDD		25.00	14.18	57	50-135	36-149	
4,4'-DDE		25.00	14.17	57	50-135	36-149	
4,4'-DDT		25.00	14.93	60	50-135	36-149	
Delta-BHC		25.00	14.18	57	50-135	36-149	
Dieldrin		25.00	15.33	61	50-135	36-149	
Endosulfan I		25.00	14.95	60	50-135	36-149	
Endosulfan II		25.00	15.73	63	50-135	36-149	
Endosulfan Sulfate		25.00	15.05	60	50-135	36-149	
Endrin		25.00	13.17	53	50-135	36-149	
Endrin Aldehyde		25.00	13.33	53	50-135	36-149	
Gamma-BHC		25.00	15.11	60	50-135	36-149	
Heptachlor		25.00	15.00	60	50-135	36-149	
Heptachlor Epoxide		25.00	14.01	56	50-135	36-149	
Methoxychlor		25.00	15.60	62	50-135	36-149	

Total number of LCS compounds: 17
Total number of ME compounds: 0
Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Sample Analysis Summary Report

Work Order: 15-05-1860				Page 1 of 1
<u>Method</u>	Extraction	Chemist ID	Instrument	Analytical Location
EPA 6010B	EPA 3050B	935	ICP 7300	1
EPA 7471A	EPA 7471A Total	915	Mercury 05	1
EPA 8081A	EPA 3545	421	GC 41	1
EPA 8081A	EPA 3545	669	GC 41	1

Glossary of Terms and Qualifiers

Work Order: 15-05-1860 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

15-05-06 15-0			WO NO. / LAB USE ONLY	USEONLY						CHAI	N-0F-0	SUS/	CHAIN-OF-CUSTODY RECORD	ORD
December 1975 December 197			F	Ë	ä	£				Ì	DATE: PAGE:	 	3 1	و
New York 1990 199	sus.com or call us.		1 H	ECT NAME /	NO.:					P.O.1	:: <u>Q</u>	l		
Mark			J	7	S	\$ 5 A	_4			_	8/90	8	V	
December 10	<u>ئا</u> ∯			NTACT:	~					ABA C	CONTACTO	R QUOTE	NO.:	
No.	921			3	λ 		900000			7			1119+901	Î
Date Preserved	eighten gray, con									(E)	2	3	18,04	otel
Procedured by (Signature Affiliation) Proc	X5 DAYS 🗆 STANDARD					₫	REQU	ESTEI K box or	ANAL ill in blank	YSES as neede	ت ت			
Note							910() E				X747/02	9		
Received by (Signature/Affiliation)				39 🗆 C9-C44	□ 8260 □	(09 □ X747\0109).812 🗆 9917 🗀 ð	-	
Cont. Co	NO.	Pilterec)-90 ^[]	8TM \)	0928) \$					Vetals	,	PK	
Received by: (Signature/Affiliation)	CONT.	blei∃		НЧТ		AOC:					N SST	- 1	74	
E C. S/22//5 Ifme: Market Date: Date: Time:	/2										$\stackrel{\longrightarrow}{\sim}$			
E C. S/22/15 Iffine: Date: Date: Date: Time: Date: Date: Date: Time: Date: Da											$\times >$			
											X			
E C. 5/22/15 Time:	+										X			
							$\frac{1}{1}$				\Rightarrow			
E C. 5/22/15 Time: 14											$\langle \times$			
											2		×	
E C. 5/22/15 Time: 14 MM					22						X			
MM 9M 5/22/13		eived by: (Signature	(Affiliation)	· June 10 June						2/2	2115		14	ge 47
Date:	<u></u>	eived by: (Signature	/Affiliation)			13	J. J. J.	R	ä	ste. 5/20	5/13	-	ime: 1 COC	7
		eived by: (Signature	/Affiliation)			1/			ľã	ate:			ime.	

Return to Contents

N

Page 49 of 54 CHAIN-OF-CUSTODY RECORD Byen Vas/Bing Pate मभप 10618.006 Richard sampler(s); (PRINT) Cr(VI) 🗆 7196 🗅 7199 🗅 218.6 PAGE: DATE W. X747/0209 A X747/0103 A sleisM SST P.O. NO.: Please check box or fill in blank as needed. REQUESTED ANALYSES MIS 0728 [] 0728 [] 2HA9 PCBs (8082) Pesticides (8081) SAOCs (8270) Prep (5035) 🗆 En Core 🗆 Terra Core 032 -50 Oxygenates (8260) Siema AOCs (8500) BTEX / MTBE □ 8260 □ HdT CLIENT PROJECT NAME / N Newland WO NO. / LAB USE ONL TPH □ C6-C36 □ C6-C44 ORG (b)H9T [Received by: (Signature/Affiliation GLOBAL ID: ORD (9) H9T [Field Filtered Received by: (Sign Unpreserved ☐ STANDARD place Hold 512-3024", AI e18", AI e24", NO. OP. CONT. For courier service / sample drop off information, contact us26_sales@eurofinsus.com or call us MATRIX 42@18", nd 42@24", A3@18" X5 DAYS 13.39 13:42 1322 1323 13.34 7440 Lincoln Way, Garden Grove, CA 92841-1427 • (714) 895-5494 13.50 TIME apply to any TAT not "STANDARD") 1321 □ 72 HR Calscience Leighting Associates SAMPLING 3934 Muphy Ceryon DATE □ 48 HR E-MAIL: ~15/2-3 e18" 4348-300-8467 COELT EDF COTHER Dicto 1-362411 eurofins eurofins □ 24 HR SAMPLEID Relinquished by: (Signature) , o . A10 15 4 i @ 24" 42024" 17@ 18" ي م 420 6" A300 54 ☐ SAME DAY A3 ADDRESS: LAB USE E. CIL

Page 51 of 54 CHAIN-OF-CUSTODY RECORD 2014-07-01 Revision Richard Villatania 0 × MT 199 10618,006 Bren Vosa Cř(VI) □ 7196 □ 7199 □ 218.6 DATE: PAGE: XY47/0209 A XY47/0109 alsteM SST Please check box or fill in blank as needed REQUESTED ANALYSES MIS 0728 🗆 0728 🗅 2HA9 Date: PCBs (8082) Pesticides (8081) 3 SAOCs (8270) Prep (5035) 🗆 En Core 🗖 Terra Core 0931-58 Oxygenates (8260) Siew A AOCs (85e0) BTEX / MTBE □ 8260 □ НДТ TPH □ C6-C36 □ C6-C44 □ TPH(d) □ DRO Received by: (Signature/Affiliation) Received by: (Signarure/Affiliation) ORD (g) H9T [Field Filtered Unpreserved CI STANDARD eghtenous com NO. OF CONT. For courier service / sample drop off information, contact us26_sales@eurofinsus.com or call us place theld sampes as Noted MATRIX X5 DAYS S 15:03 4:37 5.07 4 ASSOCIATES 04:11 アンスの 14.5H 1459 |V. |0| TIME 7440 Lincoln Way, Garden Grove, CA 92841-1427 • (714) 895-5494 ☐ 72 HR Calscience SAMPLING 5/12/12 DATE ☐ 48 HR Leinter सिर्भ D COELT EDF DOTHER eurofins ... **D** 24 HR SAMPLEID Relinquished by: (Signature) 47 @ 24" 180 Co " 45 ARG 18" 11061 19 de 61, 19 P. 18" ☐ SAME DAY ADDRESS S E E E

Calscience

WORK ORDER NUMBER: 15-05- 1860

SAMPLE RECEIPT CHECKLIST

				i
COOL	FR	1 (OF	

TEMPERATURE: (Criteria: 0.0°C – 6.0°C, not frozen except sediment/lissue) Thermometer ID: SC2 (CF:-0.3°C); Temperature (w/o CF): 3_l °C (w/ CF): 2.3 °C; p/Blank Sample Sample(s) outside temperature criteria (PM/APM contacted by:	CLIENT: <u>leighton</u> & Asociates DA	TE: 05 /	<u> 22</u>	/ 2015
Cooler	Thermometer ID: SC2 (CF:-0.3°C); Temperature (w/o CF): 3 c °C (w/ CF): 2.8 °C; □ Sample(s) outside temperature criteria (PM/APM contacted by:) □ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling □ Sample(s) received at ambient temperature; placed on ice for transport by courier			
Chain-of-Custody (COC) document(s) received with samples	Cooler ☐ Present and Intact ☐ Present but Not Intact ☐ Not Present ☐ N/A			
Sampler's name indicated on COC	Chain-of-Custody (COC) document(s) received with samples	. 🗹		
Aqueous samples for certain analyses received within 15-minute holding time pH Residual Chlorine Dissolved Sulfide Dissolved Oxygen	Sampler's name indicated on COC Sample container label(s) consistent with COC Sample container(s) intact and in good condition Proper containers for analyses requested Sufficient volume/mass for analyses requested			
Container(s) for certain analysis free of headspace	Aqueous samples for certain analyses received within 15-minute holding time □ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Oxygen Proper preservation chemical(s) noted on COC and/or sample container Unpreserved aqueous sample(s) received for certain analyses	. 🗆		Z
CONTAINER TYPE: (Trip Blank Lot Number: 150514 ↑ Aqueous: □ VOA □ VOAh □ VOAna₂ □ 100PJ □ 100PJna₂ □ 125AGB □ 125AGBh □ 125AGBp □ 125PB □ 125PBznna □ 250AGB □ 250CGB □ 250CGBs □ 250PB □ 250PBn □ 500AGB □ 500AGJ □ 500AGJs □ 500PB □ 1AGB □ 1AGBna₂ □ 1AGBs □ 1PB □ 1PBna □ □ □ □ □ □ □ □ □ □ Solid: □ 4ozCGJ □ 8ozCGJ □ 16ozCGJ □ Sleeve (□) □ EnCores® (□) □ TerraCores® (□) □ □ □ □	Container(s) for certain analysis free of headspace Volatile Organics Dissolved Gases (RSK-175) Dissolved Oxygen (SM 4500) Carbon Dioxide (SM 4500) Ferrous Iron (SM 3500) Hydrogen Sulfide (Hach)			
Aqueous: □ VOA □ VOAh □ VOAna₂ □ 100PJ na₂ □ 125AGB □ 125AGBh □ 125AGBp □ 125PB □ 125PBznna □ 250AGB □ 250CGB □ 250CGBs □ 250PB □ 250PBn □ 500AGB □ 500AGJ □ 500AGJs □ 500PB □ 1AGBna₂ □ 1AGBs □ 1PB na □ □ □ Solid: □ 4ozCGJ □ 8ozCGJ □ 16ozCGJ □ Sleeve □ EnCores® □ □ TerraCores® □				<i>→</i>
Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jar, P = Plastic, and Z = Ziploc/Resealable Bag Preservative: b = buffered, f = filtered, h = HCl, n = HNO ₃ , na = NaOH, na ₂ = Na ₂ S ₂ O ₃ , p = H ₃ PO ₄ , Labeled/Checked by: 68 \ s = H ₂ SO ₄ , u = ultra-pure, znna = Zn(CH ₃ CO ₂) ₂ + NaOH Reviewed by:	Aqueous: □ VOA □ VOAh □ VOAna₂ □ 100PJ □ 100PJna₂ □ 125AGB □ 125AGBh <td>AGBp</td> <td>25PB GJs g d by: <u>•</u></td> <td>581</td>	AGBp	25PB GJs g d by: <u>•</u>	581

Calscience

WORK ORDER NUMBER: 15-05- 1860

SAMPLE ANOMALY REPORT

DATE: 05 / 22 / 2015

SAMPLES, CONTAINERS, AND LABELS:	Comments
	Comments
☐ Sample(s) NOT RECEIVED but listed on COC	
Sample(s) received but NOT LISTED on COC Undergood time expired (list client or ECL sample ID and analysis)	
☐ Holding time expired (list client or ECI sample ID and analysis) ☐ Insufficient sample amount for requested analysis (list analysis)	(-55) Trip Blanks (CEL 150514A)
☐ Improper container(s) used (list analysis)	Received 2 vials w. Hel but not listed
☐ Improper container(s) used (list analysis) ☐ Improper preservative used (list analysis)	on Coc .
☐ Improper preservative used (list analysis) ☐ No preservative noted on COC or label (list analysis and notify lab)	
	(-3) Collection time per Cakel
☐ Sample container(s) not labeled	1 9240
☐ Client sample label(s) illegible (list container type and analysis)	
Client sample label(s) do not match COC (comment)	(-1) labeled as sA4-2@6"
☐ Project information	Collection date and time matched.
Client sample ID	Concompt and and time material
Sampling date and/or time	A CONTRACTOR OF THE CONTRACTOR
☐ Number of container(s)	
☐ Requested analysis	
☐ Sample container(s) compromised (comment)	
☐ Broken	
☐ Water present in sample container	
☐ Air sample container(s) compromised (comment)	
□ Flat	
□ Very low in volume	
☐ Leaking (not transferred; duplicate bag submitted)	
☐ Leaking (transferred into ECI Tedlar™ bags*)	
 □ Leaking (transferred into client's Tedlar[™] bags*) * Transferred at client's request. 	
·	Comments
MISCELLANEOUS: (Describe)	Comments
HEADSPACE:	
(Containers with bubble > 6 mm or ¼ inch for volatile organic or dissolved gas analysis)	(Containers with bubble for other analysis)
ECI ECI Total Sample ID Container ID Number** Sample ID Container ID Number**	ECI ECI Total Sample ID Container ID Number** Requested Analysis
Comments:	
	Reported by: 68 Reviewed by: 68 Reviewed by:
** Record the total number of containers (i.e., vials or bottles) for the affected sample.	Reviewed by: 687

Mr. Kevin Bryan Leighton & Associates - Irvine 17781 Cowan Irvine, CA, CA 92614

H&P Project: LC061915-L4

Client Project: 10618.006 / Deer Springs Road

Dear Mr. Kevin Bryan:

Enclosed is the analytical report for the above referenced project. The data herein applies to samples as received by H&P Mobile Geochemistry, Inc. on 19-Jun-15 which were analyzed in accordance with the attached Chain of Custody record(s).

The results for all sample analyses and required QA/QC analyses are presented in the following sections and summarized in the documents:

- Sample Summary
- Case Narrative (if applicable)
- Sample Results
- Quality Control Summary
- Notes and Definitions / Appendix
- · Chain of Custody

Unless otherwise noted, I certify that all analyses were performed and reviewed in compliance with our Quality Systems Manual and Standard Operating Procedures. This report shall not be reproduced, except in full, without the written approval of H&P Mobile Geochemistry, Inc.

We at H&P Mobile Geochemistry, Inc. sincerely appreciate the opportunity to provide analytical services to you on this project. If you have any questions or concerns regarding this analytical report, please contact me at your convenience at 760-804-9678.

Sincerely,

Janis Villarreal Laboratory Director

Janis Villarreal

H&P Mobile Geochemistry, Inc. is certified under the California ELAP, the National Environmental Laboratory Accreditation Conference (NELAC) and the Department of Defense Accreditation Programs.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Leighton & Associates - Irvine Project: LC061915-L4

17781 CowanProject Number:10618.006 / Deer Springs RoadReported:Irvine, CA, CA 92614Project Manager:Mr. Kevin Bryan24-Jun-15 14:27

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SV5-12' 1PV	E506079-01	Vapor	19-Jun-15	19-Jun-15
SV5-12' 3PV	E506079-02	Vapor	19-Jun-15	19-Jun-15
SV5-12' 10PV	E506079-03	Vapor	19-Jun-15	19-Jun-15
SV5-5'	E506079-04	Vapor	19-Jun-15	19-Jun-15
SV3-5'	E506079-05	Vapor	19-Jun-15	19-Jun-15
SV3-5' Rep	E506079-06	Vapor	19-Jun-15	19-Jun-15
SV4-9.5'	E506079-07	Vapor	19-Jun-15	19-Jun-15
SV4-5'	E506079-08	Vapor	19-Jun-15	19-Jun-15
SV1-5'	E506079-09	Vapor	19-Jun-15	19-Jun-15
SV2-5'	E506079-10	Vapor	19-Jun-15	19-Jun-15

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Leighton & Associates - Irvine Project: LC061915-L4 17781 Cowan Project Number: 10618.006 / Deer Springs Road Reported: Irvine, CA, CA 92614 Project Manager: Mr. Kevin Bryan 24-Jun-15 14:27 **DETECTIONS SUMMARY** Sample ID: SV5-12' 1PV Laboratory ID: E506079-01 Reporting Analyte Method Notes Result Limit Units Benzene 0.10 0.10 H&P 8260SV ug/l Sample ID: SV5-12' 3PV Laboratory ID: E506079-02 Reporting Analyte Limit Method Notes Result Units No Detections Reported Laboratory ID: Sample ID: SV5-12' 10PV E506079-03 Reporting Analyte Method Notes Result Limit Units No Detections Reported Laboratory ID: E506079-04 Sample ID: SV5-5' Reporting Analyte Result Limit Units Method Notes No Detections Reported Sample ID: SV3-5' Laboratory ID: E506079-05 Reporting Analyte Notes Result Limit Units Method No Detections Reported Sample ID: SV3-5' Rep Laboratory ID: E506079-06 Reporting Notes Analyte Limit Units Method Result No Detections Reported Sample ID: SV4-9.5' Laboratory ID: E506079-07 Reporting Analyte Limit Units Method Notes Result No Detections Reported Sample ID: SV4-5' Laboratory ID: E506079-08 Reporting Analyte Notes Result Limit Units Method No Detections Reported

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Leighton & Associates - Irvine	Project: LC061915-L4	
17781 Cowan	Project Number: 10618.006 / Deer Springs Road	Reported:
Irvine, CA, CA 92614	Project Manager: Mr. Kevin Bryan	24-Jun-15 14:27
Sample ID: SV1-5'	Laboratory ID: E506079-09	

Analyte No Detections Reported	Result	Reporting Limit	Units	Method	Notes
Sample ID: SV2-5'	Laboratory ID: E	506079-10			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Benzene	0.15	0.10	ug/l	H&P 8260SV	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Leighton & Associates - Irvine

Project: LC061915-L4

17781 Cowan Irvine, CA, CA 92614 Project Number: 10618.006 / Deer Springs Road Project Manager: Mr. Kevin Bryan

Reported: 24-Jun-15 14:27

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV5-12' 1PV (E506079-01) Vapor Sampled: 19	-Jun-15 Recei	ved: 19-Jun-1	15						
1,1-Difluoroethane (LCC)	ND	0.50	ug/l	0.05	EF51905	19-Jun-15	19-Jun-15	H&P 8260SV	
Methyl tertiary-butyl ether (MTBE)	ND	0.50	"	"	"	"	"	"	
Diisopropyl ether (DIPE)	ND	1.00	"	"	"	"	"	"	
Ethyl tert-butyl ether (ETBE)	ND	1.00	"	"	"	"	"	"	
Tertiary-amyl methyl ether (TAME)	ND	1.00	"	"	"	"	"	"	
Benzene	0.10	0.10	"	"	"	"	"	"	
Toluene	ND	1.00	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	0.50	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tertiary-butyl alcohol (TBA)	ND	5.00	"	"	"	"	"	"	
Naphthalene	ND	0.10	"	"	"	"	"	"	
Chloroform	ND	0.10	"	"	"	"	"	"	
Dichlorodifluoromethane (F12)	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.10	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.50	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.50	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.50	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.50	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.50	"	"	"	"	"	"	
Tetrachloroethene	ND	0.10	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.50	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.50	"	"	"	"	"	"	
Trichloroethene	ND	0.10	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.50	"	"	"	"	"	"	
Vinyl chloride	ND	0.05	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		106 %	75	-125	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		95.9 %	75	-125	"	"	"	"	
Surrogate: Toluene-d8		103 %	75	-125	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Leighton & Associates - Irvine

Project: LC061915-L4

17781 Cowan Irvine, CA, CA 92614 Project Number: 10618.006 / Deer Springs Road Project Manager: Mr. Kevin Bryan

Reported: 24-Jun-15 14:27

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV5-12' 3PV (E506079-02) Vapor Sampled: 19-	Jun-15 Recei	ved: 19-Jun-1	.5						
1,1-Difluoroethane (LCC)	ND	0.50	ug/l	0.05	EF51905	19-Jun-15	19-Jun-15	H&P 8260SV	
Methyl tertiary-butyl ether (MTBE)	ND	0.50	"	"	"	"	"	"	
Diisopropyl ether (DIPE)	ND	1.00	"	"	"	"	"	"	
Ethyl tert-butyl ether (ETBE)	ND	1.00	"	"	"	"	"	"	
Tertiary-amyl methyl ether (TAME)	ND	1.00	"	"	"	"	"	"	
Benzene	ND	0.10	"	"	"	"	"	"	
Toluene	ND	1.00	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	0.50	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tertiary-butyl alcohol (TBA)	ND	5.00	"	"	"	"	"	"	
Naphthalene	ND	0.10	"	"	"	"	"	"	
Chloroform	ND	0.10	"	"	"	"	"	"	
Dichlorodifluoromethane (F12)	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.10	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.50	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.50	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.50	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.50	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.50	"	"	"	"	"	"	
Tetrachloroethene	ND	0.10	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.50	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.50	"	"	"	"	"	"	
Trichloroethene	ND	0.10	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.50	"	"	"	"	"	"	
Vinyl chloride	ND	0.05	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		104 %	75	-125	"	"	"	"	
Surrogate: Dibromojiuoromeinane Surrogate: 1,2-Dichloroethane-d4		95.1 %		-125 -125	,,	,,	,,	"	
Surrogate: 1,2-Dichloroethane-a4 Surrogate: Toluene-d8		93.1 % 103 %		-125 -125	"	"	"	"	
Surrogue. Totale ao		105 /0	73	120					

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Leighton & Associates - Irvine

Project: LC061915-L4

17781 Cowan Irvine, CA, CA 92614 Project Number: 10618.006 / Deer Springs Road Reported:
Project Manager: Mr. Kevin Bryan 24-Jun-15 14:27

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV5-12' 10PV (E506079-03) Vapor Sample	ed: 19-Jun-15 Rece	ived: 19-Jun-	15						
1,1-Difluoroethane (LCC)	ND	0.50	ug/l	0.05	EF51905	19-Jun-15	19-Jun-15	H&P 8260SV	
Methyl tertiary-butyl ether (MTBE)	ND	0.50	"	"	"	"	"	"	
Diisopropyl ether (DIPE)	ND	1.00	"	"	"	"	"	"	
Ethyl tert-butyl ether (ETBE)	ND	1.00	"	"	"	"	"	"	
Tertiary-amyl methyl ether (TAME)	ND	1.00	"	"	"	"	"	"	
Benzene	ND	0.10	"	"	"	"	"	"	
Toluene	ND	1.00	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	0.50	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tertiary-butyl alcohol (TBA)	ND	5.00	"	"	"	"	"	"	
Naphthalene	ND	0.10	"	"	"	"	"	"	
Chloroform	ND	0.10	"	"	"	"	"	"	
Dichlorodifluoromethane (F12)	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.10	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.50	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.50	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.50	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.50	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.50	"	"	"	"	"	"	
Tetrachloroethene	ND	0.10	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.50	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.50	"	"	"	"	"	"	
Trichloroethene	ND	0.10	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.50	"	"	"	"	"	"	
Vinyl chloride	ND	0.05	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		109 %		-125	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		96.4 %		-125	"	"	"	"	
Surrogate: Toluene-d8		102 %	75	-125	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Leighton & Associates - Irvine

Project: LC061915-L4

17781 Cowan Irvine, CA, CA 92614 Project Number: 10618.006 / Deer Springs Road Project Manager: Mr. Kevin Bryan

Reported: 24-Jun-15 14:27

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV5-5' (E506079-04) Vapor Sampled: 19-Jun-15	Received: 1	9-Jun-15							
1,1-Difluoroethane (LCC)	ND	0.50	ug/l	0.05	EF51905	19-Jun-15	19-Jun-15	H&P 8260SV	
Methyl tertiary-butyl ether (MTBE)	ND	0.50	"	"	"	"	"	"	
Diisopropyl ether (DIPE)	ND	1.00	"	"	"	"	"	"	
Ethyl tert-butyl ether (ETBE)	ND	1.00	"	"	"	"	"	"	
Tertiary-amyl methyl ether (TAME)	ND	1.00	"	"	"	"	"	"	
Benzene	ND	0.10	"	"	"	"	"	"	
Toluene	ND	1.00	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	0.50	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tertiary-butyl alcohol (TBA)	ND	5.00	"	"	"	"	"	"	
Naphthalene	ND	0.10	"	"	"	"	"	"	
Chloroform	ND	0.10	"	"	"	"	"	"	
Dichlorodifluoromethane (F12)	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.10	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.50	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.50	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.50	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.50	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.50	"	"	"	"	"	"	
Tetrachloroethene	ND	0.10	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.50	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.50	"	"	"	"	"	"	
Trichloroethene	ND	0.10	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.50	"	"	"	"	"	"	
Vinyl chloride	ND	0.05	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		109 %		-125	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		97.3 %		-125	"	"	"	"	
Surrogate: Toluene-d8		105 %	75-	-125	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Leighton & Associates - Irvine

Project: LC061915-L4

17781 Cowan Irvine, CA, CA 92614 Project Number: 10618.006 / Deer Springs Road Project Manager: Mr. Kevin Bryan

Reported: 24-Jun-15 14:27

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV3-5' (E506079-05) Vapor Sampled: 19-Jun-15	Received: 1	9-Jun-15							
1,1-Difluoroethane (LCC)	ND	0.50	ug/l	0.05	EF51905	19-Jun-15	19-Jun-15	H&P 8260SV	
Methyl tertiary-butyl ether (MTBE)	ND	0.50	"	"	"	"	"	"	
Diisopropyl ether (DIPE)	ND	1.00	"	"	"	"	"	"	
Ethyl tert-butyl ether (ETBE)	ND	1.00	"	"	"	"	"	"	
Tertiary-amyl methyl ether (TAME)	ND	1.00	"	"	"	"	"	"	
Benzene	ND	0.10	"	"	"	"	"	"	
Toluene	ND	1.00	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	0.50	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tertiary-butyl alcohol (TBA)	ND	5.00	"	"	"	"	"	"	
Naphthalene	ND	0.10	"	"	"	"	"	"	
Chloroform	ND	0.10	"	"	"	"	"	"	
Dichlorodifluoromethane (F12)	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.10	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.50	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.50	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.50	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.50	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.50	"	"	"	"	"	"	
Tetrachloroethene	ND	0.10	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.50	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.50	"	"	"	"	"	"	
Trichloroethene	ND	0.10	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.50	"	"	"	"	"	"	
Vinyl chloride	ND	0.05	"	"	"	"	"	H .	
Surrogate: Dibromofluoromethane		110 %	75	-125	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		98.4 %		-125	,,	"	"	"	
Surrogate: 1,2-Dicnioroeinane-a4 Surrogate: Toluene-d8		98.4 % 102 %		-125 -125	"	"	"	"	
Surroguie. Totuene-uo		102 /0	/ 3-	-1 4 J					

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Leighton & Associates - Irvine

Project: LC061915-L4

17781 Cowan Irvine, CA, CA 92614 Project Number: 10618.006 / Deer Springs Road Project Manager: Mr. Kevin Bryan

Reported: 24-Jun-15 14:27

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV3-5' Rep (E506079-06) Vapor Sampled: 19	-Jun-15 Receive	d: 19-Jun-15							
1,1-Difluoroethane (LCC)	ND	0.50	ug/l	0.05	EF51905	19-Jun-15	19-Jun-15	H&P 8260SV	
Methyl tertiary-butyl ether (MTBE)	ND	0.50	"	"	"	"	"	"	
Diisopropyl ether (DIPE)	ND	1.00	"	"	"	"	"	"	
Ethyl tert-butyl ether (ETBE)	ND	1.00	"	"	"	"	"	"	
Tertiary-amyl methyl ether (TAME)	ND	1.00	"	"	"	"	"	"	
Benzene	ND	0.10	"	"	"	"	"	"	
Toluene	ND	1.00	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	0.50	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tertiary-butyl alcohol (TBA)	ND	5.00	"	"	"	"	"	"	
Naphthalene	ND	0.10	"	"	"	"	"	"	
Chloroform	ND	0.10	"	"	"	"	"	"	
Dichlorodifluoromethane (F12)	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.10	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.50	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.50	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.50	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.50	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.50	"	"	"	"	"	"	
Tetrachloroethene	ND	0.10	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.50	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.50	"	"	"	"	"	"	
Trichloroethene	ND	0.10	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.50	"	"	"	"	"	"	
Vinyl chloride	ND	0.05	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		107 %	75	-125	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		93.9 %		-125	"	"	"	"	
Surrogate: Toluene-d8		102 %		-125	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Leighton & Associates - Irvine

Project: LC061915-L4

17781 Cowan Irvine, CA, CA 92614 Project Number: 10618.006 / Deer Springs Road Project Manager: Mr. Kevin Bryan

Reported: 24-Jun-15 14:27

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV4-9.5' (E506079-07) Vapor Sampled: 19-Jun-	-15 Received:	19-Jun-15							
1,1-Difluoroethane (LCC)	ND	0.50	ug/l	0.05	EF51905	19-Jun-15	19-Jun-15	H&P 8260SV	
Methyl tertiary-butyl ether (MTBE)	ND	0.50	"	"	"	"	"	"	
Diisopropyl ether (DIPE)	ND	1.00	"	"	"	"	"	"	
Ethyl tert-butyl ether (ETBE)	ND	1.00	"	"	"	"	"	"	
Tertiary-amyl methyl ether (TAME)	ND	1.00	"	"	"	"	"	"	
Benzene	ND	0.10	"	"	"	"	"	"	
Toluene	ND	1.00	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	0.50	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tertiary-butyl alcohol (TBA)	ND	5.00	"	"	"	"	"	"	
Naphthalene	ND	0.10	"	"	"	"	"	"	
Chloroform	ND	0.10	"	"	"	"	"	"	
Dichlorodifluoromethane (F12)	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.10	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.50	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.50	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.50	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.50	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.50	"	"	"	"	"	"	
Tetrachloroethene	ND	0.10	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.50	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.50	"	"	"	"	"	"	
Trichloroethene	ND	0.10	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.50	"	"	"	"	"	"	
Vinyl chloride	ND	0.05	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		112 %	75-	-125	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		99.2 %		125	"	"	"	"	
Surrogate: Toluene-d8		103 %		125	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Leighton & Associates - Irvine

Project: LC061915-L4

17781 Cowan Irvine, CA, CA 92614 Project Number: 10618.006 / Deer Springs Road Reported:
Project Manager: Mr. Kevin Bryan 24-Jun-15 14:27

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV4-5' (E506079-08) Vapor Sampled: 19-Jun-	15 Received: 19	9-Jun-15							
1,1-Difluoroethane (LCC)	ND	0.50	ug/l	0.05	EF51905	19-Jun-15	19-Jun-15	H&P 8260SV	·
Methyl tertiary-butyl ether (MTBE)	ND	0.50	"	"	"	"	"	"	
Diisopropyl ether (DIPE)	ND	1.00	"	"	"	"	"	"	
Ethyl tert-butyl ether (ETBE)	ND	1.00	"	"	"	"	"	"	
Tertiary-amyl methyl ether (TAME)	ND	1.00	"	"	"	"	"	"	
Benzene	ND	0.10	"	"	"	"	"	"	
Toluene	ND	1.00	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	0.50	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tertiary-butyl alcohol (TBA)	ND	5.00	"	"	"	"	"	"	
Naphthalene	ND	0.10	"	"	"	"	"	"	
Chloroform	ND	0.10	"	"	"	"	"	"	
Dichlorodifluoromethane (F12)	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.10	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.50	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.50	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.50	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.50	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.50	"	"	"	"	"	"	
Tetrachloroethene	ND	0.10	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.50	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.50	"	"	"	"	"	"	
Trichloroethene	ND	0.10	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.50	"	"	"	"	"	"	
Vinyl chloride	ND	0.05	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		106 %	75-	-125	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		100 %		125	"	"	"	"	
Surrogate: Toluene-d8		109 %		125	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Leighton & Associates - Irvine

Project: LC061915-L4

17781 Cowan Irvine, CA, CA 92614 Project Number: 10618.006 / Deer Springs Road Reported:
Project Manager: Mr. Kevin Bryan 24-Jun-15 14:27

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV1-5' (E506079-09) Vapor Sampled: 19-Jun-15	Received: 1	9-Jun-15							
1,1-Difluoroethane (LCC)	ND	0.50	ug/l	0.05	EF51905	19-Jun-15	19-Jun-15	H&P 8260SV	
Methyl tertiary-butyl ether (MTBE)	ND	0.50	"	"	"	"	"	"	
Diisopropyl ether (DIPE)	ND	1.00	"	"	"	"	"	"	
Ethyl tert-butyl ether (ETBE)	ND	1.00	"	"	"	"	"	"	
Tertiary-amyl methyl ether (TAME)	ND	1.00	"	"	"	"	"	"	
Benzene	ND	0.10	"	"	"	"	"	"	
Toluene	ND	1.00	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	0.50	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tertiary-butyl alcohol (TBA)	ND	5.00	"	"	"	"	"	"	
Naphthalene	ND	0.10	"	"	"	"	"	"	
Chloroform	ND	0.10	"	"	"	"	"	"	
Dichlorodifluoromethane (F12)	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.10	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.50	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.50	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.50	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.50	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.50	"	"	"	"	"	"	
Tetrachloroethene	ND	0.10	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.50	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.50	"	"	"	"	"	"	
Trichloroethene	ND	0.10	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.50	"	"	"	"	"	"	
Vinyl chloride	ND	0.05	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		106 %		-125	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		94.2 %		-125	"	"	"	"	
Surrogate: Toluene-d8		102 %	75	-125	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Leighton & Associates - Irvine

Project: LC061915-L4

17781 Cowan Irvine, CA, CA 92614 Project Number: 10618.006 / Deer Springs Road Project Manager: Mr. Kevin Bryan

Reported: 24-Jun-15 14:27

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV2-5' (E506079-10) Vapor Sampled: 19-Jun-15	Received: 1	9-Jun-15							
1,1-Difluoroethane (LCC)	ND	0.50	ug/l	0.05	EF51905	19-Jun-15	19-Jun-15	H&P 8260SV	·
Methyl tertiary-butyl ether (MTBE)	ND	0.50	"	"	"	"	"	"	
Diisopropyl ether (DIPE)	ND	1.00	"	"	"	"	"	"	
Ethyl tert-butyl ether (ETBE)	ND	1.00	"	"	"	"	"	"	
Tertiary-amyl methyl ether (TAME)	ND	1.00	"	"	"	"	"	"	
Benzene	0.15	0.10	"	"	"	"	"	"	
Toluene	ND	1.00	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	0.50	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tertiary-butyl alcohol (TBA)	ND	5.00	"	"	"	"	"	"	
Naphthalene	ND	0.10	"	"	"	"	"	"	
Chloroform	ND	0.10	"	"	"	"	"	"	
Dichlorodifluoromethane (F12)	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.10	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.50	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.50	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.50	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.50	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.50	"	"	"	"	"	"	
Tetrachloroethene	ND	0.10	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.50	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.50	"	"	"	"	"	"	
Trichloroethene	ND	0.10	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.50	"	"	"	"	"	"	
Vinyl chloride	ND	0.05	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		107 %	75-	-125	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		101 %		125	"	"	"	"	
Surrogate: Toluene-d8		100 %		125	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Reported:

Leighton & Associates - Irvine

Project: LC061915-L4

17781 Cowan Irvine, CA, CA 92614 Project Number: 10618.006 / Deer Springs Road

Project Manager: Mr. Kevin Bryan 24-Jun-15 14:27

Petroleum Hydrocarbon Analysis

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV5-12' 1PV (E506079-01) Vapor Sampled: 19-Ju	n-15 Recei	ved: 19-Jun-1	5			•	-		
TPHv (C5 - C12)	ND	200	ug/l	0.05	EF51905	19-Jun-15	19-Jun-15	H&P 8260SV	
SV5-12' 3PV (E506079-02) Vapor Sampled: 19-Ju	n-15 Recei	ved: 19-Jun-1	5						
TPHv (C5 - C12)	ND	200	ug/l	0.05	EF51905	19-Jun-15	19-Jun-15	H&P 8260SV	
SV5-12' 10PV (E506079-03) Vapor Sampled: 19-J	un-15 Reco	eived: 19-Jun-	15						
TPHv (C5 - C12)	ND	200	ug/l	0.05	EF51905	19-Jun-15	19-Jun-15	H&P 8260SV	
SV5-5' (E506079-04) Vapor Sampled: 19-Jun-15	Received: 1	9-Jun-15							
TPHv (C5 - C12)	ND	200	ug/l	0.05	EF51905	19-Jun-15	19-Jun-15	H&P 8260SV	
SV3-5' (E506079-05) Vapor Sampled: 19-Jun-15	Received: 1	9-Jun-15							
TPHv (C5 - C12)	ND	200	ug/l	0.05	EF51905	19-Jun-15	19-Jun-15	H&P 8260SV	
SV3-5' Rep (E506079-06) Vapor Sampled: 19-Jun	-15 Receiv	ed: 19-Jun-15							
TPHv (C5 - C12)	ND	200	ug/l	0.05	EF51905	19-Jun-15	19-Jun-15	H&P 8260SV	
SV4-9.5' (E506079-07) Vapor Sampled: 19-Jun-15	Received:	19-Jun-15							
TPHv (C5 - C12)	ND	200	ug/l	0.05	EF51905	19-Jun-15	19-Jun-15	H&P 8260SV	
SV4-5' (E506079-08) Vapor Sampled: 19-Jun-15	Received: 1	9-Jun-15							
TPHv (C5 - C12)	ND	200	ug/l	0.05	EF51905	19-Jun-15	19-Jun-15	H&P 8260SV	
SV1-5' (E506079-09) Vapor Sampled: 19-Jun-15	Received: 1	9-Jun-15							
TPHv (C5 - C12)	ND	200	ug/l	0.05	EF51905	19-Jun-15	19-Jun-15	H&P 8260SV	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Leighton & Associates - Irvine

Project: LC061915-L4

17781 Cowan Irvine, CA, CA 92614 Project Number: 10618.006 / Deer Springs Road Project Manager: Mr. Kevin Bryan Reported: 24-Jun-15 14:27

Petroleum Hydrocarbon Analysis

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV2-5' (E506079-10) Vapor	Sampled: 19-Jun-15 Received:	19-Jun-15							
TPHv (C5 - C12)	ND	200	ug/l	0.05	EF51905	19-Jun-15	19-Jun-15	H&P 8260SV	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Reported:

Leighton & Associates - Irvine

Project: LC061915-L4

17781 Cowan Irvine, CA, CA 92614 Project Number: 10618.006 / Deer Springs Road

Project Manager: Mr. Kevin Bryan 24-Jun-15 14:27

Volatile Organic Compounds by H&P 8260SV - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD					
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes				
Batch EF51905 - EPA 5030														
Blank (EF51905-BLK1)	Prepared & Analyzed: 19-Jun-15													

Blank (EF51905-BLK1)				Prepared & Analyzed: 19-Jun-15
1,1-Difluoroethane (LCC)	ND	0.50	ug/l	
Methyl tertiary-butyl ether (MTBE)	ND	0.50	"	
Diisopropyl ether (DIPE)	ND	1.00	"	
Ethyl tert-butyl ether (ETBE)	ND	1.00	"	
Tertiary-amyl methyl ether (TAME)	ND	1.00	"	
Benzene	ND	0.10	"	
Toluene	ND	1.00	"	
Ethylbenzene	ND	0.50	"	
m,p-Xylene	ND	0.50	"	
o-Xylene	ND	0.50	"	
Tertiary-butyl alcohol (TBA)	ND	5.00	"	
Naphthalene	ND	0.10	"	
Chloroform	ND	0.10	"	
Dichlorodifluoromethane (F12)	ND	0.50	"	
1,1-Dichloroethane	ND	0.50	"	
1,2-Dichloroethane (EDC)	ND	0.10	"	
1,1-Dichloroethene	ND	0.50	"	
cis-1,2-Dichloroethene	ND	0.50	"	
trans-1,2-Dichloroethene	ND	0.50	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.50	"	
Methylene chloride (Dichloromethane)	ND	0.50	"	
Tetrachloroethene	ND	0.10	"	
1,1,2-Trichloroethane	ND	0.50	"	
1,1,1-Trichloroethane	ND	0.50	"	
Trichloroethene	ND	0.10	"	
Trichlorofluoromethane (F11)	ND	0.50	"	
Vinyl chloride	ND	0.05	"	
Surrogate: Dibromofluoromethane	2.60		"	2.50 104 75-125
Surrogate: 1,2-Dichloroethane-d4	2.36		"	2.50 94.5 75-125
Surrogate: Toluene-d8	2.49		"	2.50 99.8 75-125

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Leighton & Associates - Irvine

Project: LC061915-L4

17781 Cowan Irvine, CA, CA 92614 Project Number: 10618.006 / Deer Springs Road Project Manager: Mr. Kevin Bryan

Spike

Source

Reported: 24-Jun-15 14:27

RPD

%REC

Volatile Organic Compounds by H&P 8260SV - Quality Control H&P Mobile Geochemistry, Inc.

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EF51905 - EPA 5030										
LCS (EF51905-BS1)				Prepared &	Analyzed:	19-Jun-15				
Benzene	4.9	0.10	ug/l	5.00		97.4	70-130			
Toluene	4.7	1.00	"	5.00		93.4	70-130			
Ethylbenzene	5.3	0.50	"	5.00		107	70-130			
m,p-Xylene	10	0.50	"	10.0		100	70-130			
o-Xylene	5.0	0.50	"	5.00		100	70-130			
Chloroform	4.9	0.10	"	5.00		97.8	70-130			
Dichlorodifluoromethane (F12)	4.0	0.50	"	5.00		80.1	70-130			
1,1-Dichloroethane	4.9	0.50	"	5.00		97.9	70-130			
1,2-Dichloroethane (EDC)	5.0	0.10	"	5.00		100	70-130			
1,1-Dichloroethene	5.8	0.50	"	5.00		117	70-130			
cis-1,2-Dichloroethene	5.1	0.50	"	5.00		103	70-130			
trans-1,2-Dichloroethene	5.0	0.50	"	5.00		100	70-130			
1,1,2 Trichlorotrifluoroethane (F113)	6.4	0.50	"	5.00		128	70-130			
Methylene chloride (Dichloromethane)	4.7	0.50	"	5.00		93.1	70-130			
Tetrachloroethene	5.1	0.10	"	5.00		102	70-130			
1,1,2-Trichloroethane	4.9	0.50	"	5.00		98.2	70-130			
1,1,1-Trichloroethane	4.8	0.50	"	5.00		95.2	70-130			
Trichloroethene	4.9	0.10	"	5.00		98.2	70-130			
Trichlorofluoromethane (F11)	4.6	0.50	"	5.00		91.0	70-130			
Vinyl chloride	4.8	0.05	"	5.00		96.5	70-130			
Surrogate: Dibromofluoromethane	2.77		"	2.50		111	75-125			
Surrogate: 1,2-Dichloroethane-d4	2.42		"	2.50		96.8	75-125			
Surrogate: Toluene-d8	2.48		"	2.50		99.2	75-125			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Leighton & Associates - Irvine Project: LC061915-L4

17781 CowanProject Number:10618.006 / Deer Springs RoadReported:Irvine, CA, CA 92614Project Manager:Mr. Kevin Bryan24-Jun-15 14:27

Petroleum Hydrocarbon Analysis - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EF51905 - EPA 5030

 Blank (EF51905-BLK1)
 Prepared & Analyzed: 19-Jun-15

 TPHv (C5 - C12)
 ND
 200
 ug/l

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Leighton & Associates - Irvine Project: LC061915-L4

17781 CowanProject Number:10618.006 / Deer Springs RoadReported:Irvine, CA, CA 92614Project Manager:Mr. Kevin Bryan24-Jun-15 14:27

Notes and Definitions

LCC Leak Check Compound

ND Analyte NOT DETECTED at or above the reporting limit

MDL Method Detection Limit

%REC Percent Recovery

RPD Relative Percent Difference

Appendix

H&P Mobile Geochemistry, Inc. is approved as an Environmental Testing Laboratory and Mobile Laboratory in accordance with the DoD-ELAP and the ISO 17025 programs, certification number L11-175.

H&P is approved by the State of Arizona as an Environmental Testing Laboratory and Mobile Laboratory, certification numbers AZM758 and AZ0779.

H&P is approved by the State of California as an Environmental Laboratory and Mobile Laboratory in conformance with the Environmental Laboratory Accreditation Program (ELAP) for the category of Volatile and Semi-Volatile Organic Chemistry of Hazardous Waste, certification numbers 2740, 2741, 2743, 2744, 2745, 2754 & 2930.

H&P is approved by the State of Florida Department of Health under the National Environmental Laboratory Accreditation Conference (NELAC) certification number E871100.

The complete list of stationary and mobile laboratory certifications along with the fields of testing (FOTs) and analyte lists are available at www.handpmg.com/about/certifications.

2470 Impala Drive, Carlsbad, CA 92010 & Field Office - Signal Hill, CA W handpmg.com E info@handpmg.com P 760.804.9678 F 760.804.9159

VAPOR / AIR Chain of Custody

DATE:	6/19	115
Page	of	1

	Lat	Lab Client and Project Information										_			Sample	e Rece	eipt (L	ab Us	e Only	()		
Lab Client/Consultant: LEIGH		W50071	ACCOUNT NAME OF TAXABLE PARTY.	Project N		106	18.00	6						Date	Rec'd:	6/10	9	Contro	1#: 19	050	25.001	101
F - 1 - 10 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	N BRYAN	4	CATES	Project L	ocation: D			55 RO	. E	SCONT	oip.		-	H&P	Project i		CC	61	91	5-1	_+	
Lab Clinat Address:	COWAN	0	ML 9/19	Report E	-Mail(s):									Lab V	Vork Ord	-		27/05 G-1	07			
Laborator Co. L. Tr.	, CA 92		2/17	KE	RYAL	Va	LEIGH	ITONG!	ROUP	COL	1			Samo	le Intac	- 0	_		See N	- 60	elow	
	B1-428	-		Kr	IALL								- 1		pt Gaug	-	-		3 222		20°c	153
Reporting Requireme		_	urnaroun	d Time	. 10		Sam	pler Info	rmatio	n			- 1	Outsi	de Lab:	78.0					206	
*	Level IV	☐ 5-7 da							ILLAR					Recei	pt Notes	s/Trackir	ng #:		A 10			
Excel EDD Other EDD:	T. Hande	☐ 3-day		-	Mobile Lab Signature: 0 Mm																	
CA Geotracker Global ID:										77					VIII		22.01					
CA Geotracker Global ID.	ons to Laboratory: 48-Hr Rush Other. Date: 6/19/15															Lac	PM Init	HHS:				
Check if Project Analyte List is I Preferred VOC units (please cho				51	AM	Α-	B	190.		nd Full List	VOCs Short List / Project List S260SV □ T0-15	□T0-15	\aphthalene \tag{4805V \tag{17m} 10-15 \tag{17m}	□T0-15m	TPHV as Diesel (sorbent tube)	Aromatic/Aliphatic Fractions 3260SVm TO-15m	Ck Compound	PA 8015m	Fixed Gases by ASTM D1945			
SAMPLE NAME	FIELD POINT NAME (if applicable)	DATE mm/dd/yy	TIME 24hr clock	Indoor Air Air (AA), S			CONTAINER ID (###)	CONTAINER ID (###) Lab use only: Receipt Vac VOCs Standard Full List VOCs Standard Full List VOCs Short List / Project S260SV \(\text{TO-15}\)				Naphthalene	TPHv as Gas	TPHV as Dies	Aromatic/Aliphat	Leak Check Compound	Methane by EPA 8015m	Fixed Gases	1			
SV5-12 IPV		6/10/15	840	S	V	GLAS	55 144E				V			1			V					
5V5-12'3PV		1	905	1			1			П	V		1	V			1					
SV5 - 12' 10PV			928								V			1			V					
5V5 -51			955								V	1		/			V					
5V3-5			1031	ľ i							V			V			V					
SV3-5' REP			1031								V			V			V					
SV4-9.5'			1135								V			V			1			-		
5v4-5'			1145						- 20		V			V			V					
SVI-5'			1240						17.71		V			1	- 1		1					
SV2-5'		J	1340						1		V			1	7		1					
Approved Rainquipper of Mall		Company L/A		E ^{sst}	9/15	Time: 1	ort	Received by:	Do.	NALI	1.	Mi	LAR	Company	H	&P	Date	6/1	9/15	Time:	1410	0
Approved Relinquished by:		Company		Date:	1	Time:		Received by:						Company			Date:			Time:		
Approved Relinquished by:		Company	5	Date		Time:		Received by:					- 0	Company	£:		Date:			Time:		

H&P Mobile Geochemistry, Inc. 2470 Impala Drive, Carlsbad, CA 92010 Field Office in Signal Hill, CA (Los Angeles) Ph: 800-834-9888 www.handpmg.com

H&P Method 8260SV (Modified EPA 8260B) Soil Vapor VOC List per SD SAM + TPH gas

Compound - SAM List A Fuels	CAS#	Standard RL Vapor (µg/L)
Methyl tertiary-butyl ether (MTBE)	1634-04-4	0.5
Disopropyl ether (DIPE)	108-20-3	1
Ethyl tertiary-butyl ether (ETBE)	637-92-3	1
Benzene	71-43-2	0.1
Tertiary-amyl methyl ether (TAME)	994-05-8	1
Toluene	108-88-3	1
Ethylbenzene	100-41.4	0.5
m,p-Xylene	179601-23-1	0.5
o-Xylene	95-47-6	0.5
Naphthalene	91-20-3	0.1
Tertiary-butyl alcohol (TBA)	75-65-0	5

Compound - SAM List B Solvents	CAS#	Standard RL Vapor (µg/L)
Dichlorodifluoromethane (F12)	75-71-8	0.5
Vinyl chloride	75-01-4	0.05
Trichlorofluoromethane (F11)	75-69-4	0.5
1,1-Dichloroethene	75-35-4	0.5
1,1,2-Trichlorotrifluoroethane (F113)	76-13-1	0.5
Methylene chloride (Dichloromethane)	75-09-2	0.5
trans-1,2-Dichloroethene	156-60-5	0.5
1,1-Dichloroethane	75-34-3	0.5
cis-1,2-Dichloroethene	156-59-2	0.5
Chloroform	67-66-3	0.1
1,1,1-Trichloroethane	71-55-6	0.5
1,2-Dichloroethane (EDC)	107-06-2	0.1
Trichloroethene	79-01-6	0.1
1,1,2-Trichloroethane	79-00-5	0.5
Tetrachloroethene	127-18-4	0.1
Look Chack Compound		2.3

Leak Check Compound
1,1-Diffuoroethane (LCC)
75-37-6

(m) 0.5 pg 26

TPH by LUFT GC/MS TPH gas (C5-C12)

200

Ц	D	Mobile Geochemistry Inc.
η	7.	Geochemistry Inc.

Log Sheet: Soil Vapor Sampling with Syringe

FMS004
Revision: 2
Revised: 12/4/14
Effective: 1/1/15
Page Loft

H&P Project #:	LC061915-L4	Date:	1/10/11	Effective: 1/1/1 Page 1 of
Site Address:	MOSA ROCK RD AND DEER SPRINGS,	Escoverdo Page:	/ of	
Consultant:	LEIGHTON CONSULTING	H&P Rep(s):	D. MILLAR, E. CORSON	Reviewed: 05
Consultant Rep(s):	KEVIN HALL		K. SCHINDLER	Scanned: Fu

Purge Volume Calculation							
PVT Probe ID, if applicable:	5V5-12' FITTING: 20mL						
Tubing:	Length: 14 Diameter: 1/6 1 Volume: 14cc						
Sand Pack:	Height: / Diameter: / 1 Volume: /						
Dry Bentonite:	Height: / Diameter: / 1 Volume:						
PVT Increments:	1 PV = 34ec 3 PV= 102 10 PV = 340						
PV Amount Selected:	I PV Selected by: K. HALL						

2 /	Sample Volume
" ⊡ 50cc Glass S	yringe ☐ 100cc Glass Syringe ☐ Other
/	Leak Check Compound
Ø 1,1-DFA	☐ 1,1,1,2-TFA ☐ IPA ☐ Other
probe seal. This is	th LCC is placed around tubing connections and at the done prior to every soil vapor sample collected unless erwise noted in the field notes below.

	Sample Info	rmatio	n			Probe Specs			Collection Information							
	Point ID	Syringe ID	Date	Sample Time		Tubing Length (ft)	Tubing Dia (in.)	Sand Pack Ht (in.)	Sand Pack Dia (in.)	Dry Bent. Ht (in.)	Dry Bent. Dia (in.)	Purge Vol (mL)	Shut-in Test (✓=Pass)	Flow Rate (mL/min)	Probe Vacuum ("Hg)	Field Notes
1	SV5-12 1PV	187	6/19	840	12"	14'	1/8	/	/	/	/	342	/	<200	8	1.
2	5 V5 -12' 3PV	190	6/19	905	121	14,	1/8	/	/		/	102€	1	<200	8	/
3	5V5 - 12'10PV	151	6/14	928	12'	(9)	1/8	/	/		/	340.	V	<200	8	/
4	SV5 -5'	188	6/19	955	12	10'	1/8	/	/	/	/	30ec	1	4200	8	5 PROBE PEPTU
-5	SV3-61	187	6/19	1031	5'	101	48		/	/	/	30 00	V	4200	8	1
6	5 V 3 - 5" REP	190	6/19	1031	5'	10	1/8	/	/	/	/	80cc	/	<200	0	/
-7	SV4-9.5'	151	6/19	1135	9.5	14'	1/8	/	/	/	/	34ec	/	<200	0	/
8	SV4-5'	187	6/19	1145	5"	101	1/8	/	/		/	30cc	1	<200	N	/
9	SV1-5'	174	6/19	1240	5'	10'	1/8		/		/	30rc	V	5200	8	V
-10	SV2-5'	190	1/19	1340	5'	10'	1/8	/	/	/	/	30 € €	V	4200	0	V
11														- 4	7	
12						12										

Site Notes (e.g. weather, visitors, scope deviations, health & safety issues, etc.):

20mL PRT FITTING 20mL+14mL= 34cc D3 M

APPENDIX E HUMAN HEALTH RISK CALCULATION PRINTOUTS

SITE ASSESSMENT & MITIGATION VAPOR RISK ASSESSMENT MODEL

Input Data

Version: November 1999

Revised 07/29/2010

Page 1-2

Case Name:

Newland, 10618.006

CHEMICAL OF CONCERN:

Enter Chemical Name = benzene

C11 benzene E11 dichloromethane (methylene chloride)

C12 benzo(a)pyrene E12 ethylbenzene C13 carbon tetrachloride E13 naphthalene

C14 chlorobenzene E14 methyl tertiary butyl ether (MTBE)

C15 chloroethane (ethyl chloride) E15 tetrachloroethene (PCE)

C16 chloromethane (methyl chloride) E16 toluene

C17 1,2-dichlorobenzene

C18 1,3-dichlorobenzene

C19 1,4-dichlorobenzene

E17 1,1,1-trichloroethane

E18 1,1,2-trichloroethane

E19 trichloroethene (TCE)

C20 1,1-dichloroethene (1,1-DCE) E20 trichloromethane (chloroform)

C21 trans-1,2-dichloroethene E21 vinyl chloride

C22 1,1-dichloroethane (1,1-DCA)

E22 xylene

C23 1,2-dichloroethane (1,2-DCA)

Chemical Mixture (if app.) = Gasoline

C27 Gasoline E27 Fuel Oil C28 Kerosene E28 Waste Oil

C29 Diesel

If compound is not listed then data must be entered into the site-specific field.

SITE SPECIFIC INFORMATION			Site-Specific	Value Used
Mole fraction	dimensionless	MF		0.0000
Temperature	K	T		293
Water concentration (chemical)	ug/l	C_{w}		0
Soil concentration (chemical)	mg/kg	C _t		0
Soil concentration (TPH/TRPH)	mg/kg	C _t		0
Soil gas concentration (measured)	mg/m3 (ug/l)	$C_{sg}(m)$	0.15	0.15
Depth of contamination or Soil Gas	m	Χ	1.524	1.524

SITE ASSESSMENT & MITIGATION VAPOR RISK ASSESSMENT MODEL Data Input

Page 2-2

Version: November 1999

Revised 07/29/2010

				Revised 07/29/2010
CHEMICAL PROPERTIES			Site Specific	Value Used
Henry's Law Constant	dimensionless	Н		0.23
Vapor pressure	atm	VP		0.13
Molecular weight (chemical)	mg/mole	MW		78,110
Molecular weight (mixture)	mg/mole	MW(m)		100,000
Universal gas constant	atm-m3/mole-K	R	XXXXXXXXXX	8.20E-05
Diffusion coefficient in air	cm2/sec	D _a		0.088
Organic carbon partitioning coef.	cm3/gm	K _{oc}		62
SOIL PROPERTIES				
Total porosity	dimensionless	θ		0.3
Air-filled porosity	dimensionless	θ_{a}		0.2
Water-filled porosity	dimensionless	$\theta_{\sf w}$	XXXXXXXXXX	0.1
Bulk density (dry)	gm/cc	r _b		1.8
Weight fraction of organic carbon	dimensionless	foc		0.01
BUILDING SPECIFICATIONS				
Floor area of building	m2	Α		1
% of floor area that flux occurs	dimensionless		500%	500%
Interior Height of building	m	R _h		2.44
Exchange rate of air	exchanges/hr	E	0.5	0.5
Slab Attenuation factor	dimensionless	S _b	0.01	0.01
OUTDOOR AIR COMPONENT				
Downwind contamination length	m	L		0
Wind speed	m/hr	u		16000
Height of building openings	m	h		2
EXPOSURE SCENARIO Default values	are for Industrial L	Jses		
Body weight	kg	BW	15	15
Inhalation rate	m3/day	IR	10	10
Exposure duration	yrs	ED	30	30
Hours per day	hr/day		24	24
Days per week	days/week		7	7
Weeks per year	weeks/yr		52	52
HEALTH RISK FACTORS	-			
Reference dose	mg/kg-day	RfD		0.0086
Slope factor (potency)	1/(mg/kg-day)	SF		0.1

SITE ASSESSMENT & MITIGATION VAPOR RISK ASSESSMENT MODEL

Input Data Version: November 1999

Revised 07/29/2010

Page 1-2

Case Name:

Newland, 10618.006

CHEMICAL OF CONCERN:

Enter Chemical Name = benzene

C11 benzene E11 dichloromethane (methylene chloride)

C12 benzo(a)pyrene E12 ethylbenzene C13 carbon tetrachloride E13 naphthalene

C14 chlorobenzene E14 methyl tertiary butyl ether (MTBE)

C15 chloroethane (ethyl chloride) E15 tetrachloroethene (PCE)

C16 chloromethane (methyl chloride)

E16 toluene

C17 1,2-dichlorobenzene E17 1,1,1-trichloroethane

C18 1,3-dichlorobenzene E18 1,1,2-trichloroethane

C19 1,4-dichlorobenzene E19 trichloroethene (TCE)
C20 1,1-dichloroethene (1,1-DCE) E20 trichloromethane (chloroform)

C21 trans-1,2-dichloroethene E21 vinyl chloride

C22 1,1-dichloroethane (1,1-DCA)

E22 vinyl chloride

E22 vinyl chloride

E22 xylene

C23 1,2-dichloroethane (1,2-DCA)

Chemical Mixture (if app.) = Gasoline

C27 Gasoline E27 Fuel Oil
C28 Kerosene E28 Waste Oil

C29 Diesel

If compound is not listed then data must be entered into the site-specific field.

SITE SPECIFIC INFORMATION			Site-Specific	Value Used
Mole fraction	dimensionless	MF		0.0000
Temperature	K	Т		293
Water concentration (chemical)	ug/l	C_{w}		0
Soil concentration (chemical)	mg/kg	C _t		0
Soil concentration (TPH/TRPH)	mg/kg	C _t		0
Soil gas concentration (measured)	mg/m3 (ug/l)	$C_{sg}(m)$	0.1	0.1
Depth of contamination or Soil Gas	m	Χ	3.6576	3.6576

SITE ASSESSMENT & MITIGATION VAPOR RISK ASSESSMENT MODEL Data Input

Page 2-2

Version: November 1999

Revised 07/29/2010

CHEMICAL PROPERTIES			Site Specific	Value Used
Henry's Law Constant	dimensionless	Н		0.23
Vapor pressure	atm	VP		0.13
Molecular weight (chemical)	mg/mole	MW		78,110
Molecular weight (mixture)	mg/mole	MW(m)		100,000
Universal gas constant	atm-m3/mole-K		XXXXXXXXXX	8.20E-05
Diffusion coefficient in air	cm2/sec	D _a		0.088
Organic carbon partitioning coef.	cm3/gm	K _{oc}		62
SOIL PROPERTIES	James gara	00		
Total porosity	dimensionless	θ		0.3
Air-filled porosity	dimensionless	θ_a		0.2
Water-filled porosity	dimensionless	θ_{w}	XXXXXXXXXX	0.1
Bulk density (dry)	gm/cc	r _b		1.8
Weight fraction of organic carbon	dimensionless	foc		0.01
BUILDING SPECIFICATIONS				
Floor area of building	m2	Α		1
% of floor area that flux occurs	dimensionless		500%	500%
Interior Height of building	m	R _h		2.44
Exchange rate of air	exchanges/hr	E	0.5	0.5
Slab Attenuation factor	dimensionless	S _b	0.01	0.01
OUTDOOR AIR COMPONENT				
Downwind contamination length	m	L		0
Wind speed	m/hr	u		16000
Height of building openings	m	h		2
EXPOSURE SCENARIO Default values	are for Industrial L	Jses		
Body weight	kg	BW	15	15
Inhalation rate	m3/day	IR	10	10
Exposure duration	yrs	ED	30	30
Hours per day	hr/day		24	24
Days per week	days/week		7	7
Weeks per year	weeks/yr		52	52
HEALTH RISK FACTORS	•			
Reference dose	mg/kg-day	RfD		0.0086
Slope factor (potency)	1/(mg/kg-day)	SF		0.1