

BF-7 BMP DMA MAPBOOK

SCALE: 1"=250'

SHEET 7 OF 7

ATTACHMENT 2

BACKUP FOR PDP HYDROMODIFICATION CONTROL MEASURES

This is the cover sheet for Attachment 2.

☐ Mark this box if this attachment is empty because the project is exempt from PDP hydromodification management requirements.

Indicate which Items are Included behind this cover sheet:

Attachment		
Sequence	Contents	Checklist
Attachment 2a	Flow Control Facility Design, including Structural BMP Drawdown Calculations and Overflow Design Summary (Required) See Chapter 6 and Appendix G of the BMP Design Manual	☑ Included☐ Submitted as separate standalone document
Attachment 2b	Hydromodification Management Exhibit (Required)	 ☑ Included See Hydromodification Management Exhibit Checklist on the back of this Attachment cover sheet.
Attachment 2c	Management of Critical Coarse Sediment Yield Areas See Section 6.2 and Appendix H of the BMP Design Manual.	 ☑ Exhibit depicting onsite and/or upstream sources of critical coarse sediment as mapped by Regional or Jurisdictional approaches outlined in Appendix H.1 AND, ☐ Demonstration that the project effectively avoids and bypasses sources of mapped critical coarse sediment per approaches outlined in Appendix H.2 and H.3. OR, ☐ Demonstration that project does not generate a net impact on the receiving water per approaches outlined in Appendix H.4.
Attachment 2d	Geomorphic Assessment of Receiving Channels (Optional) See Section 6.3.4 of the BMP Design Manual.	 □ Not performed ☑ Included □ Submitted as separate standalone document
Attachment 2e	Vector Control Plan (Required when structural BMPs will not drain in 96 hours)	☐ Included☒ Not required because BMPs will drain in less than 96 hours

Template Date: March 16, 2016 Preparation Date: 12/12/2016

LUEG:SW PDP SWQMP - Attachments

Attachment 2a

Flow Control Facility Design, including Structural BMP Drawdown Calculations and Overflow Design Summary

Note: The BMP Sizing Spreadsheet calculations are intended to demonstrate feasibility <u>only</u> and are not to be used for final BMP design: Continuous simulation modeling will be provided at Final Engineering.

	BMP Sizing Spreadsheet V1.04								
Project Name:	Otay 250	Hydrologic Unit:	911 Tijuana Watershed						
Project Applicant:	Stevens Cresto Engineering	Rain Gauge:	Lindbergh						
Jurisdiction:	County of San Diego	Total Project Area:	253 AC						
Parcel (APN):		Low Flow Threshold:	0.5Q2						
BMP Name:	BF 1	BMP Type:	Bioretention						
BMP Native Soil Type:	D	BMP Infiltration Rate (in/hr):	0.024						

<u>:</u> e	BMP Siz	Minimum BN		ctors	HMP Sizing Fac				ing to BMP	Areas Draini		
Subsurface Vo	olume	Surface Volur (cf)	Surface Area (sf)	Subsurface Volume	Surface Volume	Surface Area	Runoff Factor (Table 4-2)	Post Project Surface Type	Slope	Soil Type	Area (sf)	DMA Name
9695	2	13472	16159	0.048	0.0667	0.08	1.0	ASPHALT	Flat	D	201983	PER TO IMP
8813	6	12246	14688	0.048	0.0667	0.08	0.1	LANDSCAPE	Flat	D	1836023	PER TO PER
120		167	200	0.048	0.0667	0.08	0.1	BIOFILTER	Flat	D	25000	BF 1
To												
18628	5	25885	31046.824	Minimum BMP Size							2063006	Total BMP Area
15000 4)	30000	25000	Proposed BMP Size*								
n) ii	18.00	Soil Matrix Depth									
n	2 ii	12.42	um Ponding Depth	Minim								
n	8 ii	192.08	um Ponding Depth	Maxim								
n	ii (14.40	ted Ponding Depth	Selec								

Describe the BMP's in sufficient detail in your SWMP to demonstrate the area, volume, and other criteria can be met within the constraints of the site.

BMP's must be adapted and applied to the conditions specific to the development project such as unstable slopes or the lack of available head. Designated Staff have final review and approval authority over the project design.

This Sizing Calculator has been developed in compliance with the Countywide Model SUSMP. For questions or concerns please contact the jurisdiction in which your project is located.

BMP Sizing Spreadsheet V1.04									
Project Name:	Otay 250	Hydrologic Unit:	911 Tijuana Watershed						
Project Applicant:	tevens Cresto Engineeri	r Rain Gauge:	Lindbergh						
Jurisdiction:	County of San Diego	Total Project Area:	253 AC						
Parcel (APN):		Low Flow Threshold:	0.5Q2						
BMP Name	BF 1	BMP Type:	Bioretention						

.

DMA	Rain Gauge		Existing (Condition	Q2 Sizing Factor	DMA Area (ac)	Orifice Flow - %Q ₂	Orifice Area (in2)
Name		Soil Type	Cover	Slope	(cfs/ac)		(cfs)	,
PER TO IMP	Lindbergh	D	Scrub	Flat	0.05	4.637	0.116	2.83
PER TO PER	Lindbergh	D	Scrub	Flat	0.05	42.149	1.054	25.73
BF 1	Lindbergh	D	Scrub	Flat	0.05	0.574	0.014	0.35
							-	

1.184	28.91	6.07
Tot. Allowable	Tot. Allowable	Max Orifice
Orifice Flow	Orifice Area	Diameter
(cfs)	(in2)	(in)

1.158	1.158 28.27			
Actual Orifice Flow	Actual Orifice Area	Selected Orifice Diameter		
(cfs)	(in2)	(in)		

Drawdown (Hrs	;)	7.	2

BMP Sizing Spreadsheet V1.04								
Project Name:	Otay 250	Hydrologic Unit:	911 Tijuana Watershed					
Project Applicant:	Stevens Cresto Engineering	Rain Gauge:	Lindbergh					
Jurisdiction:	County of San Diego	Total Project Area:	253 AC					
Parcel (APN):		Low Flow Threshold:	0.5Q2					
BMP Name:	BF 2	BMP Type:	Bioretention					
BMP Native Soil Type:	D	BMP Infiltration Rate (in/hr):	0.024					

		Areas Dra	nining to BMP		- 44	1	LIMP Cining Fo	at a us	T .	14' ' D14D C	
		T T	illillig to bivir				HMP Sizing Fa	ctors		Minimum BMP S	ize
DMA Name	Area (sf)	Soil Type	Slope	Post Project Surface Type	Runoff Factor (Table 4-2)	Surface Area	Surface Volume	Subsurface Volume	Surface Area (sf)	Surface Volume (cf)	Subsurface Volume (cf)
PER TO IMP	80445	D	Flat	ASPHALT	1.0	0.08	0.0667	0.048	6436	5366	3861
PER TO PER	761659	D	Flat	LANDSCAPE	0.1	0.08	0.0667	0.048	6093	5080	3656
BF 2	10000	D	Flat	BIOFILTER	0.1	0.08	0.0667	0.048	80	67	48
	1										
Total BMP Area	852104	J						Minimum BMP Size	12608.872	10513	7565
								Droposed DMD Cire*	10000	12500	5000

Proposed BMP Size* 10000 12500 6000 Soil Matrix Depth 18.00 in Minimum Ponding Depth 12.62 in Maximum Ponding Depth 200.29 in Selected Ponding Depth 15.00 in

Describe the BMP's in sufficient detail in your SWMP to demonstrate the area, volume, and other criteria can be met within the constraints of the site.

BMP's must be adapted and applied to the conditions specific to the development project such as unstable slopes or the lack of available head. Designated Staff have final review and approval authority over the project design.

This Sizing Calculator has been developed in compliance with the Countywide Model SUSMP. For questions or concerns please contact the jurisdiction in which your project is located.

BMP Sizing Spreadsheet V1.04								
Project Name:	Otay 250	Hydrologic Unit:	911 Tijuana Watershed					
Project Applicant:	tevens Cresto Engineerii	Rain Gauge:	Lindbergh					
Jurisdiction:	County of San Diego	Total Project Area:	253 AC					
Parcel (APN):		Low Flow Threshold:	0.5Q2					
BMP Name	BF 2	BMP Type:	Bioretention					

DMA	Rain Gauge		Existing (Condition	Q2 Sizing Factor	DMA Area (ac)	Orifice Flow - %Q ₂	Orifice Area (in2)
Name		Soil Type	Cover	Slope	(cfs/ac)		(cfs)	
PER TO IMP	Lindbergh	D	Scrub	Flat	0.05	1.847	0.046	1.13
PER TO PER	Lindbergh	D	Scrub	Flat	0.05	17.485	0.437	10.67
BF 2	Lindbergh	D	Scrub	Flat	0.05	0.230	0.006	0.14
		and the second s						

0.489	11.94	3.90
Tot. Aliowable	Tot. Allowable	Max Orifice
Orifice Flow	Orifice Area	Diameter
(cfs)	(in2)	(in)

0.483	11.79	3.88		
Actual Orifice Flow	Actual Orifice Area	Selected Orifice Diameter		
(cfs)	(in2)	(in)		

Drawdown	(Hrs)	7.2

BMP Sizing Spreadsheet V1.04								
Project Name:	Otay 250	911 Tijuana Watershed						
Project Applicant:	Stevens Cresto Engineering	Rain Gauge:	Lindbergh					
Jurisdiction:	County of San Diego	Total Project Area:	253 AC					
Parcel (APN):		Low Flow Threshold:	0.5Q2					
BMP Name:	BF 3	BMP Type:	Bioretention					
BMP Native Soil Type:	D	BMP Infiltration Rate (in/hr):	0.024					

	Minimum BMP Size			ctors	HMP Sizing Factors			Areas Draining to BMP				
	Subsurface Vol	Surface Volume (cf)	Surface Area (sf)	Subsurface Volume	Surface Volume	Surface Area	Runoff Factor (Table 4-2)	Post Project Surface Type	Slope	Soil Type	Area (sf)	DMA Name
	5973	8300	9955	0.048	0.0667	0.08	1.0	ASPHALT	Flat	D	124435	PER TO IMP
82	1682	2338	2804	0.048	0.0667	0.08	0.1	LANDSCAPE	Flat	D	350453	PER TO PER
2	62	87	104	0.048	0.0667	0.08	0.1	BIOFILTER	Flat	D	13000	BF 3
				,								
											Months of the second	
							1 - 1 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -					
17	7717	10724	12862.424	Minimum BMP Size							487888	otal BMP Area
00	7800	13000	13000	Proposed BMP Size*								
	in	18.00	Soil Matrix Depth		Γ							
	in	9.90	num Ponding Depth	Minim	Г							
	in	84.81	num Ponding Depth	Maxim	Γ							
	in		cted Ponding Depth		Γ							

Describe the BMP's in sufficient detail in your SWMP to demonstrate the area, volume, and other criteria can be met within the constraints of the site.

BMP's must be adapted and applied to the conditions specific to the development project such as unstable slopes or the lack of available head. Designated Staff have final review and approval authority over the project design.

This Sizing Calculator has been developed in compliance with the Countywide Model SUSMP. For questions or concerns please contact the jurisdiction in which your project is located.

	ВМР	Sizing Spreadsheet V1.04	The state of the s
Project Name:	Otay 250	Hydrologic Unit:	911 Tijuana Watershed
Project Applicant:	tevens Cresto Engineeri	r Rain Gauge:	Lindbergh
Jurisdiction:	County of San Diego	Total Project Area:	253 AC
Parcel (APN):		Low Flow Threshold:	0.5Q2
BMP Name	BF 3	BMP Type:	Bioretention

DMA Rain Gau Name	Rain Gauge		Existing (Condition	Q2 Sizing Factor (cfs/ac)	DMA Area (ac)	Orifice Flow - %Q ₂	Orifice Area (in2
		Soil Type	Cover	Slope			(cfs)	•
PER TO IMP	Lindbergh	D	Scrub	Flat	0.05	2.857	0.071	1.74
PER TO PER	Lindbergh	D	Scrub	Flat	0.05	8.045	0.201	4.91
BF 3	Lindbergh					0.298		
								WHAT I WANTED TO THE STATE OF T

0.273	6.66	2.91
Tot. Allowable	Tot. Allowable	Max Orifice
Orifice Flow	Orifice Area	Diameter
(cfs)	(in2)	(in)

0.266	6.49	2.88
Actual Orifice Flow	Actual Orifice Area	Selected Orifice Diameter
(cfs)	(in2)	(in)

Drawdown ((Hrs)	13.6

	BMP Sizir	ng Spreadsheet V1.04	
Project Name:	Otay 250	Hydrologic Unit:	911 Tijuana Watershed
Project Applicant:	Stevens Cresto Engineering	Rain Gauge:	Lindbergh
Jurisdiction:	County of San Diego	Total Project Area:	253 AC
Parcel (APN):		Low Flow Threshold:	0.5Q2
BMP Name:	BF 4	BMP Type:	Bioretention
BMP Native Soil Type:	D	BMP Infiltration Rate (in/hr):	0.024

		Areas Drain	ning to BMP			HMP Sizing Factors			Minimum BMP S	ize	
DMA Name	Area (sf)	Soil Type	Slope	Post Project Surface Type	Runoff Factor (Table 4-2)	Surface Area	Surface Volume	Subsurface Volume	Surface Area (sf)	Surface Volume (cf)	Subsurface Volume (cf)
PER TO IMP	229767	D	Flat	ASPHALT	1.0	0.08	0.0667	0.048	18381	15325	11029
PER TO PER	1056066	D	Flat	LANDSCAPE	0.1	0.08	0.0667	0.048	8449	7044	5069
BF 4	21000	D	Flat	BIOFILTER	0.1	0.08	0.0667	0.048	168	140	101
Total BMP Area	1306833							Minimum BMP Size	26997.888	22509	16199
		•						Proposed BMP Size*	21000	26250	12600
									Soil Matrix Depth		in
								Minin	num Ponding Depth	12.86	in
									num Ponding Depth		in
								Sele	cted Ponding Depth	15.00	in

Describe the BMP's in sufficient detail in your SWMP to demonstrate the area, volume, and other criteria can be met within the constraints of the site.

BMP's must be adapted and applied to the conditions specific to the development project such as unstable slopes or the lack of available head. Designated Staff have final review and approval authority over the project design.

This Sizing Calculator has been developed in compliance with the Countywide Model SUSMP. For questions or concerns please contact the jurisdiction in which your project is located.

BMP Sizing Spreadsheet V1.04					
Project Name:	Otay 250	Hydrologic Unit:	911 Tijuana Watershed		
Project Applicant:	tevens Cresto Engineeri	Rain Gauge:	Lindbergh		
Jurisdiction:	County of San Diego	Total Project Area:	253 AC		
Parcel (APN):		Low Flow Threshold:	0.5Q2		
BMP Name	BF 4	BMP Type:	Bioretention		

DMA Rain G Name	Rain Gauge	Existing Condition		Q2 Sizing Factor	DMA Area (ac)	Orifice Flow - %Q ₂	Orifice Area (in2)	
		Soil Type	Cover	Slope	(cfs/ac)		(cfs)	,
PER TO IMP	Lindbergh	D	Scrub	Flat	0.05	5.275	0.132	3.22
PER TO PER	Lindbergh	D	Scrub	Flat	0.05	24.244	0.606	14.80
BF 4	Lindbergh	D	Scrub	Flat	0.05	0.482	0.012	0.29
		the state of the s						

0.750	18.31	4.83
Tot. Allowable	Tot. Allowable	Max Orifice
Orifice Flow	Orifice Area	Diameter
(cfs)	(in2)	(in)

0.726	17.72	4.75
Actual Orifice Flow	Actual Orifice Area	Selected Orifice Diameter
(cfs)	(in2)	(in)

Drawdown	(Hrs)	10.0	