San Pasqual Valley Groundwater Sustainability Plan (GSP) Stakeholder Workshop

Management Action No 7 – Initial Surface Water Recharge Evaluation

Task 1 – Development of Evaluation Criteria

The City of

SAN

June 8, 2022

sb) 🍪 Stakeholder Input Format

- This is a stakeholder workshop and anyone is welcome to ask questions or provide comments
- Public comment will take place at the end of each agenda item
- Those wishing to speak should place their name and organization in the Chat; participants will be called on in the order received
- Follow-up comments and questions can be sent to Staci Domasco (SDomasco@sandiego.gov)

s Meeting Agenda

- 1. Welcome and Introductions
- 2. Scope of Initial Surface Water Recharge Evaluation
- 3. Potential Recharge Strategies
- 4. Proposed Evaluation Criteria
- 5. Criterion Values Activity
- 6. Public Comment
- 7. Next Steps and Closing Remarks

Scope of Initial Surface Water Recharge Evaluation

Surface Water Recharge Evaluation

A *Preliminary Feasibility Study* will be developed to summarize surface water recharge opportunities in San Pasqual Valley.

The *Preliminary Feasibility Study* will include the following sections:

- Evaluation Criteria and Ranking Process (Task 1)
- Streambed Investigation (Task 2)
- Water Sources for Recharge (Task 3)
- Potential Recharge Strategies (Task 4)
- Modeling Approach and Results (Task 5)
- Potential Benefits to GDEs (Task 6)

Surface Water Recharge Evaluation

	Scope Task					20	22										20	023						20	24
#	Task	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb
Planning	and Management Action No. 7																								
Initial Su	face Water Recharge Evaluation																								
Task 1	Development of Evaluation Criteria		•	•				•	•			•		•	•				-	-					
	Develop draft evaluation criteria and scoring				Δ																				
Task 2	Reevaluate Streambed Characteristics																	·							
	Oversee streambed infiltration testing at 15 locations							Δ																	
Task 3	Water Sources for Potential Recharge Projects		-	-				•	•				•					·	•						
	Evaluate reservoir operations							Δ																	
Task 4	Potential Recharge Strategies																								
	Develop potential recharge strategies										Δ														
Task 5	Model Simulations																								
	Conduct SPV GSP Model simulations													Δ			Δ								
Task 6	Evaluate Benefits to GDEs																								
	Assessment of GDE benefits for recharge alternatives																			Δ					
Task 7	Preliminary Feasibility Study Report																								
	Prepare draft Feasibility Study Report																								
	Public Review (45 days)																					Δ			
	Revised Feasibility Study + Responses (30 days)																								
	Prepare final Feasibility Study Report																						 		

Δ Stakeholder Workshop

Potential Recharge Strategies

sb) 🛞 Anticipated Surface Water Recharge Strategies

- Surface Water Recharge Evaluation will consider up to four strategies, which may include:
 - 1. Forecast-informed, preemptive releases from Sutherland Reservoir
 - 2. Stormwater detention in small drainages
 - 3. Check dams in selected tributary creeks
 - 4. Stream channel modifications to increase infiltration capacity
- Strategies will be defined in more detail in Task 4 (Potential Recharge Strategies)
- Concepts are presented here to support development of evaluation criteria and metrics

sb) 🍪 Anticipated Surface Water Recharge Strategies

Strategy 1: Forecast-informed Releases from Sutherland Reservoir

- Proposes tracking and adjusting the timing and quantity of releases from Sutherland Reservoir
- May use FIRO (Forecast Informed Reservoir Operations) to track and forecast large storm events
- Capture larger surpluses of storm flow with timed releases to maximize opportunity for groundwater (GW) recharge

DEFINED BY: evaluating historical data & simulations on Sutherland Reservoir operations & releases, considering possibility of FIRO approach, should this strategy be retained for further evaluation

sb) 🍪 Anticipated Surface Water Recharge Strategies

Strategy 2: Stormwater Detention in Small Drainages

- Retain water from peak flow events downgradient from small drainages
- Extended releases from upgradient areas could potentially improve GW availability in downgradient areas of Basin
- Developing subcatchments to pool excess stormwater would improve stormwater management & allow more surface area for GW recharge

DEFINED BY: evaluating stormwater flows at suitable locations for detention structures and subcatchments

sb) 🛞 Anticipated Surface Water Recharge Strategies

Strategy 3: Check Dams in Selected Tributary Creeks

- Check dams constructed in selected creeks would decrease flow velocity during storm events
- Would provide more opportunity for surface water infiltration
- Utilizes monitoring data (USGS) stream gauges during low flow and peak flow events

DEFINED BY: evaluating streamflow at USGS stream gages and evaluating potential benefits from increased surface water retention in upgradient areas of Basin and SPV GSP Model* domain

*Integrated Groundwater/Surface Water Flow Model used to support development of the SPV GSP

Anticipated Surface Water Recharge Strategies

Strategy 4: Stream Channel Modifications to Increase Infiltration

- Channel scouring
- Replacing lower permeability streambed materials with higher permeability sands & gravels to encourage recharge
- Slowing streamflow
- Widening and/or extending meanders

DEFINED BY: evaluating streamflow at USGS stream gages, information acquired from Task 2 (Streambed Investigation), and an updated version of SPV GSP Model

Proposed Evaluation Criteria

Solution Criteria Data Sources

CWASim

GDE Pulse

Criterion 1: Reduction of Modeled Deficit in Cumulative GW Storage
Criterion 2: Maintenance of Shallower GW Levels in the Basin
Criterion 3: Reduction of Projected GW Levels Below MTs

Criterion 4: Efficiency of Recharge

Criterion 5: Improvements in GW Quality

Criterion 6: Benefits to GDEs

Criterion 7: Cost of Implementation & Maintenance

Criterion 8: Feasibility of Implementation and Maintenance

SPV GSP Model

Scoring for Evaluation Criteria

Forced Rank – when range of values are distributed along similar scale

e.g., 1 = smallest, 4 = largest

Think Russian Nesting Dolls

Category Rank – when range of values varies widely

e.g., 1 for <500 AFY, 2 for 500 – 1,000 AFY, etc.

Think letter grades in school

sb) 🛞 1. Reduction of Modeled Deficit in Cumulative Storage

Cumulative change in GW storage

sandiego.gov

sb) 🛞 2. Maintenance of Shallower Groundwater Levels

Depth to GW at representative monitoring wells

sandiego.gov

sb) 🛞 3. Reduction of Projected Groundwater Declines to MTs

Avoidance of GW levels below MTs

sandiego.gov

SD 3 4. Efficiency of Recharge

Ratio of cumulative change in GW storage (CCGS) to cumulative volume of surface water (CVSW) < used for recharge

sb 3 5. Improvements in Groundwater Quality

Flow-weighted average concentration of total dissolved solids (TDS) and nitrate as nitrogen (NO3-N) in Basin

sb) 🛞 6. Potential Benefits to GDEs

Depth to GW at representative monitoring wells compared to rooting depth of GDEs

Metric

sb) 🛞 7. Cost of Implementation and Maintenance

Estimated unit cost (per acre-foot) of capital and O&M

SD 8. Feasibility of Implementation and Maintenance

Qualitative assessment of feasibility

Metric

- Number and difficulty of permits
- Institutional challenges
- Schedule / timeline

Criterion Values Activity

sb) 🍪 Criterion Values

- We want to know what is important to you!
- Please click on the link in the CHAT to access Menti

PUBLIC COMMENT

NEXT STEPS & CLOSING REMARKS

SD 🚳 GSP Implementation

Status of Management Action (MA) Implementation:

- MA 3 Support Water Quality Improvement Plan (WQIP) Actions *Continuous*
- MA 4 Coordinate/Collaborate Regionally with Other Entities to Perform Monitoring & Implement Regional Projects – *Continuous*
- MA 5 Education & Outreach for TDS & Nitrate Underway!
- MA 6 Coordinate with City on Hodges Watershed Improvement Project Continuous
- MA 7 Initial Surface Water Recharge Evaluation *Underway!*
- MA 8 Study GDEs*, Phase I Desktop Study *Planned for 2022*

sb) 🛞 Next Steps - Task 2 Streambed Investigation

Fieldwork is planned at five transect locations, as follows:

- Stream channel surveying
- Streambed infiltration testing
- Photographic surveys after selected rainfall events

Surveyed Points Along Each Transect Stream Profile

Image Source https://www.sciencedirect.com/topics/earth-and-planetary-sciences/infiltrometer

sb) 🛞 Next Steps – Task 3 Water Sources for Recharge

- Assess releases from Sutherland Reservoir and stormwater runoff within the Basin at daily time scales
- Use CWASim as the foundation for the surface reservoir and hydrology
- Consider Sutherland Reservoir operational rules, existing commitments/agreements, and priority setting

CWASim

WASim Model Dashboard		Scenario Manager											
orecast Start Year (Fiscal Year) 2021	20	20 UWMP Baseline	Run	Run All	+ -								
Aodel is in: Long-term planning mode Change Mode		Climate Scenario	No Climate Adjust	ment	~								
	Demand	Suppl	y										
	Sett	ings											
	System	Result	ts										
				Deli	very Foreca	ist Model							
						SDCINA CINA							

SD GSP Resources

- San Pasqual Valley GSP Website
 - <u>https://www.sandiegocounty.gov/content/sdc/pds/SGMA/san-pasqual-valley.html</u>
- San Pasqual Valley GSP
 - <u>https://sgma.water.ca.gov/portal/gsp/preview/75</u>
- Annual Report for Water Years 2020 and 2021
 - https://sgma.water.ca.gov/portal/gspar/preview/140
- San Pasqual Valley GSP Data Management System (Opti)
 - <u>https://opti.woodardcurran.com/sanpasqual/login.php</u>

s Next Stakeholder Workshop

- PMA No 7 Initial Surface Water Recharge Evaluation
 - Task 2 Technical Memo on stream investigations
 - Task 3 Technical Memo on water sources

Save the date: Thursday September 22, 2022 at 1-3pm

BACK UP SLIDES

