

sd 🍪 Stakeholder Input Format

- This is a stakeholder workshop and anyone is welcome to ask questions or provide comments
- Public comment will take place at the end of each agenda item and at the end of the presentation
- Those wishing to speak should place their name and organization in the **Chat**; participants will be called on in the order received
- Follow-up comments and questions can be sent to Staci Domasco (SDomasco@sandiego.gov)

sandiego.gov

🔊 🍪 Meeting Agenda

1. Welcome and introductions 2. Annual Report Summary 3. Scope of Project Management Action (PMA) No. 7: Initial Surface Water Recharge Evaluation 4. Task 4 - Potential Recharge Strategies: Strategy screening 5. Task 5 – Modeling Approach and Results: Status update 6. Public comment 7. Next steps and closing remarks sandiego.gov 3 San Pasqual Valley GSP Stakeholder Workshop Summary of Annual Report and **Submittal** The City of 5AN DIEGO

s San Pasqual Valley 2022 WY Annual Report

- Submitted to DWR in April of 2023
- Includes
 - Review of data collection over the last year (groundwater levels and groundwater quality)
 - Analysis to incorporate data into Basin conditions assessment
 - Updated hydrographs, chemographs, and groundwater conditions maps
 - Update on status of GSP implementation including Projects and Management Actions

ո 🍪 Annual Report Take-Aways

- Groundwater Levels, Interconnected Surface Waters, and Storage
 - Experienced drought conditions "Dry" hydrologic year
 - Groundwater storage decreased by ~1,804 AF
 - Three wells reported dry or unable to take measurements in fall, one in spring, resulting in MT exceedances for those wells
 - One additional well was close to MT in fall
 - Two additional wells had PT exceedances in fall, one in spring
 - No undesirable results triggered

MT = Minimum Threshold PT= Planning Threshold

sandiego.gov

sb) 🚳 Surface Water Recharge Evaluation: Scope

A *Preliminary Feasibility Study* will be developed to summarize surface water recharge opportunities in San Pasqual Valley.

The *Preliminary Feasibility Study* will include the following sections:

- Development of Evaluation Criteria (Task 1)
- Streambed Investigation (Task 2)
- Water Sources for Potential Recharge (Task 3)
- Potential Recharge Strategies (Task 4)
- Model Simulations and Results (Task 5)
- Evaluate Benefits to GDEs (Task 6)

	Scope Task					20	22										2	023		_				202
#	Task	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	sep	Oct	Nov	Dec	Jan I
lanning	and Management Action No. 7																							
nitial Sur	face Water Recharge Evaluation																							
Task 1	Development of Evaluation Criteria																							
	Develop draft evaluation criteria and scoring				Δ																			
Task 2	Reevaluate Streambed Characteristics																							
	Oversee streambed infiltration testing at 15 locations											Δ												
Task 3	Water Sources for Potential Recharge Projects														_									
	Evaluate reservoir operations											Δ												
Task 4	Potential Recharge Strategies																							
	Develop potential recharge strategies															Δ								
Task 5	Model Simulations																							
	Conduct SPV GSP Model simulations																		Δ					
Task 6	Evaluate Benefits to GDEs																							
	Assessment of GDE benefits for recharge alternatives																		Δ					
Task 7	Preliminary Feasibility Study Report											_							_	_		-		
	Prepare draft Feasibility Study Report																							
		1	1																			Δ		
	Public Review (45 days)	-	-						1	1	1	1	1	1	1	1	1	1	1		1	1		
	Public Review (45 days) Revised Feasibility Study + Responses (30 days)																							

sb) 🚳 Task 4: Potential Strategy Matrix Development

Recharge Method →	A Existing Streambed	B In-stream Modifications	C Infiltration Basins	D Injection Wells	E Managed Flood Irrigation	F In-Lieu Recharge
1. Stormwater in Santa Ysabel Creek (SYC)	1A	1B	1C	1D	1E	1F
2. Controlled Releases from Sutherland Reservoir	2A	2B	2C	2D	2E	2F
3. Deliveries from Ramona MWD's Untreated Water System	3A	3B	3C	3D	3E	3F

Strategy = Water Source + Conveyance + Recharge Method

Screening Considerations:

- Yield (Efficiency of Recharge)
- Preliminary Cost
- Recharge footprint
- Timing
- Energy
- Reliability
- Flexibility

Level of Complexity

- Pretreatment Requirements
- Operation & Maintenance (O&M) Frequency
- Permitting
- Environmental

sandiego.gov

	ы 🍪 TM 4: Scre	en	in	ıg (Dut	tcc	ome	es					
Code	Recharge Strategy Name	Yield	Cost	Recharge footprint	Timing	Energy	Reliability	Flexibility	Level of Complexity	Pretreatment Requirements	Operation & Maintenance (O&M) Frequency	Permitting	Environmental
10	Existing Conditions												
1B	Enhancement of streamflow infiltration	1	5	5	4	5	1	2	4	5	4	2	4
10	Infiltration basin - Stormwater	1	3	3	3	4	1	2	3	4	3	3	3
1D	Injection wells with Stormwater	1	2	4	2	3	1	2	2	1	2	2	4
16	Managed Flood Irrigation with stormwater	1	4	5	3	3	1	3	3	2	2	3	3
1F	In-lieu Recharge with stormwater	1	4	5	2	3	1	3	2	1	2	4	3
2A	Increase of streamflow with Sutherland controlled releases	3	5	5	4	5	3	3	5	5	5	4	5
2B	Sutherland releases with enhancement of streamflow infiltration	3	5	5	5	5	3	4	4	5	4	1	4
2C	Sutherland releases with off-stream infiltration basin	4	3	3	3	4	3	4	3	4	3	2	3
2D	Sutherland releases with injection wells	4	1	4	2	3	3	4	2	1	2	1	4
2E	Sutherland releases used for managed Flood Irrigation	1	4	5	3	3	3	5	3	2	2	2	3
2F	Sutherland releases used for In-lieu Recharge	3	3	5	2	3	3	5	2	1	2	3	3
3A	Increase of streamflow with Ramona MWD deliveries	4	2	5	4	5	4	4	4	5	5	4	5
3B	Increase of streamflow with Ramona MWD deliveries and streambed modification	4	2	5	5	5	4	5	3	5	4	1	4
3C	Infiltration basin with Ramona RWD deliveries	5	1	3	3	5	4	5	4	5	4	2	3
3D	Injection wells with Ramona RWD deliveries	5	1	4	2	3	4	5	3	2	2	1	4
ЗE	Managed Flood Irrigation with Ramona RWD deliveries	1	4	5	3	4	4	5	4	3	3	2	3
3F	In-lieu Recharge with Ramona RWD deliveries	3	3	5	2	5	4	5	4	3	3	3	3
					1	= Lea	C st Favo	Qualitat rable -	ive Scale → 5 = M	ost Favora	ble		
17												sandi	ego.gov

17

s) 🚳 TM 4: Selected Strategies

- Selection Objective: identify potentially feasible strategies considering all three sources and diversity of recharge methods
 - Selected three highest scoring strategies for each water source
 - Selected one mid-range strategy to provide diversity in recharge methods

Water Source ↓	Recharge Method →	A Existing Streambed	B In-stream Modifications	C Infiltration Basins	D Injection Wells	E Managed Flood Irrigation	F In-Lieu Recharge
1. Stormwater in Santa Ysabel Creek (SY	C)	1A	1B	1C	1D	1E	1F
2. Controlled Releases from Sutherland	Reservoir	2A	2B	2C	2D	2E	2F
3. Deliveries from Ramona MWD's Untr	eated Water System	3A	3B	3C	3D	3E	3F
Note: Code in cells indicates water source (n	umber) and recharge me	ethod (letter).	Colored cells cor	respond to th	e selected st	rategies.	

• High favorability: > 39

• Mid-range favorability: 35 to 39

• Low favorability: 25 to 34

2A: Augment SYC Streamflow with Sutherland Controlled Releases

Legend

General Description:

Water SourceConveyanceRecharge MethodControlled releases from Sutherland Reservoir into Santa fsabel Creek.Inside basin, Santa Ysabel Creek used as conveyance losses from Sutherland Reservoir to Basin inlet are expected.Existing Santa Ysabel Creek streambed streambed to a be infiltrated in Basin upstream from Ysabel Creek Road (estimated at ~900 AFM)Not release more water than can be infiltrated in Basin upstream from Ysabel Creek Road (estimated at ~900 AFM)Santa Ysabel Creek and its streambed used as conveyance & recharge featureSanta Ysabel Creek Rd upstream from Ysabel Creek rul river miles		•			the state was a state	a state a manufacture of the second state	2. Mintin
 Inside basin, Santa Ysabel Creek used as conveyance form Sutherland Reservoir to Basin inlet are expected. Water source approach: Do not release more water than can be infiltrated in Basin upstream from Ysabel Creek Road (estimated at ~900 AFM) Santa Ysabel Creek and its streambed used as conveyance & recharge feature 	Water Source	Conveyance	Recharge	USGS Stream Gauge Modeled Stream		Ocemside	India
 Water source approach: Do not release more water than can be infiltrated in Basin upstream from Ysabel Creek Road (estimated at ~900 AFM) Santa Ysabel Creek and its streambed used as conveyance & recharge feature 	Controlled releases from Sutherland Reservoir into Santa Ysabel Creek.	ConveyanceRecharge MethodInside basin, Santa YsabelExisting Santa Ysabel Creek streambedFrom Sutherland Reservoir to Basin inlet are expected.approach: Do not release more water than ted in Basin upstream from Ysabel Creek ed at ~900 AFM)Model Dread Creek and its streambed used as recharge feature			Sar El n. Die go		
Santa Ysabel Creek and its streambed used as conveyance & recharge feature	 Water source app can be infiltrated Road (estimated 	proach: Do not release mo in Basin upstream from Ys at ~900 AFM)	re water than sabel Creek	Ysabel Creek Rd	11027000	Santa Ysabel Creek: ~11 river miles	
	 Santa Ysabel Cree conveyance & ree 	k and its streambed used:	as		Ana pandri Cirki Ana pandri Cirki Ana pandri Cirki	- 102500 Sut Re	erland ervoir Miles Jacok
sandi	1					sand	iego.

s) 🍪 3A: Augment SYC Streamflow	v with Ramo	na MWD Deliv	eries
	General Descri	ption:	
<complex-block></complex-block>	Water Source Ramona MWD water deliveries from Robb Zone • Water source app can be infiltrated Ysabel Creek Road • New conveyance Robb Zone diversio • No additional rec	Conveyance New infrastructure required: pipeline from Robb Zone diversion to SYC near SPV Road bridge in eastern portion of Basin portion of Portion porti	Recharge Method Existing Santa Ysabel Creek streambed re water than ad bridge and) dge ed
21			

sb) 🛞 3D: Injection Wells with Ramona MWD Deliveries General Description: **Recharge Method** Nater Source evance Ramona MWD water New infrastructure Injection wells required: pipeline from deliveries from Robb Robb Zone diversion to Zone WTP to wellheads · Water source approach: Do not release more water than can be injected in Basin without adverse effects. Assumed 16 injection wells each capable of continuously ~28,000 linear feet @ 12-inch pipe injecting 130 gpm • Untreated water would undergo filtration & disinfection per SWRCB Order 2012-0010 at WTP prior to injection New conveyance infrastructure: Robb Zone diversion \rightarrow pipeline \rightarrow WTP \rightarrow pipeline \rightarrow injection wells • Refinements in approach are expected when this strategy is modeled as part of Task 5 Also, strategy requires feasibility study (Phase I) and • San Pasqual GSP A Potential 12-inch Pipeline pilot project (Phase II) before determining ultimate Woodard & Curran Robb Zone Diversion Poin WD Robb Zone (3350 AFY ijection Well Alianment injection well capacity and number of wells ted Water L sandiego.gov 22

sandiego.gov

s) 🚳 Class 5 (conceptual-level) Costs

Recharge Strategy	Approximate Class 5 Cost*
1B. Enhance streamflow infiltration with in-stream modifications	\$18M
2A. Augment SYC streamflow with Sutherland controlled releases	\$2.5M
3A. Augment SYC streamflow with Ramona MWD deliveries	\$23.5M
3D. Injection wells with Ramona MWD deliveries	\$147.5M

+100% on high end

* Class 5 cost estimate is -20% to -50% on low end and +30% to

sb) 🍪 Poter	ntial Benefits and Ch	nallenges	
Recharge Strategy	Anticipated Benefits	Anticipated Challenges	
1B. Enhance streamflow infiltration with in-stream modifications	 Minimal additional infrastructure needed Flexible construction & operation Stormwater as source would be "free" Enhance recharge near representative monitoring wells 	 Permitting a project within riparian area Periodic maintenance needed in stream channel Supply would depend on local weather 	
2A. Augment SYC streamflow with Sutherland controlled releases	 No additional infrastructure required Conjunctive use of local surface water Low O&M requirement 	 Managing conveyance losses Operational adjustments and agreements would be needed New water delivery agreement would be needed Supply would depend on local weather 	
3A. Augment SYC streamflow with Ramona MWD deliveries	 Would provide a new source of water to Basin Flexible operation Low O&M requirement Potentially less dependent on local weather 	 New water delivery agreement would be needed Conveyance infrastructure construction permitting 	
3D. Injection wells with Ramona MWD deliveries	 Would provide a new source of water to Basin Scalable method to diversify City water portfolio Would provide direct recharge to local aquifer More secure from an access perspective Opportunity for remote monitoring Potentially less dependent on local weather 	 Expected high investment cost Potential for high O&M frequency Would need specialized staff for pretreatment and O&M Permitting and regulatory coordination 	
24		sandiego	o.gov

sb 🚳 Model Updates Since the GSP Submittal in 2021

- Switched from rectangular stream channels to irregular channels
- Now have combination of daily and monthly time steps to better simulate streamflow events
- Recalibrated SPV GSP Model v1.0
 - Updated stream properties to using data from Task 2 (streambed investigation)
 - Updated depth to bedrock near mouth of Rockwood Canyon
 - Improved runoff routing assignments
 - Improved Basin GW responses to water levels in Hodges Reservoir
 - Referring to this recalibrated model as SPV GSP Model v2.0

sb) 🍪 Approach for Projecting Recharge	Strategies
<text><text><text><figure></figure></text></text></text>	Process Results to Assess Evaluation Criteria Developed in Task 1 Evaluate Potential Benefits to GDEs (Task 6) Run Projection Simulations to WY 2072 on Selected Recharge Strategies, if Necessary
28	sandiego.gov

	Scope Task					20	022										20	23						202	24
#	Task	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb
lanning	and Management Action No. 7																								
itial Su	rface Water Recharge Evaluation																								
Task 1	Development of Evaluation Criteria																								
	Develop draft evaluation criteria and scoring				Δ																				
Task 2	Reevaluate Streambed Characteristics																								
	Oversee streambed infiltration testing at 15 locations											Δ													
Task 3	Water Sources for Potential Recharge Projects																								
	Evaluate reservoir operations											Δ													
Task 4	Potential Recharge Strategies																								
	Develop potential recharge strategies															Δ									
Task 5	Model Simulations																								
	Conduct SPV GSP Model simulations																		Δ						
Task 6	Evaluate Benefits to GDEs																								
	Assessment of GDE benefits for recharge alternatives																		Δ						
Task 7	Preliminary Feasibility Study Report							_					_												
	Prepare draft Feasibility Study Report																								
	Public Review (45 days)																					Δ			
	Revised Feasibility Study + Responses (30 days)																								
	Prepare final Feasibility Study Report																								
Δ	Stakeholder Workshop																								

33

🔊 🚳 SPV GSP Implementation

Status of Management Action (MA) Implementation:

- MA 3 Support Water Quality Improvement Plan (WQIP) Actions Continuous
- MA 4 Coordinate/Collaborate Regionally with Other Entities to Perform Monitoring & Implement Regional Projects – *Continuous*
- MA 5 Education & Outreach for TDS & Nitrate Emailed to Stakeholders and posted online
- MA 6 Coordinate with City on Hodges Watershed Improvement Project Continuous
- MA 7 Initial Surface Water Recharge Evaluation Underway!
- MA 8 Study GDEs*, Phase I Desktop Study Just began

*GDEs = Groundwater Dependent Ecosystems

sandiego.gov

34

