8445 Los Coches Road Development Noise Impact Study Lakeside, CA

Prepared for:

NLA Acquisitions, LLC 105 Tallapoosa Street, Suite 307 Montgomery, AL 36104

Prepared by:

MD Acoustics, LLC Mike Dickerson, INCE Robert Pearson 4960 S. Gilbert Road, Ste 1-461 Chandler, AZ 85249

Date: 6/15/2023

Noise Study Reports | Vibration Studies | Air Quality | Greenhouse Gas | Health Risk Assessments

P) AZ - 602.774.1950 P) CA - 805.426.4477

www.mdacoustics.com info@mdacoustics.com

TABLE OF CONTENTS

1.0	Executive Summary 1.1 Findings and Conclusions	1 1
2.0	 Introduction 2.1 Purpose of Analysis and Study Objectives 2.2 Site Location and Study Area 2.3 Proposed Project Description 	3 3 3 3 3
3.0	 Fundamentals of Noise	6 6 6 6 7 7 7 8 8
4.0	 Regulatory Setting 4.1 Federal Regulations 4.2 State Regulations 4.3 County of San Diego Noise Regulations 	10 10 10 12
5.0	 Study Method and Procedure 5.1 Noise Measurement Procedure and Criteria 5.2 Stationary Noise Modeling 5.3 FHWA Traffic Noise Prediction Model/SoundPlan 5.4 FHWA Roadway Construction Noise Model 	17 17 17 18 19
6.0	Existing Noise Environment 6.1 Short-Term Noise Measurement Results	20 20
7.0	 Future Noise Environment Impacts	21 21 21 22 22 22 24
8.0	Construction Noise Impact8.1Construction Noise8.2Construction Vibration8.3Construction Noise Reduction Measures	26 26 27 28
9.0	References	

LIST OF APPENDICES

Appendix A:	Field Measurement Data	.1
Appendix B:	SoundPLAN Input/Outputs	.2
Appendix C:	Manufacturer Acoustic Treatments	.1
Appendix D:	Traffic Calculation Sheet	.1
Appendix E:	Construction Noise Modeling Output	.2

LIST OF EXHIBITS

Exhibit A:	Location Map	.4
Exhibit B:	Site Plan	.5
Exhibit C:	Typical A-Weighted Noise Levels	6
Exhibit D:	Land Use Compatibility Guidelines	11
Exhibit E:	Operational Noise Level Contours	25

LIST OF TABLES

Table 1: San Diego County Exterior Noise Limits	12
Table 2: Roadway Parameters and Vehicle Distribution	18
Table 3: Short-Term Noise Measurement Data (dBA)	20
Table 4: Noise Levels Along Roadways (dBA CNEL)	21
Table 5: Worst-Case Predicted Operational Noise Levels (dBA)	23
Table 6: Change in Noise Level Characteristics ¹	24
Table 7: Typical Construction Equipment Noise Levels1	26
Table 8: Guideline Vibration Damage Potential Threshold Criteria	27
Table 9: Vibration Source Levels for Construction Equipment	28

1.0 Executive Summary

This report has been prepared to provide the calculated noise projections from the proposed Los Coches Road Development/Express Car Wash ("Project") located at 8445 Los Coches Road in Lakeside, CA. All calculations are compared to the County of San Diego noise ordinance as well as the existing ambient condition.

1.1 Findings and Conclusions

Three (3) one-hour baseline ambient measurements were performed at the project site and represent the ambient noise condition within the project vicinity. Ambient noise data indicate the hourly average noise level ranged between 62.0 to 74.0 dBA Leq. The predominant source of noise impacting the existing residences and retail/commercial uses is traffic noise propagating from Los Coches Road and the Kumeyaay Highway.

This study compares the Project's operational noise levels to two (2) different noise assessment scenarios: 1) Project only operational noise level projections, 2) Project plus ambient noise level projections.

Project only operational noise levels are anticipated to range between 47 to 50 dBA Leq at adjacent residential uses. The "project only" noise projections to the adjacent uses are below the County's 50 dBA residential limit as outlined within the County's Municipal Code (see Section 36.404 (2)).

Project plus ambient noise level projections are anticipated to range between 62 to 74 dBA Leq, depending on the location of the receptor. This assessment evaluates the baseline noise condition and compares the project's worst-case operational noise level to the measured noise level (during the project's proposed hours of operation).

The following outlines the project design features:

- A total 15 Sonny Blowers were modeled at 10 to 12 feet high as point sources. The Sonny Blowers will be located approximately 5 feet inside the exit of the tunnel and will have a Sonny silencer package (see: <u>https://www.sonnysdirect.com/sonnysdirect/en/OEM-Replacements/SONNY-S-Replacements/Blower-Inlet-Silencer-Non-Gator-Black/p/0000000020018005</u>). The reference equipment sound level data is provided in Appendix B.
- 2. The car wash was modeled with acoustic liner (quiet fiber, acoustic perforated metal panels or equivalent) lining the interior walls around the blower system. Manufacturer acoustic liner materials are provided in Appendix C.
- 3. The project proposes 10 foot by 8 foot CMU wing walls be built on the north side of the entrance and exit of the tunnel.

4. The project proposes to house the vacuum turbine motors inside the attached fully enclosed equipment room.

2.0 Introduction

2.1 Purpose of Analysis and Study Objectives

This purpose of this noise impact study is to evaluate the potential noise impacts for the project study area and to recommend noise mitigation measures, if necessary, to minimize the potential noise impacts. The assessment was conducted and compared to potentially applicable noise standards setforth by the State and/or Local agencies. Consistent with the County's Noise Guidelines, the project must demonstrate compliance to the applicable noise zoning ordinance and sound attenuation requirements.

The following is provided in this report:

- A description of the study area and the proposed project
- Information regarding the fundamentals of noise
- A description of the local noise guidelines and standards
- An evaluation of the existing ambient noise environment
- An analysis of stationary noise impact (e.g. blowers and vacuums) from the project site to adjacent land uses

2.2 Site Location and Study Area

The project site is located on the northeast corner of Los Coches Rd and the Kumeyaay Highway in Lakeside, CA as shown in Exhibit A. The land uses directly surrounding the project site includes existing residential to the north, east, and west, with multifamily residential to the southwest.

2.3 Proposed Project Description

The project proposes to develop 7,385 square feet of retail, 2,660 square feet of fast food drive -thru restaurant, including approximately 4,110 square feet of car was tunnel with approximately 25 vacuum bays. Vacuum turbine motors will be housed inside the attached fully enclosed vacuum room. Car wash tunnel entrance opening is a 9-foot tall by 10-foot wide opening and the exit opening is approximately 10-feet tall by 9-feet wide. Acoustic treatment design features are provided in Section 5.2.

Project operations will occur from 7 a.m. to 8 p.m. Per the County's noise ordinance, a noise study has been prepared which identifies the Project's potential impact to the adjacent uses and compares the noise level projections to the County's applicable noise ordinance. The site plan used for this is illustrated in Exhibit B.

Introduction

Exhibit A Location Map

Exhibit B **Site Plan**

3.0 Fundamentals of Noise

This section of the report provides basic information about noise and presents some of the terms used within the report.

3.1 Sound, Noise and Acoustics

Sound is a disturbance created by a moving or vibrating source and is capable of being detected by the hearing organs. Sound may be thought of as mechanical energy of a moving object transmitted by pressure waves through a medium to a human ear. For traffic, or stationary noise, the medium of concern is air. *Noise* is defined as sound that is loud, unpleasant, unexpected, or unwanted.

3.2 Frequency and Hertz

A continuous sound is described by its *frequency* (pitch) and its *amplitude* (loudness). Frequency relates to the number of pressure oscillations per second. Low-frequency sounds are low in pitch (bass sounding) and high-frequency sounds are high in pitch (squeak). These oscillations per second (cycles) are commonly referred to as Hertz (Hz). The human ear can hear from the bass pitch starting out at 20 Hz all the way to the high pitch of 20,000 Hz.

3.3 Sound Pressure Levels and Decibels

The *amplitude* of a sound determines it loudness. The loudness of sound increases or decreases as the amplitude increases or decreases. Sound pressure amplitude is measure in units of micro-Newton per square inch meter (N/m2), also called micro-Pascal (μ Pa). One μ Pa is approximately one hundred billionths (0.0000000001) of normal atmospheric pressure. Sound pressure level (SPL or L_p) is used to describe in logarithmic units the ratio of actual sound pressures to a reference pressure squared.

Exhibit C: Typical A-Weighted Noise Levels

These units are called decibels abbreviated dB. Exhibit C illustrates references sound levels for different noise sources.

3.4 Addition of Decibels

Because decibels are on a logarithmic scale, sound pressure levels cannot be added or subtracted by simple plus or minus addition. When two sounds or equal SPL are combined, they will produce an SPL 3 dB greater than the original single SPL. In other words, sound energy must be doubled to produce a 3 dB increase. If two sounds differ by approximately 10 dB, the higher sound level is the predominant sound.

3.5 Human Response to Changes in Noise Levels

In general, the healthy human ear is most sensitive to sounds between 1,000 Hz and 5,000 Hz, (Aweighted scale) and it perceives a sound within that range as being more intense than a sound with a higher or lower frequency with the same magnitude. For purposes of this report as well as with most environmental documents, the A-scale weighting is typically reported in terms of A-weighted decibel (dBA). Typically, the human ear can barely perceive the change in noise level of 3 dB. A change in 5 dB is readily perceptible, and a change in 10 dB is perceived as being twice or half as loud. As previously discussed, a doubling of sound energy results in a 3 dB increase in sound, which means that a doubling of sound energy (e.g. doubling the volume of traffic on a highway) would result in a barely perceptible change in sound level.

3.6 Noise Descriptors

Noise in our daily environment fluctuates over time. Some noise levels occur in regular patterns, others are random. Some noise levels are constant while others are sporadic. Noise descriptors were created to describe the different time-varying noise levels.

<u>A-Weighted Sound Level</u>: The sound pressure level in decibels as measured on a sound level meter using the A-weighted filter network. The A-weighting filter de-emphasizes the very low and very high frequency components of the sound in a manner similar to the response of the human ear. A numerical method of rating human judgment of loudness.

<u>Ambient Noise Level</u>: The composite of noise from all sources, near and far. In this context, the ambient noise level constitutes the normal or existing level of environmental noise at a given location.

<u>Community Noise Equivalent Level (CNEL)</u>: The average equivalent A-weighted sound level during a 24hour day, obtained after addition of five (5) decibels to sound levels in the evening from 7:00 to 10:00 PM and after addition of ten (10) decibels to sound levels in the night before 7:00 AM and after 10:00 PM.

Decibel (dB): A unit for measuring the amplitude of a sound, equal to 20 times the logarithm to the base 10 of the ratio of the pressure of the sound measured to the reference pressure, which is 20 micro-pascals.

dB(A): A-weighted sound level (see definition above).

Equivalent Sound Level (LEQ): The sound level corresponding to a steady noise level over a given sample period with the same amount of acoustic energy as the actual time varying noise level. The energy average noise level during the sample period.

<u>Habitable Room</u>: Any room meeting the requirements of the Uniform Building Code or other applicable regulations which is intended to be used for sleeping, living, cooking or dining purposes, excluding such enclosed spaces as closets, pantries, bath or toilet rooms, service rooms, connecting corridors, laundries, unfinished attics, foyers, storage spaces, cellars, utility rooms and similar spaces.

<u>L(n)</u>: The A-weighted sound level exceeded during a certain percentage of the sample time. For example, L10 in the sound level exceeded 10 percent of the sample time. Similarly L50, L90 and L99, etc.

Noise: Any unwanted sound or sound which is undesirable because it interferes with speech and hearing, or is intense enough to damage hearing, or is otherwise annoying. The State Noise Control Act defines noise as "...excessive undesirable sound...".

Outdoor Living Area: Outdoor spaces that are associated with residential land uses typically used for passive recreational activities or other noise-sensitive uses. Such spaces include patio areas, barbecue areas, jacuzzi areas, etc. associated with residential uses; outdoor patient recovery or resting areas associated with hospitals, convalescent hospitals, or rest homes; outdoor areas associated with places of worship which have a significant role in services or other noise-sensitive activities; and outdoor school facilities routinely used for educational purposes which may be adversely impacted by noise. Outdoor areas and storage areas associated with residential land uses; exterior areas at hospitals that are not used for patient activities; outdoor areas associated with places of worship and principally used for short-term social gatherings; and, outdoor areas associated with school facilities that are not typically associated with educational uses prone to adverse noise impacts (for example, school play yard areas).

Percent Noise Levels: See L(n).

Sound Level (Noise Level): The weighted sound pressure level obtained by use of a sound level meter having a standard frequency-filter for attenuating part of the sound spectrum.

Sound Level Meter: An instrument, including a microphone, an amplifier, an output meter, and frequency weighting networks for the measurement and determination of noise and sound levels.

<u>Single Event Noise Exposure Level (SENEL)</u>: The dB(A) level which, if it lasted for one second, would produce the same A-weighted sound energy as the actual event.

3.7 Traffic Noise Prediction

Noise levels associated with traffic depends on a variety of factors: (1) volume of traffic, (2) speed of traffic, (3) auto, medium truck (2–3 axle) and heavy truck percentage (4 axle and greater), and sound propagation. The greater the volume of traffic, higher speeds and truck percentages equate to a louder volume in noise. A doubling of the Average Daily Traffic (ADT) along a roadway will increase noise levels by approximately 3 dB; reasons for this are discussed in the sections above.

3.8 Sound Propagation

As sound propagates from a source it spreads geometrically. Sound from a small, localized source (i.e., a point source) radiates uniformly outward as it travels away from the source in a spherical pattern. The sound level attenuates at a rate of 6 dB per doubling of distance. The movement of vehicles down a roadway makes the source of the sound appear to propagate from a line (i.e., line source) rather than a point source. This line source results in the noise propagating from a roadway in a cylindrical spreading

versus a spherical spreading that results from a point source. The sound level attenuates for a line source at a rate of 3 dB per doubling of distance.

As noise propagates from the source, it is affected by the ground and atmosphere. Noise models use hard site (reflective surfaces) and soft site (absorptive surfaces) to help calculate predicted noise levels. Hard site conditions assume no excessive ground absorption between the noise source and the receiver. Soft site conditions such as grass, soft dirt or landscaping attenuate noise at a rate of 1.5 dB per doubling of distance. When added to the geometric spreading, the excess ground attenuation results in an overall noise attenuation of 4.5 dB per doubling of distance for a line source and 7.5 dB per doubling of distance for a point source.

Research has demonstrated that atmospheric conditions can have a significant effect on noise levels when noise receivers are located 200 feet from a noise source. Wind, temperature, air humidity and turbulence can further impact have far sound can travel.

4.0 Regulatory Setting

The proposed project is located in the City of Lakeside, California and noise regulations are addressed through the efforts of various federal, state and local government agencies. The agencies responsible for regulating noise are discussed below.

4.1 Federal Regulations

The adverse impact of noise was officially recognized by the federal government in the Noise Control Act of 1972, which serves three purposes:

- Publicize noise emission standards for interstate commerce
- Assist state and local abatement efforts
- Promote noise education and research

The Federal Office of Noise Abatement and Control (ONAC) originally was tasked with implementing the Noise Control Act. However, it was eventually eliminated leaving other federal agencies and committees to develop noise policies and programs. Some examples of these agencies are as follows: The Department of Transportation (DOT) assumed a significant role in noise control through its various agencies. The Federal Aviation Agency (FAA) is responsible for regulating noise from aircraft and airports. The Federal Highway Administration (FHWA) is responsible for regulating noise from the interstate highway system. The Occupational Safety and Health Administration (OSHA) is responsible for the prohibition of excessive noise exposure to workers. The Housing and Urban Development (HUD) is responsible for establishing noise regulations as it relates to exterior/interior noise levels for new HUD-assisted housing developments near high noise areas.

The federal government advocates that local jurisdictions use their land use regulatory authority to arrange new development in such a way that "noise sensitive" uses are either prohibited from being constructed adjacent to a highway or, or alternatively that the developments are planned and constructed in such a manner that potential noise impacts are minimized.

Since the federal government has preempted the setting of standards for noise levels that can be emitted by the transportation source, the City is restricted to regulating the noise generated by the transportation system through nuisance abatement ordinances and land use planning.

4.2 State Regulations

Established in 1973, the California Department of Health Services Office of Noise Control (ONC) was instrumental in developing regularity tools to control and abate noise for use by local agencies. One significant model is the "Land Use Compatibility for Community Noise Environments Matrix." The matrix allows the local jurisdiction to clearly delineate compatibility of sensitive uses with various incremental levels of noise.

The State of California has established noise insulation standards as outlined in Title 24 and the Uniform Building Code (UBC) which in some cases requires acoustical analyses to outline exterior noise levels and

to ensure interior noise levels do not exceed the interior threshold. The State mandates that the legislative body of each county and city adopt a noise element as part of its comprehensive general plan. The local noise element must recognize the land use compatibility guidelines published by the State Department of Health Services. The County of San Diego's guidelines rank noise land use compatibility in terms of normally acceptable, conditionally acceptable, normally unacceptable, and clearly unacceptable as illustrated in Exhibit D.

Tab	Table N-1 Noise Compatibility Guidelines							
				Exte	rior Noise Le	vel (CNEL)		
	Land Use Category		55	60	65	70	75	80
Α	Residential—single family residences, mobile homes, senior housing, convalescent homes							
В	Residential—multi-family residences, mixed-use (commercial/residential)							
С	Transient lodging—motels, hotels, resorts							
D*	Schools, churches, hospitals, nursing homes, child care facilities							
E*	Passive recreational parks, nature preserves, contemplative spaces, cemeteries							
F*	Active parks, golf courses, athletic fields, outdoor spectator sports, water recreation							
G*	Office\professional, government, medical\dental, commercial, retail, laboratories							
H*	Industrial, manufacturing, utilities, agriculture, mining, stables, ranching, warehouse, maintenance/repair							
	ACCEPTABLE—Specified land use is satisfact construction, without any special noise inst	ctory, based ulation requi	upon t remei	he assumptions.	on that any b	uildings invol	ved are of no	ormal
	CONDITIONALLY ACCEPTABLE—New const analysis is conducted to determine if noise Criteria for determining exterior and interi- mitigate noise to a level deemed Acceptab been provided to the greatest extent pract	ruction or de reduction m or noise leve le, the appro icable or tha	velop easun Is are priate t extra	ment should as are necess isted in Table county decis ordinary circ	be undertak ary to achiev e N-2, Noise sion-maker n sumstances e	en only after a ve acceptable Standards. If a nust determin exist.	a detailed no levels for lar a project can e that mitiga	ise Id use. not tion has
* D	UNACCEPTABLE—New construction or dev	elopment sh	all not	be undertak	en.			N 2)

Exhibit D: Land Use Compatibility Guidelines

Note: For projects located within an Airport Influence Area of an adopted Airport Land Use Compatibility Plan (ALUCP), additional Noise Compatibility Criteria restrictions may apply as specified in the ALUCP.

4.3 County of San Diego Noise Regulations

Municipal Code

Lakeside follows the County of San Diego's Noise Ordinance. The Municipal Code Section 36.404(2) - Sound Level Limits outlines the sound requirements.

SEC. 36.404 Sound Level Limits.

San Diego County Municipal Code Section 36.404 (2) defines exterior noise standards for various receiving land uses. The noise standards are not to be exceeded at the portion of a property used for a particular land use. For environmental noise, the Leq in any hour cannot exceed the noise standards. These standards are shown in Table 1.

ZONE	TIME	ONE-HOUR AVERAGE SOUND LEVEL LIMITS (dBA)
(1) RS, RD, RR, RMH, A70, A72, S80, S81, S87, S90, S92 and RV and RU with a density of less than 11 dwelling units per acre.	7 a.m. to 10 p.m. 10 p.m. to 7 a.m.	50 45
(2) RRO, RC, RM, S86, V5 and RV and RU with a density of 11 or more dwelling units per acre.	7 a.m. to 10 p.m. 10 p.m. to 7 a.m.	55 50
(3) S94, V4 and all commercial zones.	7 a.m. to 10 p.m. 10 p.m. to 7 a.m.	60 55
(4) V1, V2 V1, V2 V1 V2 V3	7 a.m. to 7 p.m. 7 p.m. to 10 p.m. 10 p.m. to 7 a.m. 10 p.m. to 7 a.m. 7 a.m. to 10 p.m. 10 p.m. to 7 a.m.	60 55 55 50 70 65
(5) M50, M52 and M54	Anytime	70
(6) S82, M56 and M58.	Anytime	75
(7) S88 (see subsection (c) below)		

Table 1: San Diego County Exterior Noise Limits

SEC. 36.404 Sound Level Limits:

Unless a variance has been applied for and granted, it shall be unlawful for any person to cause or allow the creation of any noise to the extent that the one-hour average sound level, at any point on or beyond the boundaries of the property on which the sound is produced, exceeds the applicable limits set forth below, except that:

(1) Construction noise level limits shall be governed by Section 36.410 of this chapter; and

(2) Where a noise study has been conducted and the noise mitigation measures recommended by that study have been made conditions of approval of a Major Use Permit which authorizes the noise-generating use or activity, and the decision making body approving the Major Use Permit determined

that those mitigation measures reduce potential noise impacts to a level below significance, then implementation and compliance with such noise mitigation measures shall be deemed to constitute compliance with this section.

If the measured ambient level exceeds the applicable limit noted above, the allowable one hour average sound level shall be the ambient noise level. The ambient noise level shall be measured when the alleged noise violation source is not operating.

The sound level limit at a location on a boundary between two (2) zoning districts is the arithmetic mean of the respective limits for the two districts; provided however, that the one-hour average sound level limit applicable to extractive industries, including but not limited to borrow pits and mines, shall be 75 decibels at the property line regardless of the zone where the extractive industry is actually located.

Fixed-location public utility distribution or transmission facilities located on or adjacent to a property line shall be subject to the noise level limits of this section, measured at or beyond six (6) feet from the boundary of the easement upon which the equipment is located.

(Amended by Ord. No. 7094 (N.S.), effective 3-25-86; amended by Ord. No. 9478 (N.S.), effective 7-19-02; amended by Ord. No. 9621 (N.S.), effective 1-9-04)

SEC 36.408 Hours of Operation of Construction Equipment:

Except for emergency work, it shall be unlawful for any person to operate or cause to be operated, construction equipment:

- (a) Between 7 p.m. and 7 a.m.
- (b) On a Sunday or a holiday. For purposes of this section, a holiday means January 1st, the last Monday in May, July 4th, the first Monday in September, December 25th and any day appointed by the President as a special national holiday or the Governor of the State as a special State holiday. A person may, however, operate construction equipment on a Sunday or holiday between the hours of 10 a.m. and 5 p.m. at the person's residence or for the purpose of constructing a residence for himself or herself, provided that the operation of construction equipment is not carried out for financial consideration or other consideration of any kind and does not violate the limitations in sections 36.409 and 36.410.

SEC 36.409 sound Level Limitations on Construction Equipment:

Except for emergency work, it shall be unlawful for any person to operate construction equipment or cause construction equipment to be operated, that exceeds an average sound level of 75 decibels for an eight-hour period, between 7 a.m. and 7 p.m., when measured at the boundary line of the property where the noise source is located or on any occupied property where the noise is being received.

SEC 36.410 Sound level limitations on Impulsive Noise:

In addition to the general limitations on sound levels in section 36.404 and the limitations on construction equipment in section 36.409, the following additional sound level limitations shall apply:

a) Except for emergency work or work on a public road project, no person shall produce or cause to be produced an impulsive noise that exceeds the maximum sound level shown in Table 36.410A, when measured at the boundary line of the property where the noise source is located or on any occupied property where the noise is received, for 25 percent of the minutes in the measurement period, as described in subsection (c) below. The maximum sound level depends on the use being made of the occupied property. The uses in Table 36.410A are as described in the County Zoning Ordinance.

TABLE 36.410A. MAXIMUM SOUND LEVEL (IMPULSIVE) MEASURED AT OCCUPIED PROPERTY IN DECIBELS (dBA)

OCCUPIED PROPERTY USE	DECIBELS (dBA)
Residential, village zoning or civic use	82
Agricultural, commercial or industrial use	85

b) Except for emergency work, no person working on a public road project shall produce or cause to be produced an impulsive noise that exceeds the maximum sound level shown in Table 36.410B, when measured at the boundary line of the property where the noise source is located or on any occupied property where the noise is received, for 25 percent of the minutes in the measurement period, as described in subsection (c) below. The maximum sound level depends on the use being made of the occupied property. The uses in Table 36.410B are as described in the County Zoning Ordinance.

TABLE 36.410B. MAXIMUM SOUND LEVEL (IMPULSIVE) MEASURED AT OCCUPIED PROPERTY IN DECIBELS (dBA) FOR PUBLIC ROAD PROJECTS

OCCUPIED PROPERTY USE	dB(A)
Residential, village zoning or civic use	85
Agricultural, commercial or industrial use	90

c) The minimum measurement period for any measurements conducted under this section shall be one hour. During the measurement period a measurement shall be conducted every minute from a fixed location on an occupied property. The measurements shall measure the maximum sound level during each minute of the measurement period. If the sound level caused by construction equipment or the producer of the impulsive noise, exceeds the maximum sound level for any portion of any minute it will deemed that the maximum sound level was exceeded during that minute.

SEC. 36.417 Exemptions.

(a) Emergency Work. The provisions of this chapter shall not apply to any emergency work as defined herein, provided that (1) the Noise Control Officer has been notified in advance, if possible, or as soon as practical after said emergency, and (2) any vehicle device, apparatus, or equipment used, related to or connected with emergency work is designed, modified, or equipped to reduce sounds produced to the lowest possible level consistent with effective operation of such vehicle, device, apparatus, or equipment.

(b) Sporting, Entertainment, Public Events. The provisions of this chapter shall not apply to:

(1) Those reasonable sounds emanating from authorized school bands, school athletic and school entertainments events.

(2) Sporting, entertainment and public events which are conducted pursuant to a license or permit issued by the County of San Diego for noise exceeding criteria, standards or levels as set forth in this chapter.

(3) Those reasonable sounds emanating from a sporting, entertainment, or public event; provided, however, it shall be unlawful to exceed those levels set forth in Section 36.404 when measured at or within the property lines of any property which is developed and used either in part or in whole for residential purposes unless a variance has been granted allowing sounds in excess of said levels.

(c) Federal or State Preempted Activities. The provisions of this chapter shall not apply to any activity to the extent regulation thereof has been preempted by State or Federal law.

(d) Minor Maintenance to Residential Property. The provisions of Section 36.404 shall not apply to noise sources associated with minor maintenance to property used either in part or in whole for residential purposes provided said activities take place between the hours 7 a.m. and 8 p.m. on any day except Sunday, or between the hours of 10 a.m. and 8 p.m. on Sunday.

(e) Agricultural Operations. The provisions of Section 36.404 shall not apply to equipment associated with agricultural operations, provided that, all equipment and machinery powered by internalcombustion engines is equipped with a proper muffler and air intake silencer in good working order, and provided further that:

(1) Operations do not take place between 7 p.m. and the following 7 a.m.; or

(2) Such operations and equipment are utilized for the preparation, planting, harvesting, protection or salvage of agricultural crops during periods of potential or actual frost damage or other adverse weather conditions; or

(3) Such operations and equipment are associated with agricultural pest control, provided the application is made in accordance with regulations or procedures administered by the County Department of Agriculture; or

(4) Such operations and equipment are associated with the application of agricultural chemicals provided the application is made in accordance with acceptable agricultural practices or upon the recommendation of an agricultural specialist.

(Amended by Ord. No. 7428 (N.S.), effective 2-4-88)

5.0 Study Method and Procedure

The following section describes the noise modeling procedures and assumptions used for this assessment.

5.1 Noise Measurement Procedure and Criteria

MD conducted three (3) one-hour noise measurements at or near the project site and represents the noise level from the existing traffic conditions along Los Coches and the I-8 Freeway. Measurements were performed using Larson Davis 831 type 1 sound level meters at the perimeter of the project. (see Appendix A for the field sheet data).

5.2 Stationary Noise Modeling

SoundPLAN (SP) acoustical modeling software was utilized to model future worst-case stationary noise impacts to the adjacent land uses. SP is capable of evaluating multiple stationary noise source impacts at various receiver locations. SP's software utilizes algorithms (based on the inverse square law and reference equipment noise level data) to calculate noise level projections. The software allows the user to input specific noise sources, spectral content, sound barriers, building placement, topography, and sensitive receptor locations.

The future worst-case noise level projections were modeled using referenced sound level data for the various stationary on-site sources (parking spaces, restaurant drive through lanes, drive through speakers, vacuums, vacuum turbine motors and car wash blowers at the exit). The SP model assumes a total of 25 vacuums and the dryer system are operating simultaneously (worst-case scenario), when the noise will in reality be intermittent and lower in noise level. The reference vacuum equipment sound level data is provided in Appendix B.

All other noise producing equipment (e.g., compressors, pumps) will be housed within mechanical equipment rooms.

The following outlines the project design features:

- A total 15 Sonny Blowers were modeled at 10 to 12 feet high as point sources. The Sonny Blowers will be located approximately 5 feet inside the exit of the tunnel and will have a Sonny silencer package (see: <u>https://www.sonnysdirect.com/sonnysdirect/en/OEM-Replacements/SONNY-S-Replacements/Blower-Inlet-Silencer-Non-Gator-Black/p/0000000020018005</u>). The reference equipment sound level data is provided in Appendix B.
- 2. The car wash was modeled with acoustic liner (quiet fiber, acoustic perforated metal panels or equivalent) lining the interior walls around the blower system. Manufacturer acoustic liner materials are provided in Appendix C.

- 3. The project proposes 10 foot by 8 foot CMU wing walls be built on the north side of the entrance and exit of the tunnel.
- 4. The project proposes to house the vacuum turbine motors inside the attached fully enclosed equipment room.

FHWA Traffic Noise Prediction Model/SoundPlan 5.3

Traffic noise from vehicular traffic was projected using a computer program that replicates the FHWA Traffic Noise Prediction Model (FHWA-RD-77-108). The FHWA model arrives at the predicted noise level through a series of adjustments to the Reference Energy Mean Emission Level (REMEL). Roadway volumes and percentages correspond to the project's ADT forecast as prepared by Linscott Law and Greenspan (5/10/21) and roadway classification. The referenced traffic data was applied to the model and is in Appendix D. The following outlines the key adjustments made to the REMEL for the roadway inputs:

- Roadway classification (e.g. freeway, major arterial, arterial, secondary, collector, etc),
- Roadway Active Width (distance between the center of the outer most travel lanes on each side • of the roadway)
- Average Daily Traffic Volumes (ADT), Travel Speeds, Percentages of automobiles, medium trucks and heavy trucks
- Roadway grade and angle of view
- Site Conditions (e.g. soft vs. hard)
- Percentage of total ADT which flows each hour through-out a 24-hour period

Table 2 indicates the roadway parameters and vehicle distribution utilized for this study.

Roadway Segment		Existing	Existing + Project ADT ¹	Speed (MPH)	Site Conditions			
Los Coches Rd	Aurora Dr to Project Dwy	16,000	18,300	40	Soft			
Los Coches Rd	I-18 to Ora Belle Lane	17,700	18,300	40	Soft			
	Compton Blvd Vehicle Distribution and Mix ²							
Motor-Vehicle Type		Daytime % (7AM to 7 PM)	Evening % (7 PM to 10 PM)	Night % (10 PM to 7 AM)	Total % of Traffic Flow			
A	Automobiles	77.5	12.9	9.6	97.42			
Medium Trucks								
IVI	edium Trucks	84.8	4.9	10.3	1.54			
lvi F	edium Trucks Ieavy Trucks	84.8 86.5	4.9 2.7	10.3 10.8	1.54 0.74			

Table 2: Roadway Parameters and Vehicle Distribution

To determine the project's noise impact to the surrounding land uses, MD generated noise contours for scenarios outlined in the table above. Noise contours are used to provide a characterization of sound levels experienced at a set distance from the centerline of a subject roadway. They are intended to represent a worst-case scenario and do not take into account structures, sound walls, topography, and/or other sound attenuating features which may further reduce the actual noise level. Noise contours are developed for comparative purposes and are used to demonstrate potential increases/decreases along subject roadways as a result of a project.

In addition, this assessment calculates future traffic noise levels at the project site. For the purpose of this evaluation The traffic noise calculation worksheet outputs are located in Appendix D.

5.4 FHWA Roadway Construction Noise Model

The construction noise analysis utilizes the Federal Highway Administration (FHWA) Roadway Construction Noise Model (RNCM), together with several key construction parameters. Key inputs include distance to the sensitive receiver, equipment usage, % usage factor, and baseline parameters for the project site.

The project was analyzed based on the different construction phases. Construction noise is expected to be loudest during the grading, concrete and building phases of construction. The construction noise calculation output worksheet is located in Appendix E. The following assumptions relevant to short-term construction noise impacts were used:

• It is estimated that construction will occur over a year to year and a half -time period. Construction noise is expected to be the loudest during the grading, concrete, and building phases.

6.0 Existing Noise Environment

Three (3) one-hour short-term ambient noise measurements were conducted at the property boundary to the southwest, northwest, and east (See Appendix A). The measurement measured the Leq, Lmin, Lmax and other statistical data (e.g. L2, L8...). The noise measurement was taken to determine the existing ambient noise levels. Noise data indicates that traffic along Los Coches Road and the Kumeyaay Highway (I-8 Freeway) is the primary source of noise impacting the site and the adjacent uses. This assessment utilizes the ambient noise data as a basis and compares project operational levels to said data.

6.1 Short-Term Noise Measurement Results

The results of the noise data is presented in Table 3.

Locatio	n Time	_	1.	Ι.	dB	(A)	Ι.	Ι.	Ι.	
		L _{EQ}	LMAX	L _{MIN}	L ₂	L ₈	L ₂₅	L ₅₀	L ₉₀	CNEL
1	2PM-3PM	72	87	58	78	75	74	71	65	71
2	2PM-3PM	74	84	57	79	78	76	73	65	71
3	2PM-3PM	62	74	54	66	64	63	61	90	64
Notes:										
1. 9	Short-term noise moni	toring locatio	n is illustrated	d in Exhibit E.	CNEL Extrapo	lated from sh	ort term mea	surements		
2. 1	Per SEC 36.404 County one hour average sour	of San Diego d level shall l	Municipal co be the ambier	de If the mea: It noise level	sured ambien	t level exceed	is the applical	ble limit note	d above, the	allowable

Table 3: Short-Term Noise Measurement Data (dBA)

Noise data indicates the ambient noise level ranged between 62 dBA Leq to 74 dBA Leq near project site and surrounding area. Maximum levels reach 87 dBA as a result of traffic along Los Coches Rd. During times when traffic is present the quietest noise level measured 54 dBA. Additional field notes and photographs are provided in Appendix A.

For this evaluation, MD has utilized the ambient noise level and has compared the project's projected noise levels to the said ambient level.

7.0 Future Noise Environment Impacts

This assessment analyzes future noise impacts as a result of the project. The analysis details the estimated exterior noise levels. Stationary noise impacts are analyzed from the noise sources on-site such as dryers/blowers and vacuums/compressed air systems.

7.1 Future Exterior Noise

The following outlines the exterior noise levels associated with the proposed project.

7.1.1 Off-site Traffic Noise Impact

The potential off-site noise impacts caused by the increase in vehicular traffic as a result of the project were calculated at a distance of 50 feet. The distance to the 55, 60, 65, and 70 dBA CNEL noise contours are also provided for reference. The noise level at 50 feet is representative of approximate distances to existing homes along the subject roadway. The noise contours were calculated for the following scenarios and conditions:

- Existing Condition: This scenario refers to the existing year traffic noise condition and is demonstrated in Table 4.
- Existing + Project Condition: This scenario refers to the existing year plus project traffic noise condition and is demonstrated in Table 4.

Existing/Existing + Project Scenario Comparison

Table 4 provides the Existing and Existing + Project noise conditions and shows the change in noise level as a result of the proposed project. As shown in Table 5, the increase in traffic noise for the Existing and Existing + Project scenario would have a nominal increase of 0.4 dBA at 50 feet from the centerline of the subject roadway.

Existing Without Project Exterior Noise Levels									
		CNEL Distance to Contour (Ft)							
Roadway	Roadway Segment		70 dBA CNEL	65 dBA CNEL	60 dBA CNEL	55 dBA CNEL			
Los Coches Road	Aurora Dr to Project Dwy	69.6	47	101	218	470			
Los Coches Road	I-8 to Ora Belle Lane	70.0	50	108	234	503			

Table 4: Noise Levels Along Roadways (dBA CNEL)

		CNEL		Distance to	o Contour (Ft)	
Roadway	Segment	at 50 Ft (dBA)	70 dBA CNEL	65 dBA CNEL	60 dBA CNEL	55 dBA CNEL
Los Coches Road	Aurora Dr to Project Dwy	70.2	51	111	239	514
Los Coches Road	I-8 to Ora Belle Lane	70.2	51	111	239	514

Existing + Project Exterior Noise Levels

		CNEL at 50 Feet dBA ²									
Roadway ¹	Segment	Existing Without Project	Existing With Project	Change in Noise Level	Potential Significant Impact						
Los Coches Road	Auroira Dr to Project Dwy	69.6	70.2	0.6	No						
Los Coches Road	I-8 to Ora Belle Lane	70.0	70.2	0.2	No						
Notes: ¹ Exterior noise levels calculated at 5 feet above ground level. ² Noise levels calculated from centerline of subject roadway.											

Noise Levels as a Result of Projects

Traffic noise from the local roadway network was evaluated and compared to the County's Exterior Noise Standard. Per the County's Exterior Noise Standard (Exhibit D), residential noise limit is acceptable up to 60 dBA CNEL and conditionally acceptable up to 75 dBA. Existing residences are approximately 90-feet from the centerline of Los Coches Road. The traffic noise at the existing residences (multi-family units west of the project site, across the street from the project) is approximately 68 to 69 dBA. Existing residences fall within the County's conditionally acceptable noise limit according to the County's General Plan Noise Element (Table N-1, Exhibit D of this report).

As shown in Table 4, the increase in the traffic noise level from the project is anticipated to be 0.4 dBA, which is a nominal increase and not perceptible as it takes a change in 3 dBA or more for the ear to hear a discernable difference. The additional increase in traffic is still below the City's conditionally acceptable limit of 75 dBA for residential uses and therefore the increase is less than significant.

7.1.2 On-Site Traffic Noise Impact

The traffic noise impact to the project site is approximately 71 dBA CNEL. According to the County's noise compatibility matrix the noise level would fall within the County's conditionally acceptable range.

7.1.3 Noise Impacts to Off-Site Receptors Due to Stationary Sources

Sensitive receptors that may be affected by project operational noise include existing residences to the north, east, and west The worst-case stationary noise was modeled using SoundPLAN acoustical modeling software. Noise modeling was calibrated by modeling a receptor placed five (5) feet from the blower units, noise level was reduced by 5 dBA to represent the implementation of the Sonny Silencer package. Worst-case assumes the restaurant drive through operations, car wash blowers, vacuums and equipment are always operational when in reality the noise will be intermittent and cycle on/off depending on the customer usage. In addition, the modeling takes into account the proposed enclosure for the vacuum turbines. Project operations will occur from 7 a.m. to 8 p.m. which is within the County's allowable daytime (7 a.m. to 10 p.m.) hours.

A total of four (5) receptors (R1 - R5) were modeled to evaluate the proposed project's operational impact. R1-R5 represent the noise level at the existing nearest residences to the project site. All yellow dots represent either a property line or a sensitive receptor such as an outdoor sensitive area (e.g. courtyard, patio, backyard, etc).

This study compares the Project's operational noise levels to two (2) different noise assessment scenarios: 1) Project Only operational noise level projections, 2) Project plus ambient noise level projections.

Project Operational Noise Levels

Exhibit E shows the "project only" operational noise levels at the property lines and/or sensitive receptor area. Operational noise levels are anticipated to range between 47 dBA to 50 dBA Leq at adjacent uses (depending on the location). Exhibit C provides a scale which illustrates loudness associated with common noise levels.

The "project only" noise projections to the adjacent uses are below the City's 50 dBA residential limit as outlined within the County's noise ordinance.

Project Plus Ambient Operational Noise Levels

Table 5 demonstrates the project plus the ambient noise levels. Project plus ambient noise level projections are anticipated to range between 62 to 74 dBA Leq at residential receptors (R1 - R5).

Receptor ²	Level	Existing Ambient Noise Level (dBA, Leq) ³	Project Noise Level (dBA, Leq) ⁴	Total Combined Noise Level (dBA, Leq)	County's Daytime Limit (dBA, Leq)	Exceeds Standard (?)	Change in Noise Level as Result of Project	
1	Floor 1	72	48	72		No	0	
2	Floor 1	74	48	74		No	0	
3	Floor 1	74	47	74	50	No	0	
4	Floor 1	60	50	62		No	0	
5	Floor 1	02	46	62		No	0	

Notes:

^{1.} Receptor locations are indicated in Exhibit E.

^{2.} Receptors 1 - 5 represent existing residences.

³One hour noise measurements were conducted during the proposed operable hours to compare the baseline condition to the project plus ambient projections.

⁴ See Exhibit E for the operational noise level projections at said receptors.

In addition, Table 5 provides the anticipated change in noise level as a result of the propose project. As shown in Table 5, the existing noise levels are anticipated to change at adjacent land uses.

Table 6 provides the characteristics associated with changes in noise levels.

Changes in Intensity Level, dBA	Changes in Apparent Loudness
1	Not perceptible
3	Just perceptible
5	Clearly noticeable
10	Twice (or half) as loud
https://www.fbwa.dot.gov/environMent/poise/reg	ulations and guidance/polguide/polguide02.cfm

Table 6: Change in Noise Level Characteristics¹

The change in noise level will be "Not Perceptible" at adjacent residential uses. Therefore, no further mitigation measures are required.

It should be noted, that as traffic volumes continue to increase along Los Coches Road, traffic noise levels will increase along said roadway segment. As previously mentioned in Section 3.7, as a rule of thumb, traffic noise increases approximately 3 dBA every doubling of ADTs (e.g. 14,000 to 28,000). Therefore, ambient noise levels will further increase (regardless of the proposed project) as the roadways expand. Project generated noise levels will further be masked by traffic noise along the subject roadways.

7.2 Project Design Features

The following summarizes the project design features (PDFs) for the project:

- A total 15 Sonny Blowers were modeled at 10 to 12 feet high as point sources. The Sonny Blowers will be located approximately 5 feet inside the exit of the tunnel and will have a Sonny silencer package (see: <u>https://www.sonnysdirect.com/sonnysdirect/en/OEM-Replacements/SONNY-S-Replacements/Blower-Inlet-Silencer-Non-Gator-Black/p/0000000020018005</u>). The reference equipment sound level data is provided in Appendix B.
- 2. Project will incorporate a tunnel within a tunnel design such that a metal, framed-out, acoustically lined tunnel will be built around the blower system (See Appendix D).
- 3. The project proposes 10 foot by 8 foot CMU wing walls be built on the north side of the entrance and exit of the tunnel.
- 4. The project proposes to house the vacuum turbine motors inside the attached fully enclosed equipment room.

Exhibit E Operational Noise Levels Leq(h)

8.0 Construction Noise Impact

The degree of construction noise may vary for different areas of the project site and also vary depending on the construction activities. Noise levels associated with the construction will vary with the different phases of construction.

8.1 Construction Noise

The Environmental Protection Agency (EPA) has compiled data regarding the noise generated characteristics of typical construction activities, which can be found in the FTA Noise and Vibration Manual. The data is presented in Table 7.

Туре	Lmax (dBA) at 50 Feet
Backhoe	80
Dozers	85
Truck	88
Excavator	86
Concrete Mixer	85
Grader	86
Pneumatic Tool	85
Pump	76
Saw, Electric	76
Air Compressor	81
Generator	81
Paver	89
Roller	74
Notes: ¹ Referenced Noise Levels from FTA noise and vibration manual.	•

Table 7: Typical Construction Equipment Noise Levels¹

Construction noise is considered a short-term impact and would be considered significant if construction activities are taken outside the allowable times as described in the County's Municipal Code Sec 36.408, 36.409, and 36.410. Construction is anticipated to occur during the permissible hours according to the County's Municipal Code. Construction noise will have a temporary or periodic increase in the ambient noise level above the existing within the project vicinity. Furthermore, noise reduction measures are provided to further reduce construction noise. The impact is considered less than significant however construction noise level projections are provided.

Typical operating cycles for these types of construction equipment may involve one or two minutes of full power operation followed by three to four minutes at lower power settings. Noise levels will be loudest during grading phase. A likely worst-case construction noise scenario during grading assumes the use of a grader, a dozer, an excavator, and a backhoe operating at 80 feet from the nearest sensitive receptor.

Assuming a usage factor of 40 percent for each piece of equipment, unmitigated noise levels at 80 feet have the potential to reach 74 dBA L_{eq} at the nearest sensitive receptors. Noise levels for the other construction phases would be lower and range between 72 - 74 dBA. Therefore, not exceeding the County's 75 dB limit.

8.2 Construction Vibration

Construction activities can produce vibration that may be felt by adjacent land uses. The construction of the proposed project would not require the use of equipment such as pile drivers, which are known to generate substantial construction vibration levels. The primary vibration source during construction may be from a bulldozer. A large bulldozer has a vibration impact of 0.089 inches per second peak particle velocity (PPV) at 25 feet which is perceptible but below any risk to architectural damage.

The fundamental equation used to calculate vibration propagation through average soil conditions and distance is as follows:

PPVequipment = PPVref (100/Drec)n

Where: PPVref = reference PPV at 100ft.

Drec = distance from equipment to receiver in ft.

n = 1.1 (the value related to the attenuation rate through ground)

The thresholds from the Caltrans Transportation and Construction Induced Vibration Guidance Manual in Table 8 (below) provides general thresholds and guidelines as to the vibration damage potential from vibratory impacts.

	Maximum PPV (in/sec)						
Structure and Condition	Transiant Sources	Continuous/Frequent					
	Transient Sources	Intermittent Sources					
Extremely fragile historic buildings, ruins, ancient monuments	0.12	0.08					
Fragile buildings	0.2	0.1					
Historic and some old buildings	0.5	0.25					
Older residential structures	0.5	0.3					
New residential structures	1.0	0.5					
Modern industrial/commercial buildings	2.0	0.5					
Source: Table 19, Transportation and Construction Vibration Guidance Manual, Caltrans, Se Note: Transient sources create a single isolated vibration event, such as blasting or drop bal impact nile drivers, pago-stick compactors, crack-and-seat equipment, vibratory nile drivers	pt. 2013. Ils. Continuous/frequent inter a and vibratory compaction e	rmittent sources include					

Table 8: Guideline Vibration Damage Potential Threshold Criteria

Table 9 gives approximate vibration levels for particular construction activities. This data provides a reasonable estimate for a wide range of soil conditions.

	Peak Particle Velocity	Approximate Vibration Level
Equipment	(inches/second) at 25 feet	LV (dVB) at 25 feet
Rile driver (impact)	1.518 (upper range)	112
	0.644 (typical)	104
Dile driver (conic)	0.734 upper range	105
	0.170 typical	93
Clam shovel drop (slurry wall)	0.202	94
Hydromill	0.008 in soil	66
(slurry wall)	0.017 in rock	75
Vibratory Roller	0.21	94
Hoe Ram	0.089	87
Large bulldozer	0.089	87
Caisson drill	0.089	87
Loaded trucks	0.076	86
Jackhammer	0.035	79
Small bulldozer	0.003	58
¹ Source: Transit Noise and Vibration Impact Assessment,	Federal Transit Administration, May 2006.	

Table 9: Vibration Source Levels for Construction Equipment

At a distance of 80 feet (distance residential structure from the property line), a large bulldozer would yield a worst-case 0.025 PPV (in/sec) which may be perceptible for short periods of time during grading along the east property line of the project site, but is below any threshold of damage. The impact is less than significant, and no mitigation is required.

8.3 Construction Noise Reduction Measures

Construction operations must follow the City's General Plan and the Noise Ordinance, which states that construction, repair or excavation work performed must occur within the permissible hours. To further ensure that construction activities do not disrupt the adjacent land uses, the following measures should be taken:

- 1. Construction should occur during the permissible hours as defined in Sec 36.410.
- 2. During construction, the contractor shall ensure all construction equipment is equipped with appropriate noise attenuating devices.
- 3. The contractor should locate equipment staging areas that will create the greatest distance between construction-related noise/vibration sources and sensitive receptors nearest the project site during all project construction.
- 4. Idling equipment should be turned off when not in use.

5. Equipment shall be maintained so that vehicles and their loads are secured from rattling and banging.

9.0 References

San Diego County: Municipal Code – Chapter 4 Noise Abatement and Control

San Diego County : General Plan – Chapter 8 Noise Element

Local Mobility Analysis Los Coches Plaza – Linscott Law & Greenspan – September 9, 2022

Appendix A:

Field Measurement Data

AZ Office 4960 S. Gilbert Rd, Ste 1-461 Chandler, AZ 85249

CA Office 1197 E Los Angeles Ave, C-256 Simi Valley, CA 93065

www.mdacoustics.com

1-Hour Continuous Noise Measurement Datasheet

Project:	Lakeside Car Wash	Site Observations:	Clear sky with with mild wind. Traffic noise audible from the Kumeyaay
Site Address/Location:	8445 Los Coches Road, Lakeside Ca		Highway and Los Coches Rd
Date:	12/16/2019		
Field Tech/Engineer:	Jason Schuyler	_	

General Location:

Sound Meter:	LD 831	SN: <u>3714 & 316</u> 8							
Settings:	A-weighted, slow,	A-weighted, slow, 1-sec, 1-hour duration							
Meteorological Con.:	68 degrees F, 0-2 r	mph wind, from the east south east direction							
Site ID:	ST-1 thru ST-3								

Figure 1: Monitoring Locations

Site Topo: Flat Ground Type: Hard site conditions, reflective

Noise Source(s) w/ Distance:

NM1 is 43 feet from Center of Los Coches Rd

NM2 is 61 feet from center of Los Coches Rd

NM3 is 299 feet from center of Los Coches Rd

AZ Office 4960 S. Gilbert Rd, Ste 1-461 Chandler, AZ 85249

www.mdacoustics.com

1-Hour Continuous Noise Measurement Datasheet - Cont.

Project:	Lakeside Car Wash	
Site Address/Location:	8445 Los Coches Road, Lakeside Ca	
Site ID:	ST-1 thru ST-3	

Location	Start	Stop	Leq	Lmax	Lmin	L2	L8	L25	L50	L90
1	2:43 PM	3:43 PM	72	87	58	78	75	74	71	65
2	2:49 PM	3:49 PM	74	84	57	79	78	76	73	65
3	2:56 PM	3:56 PM	62	74	54	66	64	63	61	90

Table 1: Baseline Noise Measurement Summary

Appendix B:

SoundPLAN Input/Outputs

Los Coches Octave spectra of the sources in dB(A) - 001 - 15 Sonny Silenced - Lined - Wing Wall: Outdoor SP

3

Name	Source type	I or A	Li	R'w	L'w	Lw	KI	KT	LwMax	DO-Wall	Time histogram	Emission spectrum	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	16kHz
						A = 7	(\neg)	(\neg)													
		m,m²	dB(A)	dB	dB(A)	dB(A)	dB	dB	dB(A)	dB			dB(A)								
	Line	68.79			65.3	83.6	0.0	0.0	· · · ·	0	100%/24h	WhattaBurger	64.5	74.5	73.7	73.7	79.9	76.5	67.9	65.8	63.4
001 Vac	Point	['			72.6	72.6	0.0	0.0	['	0	100%/24h	Vacutech - 3'	57.5	53.5	52.2	57.7	61.7	67.6	68.9	61.6	
002 Vac	Point	·′			72.6	72.6	0.0	0.0	['	0	100%/24h	Vacutech - 3'	57.5	53.5	52.2	57.7	61.7	67.6	68.9	61.6	
003 Vac	Point	'			72.6	72.6	0.0	0.0	<u> </u>	0	100%/24h	Vacutech - 3'	57.5	53.5	52.2	57.7	61.7	67.6	68.9	61.6	
004 Vac	Point	[]			72.6	72.6	0.0	0.0	<u> </u>	0	100%/24h	Vacutech - 3'	57.5	53.5	52.2	57.7	61.7	67.6	68.9	61.6	
005 Vac	Point	'			72.6	72.6	0.0	0.0	<u> </u>	0	100%/24h	Vacutech - 3'	57.5	53.5	52.2	57.7	61.7	67.6	68.9	61.6	
006 Vac	Point	· '			72.6	72.6	0.0	0.0	\Box	0	100%/24h	Vacutech - 3'	57.5	53.5	52.2	57.7	61.7	67.6	68.9	61.6	
007 Vac	Point	'			72.6	72.6	0.0	0.0	<u> </u>	0	100%/24h	Vacutech - 3'	57.5	53.5	52.2	57.7	61.7	67.6	68.9	61.6	
008 Vac	Point	· '			72.6	72.6	0.0	0.0	<u> </u>	0	100%/24h	Vacutech - 3'	57.5	53.5	52.2	57.7	61.7	67.6	68.9	61.6	
009 Vac	Point	í'			72.6	72.6	0.0	0.0	<u> </u>	0	100%/24h	Vacutech - 3'	57.5	53.5	52.2	57.7	61.7	67.6	68.9	61.6	
010 Vac	Point	· '			72.6	72.6	0.0	0.0	[]	0	100%/24h	Vacutech - 3'	57.5	53.5	52.2	57.7	61.7	67.6	68.9	61.6	
011 Vac	Point	í'			72.6	72.6	0.0	0.0	· · · · · · · · · · · · · · · · · · ·	0	100%/24h	Vacutech - 3'	57.5	53.5	52.2	57.7	61.7	67.6	68.9	61.6	
012 Vac	Point	í – – – – – – – – – – – – – – – – – – –			72.6	72.6	0.0	0.0	· · · · · · · · · · · · · · · · · · ·	0	100%/24h	Vacutech - 3'	57.5	53.5	52.2	57.7	61.7	67.6	68.9	61.6	
013 Vac	Point	'			72.6	72.6	0.0	0.0	<u> </u>	0	100%/24h	Vacutech - 3'	57.5	53.5	52.2	57.7	61.7	67.6	68.9	61.6	
014 Vac	Point	· '			72.6	72.6	0.0	0.0	[]	0	100%/24h	Vacutech - 3'	57.5	53.5	52.2	57.7	61.7	67.6	68.9	61.6	
015 Vac	Point	<u> </u>			72.6	72.6	0.0	0.0	[]	0	100%/24h	Vacutech - 3'	57.5	53.5	52.2	57.7	61.7	67.6	68.9	61.6	
016 Vac	Point	· ′			72.6	72.6	0.0	0.0	[]	0	100%/24h	Vacutech - 3'	57.5	53.5	52.2	57.7	61.7	67.6	68.9	61.6	
017 Vac	Point	· '			72.6	72.6	0.0	0.0	[]	0	100%/24h	Vacutech - 3'	57.5	53.5	52.2	57.7	61.7	67.6	68.9	61.6	
018 Vac	Point	· ′			72.6	72.6	0.0	0.0	[]	0	100%/24h	Vacutech - 3'	57.5	53.5	52.2	57.7	61.7	67.6	68.9	61.6	
019 Vac	Point	· '			72.6	72.6	0.0	0.0	[]	0	100%/24h	Vacutech - 3'	57.5	53.5	52.2	57.7	61.7	67.6	68.9	61.6	
020 Vac	Point	· ′			72.6	72.6	0.0	0.0	[]	0	100%/24h	Vacutech - 3'	57.5	53.5	52.2	57.7	61.7	67.6	68.9	61.6	
021 Vac	Point	· ′			72.6	72.6	0.0	0.0		0	100%/24h	Vacutech - 3'	57.5	53.5	52.2	57.7	61.7	67.6	68.9	61.6	
022 Vac	Point	· ′			72.6	72.6	0.0	0.0	[]	0	100%/24h	Vacutech - 3'	57.5	53.5	52.2	57.7	61.7	67.6	68.9	61.6	
023 Vac	Point	· ′			72.6	72.6	0.0	0.0		0	100%/24h	Vacutech - 3'	57.5	53.5	52.2	57.7	61.7	67.6	68.9	61.6	
024 Vac	Point	· ′			72.6	72.6	0.0	0.0	[]	0	100%/24h	Vacutech - 3'	57.5	53.5	52.2	57.7	61.7	67.6	68.9	61.6	
025 Vac	Point	· ′			72.6	72.6	0.0	0.0	\Box	0	100%/24h	Vacutech - 3'	57.5	53.5	52.2	57.7	61.7	67.6	68.9	61.6	
Queued Cars	Line	32.68			68.5	83.6	0.0	0.0	[]	0	100%/24h	WhattaBurger	64.5	74.5	73.7	73.7	79.9	76.5	67.9	65.8	63.4
Queued Cars	Line	32.68			68.5	83.6	0.0	0.0	\Box	0	100%/24h	WhattaBurger	64.5	74.5	73.7	73.7	79.9	76.5	67.9	65.8	63.4
Queued Cars	Line	32.68			68.5	83.6	0.0	0.0	[]	0	100%/24h	WhattaBurger	64.5	74.5	73.7	73.7	79.9	76.5	67.9	65.8	63.4
		-								-		•									

MD Acoustics LLC 4960 S. Gilbert Rd Chandler, AZ 85249 Phone: 602 774 1950

SoundPLAN 8.2

Los Coches Octave spectra of the sources in dB(A) - 001 - 15 Sonny Silenced - Lined - Wing Wall: Outdoor SP

Name	Source type	l or A	Li	R'w	L'w	Lw	KI	КТ	LwMax	DO-Wall	Time histogram	Emission spectrum	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	16kHz
		m,m²	dB(A)	dB	dB(A)	dB(A)	dB	dB	dB(A)	dB			dB(A)								
Tunnel 15 Sonny Silenced - Lined-Facade 01	Area	143.47	79.9	57.0	31.4	52.9	0.0	0.0		3	100%/24h	106_Facade 01_		48.1	50.2	43.9	34.9	22.4	9.0		
Tunnel 15 Sonny Silenced - Lined-Facade 02	Area	24.47	83.3	57.0	34.0	47.9	0.0	0.0		3	100%/24h	107_Facade 02		41.8	45.5	39.9	31.0	18.5	4.9		
Tunnel 15 Sonny Silenced - Lined-Facade 03	Area	143.47	79.9	57.0	31.4	52.9	0.0	0.0		3	100%/24h	109_Facade 03_		48.0	50.2	43.9	34.9	22.4	9.0		
Tunnel 15 Sonny Silenced - Lined-Facade 04	Area	24.47	85.3	57.0	35.6	49.5	0.0	0.0		3	100%/24h	110_Facade 04		42.8	47.2	42.0	33.3	21.1	8.2		
Tunnel 15 Sonny Silenced - Lined-Roof 01	Area	232.64	79.8	57.0	31.1	54.8	0.0	0.0		0	100%/24h	102_Roof 01_		49.7	52.1	46.0	36.8	24.3	10.9		
Tunnel 15 Sonny Silenced - Lined-Transmissive area 01	Area	8.36	83.2	0.0	83.2	92.4	0.0	0.0		3	100%/24h	108_Transmissive area 01_		81.2	86.8	87.2	87.2	78.7	68.2		
Tunnel 15 Sonny Silenced - Lined-Transmissive area 01	Area	8.36	85.4	0.0	85.4	94.6	0.0	0.0		3	100%/24h	111_Transmissive area 01_		81.9	88.6	89.6	89.9	81.7	71.8		
Tunnel 15 Sonny Silenced - Lined-Transmissive area 03	Area	33.36	86.4	57.0	36.6	51.8	0.0	0.0		0	100%/24h	113_Transmissive area 03_		44.8	49.5	44.6	36.0	23.9	11.1		
Tunnel 15 Sonny Silenced - Lined-Transmissive area 04	Area	20.57	84.3	57.0	34.9	48.0	0.0	0.0		3	100%/24h	114_Transmissive area 04_		41.9	45.6	40.2	31.5	19.4	6.5		
Tunnel 15 Sonny Silenced - Lined-Transmissive area 05	Area	20.57	84.4	57.0	35.0	48.1	0.0	0.0		3	100%/24h	115_Transmissive area 05_		42.0	45.7	40.3	31.6	19.5	6.6		1
												·									

MD Acoustics LLC 4960 S. Gilbert Rd Chandler, AZ 85249 Phone: 602 774 1950

2

Courses		Course tu Tr long		٨	
Source	Source group	Source ty I r. lane		A	
			dB(A)	dB	
Receiver 11508938,3632263	FIG LrD,lim dB(A) L	rD 48.3 dB(A) Sigma	(LrD) 0.0 (dB(A)	-
001 Vac	Default industrial noise	Point	28.0	0.0	
002 Vac	Default industrial noise	Point	26.7	0.0	
003 Vac	Default industrial noise	Point	26.3	0.0	
004 Vac	Default industrial noise	Point	25.8	0.0	
005 Vac	Default industrial noise	Point	25.3	0.0	
006 Vac	Default industrial noise	Point	24.9	0.0	
007 Vac	Default industrial noise	Point	26.4	0.0	
008 Vac	Default industrial noise	Point	26.0	0.0	
009 Vac	Default industrial noise	Point	25.7	0.0	
010 Vac	Default industrial noise	Point	25.3	0.0	
011 Vac	Default industrial noise	Point	25.0	0.0	
012 Vac	Default industrial noise	Point	24.6	0.0	
013 Vac	Default industrial noise	Point	24.3	0.0	
014 Vac	Default industrial noise	Point	24.0	0.0	
015 Vac	Default industrial noise	Point	23.7	0.0	
016 Vac	Default industrial noise	Point	29.0	0.0	
017 Vac	Default industrial noise	Point	28.3	0.0	
018 Vac	Default industrial noise	Point	27.7	0.0	
019 Vac	Default industrial noise	Point	27.0	0.0	
020 Vac	Default industrial noise	Point	26.4	0.0	
021 Vac	Default industrial noise	Point	25.9	0.0	
022 Vac	Default industrial noise	Point	25.4	0.0	
023 Vac	Default industrial noise	Point	24.9	0.0	
024 Vac	Default industrial noise	Point	24.4	0.0	
025 Vac	Default industrial noise	Point	23.9	0.0	
26	Default industrial noise	Line	38.7	0.0	
Queued Cars	Default industrial noise	Line	20.4	0.0	
Queued Cars	Default industrial noise	Line	22.4	0.0	
Queued Cars	Default industrial noise	Line	24.7	0.0	
Tunnel 15 Sonny Silenced -					
Lined-Roof 01	Default industrial noise	Area	1.4	0.0	
Tunnel 15 Sonny Silenced -		A	24	0.0	
Lined-Transmissive area 03		Area	-3.4	0.0	
Tunnel 15 Sonny Silenced -		A == =	20	0.0	
Lined-Facade 01		Area	-3.8	0.0	
Tunnel 15 Sonny Silenced -	Default industrial naise	Area	11 5	0.0	
Lined-Transmissive area 04		Area	-11.5	0.0	
Tunnel 15 Sonny Silenced -	Default industrial naise	Area	10	0.0	
Lined-Facade 02		Area	1.8	0.0	
Tunnel 15 Sonny Silenced -	Default industrial paiss		46.0	0.0	
Lined-Transmissive area 01		Area	40.8	0.0	
Tunnel 15 Sonny Silenced -	Default industrial pains		E /	0.0	
Lined-Facade 03			5.4	0.0	
		•			

MD Acoustics LLC 4960 S. Gilbert Rd Chandler, AZ 85249 Phone: 602 774 1950

9

		-				
Source	Source group	Source ty	Tr. lane	LrD	A	
				dB(A)	dB	
Tunnel 15 Sonny Silenced -	Default industrial pains	Aree		17	0.0	
Lined-Transmissive area 05		Area		-1.7	0.0	
Tunnel 15 Sonny Silenced -	Default industrial poise	Aroa		00	0.0	
Lined-Facade 04		Alea		-0.0	0.0	
Tunnel 15 Sonny Silenced -	Default industrial noise	Area		31.0	0.0	
Lined-Transmissive area 01		Ліса		51.0	0.0	
Receiver 11508938,3632304	FIG LrD,lim dB(A) Lr	D 48.3 dB(/	A) Sigma	(LrD) 0.0 d	dB(A)	
001 Vac	Default industrial noise	Point		27.4	0.0	
002 Vac	Default industrial noise	Point		26.4	0.0	
003 Vac	Default industrial noise	Point		25.8	0.0	
004 Vac	Default industrial noise	Point		25.3	0.0	
005 Vac	Default industrial noise	Point		24.8	0.0	
006 Vac	Default industrial noise	Point		24.3	0.0	
007 Vac	Default industrial noise	Point		23.9	0.0	
008 Vac	Default industrial noise	Point		23.4	0.0	
009 Vac	Default industrial noise	Point		23.1	0.0	
010 Vac	Default industrial noise	Point		22.7	0.0	
011 Vac	Default industrial noise	Point		22.3	0.0	
012 Vac	Default industrial noise	Point		22.0	0.0	
013 Vac	Default industrial noise	Point		21.7	0.0	
014 Vac	Default industrial noise	Point		21.3	0.0	
015 Vac	Default industrial noise	Point		22.7	0.0	
016 Vac	Default industrial noise	Point		26.0	0.0	
017 Vac	Default industrial noise	Point		25.5	0.0	
018 Vac	Default industrial noise	Point		25.1	0.0	
019 Vac	Default industrial noise	Point		24.6	0.0	
020 Vac	Default industrial noise	Point		24.1	0.0	
021 Vac	Default industrial noise	Point		25.7	0.0	
022 Vac	Default industrial noise	Point		25.4	0.0	
023 Vac	Default industrial noise	Point		25.1	0.0	
024 Vac	Default industrial noise	Point		20.1	0.0	
025 Vac	Default industrial noise	Point		24.1 24.4	0.0	
26	Default industrial noise			25.0	0.0	
20 Queued Cars	Default industrial noise			33.5	0.0	
Queued Cars				33.5	0.0	
Queued Cars		Line		22.4	0.0	
Queueu Cars				55.4	0.0	
Lipod Poof 01	Default industrial noise	Area		2.1	0.0	
Lineu-Rooi UT						
Lined Transmissive area 03	Default industrial noise	Area		-1.9	0.0	
Lineu-Hansinissive area 05						
Lined Eccode 01	Default industrial noise	Area		-2.6	0.0	
Tunnol 15 Sonny Silongod						
Lined-Transmissive area 04	Default industrial noise	Area		-10.0	0.0	
	I	I	I			I

MD Acoustics LLC 4960 S. Gilbert Rd Chandler, AZ 85249 Phone: 602 774 1950

Source	Source group	Source ty Tr. lane	LrD	A	
			dB(A)	dB	
Tunnel 15 Sonny Silenced -	Default industrial paiza	Area	2.2	0.0	
Lined-Facade 02	Delault Industrial hoise	Alea	2.2	0.0	
Tunnel 15 Sonny Silenced -	Default industrial poise	Area	47.0	0.0	
Lined-Transmissive area 01			47.0	0.0	
Tunnel 15 Sonny Silenced -	Default industrial noise	Area	-30	0.0	
Lined-Facade 03			-0.5	0.0	
Tunnel 15 Sonny Silenced -	Default industrial noise	Area	-11 1	0.0	
Lined-Transmissive area 05				0.0	
Tunnel 15 Sonny Silenced -	Default industrial noise	Area	-10.4	0.0	
Lined-Facade 04				0.0	
Tunnel 15 Sonny Silenced -	Default industrial noise	Area	29.2	0.0	
Lined-Transmissive area 01					
Receiver 11509004,3632316	FIG LrD,lim dB(A) Lr	0 47.1 dB(A) Sigma	(LrD) 0.0 (dB(A)	
001 Vac	Default industrial noise	Point	17.5	0.0	
002 Vac	Default industrial noise	Point	17.8	0.0	
003 Vac	Default industrial noise	Point	15.3	0.0	
004 Vac	Default industrial noise	Point	11.2	0.0	
005 Vac	Default industrial noise	Point	11.2	0.0	
006 Vac	Default industrial noise	Point	11.1	0.0	
007 Vac	Default industrial noise	Point	11.0	0.0	
008 Vac	Default industrial noise	Point	10.8	0.0	
009 Vac	Default industrial noise	Point	10.5	0.0	
010 Vac	Default industrial noise	Point	10.1	0.0	
011 Vac	Default industrial noise	Point	9.8	0.0	
012 Vac	Default industrial noise	Point	9.5	0.0	
013 Vac	Default industrial noise	Point	9.3	0.0	
014 Vac	Default industrial noise	Point	9.0	0.0	
015 Vac	Default industrial noise	Point	8.7	0.0	
016 Vac	Default industrial noise	Point	12.6	0.0	
017 Vac	Default industrial noise	Point	12.0	0.0	
018 Vac	Default industrial noise	Point	12.5	0.0	
019 Vac	Default industrial noise	Point	9.2	0.0	
020 Vac	Default industrial noise	Point	9.0	0.0	
021 Vac	Default industrial noise	Point	9.1	0.0	
022 Vac	Default industrial noise	Point	9.0	0.0	
023 Vac	Default industrial noise	Point	8.3	0.0	
024 Vac	Default industrial noise	Point	8.4	0.0	
025 Vac	Default industrial noise	Point	8.1	0.0	
26	Default industrial noise	Line	21.1	0.0	
Queued Cars	Default industrial noise	Line	40.1	0.0	
Queued Cars	Default industrial noise	Line	39.8	0.0	
Queued Cars	Default industrial noise	Line	44.0	0.0	
Tunnel 15 Sonny Silenced -					
Lined-Roof 01	Default industrial noise	Area	6.7	0.0	
		· ·			1

MD Acoustics LLC 4960 S. Gilbert Rd Chandler, AZ 85249 Phone: 602 774 1950

³

0			T . 1		٨	
Source	Source group	Source ty	r. lane	LrD	A	
				dB(A)	dB	
Tunnel 15 Sonny Silenced -	Default industrial noise	Area		13	0.0	
Lined-Transmissive area 03					0.0	
Tunnel 15 Sonny Silenced -	Default industrial noise	Area		11.8	0.0	
Lined-Facade 01				-		
I unnel 15 Sonny Silenced -	Default industrial noise	Area		3.7	0.0	
Lined-Transmissive area 04						
Liped Eacade 02	Default industrial noise	Area		1.7	0.0	
Tunnol 15 Sonny Siloncod						
Lined-Transmissive area 01	Default industrial noise	Area		35.6	0.0	
Tunnel 15 Sonny Silenced -						
Lined-Facade 03	Default industrial noise	Area		-1.5	0.0	
Tunnel 15 Sonny Silenced -						
Lined-Transmissive area 05	Default industrial noise	Area		-9.3	0.0	
Tunnel 15 Sonny Silenced -	Defeult in duetaiel a sis s			5.0	0.0	
Lined-Facade 04	Default industrial noise	Area		-5.9	0.0	
Tunnel 15 Sonny Silenced -	Default industrial paiss			22.0	0.0	
Lined-Transmissive area 01		Alea		32.9	0.0	
Receiver 11509044,3632307	′FIG LrD,lim dB(A) Lr	D 49.7 dB(A) Sigma((LrD) 0.0 d	dB(A)	
001 Vac	Default industrial noise	Point		8.0	0.0	
002 Vac	Default industrial noise	Point		7.9	0.0	
003 Vac	Default industrial noise	Point		8.1	0.0	
004 Vac	Default industrial noise	Point		8.2	0.0	
005 Vac	Default industrial noise	Point		8.5	0.0	
006 Vac	Default industrial noise	Point		8.8	0.0	
007 Vac	Default industrial noise	Point		9.1	0.0	
008 Vac	Default industrial noise	Point		9.4	0.0	
009 Vac	Default industrial noise	Point		9.7	0.0	
010 Vac	Default industrial noise	Point		9.9	0.0	
011 Vac	Default industrial noise	Point		10.2	0.0	
012 Vac	Default industrial noise	Point		10.4	0.0	
013 Vac	Default industrial noise	Point		10.6	0.0	
014 Vac	Default industrial noise	Point		11.0	0.0	
015 Vac	Default industrial noise	Point		15.3	0.0	
016 Vac	Default industrial noise	Point		6.7	0.0	
017 Vac	Default industrial noise	Point		6.8	0.0	
018 Vac	Default industrial noise	Point		7.1	0.0	
019 Vac	Default industrial noise	Point		7.2	0.0	
020 Vac	Default industrial noise	Point		7.4	0.0	
021 Vac	Default industrial noise	Point		7.8	0.0	
022 Vac	Default industrial noise	Point		7.2	0.0	
023 Vac	Default industrial noise	Point		7.4	0.0	
024 Vac	Default industrial noise	Point		7.7	0.0	
025 Vac	Default industrial noise	Point		7.8	0.0	
26	Default industrial noise	Line		17.5	0.0	

MD Acoustics LLC 4960 S. Gilbert Rd Chandler, AZ 85249 Phone: 602 774 1950

	i	1				
Source	Source group	Source ty	Tr. lane	LrD	A	
				dB(A)	dB	
Queued Cars	Default industrial noise	Line		39.7	0.0	
Queued Cars	Default industrial noise	Line		40.5	0.0	
Queued Cars	Default industrial noise	Line		44.5	0.0	
Tunnel 15 Sonny Silenced - Lined-Roof 01	Default industrial noise	Area		5.3	0.0	
Tunnel 15 Sonny Silenced - Lined-Transmissive area 03	Default industrial noise	Area		4.2	0.0	
Tunnel 15 Sonny Silenced - Lined-Facade 01	Default industrial noise	Area		9.6	0.0	
Tunnel 15 Sonny Silenced - Lined-Transmissive area 04	Default industrial noise	Area		7.2	0.0	
Tunnel 15 Sonny Silenced - Lined-Facade 02	Default industrial noise	Area		-8.3	0.0	
Tunnel 15 Sonny Silenced - Lined-Transmissive area 01	Default industrial noise	Area		30.1	0.0	
Tunnel 15 Sonny Silenced - Lined-Facade 03	Default industrial noise	Area		-3.1	0.0	
Tunnel 15 Sonny Silenced - Lined-Transmissive area 05	Default industrial noise	Area		-6.0	0.0	
Tunnel 15 Sonny Silenced - Lined-Facade 04	Default industrial noise	Area		5.9	0.0	
Tunnel 15 Sonny Silenced - Lined-Transmissive area 01	Default industrial noise	Area		46.3	0.0	
Receiver 11509078,3632277	FIG LrD,lim dB(A) Lr	D 46.1 dB(/	A) Sigma	(LrD) 0.0 (dB(A)	-
001 Vac	Default industrial noise	Point		6.4	0.0	
002 Vac	Default industrial noise	Point		7.1	0.0	
003 Vac	Default industrial noise	Point		7.4	0.0	
004 Vac	Default industrial noise	Point		7.8	0.0	
005 Vac	Default industrial noise	Point		7.2	0.0	
006 Vac	Default industrial noise	Point		7.6	0.0	
007 Vac	Default industrial noise	Point		8.0	0.0	
008 Vac	Default industrial noise	Point		11.5	0.0	
009 Vac	Default industrial noise	Point		12.0	0.0	
010 Vac	Default industrial noise	Point		12.8	0.0	
011 Vac	Default industrial noise	Point		13.3	0.0	
012 Vac	Default industrial noise	Point		14.0	0.0	
013 Vac	Default industrial noise	Point		14.6	0.0	
014 Vac	Default industrial noise	Point		15.3	0.0	
015 Vac	Default industrial noise	Point		16.4	0.0	
016 Vac	Default industrial noise	Point		7.6	0.0	
017 Vac	Default industrial noise	Point		7.9	0.0	
018 Vac	Default industrial noise	Point		8.1	0.0	
019 Vac	Default industrial noise	Point		8.4	0.0	
020 Vac	Default industrial noise	Point		8.6	0.0	
021 Vac	Default industrial noise	Point		8.9	0.0	

MD Acoustics LLC 4960 S. Gilbert Rd Chandler, AZ 85249 Phone: 602 774 1950

C			lana	LD	^	
Source	Source group	Source ty I r. I	lane	LrD	A	
				dB(A)	dB	
022 Vac	Default industrial noise	Point		9.2	0.0	
023 Vac	Default industrial noise	Point		9.5	0.0	
024 Vac	Default industrial noise	Point		10.1	0.0	
025 Vac	Default industrial noise	Point		10.5	0.0	
26	Default industrial noise	Line		20.2	0.0	
Queued Cars	Default industrial noise	Line		27.4	0.0	
Queued Cars	Default industrial noise	Line		27.6	0.0	
Queued Cars	Default industrial noise	Line		27.3	0.0	
Tunnel 15 Sonny Silenced - Lined-Roof 01	Default industrial noise	Area		-0.9	0.0	
Tunnel 15 Sonny Silenced - Lined-Transmissive area 03	Default industrial noise	Area		1.1	0.0	
Tunnel 15 Sonny Silenced - Lined-Facade 01	Default industrial noise	Area		2.3	0.0	
Tunnel 15 Sonny Silenced - Lined-Transmissive area 04	Default industrial noise	Area		1.0	0.0	
Tunnel 15 Sonny Silenced - Lined-Facade 02	Default industrial noise	Area		-15.0	0.0	
Tunnel 15 Sonny Silenced - Lined-Transmissive area 01	Default industrial noise	Area		24.9	0.0	
Tunnel 15 Sonny Silenced - Lined-Facade 03	Default industrial noise	Area		-2.1	0.0	
Tunnel 15 Sonny Silenced - Lined-Transmissive area 05	Default industrial noise	Area		-2.7	0.0	
Tunnel 15 Sonny Silenced - Lined-Facade 04	Default industrial noise	Area		3.3	0.0	
Tunnel 15 Sonny Silenced - Lined-Transmissive area 01	Default industrial noise	Area		45.8	0.0	
1						

MD Acoustics LLC 4960 S. Gilbert Rd Chandler, AZ 85249 Phone: 602 774 1950

6

23

Source	Time	Sum	25Hz	31.5Hz	40Hz	50Hz	63Hz	80Hz	100Hz	125Hz	160Hz	200Hz	250Hz	315Hz	400Hz	500Hz	630Hz	800Hz	1kHz	1 25kHz	1 6kHz	2kHz	2.5kHz	3 15kHz	4kHz	5kHz	6 3kHz	8kHz	10kHz
Course	slice		1		1 1			1 1		'20	1 '''''''''''''''''''''''''''''''''''''	1 '	1		1,000	1	1	1000				1	2.0	0.10			1	1	, ¹⁰¹⁰ – J
		dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	i dB(A)
Receiver 11508938,3632263 FI	G LrD,	im dB(A	4) LrD 4	48.3 dB(/	A) Sigm	a(LrD)	0.0 dB(/	4) 																		- ()			
26	LrD	38.7	-0.3	1.1	5.1	10.2	18.1	20.6	23.7	27.0	25.8	20.6	19.7	T 18.8	17.6	18.6	22.3	29.9	30.7	30.8	30.2	27.8	23.9	19.9	17.9	16.3	14.2	12.0	8.7
001 Vac	LrD	28.0	-2.9	4.4	7.9	1 11.0	12.2	8.1	5.3	4.9	2.8	-3.9	-1.5	-1.2	0.4	4.0	5.2	10.3	8.8	14.3	17.3	18.1	20.6	21.4	18.9	17.4	13.4	5.4	, "I
002 Vac	LrD	26.7	-3.6	3.7	7.2	10.3	111.5	7.4	4.6	4.1	2.0	-4.9	-2.5	-2.2	-0.6	3.0	4.2	9.5	8.1	13.5	16.6	17.3	19.0	19.8	17.3	15.8	11.9	3.8	, I
003 Vac	LrD	26.3	-4.0	3.2	6.7	9.8	1 11.1	7.0	4.1	3.7	1.6	-5.5	-3.1	-2.8	-1.2	2.4	3.6	9.1	7.6	13.0	16.1	16.8	18.5	19.3	16.7	15.3	11.2	3.0	, I
004 Vac	LrD	25.8	-4.4	2.8	6.3	9.4	10.7	6.6	3.7	3.2	1.2	-6.1	-3.7	-3.3	-1.8	1.8	3.1	8.6	7.1	12.6	15.7	16.4	18.1	18.8	16.2	14.7	10.6	2.3	, I
005 Vac	LrD	25.3	-4.8	2.4	5.9	9.0	10.3	6.2	3.3	2.8	0.7	-6.6	-4.3	-3.9	-2.3	1.3	2.5	8.2	6.7	12.1	15.3	16.0	17.6	18.3	15.7	14.2	10.0	1.5	, I
006 Vac	LrD	24.9	-5.2	2.0	5.5	8.6	9.9	5.8	2.9	2.4	0.3	-7.1	-4.8	-4.4	-2.9	0.7	2.0	7.7	6.3	11.7	14.9	15.6	17.2	17.9	15.3	13.6	9.4	0.8	, 1
007 Vac	LrD	26.4	-5.6	1.6	5.1	8.2	9.5	5.4	2.4	2.0	-0.1	-7.7	-5.3	-2.8	-1.2	2.4	3.6	9.5	8.1	13.5	16.7	17.4	19.0	19.6	17.0	15.2	10.8	2.1	, P
008 Vac	LrD	26.0	-6.0	1.3	4.7	7.8	9.1	5.0	2.0	1.6	-0.5	-8.2	-5.9	-3.3	-1.7	1.9	3.1	9.2	7.7	13.1	16.3	17.0	18.6	19.2	16.5	14.7	10.2	1.3	, 1
009 Vac	LrD	25.7	-6.3	1.0	4.4	7.5	8.8	4.7	1.7	1.2	-0.8	-8.6	-6.3	-5.9	-2.1	1.5	2.7	8.8	7.3	12.8	16.0	16.7	18.2	18.9	16.1	14.3	9.7	0.7	, P
010 Vac	LrD	25.3	-6.5	0.7	4.2	7.3	8.6	4.5	1.4	0.9	-1.2	-9.1	-6.7	-6.4	-2.5	1.1	2.3	8.5	7.0	12.4	15.7	16.3	17.9	18.5	15.7	13.8	9.2	0.1	, P
011 Vac	LrD	25.0	-6.8	0.5	4.0	7.1	8.3	4.2	1.1	0.6	-1.5	-9.5	-7.2	-6.8	-2.9	0.7	1.9	8.2	6.7	12.1	15.4	16.0	17.6	18.1	15.3	13.4	8.7	-0.6	, P
012 Vac	LrD	24.6	-7.0	0.3	3.8	6.8	8.1	4.0	0.8	0.3	-1.8	-9.9	-7.5	-7.2	-3.3	0.3	1.6	7.9	6.4	11.8	15.1	15.7	17.3	17.8	15.0	13.0	8.2	-1.2	, P
013 Vac	LrD	24.3	-7.2	0.1	3.5	6.6	7.9	3.8	0.5	0.0	-2.0	-10.3	-7.9	-7.6	-3.6	0.0	1.2	7.6	6.1	11.5	14.8	15.4	17.0	17.5	14.6	12.6	7.7	-1.8	, P
014 Vac	LrD	24.0	-7.4	-0.1	3.3	6.4	7.7	3.6	0.2	-0.3	-2.3	-10.6	-8.3	-7.9	-4.1	-0.5	0.8	7.3	5.8	11.2	14.5	15.1	16.6	17.2	14.2	12.2	7.2	-2.4	, P
015 Vac	LrD	23.7	-7.6	-0.4	3.1	6.2	7.5	3.4	-0.1	-0.6	-2.6	-11.0	-8.7	-8.3	-4.4	-0.8	0.4	7.0	5.5	10.9	14.2	14.9	16.3	16.8	13.9	11.7	6.7	-3.1	, I
016 Vac	LrD	29.0	-1.6	5.6	9.1	12.2	13.5	9.4	6.6	6.2	4.1	-2.1	0.2	0.6	2.1	5.7	7.0	11.7	10.2	15.7	18.6	19.4	21.1	22.0	19.6	18.4	14.7	7.0	, I
017 Vac	LrD	28.3	-2.2	5.0	8.5	11.6	12.9	8.8	6.0	5.5	3.5	-3.0	-0.6	-0.3	1.3	4.9	6.1	11.0	9.6	15.0	18.0	18.8	20.5	21.3	18.9	17.6	13.9	6.1	, I
018 Vac	LrD	27.7	-2.7	4.5	8.0	11.1 '	12.3	8.2	5.4	5.0	2.9	-3.7	-1.4	-1.0	0.5	4.1	5.4	10.4	9.0	14.4	17.4	18.2	19.9	20.7	18.3	16.9	13.1	5.2	, I
019 Vac	LrD	27.0	-3.3	3.9	7.4	10.5	11.8	7.7	4.8	4.4	2.3	-4.5	-2.2	-1.8	-0.3	3.3	4.6	9.8	8.3	13.8	16.8	17.6	19.3	20.0	17.6	16.2	12.2	4.2	, I
020 Vac	LrD	26.4	-3.8	3.4	6.9	10.0	11.2	7.1	4.3	3.8	1.8	-5.3	-2.9	-2.6	-1.0	2.6	3.9	9.2	7.8	13.2	16.3	17.0	18.7	19.4	16.9	15.5	11.4	3.3	, 1
021 Vac	LrD	25.9	-4.3	2.9	6.4	9.5	10.8	6.7	3.8	3.3	1.3	-5.9	-3.6	-3.2	-1.6	2.0	3.2	8.7	7.2	12.7	15.8	16.5	18.2	18.9	16.4	14.9	10.7	2.5	, 1
022 Vac	LrD	25.4	-4.8	2.5	6.0	9.1	10.3	6.2	3.3	2.9	0.8	-6.5	-4.2	-3.8	-2.3	1.3	2.6	8.2	6.7	12.2	15.3	16.0	17.7	18.4	15.8	14.2	10.0	1.6	, 1
023 Vac	LrD	24.9	-5.2	2.0	5.5	8.6	9.9	5.8	2.9	2.4	0.4	-7.1	-4.8	-4.4	-2.8	0.8	2.0	7.7	6.3	11.7	14.9	15.6	17.2	17.9	15.3	13.7	9.4	0.8	, 1
024 Vac	LrD	24.4	-5.6	1.6	5.1	8.2	9.5	5.4	2.4	2.0	-0.1	-7.7	-5.4	-5.0	-3.4	0.2	1.4	7.3	5.8	11.2	14.4	15.1	16.7	17.4	14.7	13.0	8.7	0.0	, 1
025 Vac	LrD	23.9	-6.0	1.2	4.7	7.8	9.0	4.9	2.0	1.5	-0.5	-8.3	-5.9	-5.6	-4.0	-0.4	0.9	6.8	5.3	10.8	14.0	14.7	16.2	16.9	14.2	12.5	8.0	-0.8	, 1
Queued Cars	LrD	24.7	-8.1	-6.9	-3.2	1.2	8.7	10.9	13.1	16.1	14.6	11.8	10.4	9.0	7.2	7.7	10.6	14.7	14.9	14.3	13.3	10.0	5.3	0.3	-2.7	-5.6	-9.0	-13.0	-18.8
Queued Cars	LrD	22.4	-7.8	-6.8	-3.1	1.0	8.3	10.3	12.3	15.0	13.2	10.5	8.9	7.2	5.0	5.1	7.8	11.2	11.1	10.1	8.8	5.3	0.4	-4.7	-7.4	-10.0	-13.1	-17.0	-22.7
Queued Cars	LrD	20.4	-8.5	-7.6	-4.1	-0.1	7.0	8.8	10.7	13.2	11.3	8.4	6.7	4.9	2.6	2.7	5.3	8.6	8.5	7.5	6.4	3.5	-0.7	-5.2	-7.7	-10.1	-13.2	-16.9	-22.4
Tunnel 15 Sonny Silenced - Lined-Facade 01	LrD	-3.8	1 1	1 '		1 '			1 '	-6.5	1 '	1 '	-7.9		'	-16.2	1 '	'	-26.1			-40.4			-56.8		1 '		(
Tunnel 15 Sonny Silenced - Lined-Facade 02	LrD	1.8	1 1	1 '		1 '			1 '	-2.1	1 /	1 '	-2.5		'	-5.8	1 /	'	-12.2			-24.5			-39.5		1		1
Tunnel 15 Sonny Silenced - Lined-Facade 03	LrD	5.4	1			1 '			1	2.8			0.3		'	-4.2			-10.3			-22.5			-37.6		1	i l	i -

MD Acoustics LLC 4960 S. Gilbert Rd Chandler, AZ 85249 Phone: 602 774 1950

SoundPLAN 8.2

							_			_													-						
Source	Time	Sum	25Hz	31.5Hz	40Hz	50Hz	63Hz	80Hz	100Hz	125Hz	160Hz	200Hz	250Hz	315Hz	400Hz	500Hz	630Hz	800Hz	1kHz	1.25kHz	1.6kHz	2kHz	2.5kHz	3.15kHz	4kHz	5kHz	6.3kHz	8kHz	10kHz
	slice																												
		dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
Tunnel 15 Sonny Silenced - Lined-Facade 04	LrD	-8.8								-12.5			-12.0			-18.9			-28.3			-42.4			-58.9				
Tunnel 15 Sonny Silenced - Lined-Roof 01	LrD	1.4								-3.7			-1.3			-7.4			-15.6			-28.1			-42.5				
Tunnel 15 Sonny Silenced - Lined-Transmissive area 01	LrD	46.8								37.6			37.8			39.7			43.6			35.7			23.7				
Tunnel 15 Sonny Silenced - Lined-Transmissive area 01	LrD	31.0								24.5			25.7			24.4			24.8			16.0			3.2				
Tunnel 15 Sonny Silenced - Lined-Transmissive area 03	LrD	-3.4								-10.4			-5.7			-10.6			-18.4			-30.4			-44.7				
Tunnel 15 Sonny Silenced - Lined-Transmissive area 04	LrD	-11.5								-15.1			-14.7			-22.3			-32.1			-45.8			-61.9				
Tunnel 15 Sonny Silenced - Lined-Transmissive area 05	LrD	-1.7								-5.2			-6.7			-9.0			-15.1			-27.4			-42.4				
Receiver 11508938,3632304 F	IG LrD,	lim dB(A) LrD 4	48.3 dB(A	A) Sigm	a(LrD) ().0 dB(A	N)																					
26	LrD	35.0	-3.9	-2.5	1.5	6.0	13.8	16.7	20.3	23.6	22.4	16.2	15.3	14.4	13.4	14.4	17.9	26.2	27.0	27.1	26.6	24.1	20.2	16.0	13.8	11.7	9.1	6.0	1.3
001 Vac	LrD	27.4	-3.0	4.2	7.7	10.8	12.1	8.0	5.1	4.7	2.6	-4.1	-1.8	-1.4	0.1	3.7	5.0	10.1	8.6	14.1	17.1	17.9	19.6	20.4	17.9	16.5	12.7	4.7	
002 Vac	LrD	26.4	-3.9	3.4	6.8	9.9	11.2	7.1	4.2	3.8	1.7	-5.3	-3.0	-2.6	-1.0	2.6	3.8	9.2	7.7	13.2	16.3	17.0	18.6	19.4	16.9	15.4	11.4	3.2	
003 Vac	LrD	25.8	-4.4	2.9	6.4	9.5	10.7	6.6	3.7	3.3	1.2	-6.0	-3.6	-3.3	-1.6	2.0	3.2	8.7	7.2	12.7	15.7	16.5	18.1	18.8	16.3	14.8	10.7	2.4	
004 Vac	LrD	25.3	-4.8	2.4	5.9	9.0	10.3	6.2	3.3	2.8	0.7	-6.6	-4.3	-3.9	-2.3	1.3	2.6	8.2	6.7	12.1	15.3	16.0	17.6	18.3	15.7	14.2	10.0	1.5	
005 Vac	LrD	24.8	-5.3	2.0	5.5	8.6	9.8	5.7	2.8	2.3	0.3	-7.2	-4.9	-4.5	-2.9	0.7	2.0	7.7	6.2	11.7	14.8	15.5	17.1	17.8	15.2	13.6	9.3	0.7	
006 Vac	LrD	24.3	-5.7	1.6	5.1	8.1	9.4	5.3	2.4	1.9	-0.1	-7.8	-5.4	-5.1	-3.4	0.2	1.4	7.2	5.8	11.2	14.4	15.1	16.7	17.3	14.7	13.0	8.6	-0.1	
007 Vac	LrD	23.9	-6.1	1.2	4.6	7.7	9.0	4.9	1.9	1.5	-0.6	-8.3	-6.0	-5.6	-4.0	-0.4	0.8	6.8	5.3	10.7	13.9	14.6	16.2	16.8	14.2	12.4	7.9	-0.9	
008 Vac	LrD	23.4	-6.4	0.8	4.3	7.4	8.7	4.6	1.5	1.1	-1.0	-8.8	-6.5	-6.1	-4.5	-0.9	0.3	6.4	4.9	10.3	13.6	14.2	15.8	16.4	13.7	11.9	7.3	-1.7	
009 Vac	LrD	23.1	-6.6	0.6	4.1	7.2	8.5	4.4	1.2	0.8	-1.3	-9.3	-6.9	-6.6	-5.0	-1.4	-0.1	6.0	4.5	10.0	13.2	13.9	15.4	16.0	13.3	11.4	6.8	-2.3	
010 Vac	LrD	22.7	-6.9	0.4	3.8	6.9	8.2	4.1	0.9	0.4	-1.6	-9.7	-7.4	-7.0	-5.4	-1.8	-0.6	5.7	4.2	9.6	12.9	13.5	15.1	15.6	12.8	10.9	6.2	-3.1	
011 Vac	LrD	22.3	-7.1	0.1	3.6	6.7	8.0	3.9	0.6	0.1	-2.0	-10.1	-7.8	-7.4	-5.8	-2.2	-1.0	5.3	3.9	9.3	12.6	13.2	14.7	15.3	12.4	10.4	5.6	-3.7	
012 Vac	LrD	22.0	-7.3	-0.1	3.4	6.5	7.7	3.6	0.3	-0.2	-2.3	-10.5	-8.2	-7.8	-6.2	-2.6	-1.4	5.0	3.5	8.9	12.3	12.9	14.4	14.9	12.0	10.0	5.1	-4.4	
013 Vac	LrD	21.7	-7.6	-0.3	3.2	6.3	7.5	3.4	0.0	-0.5	-2.5	-10.9	-8.5	-8.2	-6.6	-3.0	-1.7	4.7	3.2	8.6	12.0	12.6	14.1	14.6	11.7	9.6	4.6	-5.0	
014 Vac	LrD	21.3	-7.8	-0.5	3.0	6.1	7.3	3.2	-0.3	-0.8	-2.8	-11.3	-8.9	-8.6	-7.1	-3.5	-2.2	4.4	2.9	8.3	11.7	12.3	13.8	14.2	11.3	9.1	4.0	-5.7	
015 Vac	LrD	22.7	-8.0	-0.8	2.7	5.8	7.1	3.0	-0.6	-1.1	-3.1	-11.6	-9.3	-8.9	-5.5	-1.9	-0.6	6.1	4.6	10.0	13.4	14.0	15.4	15.8	12.8	10.4	5.1	-5.0	
016 Vac	LrD	26.0	-4.2	3.0	6.5	9.6	10.9	6.8	3.9	3.4	1.4	-5.8	-3.4	-3.1	-1.5	2.1	3.3	8.8	7.3	12.8	15.9	16.6	18.3	19.0	16.5	15.0	10.9	2.6	
017 Vac	LrD	25.5	-4.6	2.6	6.1	9.2	10.5	6.4	3.5	3.0	0.9	-6.4	-4.0	-3.6	-2.1	1.5	2.8	8.4	6.9	12.3	15.5	16.2	17.8	18.5	16.0	14.4	10.2	1.9	
018 Vac	LrD	25.1	-5.0	2.2	5.7	8.8	10.1	6.0	3.0	2.6	0.5	-6.9	-4.6	-4.2	-2.6	1.0	2.2	7.9	6.4	11.9	15.0	15.7	17.4	18.1	15.5	13.9	9.6	1.1	
019 Vac	LrD	24.6	-5.4	1.8	5.3	8.4	9.6	5.5	2.6	2.1	0.1	-7.5	-5.1	-4.8	-3.2	0.4	1.7	7.5	6.0	11.4	14.6	15.3	16.9	17.6	15.0	13.3	9.0	0.4	
020 Vac	LrD	24.1	-5.8	1.4	4.9	8.0	9.2	5.2	2.2	1.7	-0.3	-8.0	-5.7	-5.3	-3.7	-0.1	1.1	7.0	5.6	11.0	14.2	14.9	16.5	17.1	14.5	12.8	8.3	-0.4	
021 Vac	LrD	25.7	-6.2	1.0	4.5	7.6	8.9	4.8	1.8	1.4	1.5	-6.3	-4.0	-3.6	-2.0	1.6	2.8	8.9	7.4	12.8	16.1	16.7	18.3	18.9	16.2	14.4	9.8	0.9	

MD Acoustics LLC 4960 S. Gilbert Rd Chandler, AZ 85249 Phone: 602 774 1950

SoundPLAN 8.2

I

2

Source	Time	Sum	25Hz	31.5Hz	40Hz	50Hz	63Hz	80Hz	100Hz	125Hz	160Hz	200Hz	250Hz	315Hz	400Hz	500Hz	630Hz	800Hz	1kHz	1.25kHz	1.6kHz	2kHz	2.5kHz	3.15kHz	4kHz	5kHz	6.3kHz	8kHz	10kHz
	slice																												
		dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
022 Vac	LrD	25.4	-6.4	0.8	4.3	7.4	8.7	4.6	1.5	1.0	1.2	-6.7	-4.4	-4.0	-2.4	1.2	2.4	8.6	7.1	12.5	15.8	16.4	18.0	18.6	15.8	13.9	9.3	0.2	
023 Vac	LrD	25.1	-6.7	0.6	4.1	7.2	8.4	4.3	1.2	0.7	1.0	-7.1	-4.8	-4.4	-2.8	0.8	2.0	8.3	6.8	12.2	15.5	16.1	17.7	18.2	15.4	13.5	8.8	-0.4	
024 Vac	LrD	24.7	-6.9	0.3	3.8	6.9	8.2	4.1	0.9	0.4	0.6	-7.5	-5.2	-4.8	-3.2	0.4	1.6	7.9	6.5	11.9	15.2	15.8	17.3	17.9	15.0	13.1	8.3	-1.1	
025 Vac	LrD	24.4	-7.1	0.1	3.6	6.7	8.0	3.9	0.6	0.1	-2.0	-7.9	-5.5	-5.2	-3.6	0.0	1.2	7.6	6.1	11.5	14.9	15.5	17.0	17.5	14.7	12.6	7.8	-1.7	
Queued Cars	LrD	33.4	-4.1	-2.7	1.3	5.9	13.7	16.2	18.8	22.1	21.0	14.3	13.4	12.5	11.4	12.4	16.0	24.7	25.5	25.5	25.1	22.6	18.6	14.3	12.0	9.7	6.8	3.2	-2.0
Queued Cars	LrD	33.5	-4.1	-2.7	1.3	5.9	13.7	16.2	18.8	22.1	21.0	14.3	13.4	12.5	11.5	12.4	16.0	24.7	25.5	25.5	25.2	22.6	18.6	14.3	12.0	9.8	6.9	3.3	-1.9
Queued Cars	LrD	33.5	-4.0	-2.6	1.4	6.0	13.8	16.3	18.9	22.2	21.1	14.4	13.5	12.6	11.5	12.5	16.0	24.7	25.6	25.6	25.2	22.7	18.7	14.4	12.1	9.8	7.0	3.4	-1.8
Tunnel 15 Sonny Silenced - Lined-Facade 01	LrD	-2.6								-5.4			-6.6			-14.5			-24.2			-38.4			-54.9				
Tunnel 15 Sonny Silenced - Lined-Facade 02	LrD	2.2								-1.6			-2.0			-5.6			-12.3			-24.6			-39.5				
Tunnel 15 Sonny Silenced - Lined-Facade 03	LrD	-3.9								-7.2			-7.4			-15.3			-24.8			-38.4			-54.2				
Tunnel 15 Sonny Silenced - Lined-Facade 04	LrD	-10.4								-15.0			-13.0			-20.3			-30.2			-43.9			-60.1				
Tunnel 15 Sonny Silenced - Lined-Roof 01	LrD	2.1								-3.3			-0.6			-6.1			-12.6			-24.5			-39.2				
Tunnel 15 Sonny Silenced - Lined-Transmissive area 01	LrD	47.0								38.0			38.4			40.2			43.6			35.7			23.7				
Tunnel 15 Sonny Silenced - Lined-Transmissive area 01	LrD	29.2								21.5			24.5			22.7			22.5			14.6			2.3				
Tunnel 15 Sonny Silenced - Lined-Transmissive area 03	LrD	-1.9								-10.0			-4.7			-7.9			-14.0			-26.3			-41.3				
Tunnel 15 Sonny Silenced - Lined-Transmissive area 04	LrD	-10.0								-13.6			-13.3			-20.3			-29.6			-43.4			-59.9				
Tunnel 15 Sonny Silenced - Lined-Transmissive area 05	LrD	-11.1								-15.4			-14.0			-21.2			-30.8			-44.5			-60.7				
Receiver 11509004,3632316 FI	IG LrD,	lim dB(A) LrD 4	7.1 dB(A	() Sigm	a(LrD) 0).0 dB(A	()																					
26	LrD	21.1	-9.4	-8.4	-4.8	-0.1	7.1	9.0	11.2	13.7	11.8	10.1	8.2	6.3	3.9	3.9	6.5	9.3	9.2	8.3	7.0	3.9	-0.6	-5.0	-7.2	-9.2	-11.7	-14.6	-18.9
001 Vac	LrD	17.5	-4.7	2.3	5.6	8.5	9.6	5.3	2.2	1.4	-1.1	-4.1	-2.4	-2.8	-2.3	0.5	0.9	1.2	-1.1	3.5	5.5	5.3	6.1	6.1	2.8	0.7	-3.9	-12.3	l
002 Vac	LrD	17.8	-4.6	2.4	5.7	8.7	9.7	5.4	2.4	1.6	-0.9	-3.8	-1.9	-2.2	-1.8	1.0	1.4	1.6	-0.7	3.8	5.8	5.7	6.5	6.5	3.2	1.1	-3.4	-11.9	l
003 Vac	LrD	15.3	-5.8	1.1	4.2	6.9	7.7	3.1	-0.2	-1.3	-4.0	-7.0	-5.1	-5.5	-5.1	-2.4	-2.0	-1.8	-4.2	0.3	2.3	2.1	3.0	3.6	1.3	0.1	-3.5	-11.0	I
004 Vac	LrD	11.2	-8.0	-1.4	1.4	3.8	4.3	-0.7	-4.4	-5.9	-9.1	-12.8	-11.0	-11.6	-11.7	-9.6	-9.7	-9.8	-12.1	-6.8	-4.0	-3.2	-1.6	-0.8	-3.2	-4.4	-8.1	-15.7	l
005 Vac	LrD	11.2	-8.1	-1.4	1.4	3.8	4.2	-0.7	-4.4	-5.9	-9.1	-12.8	-11.0	-11.6	-11.8	-9.6	-9.7	-9.9	-12.2	-6.9	-4.0	-3.3	-1.6	-0.8	-3.2	-4.5	-8.2	-15.8	I
006 Vac	LrD	11.1	-8.1	-1.5	1.3	3.7	4.2	-0.8	-4.5	-6.0	-9.2	-12.9	-11.0	-11.6	-11.8	-9.6	-9.7	-9.9	-12.2	-6.9	-4.1	-3.4	-1.7	-0.9	-3.3	-4.6	-8.3	-15.9	I
007 Vac	LrD	11.0	-8.3	-1.6	1.2	3.6	4.1	-0.9	-4.6	-6.1	-9.3	-13.0	-11.1	-11.7	-11.9	-9.7	-9.8	-10.0	-12.4	-7.1	-4.2	-3.5	-1.8	-1.0	-3.5	-4.8	-8.5	-16.2	I
008 Vac	LrD	10.8	-8.5	-1.8	1.0	3.4	3.9	-1.1	-4.8	-6.3	-9.5	-13.2	-11.3	-11.9	-12.0	-9.8	-9.9	-10.2	-12.6	-7.4	-4.6	-3.8	-2.2	-1.4	-3.8	-5.1	-8.9	-16.5	J

MD Acoustics LLC 4960 S. Gilbert Rd Chandler, AZ 85249 Phone: 602 774 1950

SoundPLAN 8.2

3

Source	Time	Sum	25Hz	31.5Hz	40Hz	50Hz	63Hz	80Hz	100Hz	125Hz	160Hz	200Hz	250Hz	315Hz	400Hz	500Hz	630Hz	800Hz	1kHz	1.25kHz	1.6kHz	2kHz	2.5kHz	3.15kHz	4kHz	5kHz	6.3kHz	8kHz	10kHz
	slice																									-		-	-
		dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
009 Vac	LrD	10.5	-8.6	-2.0	0.9	3.3	3.7	-1.2	-5.0	-6.5	-9.7	-13.4	-12.4	-12.9	-13.1	-10.8	-10.9	-11.1	-13.6	-8.3	-5.4	-4.2	-2.4	-1.6	-4.1	-5.4	-9.3	-17.0	
010 Vac	LrD	10.1	-8.9	-2.2	0.6	3.0	3.5	-1.5	-5.2	-6.7	-10.0	-13.7	-12.7	-13.8	-14.0	-11.7	-11.8	-11.9	-14.5	-9.0	-6.1	-5.4	-3.3	-2.5	-4.9	-6.2	-10.0	-17.7	
011 Vac	LrD	9.8	-9.1	-2.5	0.4	2.8	3.3	-1.7	-5.5	-7.0	-10.3	-13.9	-13.0	-14.1	-14.2	-12.0	-12.0	-12.2	-14.8	-9.4	-6.5	-5.7	-4.0	-3.2	-5.6	-6.8	-10.6	-18.3	
012 Vac	LrD	9.5	-9.4	-2.7	0.2	2.5	3.0	-2.0	-5.7	-7.3	-10.6	-14.2	-13.3	-14.4	-14.5	-12.2	-12.3	-12.4	-15.0	-9.7	-6.8	-6.1	-4.4	-3.6	-6.0	-7.3	-11.0	-18.8	
013 Vac	LrD	9.3	-9.6	-2.9	-0.1	2.3	2.8	-2.1	-5.9	-7.5	-10.7	-14.5	-13.5	-14.6	-14.7	-12.4	-12.4	-12.4	-15.0	-9.9	-7.0	-6.3	-4.7	-3.9	-6.3	-7.7	-11.5	-19.4	
014 Vac	LrD	9.0	-9.9	-3.3	-0.4	2.0	2.5	-2.4	-6.2	-7.8	-11.1	-14.8	-13.9	-14.9	-15.0	-12.7	-12.7	-12.7	-15.3	-10.4	-7.4	-6.7	-5.1	-4.3	-6.8	-8.2	-12.1	-20.0	
015 Vac	LrD	8.7	-10.2	-3.5	-0.6	1.8	2.3	-2.7	-6.5	-8.1	-11.4	-15.1	-14.2	-15.2	-15.3	-13.0	-13.0	-13.0	-15.5	-10.8	-7.8	-7.1	-5.5	-4.7	-7.2	-8.7	-12.6	-20.7	
016 Vac	LrD	12.6	-8.4	-1.4	1.8	4.7	5.7	1.3	-2.0	-3.0	-5.7	-8.7	-7.3	-7.9	-7.7	-5.1	-4.8	-5.0	-7.4	-2.9	-0.8	-1.1	-0.4	-0.6	-4.1	-6.5	-11.5	-20.7	
017 Vac	LrD	12.0	-9.5	-2.6	0.6	3.3	4.1	-0.5	-3.9	-5.0	-7.7	-10.6	-9.0	-9.5	-9.0	-6.3	-5.9	-6.0	-8.4	-3.8	-0.2	-0.5	0.3	1.1	-1.5	-3.0	-7.2	-15.5	
018 Vac	LrD	12.5	-9.4	-2.5	0.6	3.3	4.1	1.2	-2.2	-3.3	-6.0	-8.9	-7.3	-7.7	-7.3	-4.5	-4.2	-4.3	-6.7	-2.2	0.0	-0.3	0.6	1.4	-1.1	-2.7	-6.8	-15.1	
019 Vac	LrD	9.2	-10.7	-4.0	-1.0	1.4	2.0	-1.1	-4.9	-6.3	-9.5	-12.9	-11.9	-13.0	-13.2	-11.0	-11.1	-11.0	-13.5	-9.1	-6.1	-5.4	-3.8	-3.1	-5.8	-7.4	-11.6	-20.0	
020 Vac	LrD	9.0	-10.7	-4.0	-1.0	1.4	2.0	-2.9	-4.9	-6.3	-9.5	-12.9	-11.9	-13.0	-13.2	-11.0	-11.1	-11.0	-13.5	-9.1	-6.1	-5.4	-3.8	-3.2	-5.8	-7.4	-11.6	-20.0	
021 Vac	LrD	9.1	-10.7	-4.0	-1.1	1.4	1.9	-1.2	-4.9	-6.4	-9.5	-13.0	-12.0	-13.0	-13.2	-11.0	-11.1	-11.1	-13.5	-9.1	-6.1	-5.5	-3.9	-3.2	-5.8	-7.5	-11.7	-20.1	
022 Vac	LrD	9.0	-10.7	-4.0	-1.1	1.3	1.9	-3.0	-5.0	-6.4	-9.6	-13.0	-12.0	-13.1	-13.2	-11.0	-11.1	-11.1	-13.5	-9.2	-6.2	-5.5	-3.9	-3.3	-5.9	-7.5	-11.8	-20.2	
023 Vac	LrD	8.3	-10.8	-4.1	-1.2	1.3	1.8	-3.0	-6.8	-8.2	-11.4	-14.9	-13.9	-15.0	-15.1	-12.9	-13.0	-12.8	-15.4	-11.1	-8.0	-7.4	-5.8	-5.1	-7.7	-9.2	-13.4	-21.6	
024 Vac	LrD	8.4	-10.9	-4.2	-1.3	1.2	1.8	-3.1	-6.9	-8.3	-11.5	-15.0	-14.0	-15.1	-15.2	-13.0	-13.1	-12.8	-14.2	-9.9	-7.0	-6.3	-4.7	-4.1	-6.7	-8.4	-12.7	-21.1	
025 Vac	LrD	8.1	-11.0	-4.3	-1.4	1.1	1.7	-3.2	-7.0	-8.4	-11.6	-15.1	-14.1	-15.2	-15.3	-13.1	-13.2	-12.9	-15.6	-11.2	-8.3	-7.7	-6.0	-5.4	-8.0	-9.6	-13.8	-22.1	
Queued Cars	LrD	44.0	1.5	2.9	6.9	11.6	19.4	21.9	25.2	28.6	27.6	26.7	25.9	25.2	24.1	25.5	29.6	34.2	36.3	36.9	36.0	33.7	30.0	26.1	24.4	23.2	21.9	20.7	18.9
Queued Cars	LrD	39.8	0.4	1.8	5.8	10.4	18.2	20.7	23.9	27.2	26.1	25.7	25.0	24.1	22.6	23.4	27.0	30.6	31.4	31.5	30.5	28.2	24.4	20.6	18.9	17.7	16.4	15.1	13.3
Queued Cars	LrD	40.1	-0.1	1.3	5.2	9.8	17.5	20.4	24.5	28.2	27.2	26.2	25.3	24.3	22.9	23.8	27.3	30.9	31.7	31.6	30.7	28.2	24.3	20.2	18.3	16.8	15.2	13.5	11.1
Tunnel 15 Sonny Silenced - Lined-Facade 01	LrD	11.8								6.9			8.8			3.6			-4.1			-16.2			-30.1				
Tunnel 15 Sonny Silenced - Lined-Facade 02	LrD	1.7								-3.0			-1.3			-6.8			-15.2			-27.8			-42.2				
Tunnel 15 Sonny Silenced - Lined-Facade 03	LrD	-1.5								-3.9			-5.6			-16.0			-26.9			-40.2			-54.7				
Tunnel 15 Sonny Silenced - Lined-Facade 04	LrD	-5.9								-9.9			-8.7			-17.2			-28.6			-42.9			-57.8				
Tunnel 15 Sonny Silenced - Lined-Roof 01	LrD	6.7								2.6			3.8			-3.5			-13.2			-27.6			-43.7				
Tunnel 15 Sonny Silenced - Lined-Transmissive area 01	LrD	35.6								30.2			31.7			28.3			26.2			17.9			6.6				
Tunnel 15 Sonny Silenced - Lined-Transmissive area 01	LrD	32.9								26.7			28.9			25.6			24.6			16.6			5.5				
Tunnel 15 Sonny Silenced - Lined-Transmissive area 03	LrD	1.3								-4.9			-1.0			-7.1			-16.4			-30.5			-46.6				
Tunnel 15 Sonny Silenced - Lined-Transmissive area 04	LrD	3.7								-2.5			1.0			-3.4			-10.8			-22.4			-36.0				

MD Acoustics LLC 4960 S. Gilbert Rd Chandler, AZ 85249 Phone: 602 774 1950

SoundPLAN 8.2

4

·	Time	Loum				LEOHA	Leouz										000Hz					0447				Course -		000	4064
Source	lime -	Sum	25112	31.5⊓∠	40m2	50H2 1	03112 1	80112		12502		20012	250112	315 12	400112 1	500m2	630112	800 12 1	TKHZ		1.0Km2		2.5Km2	3.15K⊓∠ i	46112	5KHZ	6.3Km2	ÖKHZ	
	slice	'	1 '			1 '	'	1'	1 '	1	1 '	1 '	1 '	1 '	1 '	1 '	1 '	1 '	1 1	1 '	1 '	1 '	1 '	1 '	1 1	1 '	1 '	1 1	1
	·`	dB(A)	dB(A)	dB(A)	dB(A)	dB(A) '	dB(A)	dB(A)	dB(A)	dB(A)	dB(A) _ '	dB(A)	dB(A)	dB(A) '	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
Tunnel 15 Sonny Silenced - Lined-Transmissive area 05	LrD	-9.3	ſ			ſ '	['	['	Ē '	-12.4	Ē '	ſ '	-12.8	ſ '	ſ '	-22.1	Ē '	Ē '	-32.5	1	ſ,	-45.5	ſ '	ſ'	-59.9	ſ'	('	Ē !	<u> </u>
Receiver 11509044,3632307 FI	G LrD	lim dB(A) LrD	49.7 dB(A) Sign	na(LrD)	0.0 dB(/	A)																					
26	LrD	17.5	-11.0	-10.2	-6.9	-2.1	4.9	6.6	8.5	10.8	8.5	6.4	4.2	1.8	-0.9	-1.2	1.2	3.6	3.7	2.9	2.1	-0.4	-4.4	-8.7	-11.0	-13.1	-15.8	-19.1	-24.0
001 Vac	LrD	8.0	-11.1	-4.4	-1.5	1.0	1.6	-3.3	-7.1	-8.6	-11.8	-15.5	-13.4	-14.5	-14.6	-12.3	-12.3	-12.3	-14.9	-10.6	-8.2	-7.6	-6.1	-5.5	-8.3	-10.1	-14.5	-23.2	1 7
002 Vac	LrD .	7.9	-11.1	-4.4	-1.5	0.9	1.3	-3.7	-7.6	-9.3	-12.6	-16.3	-14.0	-15.1	-15.1	-12.8	-12.8	-13.0	-15.5	-11.1 [']	-8.0	-7.4	-5.8	-5.2	-7.8	-9.5	-13.8	-22.3	1 7
003 Vac	LrD	8.1	-10.9	-4.2	-1.4	1.0	1.5	-3.5	-7.4	-9.0	-12.4	-16.0	-13.8	-14.8	-14.9	-12.6	-12.6	-12.8	-15.4	-10.8	-7.7	-7.1	-5.5	-4.4	-7.1	-8.7	-13.1	-21.5	1 7
004 Vac	LrD	8.2	-10.6	-4.0	-1.1	1.3	1.8	-3.2	-7.1	-8.7	-12.0	-15.7	-14.8	-15.8	-15.9	-13.6	-13.5	-13.7	-16.3	-11.4	-8.4	-7.7	-5.3	-4.6	-7.2	-8.8	-12.9	-21.2	1 7
005 Vac	LrD	8.5	-10.2	-3.6	-0.7	1.7	2.1	-2.9	-6.8	-8.4	-11.7	-15.4	-14.5	-15.5	-15.6	-13.3	-13.3	-13.4	-15.9	-11.0	-8.0	-7.3	-5.6	-4.9	-7.3	-8.8	-12.7	-20.8	1 7
006 Vac	LrD	8.8	-9.9	-3.3	-0.5	1.9	2.4	-2.6	-6.5	-8.1	-11.4	-15.1	-14.2	-15.2	-15.3	-13.0	-13.0	-13.1	-15.7	-10.6	-7.6	-6.9	-5.2	-4.4	-6.9	-8.3	-12.2	-20.1	1 7
007 Vac	LrD	9.1	-9.7	-3.0	-0.2	2.2	2.6	-2.3	-6.2	-7.7	-11.0	-14.8	-13.8	-14.9	-15.0	-12.7	-12.7	-12.9	-15.4	-10.2	-7.2	-6.5	-4.8	-4.0	-6.4	-7.8	-11.6	-19.5	1 7
008 Vac	LrD	9.4	-9.4	-2.8	0.0	2.4	2.9	-2.1	-5.9	-7.5	-10.8	-14.5	-13.5	-14.6	-14.7	-12.5	-12.5	-12.6	-15.2	-9.8	-6.8	-6.1	-4.4	-3.6	-6.0	-7.3	-11.1 [']	-18.8	1 7
009 Vac	LrD	9.7	-9.2	-2.6	0.3	2.6	3.1	-1.9	-5.7	-7.2	-10.5	-14.2	-13.3	-14.4	-14.5	-12.3	-12.3	-12.4	-14.8	-9.4	-6.5	-5.7	-4.0	-3.2	-5.6	-6.9	-10.6	-18.3	1 7
010 Vac	LrD	9.9 '	-8.9	-2.3	0.5	2.9	3.3	-1.7	-5.4	-7.0	-10.2	-13.9	-13.0	-14.1	-14.2	-12.0	-12.1	-12.2	-14.4	-9.0	-6.1	-5.4	-3.7	-2.8	-5.2	-6.4	-10.1	-17.7	1 7
011 Vac	LrD	10.2	-8.7	-2.1	0.7	3.1	3.5	-1.5	-5.2	-6.8	-10.0	-13.7	-12.8	-13.9	-14.0	-11.8	-11.9	-12.0	-14.1	-8.7	-5.8	-5.1	-3.4	-2.2	-4.6	-5.9	-9.6	-17.2	1 7
012 Vac	LrD	10.4	-8.6	-2.0	0.9	3.2	3.7	-1.3	-5.1	-6.6	-9.8	-13.5	-12.6	-13.7	-13.9	-11.6	-11.7	-11.8	-13.8	-8.4	-5.5	-4.8	-3.1	-1.9	-4.2	-5.4	-9.1	-16.8	1 7
013 Vac	LrD	10.6	-8.3	-1.7	1.1	3.4	3.9	-1.1	-4.9	-6.4	-9.7	-13.4	-12.4	-13.5	-13.7	-11.5	-11.6	-11.6	-13.6	-8.1	-5.3	-4.6	-2.8	-2.0	-4.2	-5.4	-9.0	-16.5	1 7
014 Vac	LrD	11.0 '	-8.0	-1.4	1.4	3.8	4.3	-0.6	-4.2	-5.6	-8.6	-12.0	-10.8	-11.7	-11.8	-9.7	-9.9	-10.2	-13.1	-8.0	-5.1	-4.4	-2.7	-1.6	-4.0	-5.2	-8.8	-16.2	1 7
015 Vac	LrD	15.3	-6.1	0.8	3.9	6.5	7.3	2.7	-0.7	-1.7	-4.5	-7.6	-6.0	-6.4	-6.0	-3.2	-2.8	-2.7	-5.1	-0.5	1.4	1.2	2.4	5.8	3.5	2.3	-1.2	-8.6	1 '
016 Vac	LrD	6.7 '	-12.8	-6.1	-3.2	-0.7	-0.1	-5.0	-6.9	-8.4	-11.7	-15.2	-14.2	-15.3	-15.4	-13.1	-13.1	-13.4	-16.0	-11.7	-9.1	-8.5	-7.0	-6.4	-8.8	-10.7	-15.5	-24.6	1 7
017 Vac	LrD	6.8	-12.6	-5.9	-3.0	-0.5	0.0	-4.9	-6.8	-8.3	-11.5	-15.0	-14.1	-15.1	-15.2	-12.9	-13.0	-13.3	-15.9	-11.5	-8.9	-8.3	-6.7	-6.1	-8.9	-10.7	-15.3	-24.3	1 '
018 Vac	LrD	7.1 ′	-12.3	-5.6	-2.7	-0.3	0.3	-4.6	-6.6	-8.1	-11.3	-14.8	-13.9	-14.9	-15.0	-12.8	-12.8	-13.1	-15.7	-11.4	-8.6	-8.0	-6.5	-5.8	-8.6	-10.4	-14.9	-23.8	1 '
019 Vac	LrD	7.2 '	-12.2	-5.5	-2.6	-0.1	0.4	-4.5	-6.4	-7.9	-11.2	-14.7	-13.7	-14.8	-14.9	-12.6	-12.7	-13.0	-15.6	-11.3	-8.4	-7.8	-6.2	-5.6	-8.3	-10.1	-14.5	-23.3	1 '
020 Vac	LrD	7.4 '	-12.1	-5.3	-2.4	0.0	0.6	-4.3	-6.3	-7.8	-11.0	-14.5	-13.5	-14.6	-14.7	-12.5	-12.5	-12.9	-15.5	-11.2	-8.2	-7.6	-6.0	-5.3	-8.0	-9.7	-14.2	-22.9	1 '
021 Vac	I ^{LrD}	7.8 '	-11.9	-5.2	-2.3	0.2	0.7	-4.2	-6.2	-7.6	-10.9	-14.3	-13.4	-14.5	-14.6	-12.4	-12.4	-12.8	-15.4	-10.0	-7.0	-6.3	-4.7	-4.1	-6.8	-8.6	-13.0	-21.8	1
022 Vac	I ^{LrD}	7.2 '	-11.6	-4.9	-2.0	0.4	0.9	-4.0	-7.8	-9.3	-12.5	-16.1	-15.1	-16.2	-16.3	-14.1	-14.1	-14.4	-17.0	-12.6	-9.6	-8.9	-7.3	-6.6	-9.2	-10.8	-15.1	-23.5	1
023 Vac	I ^{LrD}	7.4 ′	-11.5	-4.8	-1.9	0.5 '	1.1	-3.9	-7.7	-9.2	-12.4	-15.9	-15.0	-16.0	-16.2	-13.9	-14.0	-14.3	-16.9	-12.4	-9.4	-8.7	-7.1	-6.4	-9.0	-10.6	-14.7	-23.1	1
024 Vac	l ^{LrD}	7.7 '	-11.3	-4.6	-1.7	0.7 '	1.2	-3.7	-7.5	-9.0	-12.2	-15.8	-14.8	-15.9	-16.0	-13.8	-13.9	-14.2	-16.8	-12.2	-8.1	-7.4	-5.8	-5.2	-7.8	-9.4	-13.7 ·	-22.2	1
025 Vac	l ^{LrD}	7.8 ′	-11.2	-4.5	-1.6	0.8 '	1.3	-3.6	-7.4	-8.9	-12.1 '	-15.6	-14.7	-15.7	-15.9	-13.7	-13.8	-14.1	-16.7	-12.0	-9.0	-7.3	-5.7	-5.0	-7.6	-9.2	I ^{-13.5}	-21.9	1
Queued Cars	I LrD	44.5	2.6	4.0	8.0	12.6	20.5	23.0	26.3	29.6	28.6	27.6	26.8	26.1	24.9	26.1	30.1	34.5	36.3	37.2	36.5	34.5	30.9	27.2	25.6	24.5	23.2	22.1	20.4
Queued Cars	I LrD	40.5	1.7	3.0	6.9	11.5 '	19.3	21.7	24.9	28.2	27.1	26.4	25.6	24.6	23.1	24.0	27.6	31.3	32.2	32.2	31.2	28.8	25.0	21.1	19.3	18.0	16.6	15.2	l ^{13.3}
Queued Cars	l ^{LrD}	39.7 '	0.6	1.9	5.9	10.4	18.2	20.6	25.0	28.6	27.4	26.3	25.3	24.5	22.9	23.8	27.2	30.6	31.3	31.1	29.9	27.1	23.0	18.7	16.4	14.6	12.6	10.5	1 7.7
Tunnel 15 Sonny Silenced - Lined-Facade 01	LrD	9.6	'			'	'	'	1 '	5.0	1 '	'	6.6	1 '	'	0.6	1 '	1 '	-6.9	1	1	-19.0	'	'	-33.0	1	1 '	1	1
Tunnel 15 Sonny Silenced - Lined-Facade 02	LrD	-8.3	'			'	'	'	1 1	-11.8	1 '	'	-11.4	'	'	-20.3	1	1 '	-31.9	1	1 1	-46.5	'	'	-62.0	1	1	1	1

MD Acoustics LLC 4960 S. Gilbert Rd Chandler, AZ 85249 Phone: 602 774 1950

SoundPLAN 8.2

23

			_				_		_	_					_								_						
Source	Time	Sum	25Hz	31.5Hz	40Hz	50Hz	63Hz	80Hz	100Hz	125Hz	160Hz	200Hz	250Hz	315Hz	400Hz	500Hz	630Hz	800Hz	1kHz	1.25kHz	1.6kHz	2kHz	2.5kHz	3.15kHz	4kHz	5kHz	6.3kHz	8kHz	10kHz
	slice																												
		dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
Tunnel 15 Sonny Silenced - Lined-Facade 03	LrD	-3.1								-5.3			-7.4			-17.7			-28.4			-41.7			-56.2				
Tunnel 15 Sonny Silenced - Lined-Facade 04	LrD	5.9								-0.1			3.3			-2.1			-9.6			-21.3			-34.5				
Tunnel 15 Sonny Silenced - Lined-Roof 01	LrD	5.3								1.0			2.4			-5.0			-14.8			-29.3			-45.6				
Tunnel 15 Sonny Silenced - Lined-Transmissive area 01	LrD	30.1								25.1			25.9			22.0			21.2			12.8			0.9				
Tunnel 15 Sonny Silenced - Lined-Transmissive area 01	LrD	46.3								37.4			41.8			40.8			39.8			29.4			16.8				
Tunnel 15 Sonny Silenced - Lined-Transmissive area 03	LrD	4.2								-1.7			1.8			-4.3			-13.5			-27.3			-42.7				
Tunnel 15 Sonny Silenced - Lined-Transmissive area 04	LrD	7.2								1.4			4.5			-0.4			-7.6			-19.4			-32.7				
Tunnel 15 Sonny Silenced - Lined-Transmissive area 05	LrD	-6.0								-9.2			-9.4			-18.8			-29.6			-42.6			-56.6				
Receiver 11509078,3632277 F	IG LrD,	lim dB(A) LrD 4	6.1 dB(A	A) Sigm	na(LrD) ().0 dB(A	N)																					
26	LrD	20.2	-11.0	-9.9	-6.3	-2.0	5.4	7.9	10.4	13.0	11.2	9.4	7.6	5.6	3.2	3.2	5.8	8.1	8.1	7.1	5.9	2.4	-2.4	-7.5	-10.7	-13.8	-17.6	-22.2	-28.3
001 Vac	LrD	6.4	-14.2	-7.6	-4.9	-2.7	-2.4	-7.6	-12.2	-13.7	-16.8	-20.2	-18.9	-13.5	-13.2	-10.7	-10.4	-10.6	-11.0	-6.6	-4.2	-4.6	-3.9	-4.2	-8.0	-10.9	-16.7	-27.1	
002 Vac	LrD	7.1	-13.8	-7.1	-4.4	-2.2	-1.9	-7.1	-11.6	-13.1	-16.3	-19.6	-18.3	-12.9	-12.7	-10.1	-9.9	-7.9	-10.4	-5.9	-3.6	-4.0	-3.3	-3.6	-7.3	-10.1	-15.8	-26.0	
003 Vac	LrD	7.4	-13.5	-6.9	-4.1	-1.9	-1.6	-6.8	-11.2	-12.8	-15.9	-19.3	-18.0	-12.5	-12.3	-9.7	-9.5	-7.5	-10.0	-5.5	-3.2	-3.6	-2.9	-3.2	-6.8	-9.6	-15.2	-25.3	
004 Vac	LrD	7.8	-13.3	-6.6	-3.8	-1.6	-1.3	-6.5	-10.8	-12.4	-15.6	-18.9	-17.6	-12.1	-11.9	-9.3	-9.1	-7.1	-9.5	-5.1	-2.8	-3.2	-2.5	-2.7	-6.3	-9.0	-14.6	-24.5	
005 Vac	LrD	7.2	-13.0	-6.4	-3.6	-1.3	-1.0	-6.2	-10.5	-12.0	-15.2	-18.5	-17.2	-11.7	-11.5	-8.9	-8.7	-8.8	-11.3	-6.9	-4.7	-5.0	-4.2	-4.3	-7.7	-10.2	-15.5	-25.1	
006 Vac	LrD	7.6	-12.8	-6.1	-3.3	-1.0	-0.7	-5.8	-10.0	-11.6	-14.8	-18.1	-16.9	-11.3	-11.1	-8.5	-8.2	-8.4	-10.9	-6.4	-4.2	-4.6	-3.7	-3.8	-7.2	-9.7	-14.9	-24.4	
007 Vac	LrD	8.0	-12.5	-5.8	-2.9	-0.6	-0.3	-5.5	-9.6	-11.2	-14.4	-17.7	-16.4	-10.8	-10.6	-8.0	-7.7	-7.9	-10.4	-5.9	-3.8	-4.1	-3.2	-3.3	-6.7	-9.1	-14.2	-23.6	
008 Vac	LrD	11.5	-10.5	-3.5	-0.2	2.7	3.7	-0.8	-4.2	-5.2	-7.9	-10.9	-9.4	-7.7	-7.4	-4.7	-4.5	-4.6	-7.0	-2.6	-0.4	-0.7	-0.1	-0.4	-4.1	-6.8	-12.2	-22.0	
009 Vac	LrD	12.0	-10.2	-3.1	0.2	3.1	4.1	-0.3	-3.7	-4.7	-7.4	-10.4	-6.6	-7.2	-6.8	-4.2	-3.9	-4.1	-6.5	-2.0	0.1	-0.2	0.5	0.2	-3.4	-6.1	-11.5	-21.1	
010 Vac	LrD	12.8	-9.0	-2.0	1.2	3.9	4.9	0.4	-3.0	-4.0	-6.7	-9.8	-6.0	-6.5	-6.2	-3.6	-3.3	-3.4	-5.8	-1.3	0.8	0.6	1.2	1.0	-2.6	-5.2	-10.5	-20.0	
011 Vac	LrD	13.3	-8.6	-1.6	1.6	4.4	5.3	0.9	-2.4	-3.4	-6.2	-9.2	-5.4	-5.9	-5.6	-2.9	-2.6	-2.7	-5.1	-0.6	1.5	1.3	2.0	1.7	-1.8	-4.4	-9.6	-19.0	
012 Vac	LrD	14.0	-8.2	-1.2	2.0	4.8	5.8	1.4	-1.9	-2.9	-5.5	-8.6	-4.7	-5.3	-4.9	-2.2	-1.9	-2.0	-4.4	0.1	2.3	2.0	2.7	2.5	-1.0	-3.5	-8.6	-17.8	
013 Vac	LrD	14.6	-7.8	-0.8	2.5	5.3	6.3	1.9	-1.3	-2.3	-4.9	-7.9	-4.1	-4.6	-4.2	-1.5	-1.1	-1.2	-3.6	0.9	3.1	2.9	3.6	3.4	-0.1	-2.5	-7.5	-16.7	
014 Vac	LrD	15.3	-8.0	-0.8	2.6	5.5	6.7	2.3	-0.8	-1.7	-4.3	-4.9	-3.3	-3.7	-3.3	-0.6	-0.2	-0.3	-2.6	1.9	4.0	3.8	4.6	4.4	1.0	-1.4	-6.3	-15.3	
015 Vac	LrD	16.4	-6.8	0.2	3.5	6.4	7.5	3.2	0.0	-0.8	-3.3	-4.0	-2.3	-2.7	-2.3	0.5	0.9	0.9	-1.4	3.1	5.2	5.0	5.8	5.7	2.3	0.0	-4.8	-13.7	
016 Vac	LrD	7.6	-12.7	-5.7	-2.4	0.4	1.3	-3.2	-7.3	-8.4	-11.2	-14.5	-13.1	-13.8	-13.6	-11.0	-10.7	-10.9	-13.4	-9.0	-6.6	-7.0	-6.5	-7.0	-11.0	-14.1	-20.3	-31.1	
017 Vac	LrD	7.9	-12.5	-5.5	-2.3	0.6	1.5	-3.0	-7.0	-8.1	-10.9	-14.2	-12.8	-13.5	-13.2	-10.7	-10.4	-10.6	-13.0	-8.6	-6.3	-6.7	-6.1	-6.6	-10.6	-12.4	-18.3	-28.9	
018 Vac	LrD	8,1	-12.4	-5.3	-2.1	0.8	1.7	-2.8	-6.7	-7.8	-10.6	-13.8	-12.5	-13.2	-12.9	-10.3	-10.1	-10.2	-12.7	-8.3	-6.0	-6.3	-5.8	-6.3	-10.2	-13.3	-19.2	-29.8	
019 Vac	LrD	8.4	-12.2	-5.1	-1.8	1.0	2.0	-2.5	-6.4	-7.5	-10.3	-13.5	-12.1	-12.8	-12.5	-9.9	-9.7	-9.9	-12.3	-7.9	-5.6	-6.0	-5.4	-5.9	-9.7	-12.8	-18.6	-29.1	

MD Acoustics LLC 4960 S. Gilbert Rd Chandler, AZ 85249 Phone: 602 774 1950

SoundPLAN 8.2

Source	Time	Sum	25Hz	31.5Hz	40Hz	50Hz	63Hz	80Hz	100Hz	125Hz	160Hz	200Hz	250Hz	315Hz	400Hz	500Hz	630Hz	800Hz	1kHz	1.25kHz	1.6kHz	2kHz	2.5kHz	3.15kHz	4kHz	5kHz	6.3kHz	8kHz	10kHz
	slice			1 '					'													1 '				i	1		1 '
		dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
020 Vac	LrD	8.6	-12.1	-5.0	-1.7	1.1	2.1	-2.3	-6.1	-7.2	-10.0	-13.1	-11.7	-12.4	-12.1	-9.6	-9.3	-9.5	-11.9	-7.5	-5.3	-5.6	-5.0	-5.5	-9.3	-12.3	-18.1	-28.4	
021 Vac	LrD	8.9	-11.9	-4.8	-1.5	1.4	2.4	-2.1	-5.8	-6.8	-9.7	-12.7	-11.4	-12.0	-11.8	-9.2	-8.9	-9.1	-11.6	-7.1	-4.9	-5.2	-4.7	-5.1	-8.9	-11.8	-17.5	-27.7	1 '
022 Vac	LrD	9.2	-11.7	-4.6	-1.3	1.6	2.6	-1.9	-5.5	-6.5	-9.3	-12.4	-11.0	-11.6	-11.3	-8.8	-8.5	-8.7	-11.1	-6.7	-4.5	-4.8	-4.2	-4.6	-8.4	-11.2	-16.9	-27.0	1 '
023 Vac	LrD	9.5	-11.5	-4.4	-1.1	1.8	2.8	-1.6	-5.1	-6.2	-8.9	-11.9	-10.6	-11.2	-10.9	-8.3	-8.1	-8.3	-10.7	-6.3	-4.1	-4.4	-3.8	-4.2	-7.9	-10.7	-16.3	-26.3	1 '
024 Vac	LrD	10.1	-10.6	-3.6	-0.4	2.4	3.3	-1.1	-4.6	-5.6	-8.4	-11.5	-10.1	-10.7	-10.4	-7.8	-7.6	-7.7	-10.1	-5.7	-3.6	-3.9	-3.3	-3.6	-7.3	-10.0	-15.5	-25.4	1 '
025 Vac	LrD	10.5	-10.3	-3.3	-0.1	2.8	3.7	-0.8	-4.2	-5.2	-8.0	-11.0	-9.6	-10.2	-9.9	-7.3	-7.0	-7.2	-9.6	-5.2	-3.0	-3.3	-2.7	-3.0	-6.7	-9.4	-14.8	-24.5	1 '
Queued Cars	LrD	27.3	-4.5	-3.4	0.4	4.7	12.2	14.3	17.0	19.8	18.2	16.4	14.7	12.9	10.6	10.6	13.1	15.8	15.6	14.6	13.1	9.7	4.8	-0.2	-3.2	-5.9	-9.0	-12.4	-16.9
Queued Cars	LrD	27.6	-4.3	-3.2	0.6	4.9	12.4	14.6	17.2	20.1	18.4	16.5	14.9	13.1	10.8	10.9	13.5	16.2	16.2	15.2	13.7	10.3	5.5	0.4	-2.5	-5.2	-8.3	-11.7	-16.2
Queued Cars	LrD	27.4	-4.8	-3.7	0.1	4.4	12.0	14.2	16.8	19.7	18.1	16.5	14.9	13.2	10.9	11.0	13.7	16.2	16.1	15.2	13.7	10.3	5.6	0.5	-2.4	-5.1	-8.2	-11.6	-16.0
Tunnel 15 Sonny Silenced - Lined-Facade 01	LrD	2.3								-1.2			-0.9			-8.6			-18.4			-32.6			-49.3				
Tunnel 15 Sonny Silenced - Lined-Facade 02	LrD	-15.0								-20.0			-17.3			-25.8			-36.3			-49.9			-65.7				'
Tunnel 15 Sonny Silenced - Lined-Facade 03	LrD	-2.1								-11.6			-3.2			-11.8			-22.5			-37.6			-54.9				
Tunnel 15 Sonny Silenced - Lined-Facade 04	LrD	3.3								-3.0			1.0			-4.8			-13.3			-26.3			-41.4				
Tunnel 15 Sonny Silenced - Lined-Roof 01	LrD	-0.9								-5.6			-3.4			-11.9			-22.7			-38.2			-56.0				'
Tunnel 15 Sonny Silenced - Lined-Transmissive area 01	LrD	24.9								16.7			20.7			18.4			18.3			10.1			-2.4				'
Tunnel 15 Sonny Silenced - Lined-Transmissive area 01	LrD	45.8								35.8			40.7			40.5			40.1			30.4			17.3				'
Tunnel 15 Sonny Silenced - Lined-Transmissive area 03	LrD	1.1								-5.7			-1.0			-7.1			-16.3			-30.2			-46.2				'
Tunnel 15 Sonny Silenced - Lined-Transmissive area 04	LrD	1.0								-4.0			-1.8			-7.9			-16.6			-29.6			-44.8			1	1 '
Tunnel 15 Sonny Silenced - Lined-Transmissive area 05	LrD	-2.7								-13.7			-3.9			-10.9			-20.9			-35.3			-51.8				
Tunnel 15 Sonny Silenced - Lined-Transmissive area 05	LrD	-2.7					<u> </u>			-13.7			-3.9			-10.9			-20.9			-35.3			-51.8				

MD Acoustics LLC 4960 S. Gilbert Rd Chandler, AZ 85249 Phone: 602 774 1950

SoundPLAN 8.2

Appendix C:

Manufacturer Acoustic Treatments

Appendix F

SOUND LEVEL METER READINGS

MODEL: FT-CO-T350HP4 (50HP TURBINE COUPLED VACUUM PRODUCER) WITH EXHAUST SILENCER

- **READING ONE:** 61 DB-A, 3 FEET FROM TURBINE @ 45° ANGLE AND NO BACKGROUND NOISE OR OUTSIDE INTERFERENCE.
- **<u>READING TWO</u>**: 62 DB-A, 5 FEET FROM TURBINE @ 45° ANGLE AND NO BACKGROUND NOISE OR OUTSIDE INTERFERENCE.
- **<u>READING THREE</u>**: 59 DB-A, 10 FEET FROM TURBINE @ 45° ANGLE AND NO BACKGROUND NOISE OR OUTSIDE INTERFERENCE.

READING FOUR: 54 DB-A, 20 FEET FROM TURBINE @ 45° ANGLE AND NO BACKGROUND NOISE OR OUTSIDE INTERFERENCE

READINGS WERE TAKEN OUTSIDE, ON CONCRETE PAD WITH NO ENCLOSURE. NO BACKGROUND NOISE OR OUTSIDE INTERFERENCE WAS PRESENT DURING READINGS.

SOUND LEVEL METER USED:

SIMPSON MODEL #40003 – MSHA APPROVED. MEETS OSHA & WALSH-HEALY REQUIREMENTS FOR NOISE CONTROL. CONFORMS TO ANSI S1.4-1983, IEC 651 SPECS FOR METER TYPE

> Vacutech 1350 Hi-Tech Drive, Sheridan WY, 82801 PHONE: (800) 917-9444 FAX: (303) 675-1988 EMAIL: info@vacutechllc.com WEB SITE: www.vacutechllc.com

Field Tech/Engineer: Robert Pearson

Project:

Date:

Site Location:

Source/System:

Site Observations:

Clear sky, measurements were performed within 1.5ft of source. Measurements were performed while the vacuum was positioned at threee (3) different positions. Holstered, unholstered and inside a car. This data is utilized for acoustic modeling purposes and represents an average sound level at a vacuum station.

Location:	Vac Bay 1	
Sound Meter:	NTi XL2	SN: A2A-05967-E0
Settings:	Z-weighted, slow, 1-sec,	10-sec duration

Vacutec System

4/5/2018

SuperStar Car Wash Chula Vista

1555 W Warner Rd, Gilbert, AZ 85233

Meteorological Cond.: 80 degrees F, 2 mph wind

											Tabi	e 1: Su	mmary	ivieas	ureme	nt Da	τα																
Source	System	Overall													3r	d Octa	ive Ban	d Data	a (dBA)														
Source	System	dB(A)	20	25	31.5	40	50	63	80	100	125	160	200	250	315	400	500	630	800	1K	1.25K	1.6K	2K	2.5K	3.15K	4K	5K	6.3K	8K	10K	12.5K	16K	20K
Vacutech (Holstered)	Vacuum	63.3	9	17	22	29	31	35	40	41	44	43	46	48	47	49	51	51	51	52	53	52	52	50	52	53	50	47	47	48	45	39	30
Vacutech (Un Holstered)	Vacuum	80.7	6	19	22	28	34	37	40	43	47	46	48	48	48	49	54	55	58	58	62	65	68	70	74	75	73	69	67	65	63	60	55
Vacutech (Inside Car)	Vacuum	69.6	16	28	31	38	42	45	49	51	52	55	60	61	57	55	59	53	55	56	54	57	57	57	57	57	55	54	51	48	46	42	36
Arth. Average Level*	Vacuum	71.2	11	21	25	32	36	39	43	45	47	48	52	53	51	51	55	53	55	55	56	58	59	59	61	62	59	56	55	53	51	47	40

* Refers to the arthitmetic average of all measurements. This measurement represents an average of the multiple vacuum positions.

Figure 1: Example Measurement Position

Figure 1: Holstered

Figure 2: Un Holstered

Acoustiblok All Weather Sound Panels[™] achieve high STC and NRC ratings. They have been specifically designed to withstand outdoor exposure in full sunlight, extreme weather conditions, and harsh industrial environments. (NRC of 1.0 is the highest sound absorption rating possible)

All Weather Sound Panels include an internal layer of U.L. classified Acoustiblok sound isolation material plus a specifically engineered 2" thick weather proof sound absorbing material.

	Spee	cifications:
NRC (Noise Reduction Coefficient):	1.00 *	Gross dimensions: up to 48" x 120"x 2.423", \pm 0.125" custom sizes available on special order.
STC (Sound Transmission Class):	29 *	Frame construction: 0.125" welded corrosion resistant 6063-T5 aluminum, mill finish, eyelets: 0.375" (18 ea.)
Weight: (8' panel)	104 lbs	Front face: 0.040 corrosion resistant 5052-H32 aluminum alloy, 3/32" round holes staggered on 5/32" centers.
UL Std 723 fire resistance: Flame spread 0, smoke developed 0.	6 - J.	Back face: 0.032 corrosion resistant 5052-H32 aluminum alloy, mill finish.
UV tolerant, animal resistant, washabl support mold growth.	e, does not	

* Independent Testing by accredited NVLAP testing facility in compliance with ASTM E90, E 413, and other applicable industry standards.

Subject to change without notice, contact Acoustiblok for details.

Product Data Sheet

Product Name

QuietFiber® Hydrophobic Noise Absorption Material – QF2

For Manufacturer Info:

Contact:

Acoustiblok, Inc. 6900 Interbay Boulevard Tampa, FL 33616 Call - (813) 980-1400 Fax - (813)849-6347 Email - <u>sales@acoustiblok.com</u> www.acoustiblok.com

Product Description Basic Use

QuietFiber hydrophobic noise absorption material is an easily installed solution to many noise problems. It is engineered specifically for maximum noise absorption and is used extensively for industrial and commercial applications and is now being successfully introduced into nonindustrial environments where reverberant sound and echo is a problem.

QuietFiber® QF2

QuietFiber is rated at the highest noise reduction level – NRC 1.00. Areas of high noise levels including sound reverberation can be resolved easily and economically by introducing QuietFiber into as much of the area as possible. The amount of noise reduction in highly reflective rooms will be directly relative to how much of the QuietFiber material can be installed into the room. Unlike other fibrous materials which do not have the same high NRC ratings, QuietFiber is hydrophobic, meaning it will not absorb nor combine with water. Marine noise reduction applications are endless.

QuietFiber® QF2

- Highest noise absorption rating of NRC 1.00
- Non Silica
- Virtually fireproof Class A fire rating

 0 Smoke + 0 Flame Development
- Hydrophobic will not combine with water
- Will not support mold or mildew growth
- Available in plain, black or white face
- Full outdoor weather and U.V. tolerant
- Significant sound benefit v. fiberglass
- Install on top of acoustical ceiling tiles
- High temperature capable
- Comprised of up to 90% recycled material
- 100% recyclable

Product Data Sheet

Product Name

QuietFiber® Hydrophobic Noise Absorption Material – QF2

NRC 1.0	125hz	250hz	500hz	1000hz	2000hz	4000hz
Rated	0.36	0.79	1.15	1.04	1.01	1.04

Technical Data:

- ASTM C 423 NRC 1.00
- ASTM E 84 Class 1, 0 Flame 0 Smoke
- ASTM C 518 R 4.2 per inch
- ASTM C 518 0.24 @ 75°F (24°C)

Standards Compliance:

- ASTM C 665 Non-Corrosive Type I
- ASTM C 612 1A, 1B, II, III
- ASTM E 136 Rated Non-combustible per NFPA Standard 220
- ASTM C 1104 Absorption less than 1% by volume
- ASTM C 356 Linear shrinkage <2% @ 1200°F (650°C)

6900 Interbay Blvd Tampa, Florida USA 33616 Telephone: (813)980-1440 www.Acoustiblok.com sales@acoustiblok.com

Disclaimer – This text will be replaced with canned disclaimer verbiage. This text will be replaced with canned disclaimer verbiage. This text will be replaced with canned disclaimer verbiage. This text will be replaced with canned disclaimer verbiage.

Appendix D:

Traffic Calculation Sheet

PROJECT: Lo	os Coches Rd Car Wash	I								JOB #:	0623-2019-
ROADWAY Lo	os Coches Road									DATE:	15-Jun-23
SEGMENT A	urora Dr to Project Dwy	У								ENGINEER:	R.Pearson
LOCATION: Ci	ity of Lakeside	SCENA	ARIO: Existing								
				NOISE		ATA					
	ROADWA		5				RECEIVER	INPUT D	ATA		
NDT =	16,000				RECEIVER D	ISTANCE =		50			
SPEED =	40				DIST C/L TO	WALL =		0			
PK HR % =	10				RECEIVER H	EIGHT =		5			
NEAR LANE/FAR LANE [DIST = 44				WALL DISTA	NCE FROM F	RECEIVER =	50			
ROAD ELEVATION =	0				PAD ELEVAT	ION =		0			
GRADE =	0				ROADWAY	/IEW:	LF ANGLE	-90			
PK HR VOL =	1.600						RT ANGLE	90			
	_,						DF ANGLE	180			
							2	100			
	SITE CON						WALL INF	ORMATIO	DN		
	15										
	15	(114.57		TE 4E)	HTH WALL	• U	FI				
	15	(HAKL	STEELO, SOFT ST	1E=15)	AMBIENT =	0	(0.)				
AVY TRUCKS	15				BARRIER =	0	(0=WALL,1=	BERIVI)			
							MICC VE		•		
	VEHICLE N						IVIISC. VE	HICLE INF	U		
VEHICLE TYPE	DAY	EVE N	GHT DAILY								ICTNACNIT
						VEHICLE TY	YPE	HEIGHT	SLE DISTANC	E GRADE ADJ	USTIVIENT
NO I OWIODILES	0.755	0.140 0.1	.05 0.974			VEHICLE TY AUTOMOBI	YPE LES =	HEIGHT 2.00	45.0	E GRADE ADJ	USTIVIENT
MEDIUM TRUCKS	0.755 0.489	0.140 0.1 0.022 0.4	.05 0.974 189 0.018			VEHICLE TY AUTOMOBI MEDIUM TR	YPE LES = RUCKS=	HEIGHT 2.00 4.00	SLE DISTANC 45.0 44.9	E GRADE ADJ	USTIMENT
MEDIUM TRUCKS	0.755 0.489 0.473	0.140 0.1 0.022 0.4 0.054 0.4	0.05 0.974 0.018 0.007 0.007			VEHICLE TY AUTOMOBI MEDIUM TH HEAVY TRUE	YPE LES = RUCKS= CKS =	HEIGHT 2.00 4.00 8.01	SLE DISTANC 45.0 44.9 45.0	E GRADE ADJ 0.0	USTMENT
MEDIUM TRUCKS	0.755 0.489 0.473	0.140 0.1 0.022 0.4 0.054 0.4	.05 0.974 189 0.018 173 0.007			VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRU	YPE LES = RUCKS= CKS =	HEIGHT 2.00 4.00 8.01	SLE DISTANC 45.0 44.9 45.0	E GRADE ADJ 0.0	JSTMENT
MEDIUM TRUCKS	0.755 0.489 0.473	0.140 0.1 0.022 0.4 0.054 0.4	0.05 0.974 189 0.018 173 0.007			VEHICLE TY AUTOMOBI MEDIUM TR HEAVY TRU	YPE LES = RUCKS= CKS =	HEIGHT 2.00 4.00 8.01	SLE DISTANC 45.0 44.9 45.0	E GRADE ADJ 0.0	USTIMENT
MEDIUM TRUCKS	0.755 0.489 0.473	0.140 0.1 0.022 0.4 0.054 0.4	.05 0.974 189 0.018 173 0.007	NOISE	OUTPU1	VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRUE	YPE LES = RUCKS= CKS =	HEIGHT 2.00 4.00 8.01	SLE DISTANC 45.0 44.9 45.0	E GRADE ADJ 0.0	
MEDIUM TRUCKS	0.755 0.489 0.473	0.140 0.1 0.022 0.4 0.054 0.4	0.05 0.974 189 0.018 173 0.007 NOISE IN	NOISE	OUTPUT	VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRUG	KPE LES = RUCKS= CKS = BARRIER SI	HEIGHT 2.00 4.00 8.01	SLE DISTANC 45.0 44.9 45.0	E GRADE ADJ 0.0	
MEDIUM TRUCKS	0.755 0.489 0.473	0.140 0.1 0.022 0.4 0.054 0.4	05 0.974 189 0.018 173 0.007 NOISE IN	NOISE	ουτρυτ	VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRU	YPE LES = RUCKS= CKS = BARRIER SI	HEIGHT 2.00 4.00 8.01	SLE DISTANC 45.0 44.9 45.0	E GRADE ADJ 0.0	
MEDIUM TRUCKS HEAVY TRUCKS	0.755 0.489 0.473	0.140 0.1 0.022 0.4 0.054 0.4	05 0.974 189 0.018 173 0.007 NOISE IN	NOISE MPACTS (M	OUTPU"	VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRUI T DATA	YPE LES = RUCKS= CKS = BARRIER SI	HEIGHT 2.00 4.00 8.01 HIELDING	SLE DISTANC 45.0 44.9 45.0	E GRADE ADJ 0.0	JSTMENT
MEDIUM TRUCKS HEAVY TRUCKS	0.755 0.489 0.473	0.140 0.1 0.022 0.4 0.054 0.4 VEHICLE TYPE AUTOMOBILES	05 0.974 189 0.018 173 0.007 NOISE IN PK HR LEC 67.3	NOISE MPACTS (M	OUTPU' /ITHOUTT	VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRU T DATA OPO OR B NIGHT LEQ 58.0	YPE LES = RUCKS= CKS = SARRIER SI SARRIER SI 66.4	HEIGHT 2.00 4.00 8.01 HIELDING CNEL 67.1	SLE DISTANC 45.0 44.9 45.0	E GRADE ADJ 0.0	
MEDIUM TRUCKS HEAVY TRUCKS	0.755 0.489 0.473	0.140 0.1 0.022 0.4 0.054 0.4 VEHICLE TYPE AUTOMOBILES MEDILIM TRUCKS	05 0.974 189 0.018 173 0.007 NOISE IN PK HR LEC 67.3 59 1	NOISE MPACTS (M DAY LEQ 65.3 55 2	OUTPU' /11HOUTT EVEN LEQ 64.0 47 7	VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRU T DATA OPO OR E 58.0 56.4	YPE LES = RUCKS= CKS = SARRIER SI SARRIER SI 66.4 62.6	HEIGHT 2.00 4.00 8.01 HIELDING CNEL 67.1 62.6	SLE DISTANC 45.0 44.9 45.0	E GRADE ADJ 0.0	
MEDIUM TRUCKS HEAVY TRUCKS	0.755 0.489 0.473	0.140 0.1 0.022 0.4 0.054 0.4 VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS	0.05 0.974 189 0.018 173 0.007 NOISE IN PK HR LEC 67.3 59.1 59.9	NOISE IPACTS (M 65.3 55.2 55.9	OUTPU ////HOUT /// 64.0 47.7 52 5	VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRU DATA OPO OR E 58.0 56.4 57.2	YPE LES = RUCKS= CKS = SARRIER SI SARRIER SI 66.4 62.6 63.4	HEIGHT 2.00 4.00 8.01 HIELDING CNEL 67.1 62.6 63.4	45.0 44.9 45.0	E GRADE ADJ 0.0	USTMENT
MEDIUM TRUCKS HEAVY TRUCKS	0.755 0.489 0.473	0.140 0.1 0.022 0.4 0.054 0.4 VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS	0.05 0.974 189 0.018 173 0.007 NOISE IN PK HR LEC 67.3 59.1 59.9	NOISE APACTS (M 65.3 55.2 55.9	OUTPU1 //THOUT 1 64.0 47.7 52.5	VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRUI T DATA OPO OR E 58.0 56.4 57.2	YPE LES = RUCKS= CKS = BARRIER SI CKS = BARRIER SI 66.4 62.6 63.4	HEIGHT 2.00 4.00 8.01 HIELDING 67.1 62.6 63.4	SLE DISTANC 45.0 44.9 45.0	E GRADE ADJ 0.0	
MEDIUM TRUCKS HEAVY TRUCKS	0.755 0.489 0.473	0.140 0.1 0.022 0.4 0.054 0.4 VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS VEHICULAR NOISE	0.05 0.974 189 0.018 173 0.007 NOISE IN 67.3 59.1 59.9 68.6	NOISE (IPACTS (M 65.3 55.2 55.9 66.2	OUTPU1 //THOUT 17 EVEN LEQ 64.0 47.7 52.5 64.4	VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRUC T DATA TOPO OR E 58.0 56.4 57.2 62.0	YPE LES = RUCKS= CKS = BARRIER SI 66.4 62.6 63.4 69.2	HEIGHT 2.00 4.00 8.01 HIELDING CNEL 67.1 62.6 63.4 69.6	45.0 44.9 45.0	E GRADE ADJ 0.0	
MEDIUM TRUCKS HEAVY TRUCKS	0.755 0.489 0.473	0.140 0.1 0.022 0.4 0.054 0.4 VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS VEHICULAR NOISE	05 0.974 189 0.018 173 0.007 NOISE IN PK HR LEC 67.3 59.1 59.9 68.6	NOISE #PACTS (M 65.3 55.9 66.2	OUTPU ////HOUT // EVEN LEQ 64.0 47.7 52.5 64.4	VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRU T DATA OPO OR E 58.0 56.4 57.2 62.0	YPE LES = RUCKS= CKS = CKS = CKS = CKS = C	HEIGHT 2.00 4.00 8.01 HIELDING 67.1 62.6 63.4 69.6	45.0 44.9 45.0	E GRADE ADJ 0.0	
MEDIUM TRUCKS HEAVY TRUCKS	0.755 0.489 0.473	0.140 0.1 0.022 0.4 0.054 0.4 VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS HEAVY TRUCKS	05 0.974 189 0.018 173 0.007 NOISE IN 67.3 59.1 59.9 68.6	NOISE (IPACTS (M 65.3 55.2 55.9 66.2	OUTPUT //THOUT 17 64.0 47.7 52.5 64.4	VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRUC T DATA TOPO OR E 58.0 56.4 57.2 62.0	YPE LES = RUCKS= CKS = BARRIER SI 66.4 62.6 63.4 69.2	HEIGHT 2.00 4.00 8.01 HIELDING 67.1 62.6 63.4 69.6	45.0 44.9 45.0	E GRADE ADJ 0.0	
MEDIUM TRUCKS HEAVY TRUCKS	0.755 0.489 0.473	0.140 0.1 0.022 0.4 0.054 0.4	05 0.974 189 0.018 173 0.007 NOISE IN 67.3 59.1 59.9 68.6	NOISE IPACTS (M 0AY LEQ 65.3 55.2 55.9 66.2 NOISE CON NOISE CON	OUTPUT //THOUT T 64.0 47.7 52.5 64.4	VEHICLE TA AUTOMOBI MEDIUM TF HEAVY TRUT F DATA OPO OR E 58.0 56.4 57.2 62.0	YPE LES = AUCKS= CKS = ARRIER SI 66.4 62.6 63.4 69.2	HEIGHT 2.00 4.00 8.01 HIELDING 67.1 62.6 63.4 69.6	45.0 44.9 45.0	E GRADE ADJ 0.0	
MEDIUM TRUCKS HEAVY TRUCKS	0.755 0.489 0.473	0.140 0.1 0.022 0.4 0.054 0.4	0.05 0.974 189 0.018 173 0.007 NOISE IN 67.3 59.1 59.9 68.6 168.6	NOISE (PACTS (M 65.3 55.2 55.9 66.2 NOISE CON 70 dBA	OUTPUT //THOUT T 64.0 47.7 52.5 64.4 TOUR (FT) 65 dBA	VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRUC T DATA TOPO OR E 58.0 56.4 57.2 62.0 60 dBA 210	YPE LES = RUCKS= CKS = PARRIER SI CKS = PARRIER SI 66.4 62.6 63.4 69.2 55 dBA 470	HEIGHT 2.00 4.00 8.01 HIELDING CNEL 67.1 62.6 63.4 69.6	SLE DISTANC 45.0 44.9 45.0	E GRADE ADJ 0.0	

PROJECT:	os Coches Rd Car Wash	n									JOB #:	0623-2019-0
ROADWAY	os Coches Road										DATE:	15-Jun-23
SEGMENT	-8 to Ora Belle Lane										ENGINEER:	R.Pearson
LOCATION:	City of Lakeside	SCE	ENARIO:	Existing								
					NOISE		DATA					
	BOADWA		NS					RECEIVER		ΛΤΛ		
	KOADWA		143					RECEIVEN	INPOT D	AIA		
ADT -	17 700						ISTANCE -		50			
SPEED =	40						WALL =		50			
PK HB % =	10					RECEIVER H	FIGHT =		-			
	DIST - 44							PECEIVER -	5			
								ALCEIVER -	50			
CRADE =	0								0			
	1 770					ROADWAT	VIEVV.		-90			
KHKVOL -	1,770								90			
								DF ANGLE	180			
_		DITIONS							ODMATIC			
	SITE CON	DITIONS							ORMATIC	JN		
AUTOMOBILES	15				>	HTH WALL	= 0	FT				
MED TRUCKS	15	(HA	ARD SITE=:	10, SOFT SIT	(E=15)	AMBIENT =	0					
HVY TRUCKS	15					BARRIER =	0	(0=WALL,1=	BERM)			
								MISC VE		0		
	VEHICLE							IVIISC. VE		0		
VEHICLE TYPE		-										
AUTOMOBILES	DAY	EVE	NIGHT	DAILY			VEHICLE TY	YPE	HEIGHT	SLE DISTANCE	GRADE ADJ	USTMENT
	DAY 0.755	EVE 0.140	NIGHT 0.105	DAILY 0.974			VEHICLE TY AUTOMOBI	YPE LES =	HEIGHT 2.00	SLE DISTANCE 45.0	GRADE ADJ	USTMENT
MEDIUM TRUCKS	DAY 0.755 0.489	EVE 0.140 0.022	NIGHT 0.105 0.489	DAILY 0.974 0.018			VEHICLE TY AUTOMOBI MEDIUM TR	YPE LES = RUCKS=	HEIGHT 2.00 4.00	SLE DISTANCE 45.0 44.9	GRADE ADJ	USTMENT
MEDIUM TRUCKS	DAY 0.755 0.489 0.473	EVE 0.140 0.022 0.054	NIGHT 0.105 0.489 0.473	DAILY 0.974 0.018 0.007			VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRU	YPE LES = RUCKS= CKS =	HEIGHT 2.00 4.00 8.01	SLE DISTANCE 45.0 44.9 45.0	GRADE ADJ 0.0	USTMENT
MEDIUM TRUCKS HEAVY TRUCKS	DAY 0.755 0.489 0.473	EVE 0.140 0.022 0.054	NIGHT 0.105 0.489 0.473	DAILY 0.974 0.018 0.007			VEHICLE TY AUTOMOBI MEDIUM TR HEAVY TRUE	YPE LES = RUCKS= CKS =	HEIGHT 2.00 4.00 8.01	SLE DISTANCE 45.0 44.9 45.0	GRADE ADJ 0.0	USTMENT
MEDIUM TRUCKS HEAVY TRUCKS	DAY 0.755 0.489 0.473	EVE 0.140 0.022 0.054	NIGHT 0.105 0.489 0.473	DAILY 0.974 0.018 0.007	NOISE		VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRU	YPE LES = RUCKS= CKS =	HEIGHT 2.00 4.00 8.01	SLE DISTANCE 45.0 44.9 45.0	GRADE ADJ	USTMENT
VEDIUM TRUCKS IEAVY TRUCKS	DAY 0.755 0.489 0.473	EVE 0.140 0.022 0.054	NIGHT 0.105 0.489 0.473	DAILY 0.974 0.018 0.007	NOISE	OUTPU'	VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRUI	YPE LES = RUCKS= CKS =	HEIGHT 2.00 4.00 8.01	SLE DISTANCE 45.0 44.9 45.0	• GRADE ADJ 0.0	USTMENT
MEDIUM TRUCKS	DAY 0.755 0.489 0.473	EVE 0.140 0.022 0.054	NIGHT 0.105 0.489 0.473	DAILY 0.974 0.018 0.007	NOISE (OUTPU'	VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRUE	YPE LES = RUCKS= CKS = BARRIER SI	HEIGHT 2.00 4.00 8.01	SLE DISTANCE 45.0 44.9 45.0	GRADE ADJ 0.0	USTMENT
HEAVY TRUCKS	DAY 0.755 0.489 0.473	EVE 0.140 0.022 0.054	NIGHT 0.105 0.489 0.473	DAILY 0.974 0.018 0.007	NOISE (OUTPU	VEHICLE TO AUTOMOBI MEDIUM TF HEAVY TRUI	YPE LES = RUCKS= CKS = BARRIER SI	HEIGHT 2.00 4.00 8.01	SLE DISTANCE 45.0 44.9 45.0	GRADE ADJ 0.0	USTMENT
MEDIUM TRUCKS	DAY 0.755 0.489 0.473	EVE 0.140 0.022 0.054	NIGHT 0.105 0.489 0.473	DAILY 0.974 0.018 0.007 NOISE IM	NOISE (IPACTS (W	OUTPU'	VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRUI TOPO OR E	YPE LES = RUCKS= CKS = BARRIER SI	HEIGHT 2.00 4.00 8.01	SLE DISTANCE 45.0 44.9 45.0	GRADE ADJ 0.0	USTMENT
HEAVY TRUCKS	DAY 0.755 0.489 0.473	EVE 0.140 0.022 0.054 VEHICLE TYPE AUTOMOBILES	NIGHT 0.105 0.489 0.473	DAILY 0.974 0.018 0.007 NOISE IM PK HR LEQ 67.8	NOISE IPACTS (W DAY LEQ 65.8	OUTPU ITHOUT EVEN LEQ 64.5	VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRUI T DATA TOPO OR E NIGHT LEQ 58.4	YPE LES = RUCKS= CKS = BARRIER SI BARRIER SI 66.9	HEIGHT 2.00 4.00 8.01 HIELDING CNEL 67.5	SLE DISTANCE 45.0 44.9 45.0	GRADE ADJ 0.0	USTMENT
HEDIUM TRUCKS	DAY 0.755 0.489 0.473	EVE 0.140 0.022 0.054 VEHICLE TYPE AUTOMOBILES MEDIUM TRUCK	NIGHT 0.105 0.489 0.473	DAILY 0.974 0.018 0.007 NOISE IM PK HR LEQ 67.8 59.5	NOISE IPACTS (W DAY LEQ 65.8 55.6	OUTPU' //THOUT 64.5 48.2	VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRUI TDATA TOPO OR E 58.4 56.9	YPE LES = RUCKS= CKS = BARRIER SI 66.9 63.0	HEIGHT 2.00 4.00 8.01 HIELDING CNEL 67.5 63.1	SLE DISTANCE 45.0 44.9 45.0	GRADE ADJ 0.0	USTMENT
MEDIUM TRUCKS HEAVY TRUCKS	DAY 0.755 0.489 0.473	EVE 0.140 0.022 0.054 VEHICLE TYPE AUTOMOBILES MEDIUM TRUCK	NIGHT 0.105 0.489 0.473	DAILY 0.974 0.018 0.007 NOISE IM PK HR LEQ 67.8 59.5 60.4	NOISE DAY LEQ 65.8 55.6 56.3	OUTPU /////OUT 64.5 48.2 52.9	VEHICLE TN AUTOMOBI MEDIUM TF HEAVY TRUT T DATA TOPO OR E 58.4 56.9 57.6	YPE LES = RUCKS= CKS = BARRIER SI 66.9 63.0 63.8	HEIGHT 2.00 4.00 8.01 HIELDING CNEL 67.5 63.1 63.9	SLE DISTANCE 45.0 44.9 45.0	GRADE ADJ 0.0	USTMENT
MEDIUM TRUCKS HEAVY TRUCKS	DAY 0.755 0.489 0.473	EVE 0.140 0.022 0.054 VEHICLE TYPE AUTOMOBILES MEDIUM TRUCK HEAVY TRUCKS	NIGHT 0.105 0.489 0.473	DAILY 0.974 0.018 0.007 NOISE IM PK HR LEQ 67.8 59.5 60.4	NOISE (IPACTS (W DAY LEQ 65.8 55.6 56.3	OUTPU (117HOUT 1 64.5 48.2 52.9 64 9	VEHICLE TN AUTOMOBI MEDIUM TF HEAVY TRUI T DATA OPO OR E 58.4 56.9 57.6	YPE LES = RUCKS= CKS = BARRIER SI 66.9 63.0 63.8 69.7	HEIGHT 2.00 4.00 8.01 (IIELDING) CNEL 67.5 63.1 63.9	SLE DISTANCE 45.0 44.9 45.0	GRADE ADJ 0.0	JSTMENT
MEDIUM TRUCKS HEAVY TRUCKS	DAY 0.755 0.489 0.473	EVE 0.140 0.022 0.054 VEHICLE TYPE AUTOMOBILES MEDIUM TRUCK HEAVY TRUCKS VEHICULAR NOI	NIGHT 0.105 0.489 0.473 	DAILY 0.974 0.018 0.007 NOISE IM PK HR LEQ 67.8 59.5 60.4 69.0	DAY LEQ 65.8 55.6 56.3 66.6	OUTPU /////OUT 64.5 48.2 52.9 64.9	VEHICLE TN AUTOMOBI MEDIUM TF HEAVY TRUT T DATA TOPO OR E 58.4 56.9 57.6 62.5	YPE LES = RUCKS= CKS = BARRIER SI 66.9 63.0 63.8 69.7	HEIGHT 2.00 4.00 8.01 HIELDING 67.5 63.1 63.9 70.0	SLE DISTANCE 45.0 44.9 45.0	GRADE ADJ 0.0	USTMENT
MEDIUM TRUCKS HEAVY TRUCKS	DAY 0.755 0.489 0.473	EVE 0.140 0.022 0.054 VEHICLE TYPE AUTOMOBILES MEDIUM TRUCH HEAVY TRUCKS	NIGHT 0.105 0.489 0.473 (5 SE	DAILY 0.974 0.018 0.007 NOISE IM PK HR LEQ 67.8 59.5 60.4 69.0	NOISE (IPACTS (W 65.8 55.6 56.3 66.6	OUTPU (ITHOUT 1 64.5 48.2 52.9 64.9	VEHICLE TN AUTOMOBI MEDIUM TF HEAVY TRUI T DATA OPO OR E 58.4 56.9 57.6 62.5	YPE LES = RUCKS= CKS = BARRIER SI 66.9 63.0 63.8 69.7	HEIGHT 2.00 4.00 8.01 HIELDING 67.5 63.1 63.9 70.0	SLE DISTANCE 45.0 44.9 45.0	GRADE ADJ 0.0	JSTMENT
MEDIUM TRUCKS HEAVY TRUCKS	DAY 0.755 0.489 0.473	EVE 0.140 0.022 0.054 VEHICLE TYPE AUTOMOBILES MEDIUM TRUCH HEAVY TRUCKS VEHICULAR NOI	NIGHT 0.105 0.489 0.473 (5 (5 (5)	DAILY 0.974 0.018 0.007 NOISE IM PK HR LEQ 67.8 59.5 60.4 69.0	NOISE IPACTS (W DAY LEQ 65.8 55.6 56.3 66.6 NOISE CONT	OUTPU //THOUT 64.5 48.2 52.9 64.9	VEHICLE TN AUTOMOBI MEDIUM TF HEAVY TRUT T DATA TOPO OR E 58.4 56.9 57.6 62.5	YPE LES = RUCKS= CKS = BARRIER SI 66.9 63.0 63.8 69.7	HEIGHT 2.00 4.00 8.01 HIELDING 67.5 63.1 63.9 70.0	SLE DISTANCE 45.0 44.9 45.0	GRADE ADJ 0.0	JSTMENT
MEDIUM TRUCKS HEAVY TRUCKS	DAY 0.755 0.489 0.473	EVE 0.140 0.022 0.054 VEHICLE TYPE AUTOMOBILES MEDIUM TRUCK HEAVY TRUCKS VEHICULAR NOI	NIGHT 0.105 0.489 0.473 (S (S (S (S (S) (SE) (SE)	DAILY 0.974 0.018 0.007 NOISE IM PK HR LEQ 67.8 59.5 60.4 69.0	NOISE IPACTS (W DAY LEQ 65.8 55.6 56.3 66.6 NOISE CONT 70 dBA	OUTPU //THOUT 64.5 48.2 52.9 64.9 10UR (FT) 65 dBA	VEHICLE TN AUTOMOBI MEDIUM TF HEAVY TRUT TDATA TOPO OR E 58.4 56.9 57.6 62.5 60 dBA	YPE LES = RUCKS= CKS = BARRIER SI 66.9 63.0 63.8 69.7 55 dBA	HEIGHT 2.00 4.00 8.01 HIELDING 67.5 63.1 63.9 70.0	SLE DISTANCE 45.0 44.9 45.0	GRADE ADJ	JSTMENT
MEDIUM TRUCKS HEAVY TRUCKS	DAY 0.755 0.489 0.473	EVE 0.140 0.022 0.054 VEHICLE TYPE AUTOMOBILES MEDIUM TRUCK HEAVY TRUCKS VEHICULAR NOI	NIGHT 0.105 0.489 0.473 0.473 (S (S (S) (SE) (SE) (SE) (SE) (SE) (SE)	DAILY 0.974 0.018 0.007 NOISE IM 67.8 59.5 60.4 69.0	NOISE IPACTS (W DAY LEQ 65.8 55.6 56.3 66.6 NOISE CONT 70 dBA 50	OUTPU (111+OUT) 64.5 48.2 52.9 64.9 100R (FT) 65 dBA 108	VEHICLE TN AUTOMOBI MEDIUM TF HEAVY TRU TDATA TOPO OR E 58.4 56.9 57.6 62.5 62.5	YPE LES = RUCKS= CKS = BARRIER SI 66.9 63.0 63.8 69.7 55 dBA 503	HEIGHT 2.00 4.00 8.01 HIELDING 67.5 63.1 63.9 70.0	SLE DISTANCE 45.0 44.9 45.0	GRADE ADJ	JSTMENT

PROJECT:	.os Coches Rd Car Wash	1									JOB #:	0623-2019-(
ROADWAY	os Coches Road										DATE:	15-Jun-23
SEGMENT A	urora Dr to Project Dw	y									ENGINEER:	R.Pearson
LOCATION:	ity of Lakeside	SCEI	NARIO: E	+P								
					NOISE		ΑΤΑ					
			10							Λ ΤΛ		
	ROADWA		15					RECEIVER		AIA		
ADT	10,200											
ADT =	18,300					RECEIVER D	ISTANCE =		50			
SPEED =	40						WALL =		0			
PK HR % =	10					RECEIVER H	EIGHT =		5			
NEAR LANE/FAR LANE	DIST = 44					WALL DISTA	NCE FROM F	RECEIVER =	50			
ROAD ELEVATION =	0					PAD ELEVA	TION =		0			
GRADE =	0					ROADWAY	VIEW:	LF ANGLE	-90			
νκ hr vol =	1,830							RT ANGLE	90			
								DF ANGLE	180			
	SITE CON	DITIONS						WALL INF	ORMATIO	DN		
AUTOMOBILES	15					HTH WALL :	= 0	FT				
MED TRUCKS	15	(HAI	RD SITE=10	0, SOFT SIT	ΓE=15)	AMBIENT =	0					
HVY TRUCKS	15					BARRIER =	0	(0=WALL,1=	BERM)			
	VEHICLE N	ΛΙΧ DΑΤΑ						MISC. VE	HICLE INF	0		
	DAY	E) (E)	NICUT	DAULY				/DF	HEIGHT	SI E DISTANCE	GRADE ADI	ISTMENT
	DAY	EVE I	NIGHT	DAILY					neioni	JEL DISTANCE	GIADE ADJ	JULIA
AUTOMOBILES	0.755	0.140 0	.105	0.974				1 PE				
MEDIUM TRUCKS							AUTOMOBI	LES =	2.00	45.0		
	0.489	0.022 0).489	0.018			AUTOMOBI MEDIUM TR	LES = RUCKS=	2.00 4.00	45.0 44.9		
HEAVY TRUCKS	0.489 0.473	0.022 C 0.054 C).489).473	0.018 0.007			AUTOMOBI MEDIUM TF HEAVY TRU	LES = RUCKS= CKS =	2.00 4.00 8.01	45.0 44.9 45.0	 0.0	
HEAVY TRUCKS	0.489 0.473	0.022 C 0.054 C).489).473	0.018 0.007			AUTOMOBI MEDIUM TF HEAVY TRU	RUCKS= CKS =	2.00 4.00 8.01	45.0 44.9 45.0	 0.0	
HEAVY TRUCKS	0.489 0.473	0.022 C 0.054 C).489).473	0.018 0.007	NOISE	OUTPU ⁻	AUTOMOBI MEDIUM TR HEAVY TRU	LES = RUCKS= CKS =	2.00 4.00 8.01	45.0 44.9 45.0	 0.0	
HEAVY TRUCKS	0.489 0.473	0.022 C 0.054 C).489).473	0.018 0.007	NOISE (OUTPU	AUTOMOBI MEDIUM TF HEAVY TRUG	LES = RUCKS= CKS =	2.00 4.00 8.01	45.0 44.9 45.0	 0.0	
HEAVY TRUCKS	0.489 0.473	0.022 C 0.054 C	0.489 0.473 N	0.018 0.007	NOISE (OUTPU ⁻	AUTOMOBI MEDIUM TR HEAVY TRUG	LES = RUCKS= CKS =	2.00 4.00 8.01	45.0 44.9 45.0	 0.0	
HEAVY TRUCKS	0.489 0.473	0.022 C 0.054 C).489).473 	0.018 0.007	NOISE (OUTPU ⁻	AUTOMOBI MEDIUM TF HEAVY TRUI	LES = RUCKS= CKS =	2.00 4.00 8.01	45.0 44.9 45.0	 0.0	
HEAVY TRUCKS	0.489 0.473	0.022 C 0.054 C	0.489 0.473	0.018 0.007 IOISE IM	NOISE (IPACTS (W	OUTPU //THOUTE	AUTOMOBI MEDIUM TF HEAVY TRUI	LES = RUCKS= CKS = BARRIER SI	2.00 4.00 8.01	45.0 44.9 45.0	 0.0	
HEAVY TRUCKS	0.489 0.473	0.022 C 0.054 C VEHICLE TYPE AUTOMOBILES	0.489 0.473	0.018 0.007 IOISE IIM K HR LEQ 67.9	NOISE (PACTS (W DAY LEQ 65.9	OUTPU //THOUTT EVEN LEQ 64.6	AUTOMOBII MEDIUM TF HEAVY TRUU T DATA	EES = RUCKS= CKS = BARRIER SI LDN 67.0	2.00 4.00 8.01 HIELDING CNEL 67.6	45.0 44.9 45.0	 0.0	
HEAVY TRUCKS	0.489 0.473	0.022 C 0.054 C VEHICLE TYPE AUTOMOBILES MEDIUM TRUCK:	0.489 0.473 N P 5	0.018 0.007 IOISE IIM K HR LEQ 67.9 59.7	NOISE (PACTS (W DAY LEQ 65.9 55.8	OUTPU ///////////////////////////////////	AUTOMOBI MEDIUM TF HEAVY TRU T DATA TOPO OR E 58.6 57.0	ELES = RUCKS= CKS = BARRIER SI 67.0 63.2	2.00 4.00 8.01 HIELDING GNEL 67.6 63.2	45.0 44.9 45.0	 0.0	
HEAVY TRUCKS	0.489 0.473	0.022 C 0.054 C VEHICLE TYPE AUTOMOBILES MEDIUM TRUCK: HEAVY TRUCKS	0.489 0.473 N 5	0.018 0.007 (OISE IM K HR LEQ 67.9 59.7 60.5	NOISE PACTS (W DAY LEQ 65.9 55.8 56.5	OUTPU /////OUTP 64.6 48.3 53.1	AUTOMOBII MEDIUM TF HEAVY TRUU T DATA TOPO OR E 58.6 57.0 57.7	LES = RUCKS= CKS = BARRIER SI 67.0 63.2 63.9	2.00 4.00 8.01 HIELDING 67.6 63.2 64.0	45.0 44.9 45.0	 0.0	
HEAVY TRUCKS	0.489 0.473	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCK: HEAVY TRUCKS	0.489 0.473 N S F	0.018 0.007 IOISE IM 67.9 59.7 60.5	NOISE IPACTS (W DAY LEQ 65.9 55.8 56.5 66.7	OUTPU //THOUT 1 64.6 48.3 53.1 65.0	AUTOMOBI MEDIUM TF HEAVY TRUI T DATA OPO OR E 58.6 57.7 52.6	EES = RUCKS = CKS = BARRIER SI 67.0 63.2 63.9	2.00 4.00 8.01 HIELDING 67.6 63.2 64.0 70.2	45.0 44.9 45.0	 0.0	
HEAVY TRUCKS	0.489	0.022 C 0.054 C VEHICLE TYPE AUTOMOBILES MEDIUM TRUCK HEAVY TRUCKS VEHICULAR NOIS	0.489 0.473 N S E	0.018 0.007 IOISE IM K HR LEQ 67.9 59.7 60.5 69.2	DAY LEQ 65.9 55.8 56.5 66.7	OUTPU //////OUTPU 64.6 48.3 53.1 65.0	NIGHT LEQ 58.6 57.0 57.7	LES = RUCKS= CKS = BARRIER SI 67.0 63.2 63.9 69.8	2.00 4.00 8.01 HIELDING 67.6 63.2 64.0 70.2	45.0 44.9 45.0	 0.0	
HEAVY TRUCKS	0.489 0.473	0.022 C 0.054 C VEHICLE TYPE AUTOMOBILES MEDIUM TRUCK: HEAVY TRUCKS VEHICULAR NOIS	0.489 0.473 N S iE	0.018 0.007 IOISE IM 67.9 59.7 60.5 69.2	NOISE DAY LEQ 65.9 55.8 56.5 66.7	OUTPU /////OUT // 64.6 48.3 53.1 65.0	AUTOMOBI MEDIUM TF HEAVY TRUI T DATA OPO OR B 58.6 57.0 57.7 62.6	Ites = RUCKS= CKS = BARRIER SI 67.0 63.2 63.9 69.8 69.8	2.00 4.00 8.01 HIELDING 67.6 63.2 64.0 70.2	45.0 44.9 45.0	0.0	
HEAVY TRUCKS	0.489 0.473	0.022 C 0.054 C VEHICLE TYPE AUTOMOBILES MEDIUM TRUCK: HEAVY TRUCKS VEHICULAR NOIS	0.489 0.473	0.018 0.007 K HR LEQ 67.9 59.7 60.5 69.2	NOISE (PACTS (W DAY LEQ 65.9 55.8 56.5 66.7	OUTPU /////OUT 64.6 48.3 53.1 65.0	AUTOMOBI MEDIUM TF HEAVY TRUI T DATA TOPO OR E 58.6 57.0 57.7 62.6	EES = RUCKS = CKS = BARRIER SI 67.0 63.2 63.9 69.8	2.00 4.00 8.01 HIELDING 67.6 63.2 64.0 70.2	45.0 44.9 45.0	 0.0	
HEAVY TRUCKS	0.489 0.473	0.022 C 0.054 C VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS VEHICULAR NOIS	0.489 0.473 N S E E SE LEVELS	0.018 0.007 K HR LEQ 67.9 59.7 60.5 69.2	NOISE IPACTS (W DAY LEQ 65.9 55.8 56.5 66.7 NOISE CONT 70 dBA	OUTPU /////OUT 64.6 48.3 53.1 65.0	AUTOMOBI MEDIUM TF HEAVY TRUI I DATA OPO OR E 000 OR E 58.6 57.0 57.7 62.6	EES = RUCKS = CKS = CKS = CKS = CKS = CKS = CKS = CKS = CKS = CKS = CKS = CKS = CKS = CKS = CKS = CKS	2.00 4.00 8.01 HIELDING 67.6 63.2 64.0 70.2	45.0 44.9 45.0	 0.0	
HEAVY TRUCKS	0.489 0.473	0.022 C 0.054 C 0.054 C VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS VEHICULAR NOIS	0.489 0.473 N S S S E LEVELS L	0.018 0.007 IOISE IM 67.9 59.7 60.5 69.2	NOISE (IPACTS (W DAY LEQ 65.9 55.8 56.5 66.7 NOISE CONT 70 dBA 51	OUTPU (ITHOUT 1 64.6 48.3 53.1 65.0 TOUR (FT) 65 dBA 111 405	AUTOMOBI MEDIUM TF HEAVY TRUI DATA OPO OR E 58.6 57.0 57.7 62.6 60 dBA 239	LES = RUCKS= CKS = BARRIER SI 67.0 63.2 63.9 69.8 55 dBA 514 574	2.00 4.00 8.01 HIELDING 67.6 63.2 64.0 70.2	45.0 44.9 45.0	 0.0	

	thes Rd Car Wash										JOB #:	0623-2019-01
ROADWAY Los Coc	thes Road										DATE:	15-Jun-23
SEGMENT I-8 to C)ra Belle Lane										ENGINEER:	R.Pearson
LOCATION: City of	Lakeside	SCE	NARIO:	E+P								
					NOICE							
					NOISE	INPUT						
	ROADWA	Y CONDITIO	NS					RECEIVER	R INPUT D	ATA		
ADT =	18,300					RECEIVER D	ISTANCE =		50			
SPEED =	40					DIST C/L TO	WALL =		0			
PK HR % =	10					RECEIVER H	EIGHT =		5			
NEAR LANE/FAR LANE DIST =	44					WALL DISTA	NCE FROM I	RECEIVER =	50			
ROAD ELEVATION =	0					PAD ELEVA	TION =		0			
GRADE =	0					ROADWAY	VIEW:	LF ANGLE	-90			
PK HR VOL =	1.830					-		RT ANGLE	90			
	_,								190			
								DI ANGLE	180			
										201		
	SITE CON	DITIONS						WALL IN	ORIVIATIO			
AUTOMOBILES	15					HTH WALL :	= 0	FT				
MED TRUCKS	15	(HA	RD SITE=	10, SOFT SI	FE=15)	AMBIENT =	0)				
HVY TRUCKS	15					BARRIER =	0	(0=WALL,1=	BERM)			
	VEHICLE N	ΙΙΧ DΑΤΑ						MISC. VF	HICLE INF	0		
										-		
VEHICLE TYPE												
	DAY	EVE	NIGHT	DAILY			VEHICLE T	YPE	HEIGHT	SLE DISTANCE	GRADE ADJ	JSTMENT
AUTOMOBILES	DAY 0.755	EVE 0.140	NIGHT 0.105	DAILY 0.974			VEHICLE TY AUTOMOBI	YPE LES =	HEIGHT 2.00	SLE DISTANCE 45.0	GRADE ADJ	JSTMENT
AUTOMOBILES MEDIUM TRUCKS	DAY 0.755 0.489	EVE 0.140 0.022	NIGHT 0.105 0.489	DAILY 0.974 0.018			VEHICLE TY AUTOMOBI MEDIUM TR	YPE LES = RUCKS=	HEIGHT 2.00 4.00	SLE DISTANCE 45.0 44.9	GRADE ADJ	JSTMENT
AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS	DAY 0.755 0.489 0.473	EVE 0.140 0.022 0.054	NIGHT 0.105 0.489 0.473	DAILY 0.974 0.018 0.007			VEHICLE TY AUTOMOBI MEDIUM TR HEAVY TRU	YPE LES = RUCKS= CKS =	HEIGHT 2.00 4.00 8.01	SLE DISTANCE 45.0 44.9 45.0	GRADE ADJ	JSTMENT
AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS	DAY 0.755 0.489 0.473	EVE 0.140 0.022 0.054	NIGHT 0.105 0.489 0.473	DAILY 0.974 0.018 0.007			VEHICLE TY AUTOMOBI MEDIUM TR HEAVY TRU	YPE LES = RUCKS= CKS =	HEIGHT 2.00 4.00 8.01	SLE DISTANCE 45.0 44.9 45.0	GRADE ADJ 0.0	JSTMENT
AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS	DAY 0.755 0.489 0.473	EVE 0.140 0.022 0.054	NIGHT 0.105 0.489 0.473	DAILY 0.974 0.018 0.007			VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRU	YPE LES = RUCKS= CKS =	HEIGHT 2.00 4.00 8.01	SLE DISTANCE 45.0 44.9 45.0	GRADE ADJ 0.0	JSTMENT
AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS	DAY 0.755 0.489 0.473	EVE 0.140 0.022 0.054	NIGHT 0.105 0.489 0.473	DAILY 0.974 0.018 0.007	NOISE	OUTPU	VEHICLE T AUTOMOBI MEDIUM TF HEAVY TRU	YPE LES = RUCKS= CKS =	HEIGHT 2.00 4.00 8.01	SLE DISTANCE 45.0 44.9 45.0	GRADE ADJ 0.0	JSTMENT
AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS	DAY 0.755 0.489 0.473	EVE 0.140 0.022 0.054	NIGHT 0.105 0.489 0.473	DAILY 0.974 0.018 0.007	NOISE	OUTPU	VEHICLE T AUTOMOBI MEDIUM TH HEAVY TRU	YPE LES = RUCKS= CKS =	HEIGHT 2.00 4.00 8.01	SLE DISTANCE 45.0 44.9 45.0	GRADE ADJ 0.0	JSTMENT
AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS	DAY 0.755 0.489 0.473	EVE 0.140 0.022 0.054	NIGHT 0.105 0.489 0.473	DAILY 0.974 0.018 0.007	NOISE (W	Ουτρυ ⁻ //πнουτ 1	VEHICLE TY AUTOMOBI MEDIUM TH HEAVY TRU	YPE LES = RUCKS= CKS = BARRIER S	HEIGHT 2.00 4.00 8.01	SLE DISTANCE 45.0 44.9 45.0	GRADE ADJ 0.0	JSTMENT
AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS	DAY 0.755 0.489 0.473	EVE 0.140 0.022 0.054	NIGHT 0.105 0.489 0.473	DAILY 0.974 0.018 0.007	NOISE	OUTPU	VEHICLE TY AUTOMOBI MEDIUM TH HEAVY TRU	YPE LES = RUCKS= CKS = BARRIER S	HEIGHT 2.00 4.00 8.01	SLE DISTANCE 45.0 44.9 45.0	GRADE ADJ 0.0	JSTMENT
AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS	DAY 0.755 0.489 0.473	EVE 0.140 0.022 0.054	NIGHT 0.105 0.489 0.473	DAILY 0.974 0.018 0.007 NOISE IM	NOISE IPACTS (W	OUTPU"	VEHICLE T AUTOMOBI MEDIUM TH HEAVY TRU TOPO OR E	YPE LES = RUCKS= CKS = BARRIER SI	HEIGHT 2.00 4.00 8.01 HIELDING	SLE DISTANCE 45.0 44.9 45.0	GRADE ADJ 0.0	JSTMENT
AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS	DAY 0.755 0.489 0.473	EVE 0.140 0.022 0.054 VEHICLE TYPE AUTOMORIUES	NIGHT 0.105 0.489 0.473	DAILY 0.974 0.018 0.007 NOISE IM	NOISE IPACTS (W	OUTPU ATTHOUT T	VEHICLE T AUTOMOBI MEDIUM TH HEAVY TRU T DATA	YPE LES = RUCKS= CKS = BARRIER SI LDN 67.0	HEIGHT 2.00 4.00 8.01 HIELDING CNEL 67 6	SLE DISTANCE 45.0 44.9 45.0	GRADE ADJ 0.0	JSTMENT
AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS	DAY 0.755 0.489 0.473	EVE 0.140 0.022 0.054 VEHICLE TYPE AUTOMOBILES MEDILINA TELICO	NIGHT 0.105 0.489 0.473	DAILY 0.974 0.018 0.007 NOISE IM PK HR LEQ 67.9 59 7	NOISE (IPACTS (W DAY LEQ 65.9 55 9	OUTPU ATHOUT T 64.6 49 3	VEHICLE T AUTOMOBI MEDIUM TH HEAVY TRU TOPO OR E 58.6 57.0	YPE LES = RUCKS= CKS = BARRIER S CKS = CKS =	HEIGHT 2.00 4.00 8.01 HIELDING 67.6 63.2	SLE DISTANCE 45.0 44.9 45.0	GRADE ADJ 0.0	JSTMENT
AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS	DAY 0.755 0.489 0.473	EVE 0.140 0.022 0.054 VEHICLE TYPE AUTOMOBILES MEDIUM TRUCK	NIGHT 0.105 0.489 0.473	DAILY 0.974 0.018 0.007 NOISE IM PK HR LEQ 67.9 59.7 60.5	NOISE (IPACTS (W DAY LEQ 65.9 55.8 56.5	OUTPU ⁻ (11140017 1) (11140017	VEHICLE T AUTOMOBI MEDIUM TH HEAVY TRU TOPO OR E TOPO OR E 58.6 57.0 57.7	YPE LES = RUCKS= CKS = BARRIER S CKS = CKS =	HEIGHT 2.00 4.00 8.01 HIELDING 67.6 63.2 64.0	SLE DISTANCE 45.0 44.9 45.0	GRADE ADJ 0.0	JSTMENT
AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS	DAY 0.755 0.489 0.473	EVE 0.140 0.022 0.054 VEHICLE TYPE AUTOMOBILES MEDIUM TRUCH HEAVY TRUCKS	NIGHT 0.105 0.489 0.473	DAILY 0.974 0.018 0.007 NOISE IM PK HR LEQ 67.9 59.7 60.5	NOISE IPACTS (W DAY LEQ 65.9 55.8 56.5	OUTPU ///////////////////////////////////	VEHICLE T AUTOMOBI MEDIUM TH HEAVY TRU T DATA OPO OR E 58.6 57.0 57.7	YPE LES = RUCKS= CKS = BARRIER SI 67.0 63.2 63.9	HEIGHT 2.00 4.00 8.01 HIELDING 67.6 63.2 64.0	SLE DISTANCE 45.0 44.9 45.0	GRADE ADJ 0.0	JSTMENT
AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS	DAY 0.755 0.489 0.473	EVE 0.140 0.022 0.054 VEHICLE TYPE AUTOMOBILES MEDIUM TRUCK HEAVY TRUCKS	NIGHT 0.105 0.489 0.473 0.473	DAILY 0.974 0.018 0.007 NOISE IM PK HR LEQ 67.9 59.7 60.5	DAY LEQ 65.9 55.8 56.5 66.7	OUTPU ////HOUTT EVEN LEQ 64.6 48.3 53.1 65.0	VEHICLE TY AUTOMOBI MEDIUM TH HEAVY TRU T DATA OPO OR E 58.6 57.0 57.7 62.6	YPE LES = RUCKS= CKS = 3ARRIER S 67.0 63.2 63.9 69.8	HEIGHT 2.00 4.00 8.01 HIELDING 67.6 63.2 64.0 70.2	SLE DISTANCE 45.0 44.9 45.0	GRADE ADJ 0.0	JSTMENT
AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS	DAY 0.755 0.489 0.473	EVE 0.140 0.022 0.054 VEHICLE TYPE AUTOMOBILES MEDIUM TRUCK HEAVY TRUCKS VEHICULAR NOI	NIGHT 0.105 0.489 0.473 (5 (5 SE	DAILY 0.974 0.018 0.007 NOISE IM PK HR LEQ 67.9 59.7 60.5 69.2	NOISE PACTS (W DAY LEQ 65.9 55.8 56.5 66.7	OUTPU //THOUT 1 64.6 48.3 53.1 65.0	VEHICLE T AUTOMOBI MEDIUM TI HEAVY TRU TOPO OR E 58.6 57.0 57.7 62.6	YPE LES = RUCKS= CKS = 3ARRIER S CKS = 3ARRIER S 67.0 63.2 63.9 69.8	HEIGHT 2.00 4.00 8.01 HIELDING 67.6 63.2 64.0 70.2	SLE DISTANCE 45.0 44.9 45.0	GRADE ADJ 0.0	JSTMENT
AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS	DAY 0.755 0.489 0.473	EVE 0.140 0.022 0.054 VEHICLE TYPE AUTOMOBILES MEDIUM TRUCK HEAVY TRUCKS VEHICULAR NOI	NIGHT 0.105 0.489 0.473	DAILY 0.974 0.018 0.007 NOISE IM PK HR LEQ 67.9 59.7 60.5 69.2	NOISE IPACTS (W DAY LEQ 65.9 55.8 56.5 66.7	OUTPU //THOUT 1 64.6 48.3 53.1 65.0	VEHICLE T AUTOMOBI MEDIUM TH HEAVY TRU T DATA TOPO OR E 58.6 57.0 57.7 62.6	YPE LES = RUCKS= CKS = BARRIER SI 63.2 63.9 69.8	HEIGHT 2.00 4.00 8.01 HIELDING 67.6 63.2 64.0 70.2	SLE DISTANCE 45.0 44.9 45.0	GRADE ADJ 0.0	JSTMENT
AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS	DAY 0.755 0.489 0.473	EVE 0.140 0.022 0.054 VEHICLE TYPE AUTOMOBILES MEDIUM TRUCK HEAVY TRUCKS VEHICULAR NOI	NIGHT 0.105 0.489 0.473 0.473	DAILY 0.974 0.018 0.007 NOISE IM PK HR LEQ 67.9 59.7 60.5 69.2	NOISE (W DAY LEQ 65.9 55.8 56.5 66.7 NOISE CON	OUTPU /////OUT 64.6 48.3 53.1 65.0	VEHICLE T AUTOMOBI MEDIUM TF HEAVY TRU TOPO OR E 58.6 57.0 57.7 62.6	YPE LES = RUCKS= CKS = BARRIER SI 67.0 63.2 63.9 69.8	HEIGHT 2.00 4.00 8.01 HIELDING 67.6 63.2 64.0 70.2	SLE DISTANCE 45.0 44.9 45.0	GRADE ADJ 0.0	JSTMENT
AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS	DAY 0.755 0.489 0.473	EVE 0.140 0.022 0.054 VEHICLE TYPE AUTOMOBILES MEDIUM TRUCK VEHICULAR NOI VEHICULAR NOI	NIGHT 0.105 0.489 0.473 (S SE	DAILY 0.974 0.018 0.007 NOISE IM PK HR LEQ 67.9 59.7 60.5 69.2	NOISE (W DAY LEQ 65.9 55.8 56.5 66.7 NOISE CON 70 dBA	OUTPU /////OUT 64.6 48.3 53.1 65.0	VEHICLE TY AUTOMOBI MEDIUM TH HEAVY TRU TOPO OR E 58.6 57.0 57.7 62.6 60 dBA	YPE LES = RUCKS= CKS = BARRIER SI 67.0 63.2 63.9 69.8 55 dBA	HEIGHT 2.00 4.00 8.01 HIELDING 67.6 63.2 64.0 70.2	SLE DISTANCE 45.0 44.9 45.0	GRADE ADJ 0.0	JSTMENT
AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS	DAY 0.755 0.489 0.473	EVE 0.140 0.022 0.054 VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS VEHICULAR NOI VEHICULAR NOI	NIGHT 0.105 0.489 0.473 (S SE	DAILY 0.974 0.018 0.007 NOISE IM PK HR LEQ 67.9 59.7 60.5 69.2	NOISE (W IPACTS (W 65.9 55.8 56.5 66.7 66.7 NOISE CON 70 dBA 51	OUTPU //////OUT 64.6 48.3 53.1 65.0 TOUR (FT) 65 dBA 111	VEHICLE T AUTOMOBI MEDIUM TF HEAVY TRU TOPO OR E 58.6 57.0 57.7 62.6 60 dBA 239	YPE LES = RUCKS= CKS = BARRIER SI 67.0 63.2 63.9 69.8 55 dBA 514	HEIGHT 2.00 4.00 8.01 HIELDING 67.6 63.2 64.0 70.2	SLE DISTANCE 45.0 44.9 45.0	GRADE ADJ 0.0	JSTMENT

Appendix E:

Construction Noise Modeling Output

Activity	L _{eq} at 80 feet dBA	L _{Max} at 80 feet dBA
Grading	74	78
Building Construction	72	76
Paving	74	78

	Reference (dBA) 50 ft
Equipment Summary	Lmax
Rock Drills	96
Jack Hammers	82
Pneumatic Tools	85
Source: MD Acoustics, February 2020.	80
Dozers	85
Scrappers	87
Haul Trucks	88
Cranes	82
Portable Generators	80
Rollers	80
Tractors	80
Front-End Loaders	86
Hydraulic Excavators	86
Graders	85
Air Compressors	86
Trucks	86

Grading

	Noise Level Calculation Prior to Implementation of Noise Attenuation Requirements												
		Reference (dBA)		Usage	Receptor	Ground	Shielding	Calculat					
No.	Equipment Description	50 ft Lmax	Quantity	Factor ¹	(ft)	Effect	(dBA)	Lmax	Leq	Energy			
1	Grader	85	1	40	80	0.5	0	79.9	75.9	39062500			
2	Dozer	85	1	40	80	0.5	0	79.9	75.9	39062500			
3	Tractor/Backhoe	80	1	40	80	0.5	0	74.9	70.9	12352647.1			
4													
Source: MD	Acoustics, May 2021.		Lmax*	84	Leq	80							
1- Percentage	e of time that a piece of equipme		Lw	115	Lw	111							

1- Percentage of time that a piece of equipment is operating at full power.

dBA – A-weighted Decibels Lmax- Maximum Level

Leq- Equivalent Level

Eeg Equira																		
			No Shielding	1 dBA Shielding	2 dBA Shielding	3 dBA Shielding	4 dBA Shielding	5 dBA Shielding	6 dBA Shielding	7 dBA Shielding	8 dBA Shielding	9 dBA Shielding	10 dBA Shielding	11 dBA Shielding	12 dBA Shielding	13 dBA Shielding	14 dBA Shielding	15 dBA Shielding
Feet	Meters	Ground Effect	Leq dBA	Leq dBA	Leq dBA	Leq dBA	Leq dBA	Leq dBA	Leq dBA	Leq dBA	Leq dBA	Leq dBA	Leq dBA	LeqdBA	Leq dBA	Leq dBA	Leq dBA	Leq dBA
50	15.2	0.5	80	79	78	77	76	75	74	73	72	71	70	69	68	67	66	65
60	18.3	0.5	78	77	76	75	74	73	72	71	70	69	68	67	66	65	64	63
70	21.3	0.5	76	75	74	73	72	71	70	69	68	67	66	65	64	63	62	61
80	24.4	0.5	74	73	72	71	70	69	68	67	66	65	64	63	62	61	60	59
90	27.4	0.5	73	72	71	70	69	68	67	66	65	64	63	62	61	60	59	58
100	30.5	0.5	72	71	70	69	68	67	66	65	64	63	62	61	60	59	58	57
110	33.5	0.5	71	70	69	68	67	66	65	64	63	62	61	60	59	58	57	56
120	36.6	0.5	70	69	68	67	66	65	64	63	62	61	60	59	58	57	56	55
130	39.6	0.5	69	68	67	66	65	64	63	62	61	60	59	58	57	56	55	54
140	42.7	0.5	68	67	66	65	64	63	62	61	60	59	58	57	56	55	54	53
150	45.7	0.5	68	67	66	65	64	63	62	61	60	59	58	57	56	55	54	53
160	48.8	0.5	67	66	65	64	63	62	61	60	59	58	57	56	55	54	53	52
170	51.8	0.5	66	65	64	63	62	61	60	59	58	57	56	55	54	53	52	51
180	54.9	0.5	66	65	64	63	62	61	60	59	58	57	56	55	54	53	52	51
190	57.9	0.5	65	64	63	62	61	60	59	58	57	56	55	54	53	52	51	50
200	61.0	0.5	65	64	63	62	61	60	59	58	57	56	55	54	53	52	51	50
210	64.0	0.5	64	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49
220	67.1	0.5	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48
230	70.1	0.5	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48
240	73.1	0.5	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48
250	76.2	0.5	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48	47
260	79.2	0.5	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48	47
270	82.3	0.5	61	60	59	58	57	56	55	54	53	52	51	50	49	48	47	46
280	85.3	0.5	61	60	59	58	57	56	55	54	53	52	51	50	49	48	47	46
290	88.4	0.5	60	59	58	57	56	55	54	53	52	51	50	49	48	47	46	45
300	91.4	0.5	60	59	58	57	56	55	54	53	52	51	50	49	48	47	46	45
310	94.5	0.5	60	59	58	57	56	55	54	53	52	51	50	49	48	47	46	45
320	97.5	0.5	59	58	57	56	55	54	53	52	51	50	49	48	47	46	45	44
330	100.6	0.5	59	58	57	56	55	54	53	52	51	50	49	48	47	46	45	44
340	103.6	0.5	59	58	57	56	55	54	53	52	51	50	49	48	47	46	45	44
350	106.7	0.5	58	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43
360	109.7	0.5	58	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43
370	112.8	0.5	58	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43

Building Construction

Noise Level Calculation Prior to Implementation of Noise Attenuation Requirements											
			Distance to								
		Reference (dBA)		Usage	Receptor	Receptor Ground		Calculat	ed (dBA)		
No.	Equipment Description	50 ft Lmax	Quantity	Factor ¹	(ft)	Effect	(dBA)	Lmax	Leq	Energy	
1	Cranes	82	1	40	80	0.5	0	76.9	72.9	19577626.3	
2	Forklift/Tractor	80	1	40	80	0.5	0	74.9	70.9	12352647.1	
3	Generator	80	1	40	80	0.5	0	74.9	70.9	12352647.1	
4	Tractor/Backhoe	80	1	40	80	0.5	0	74.9	70.9	12352647.1	
Source: MD A	Acoustics, May 2021.		Lmax*	79	Leq	78					
1- Percentage	of time that a piece of equipment	Lw	111	Lw	109						

1- Percentage of time that a piece of equipment is operating at full power.

dBA – A-weighted Decibels Lmax- Maximum Level

Leq- Equivalent Level

	lent Bever																	
			No Shielding	1 dBA Shielding	2 dBA Shielding	3 dBA Shielding	4 dBA Shielding	5 dBA Shielding	6 dBA Shielding	7 dBA Shielding	8 dBA Shielding	9 dBA Shielding	10 dBA Shielding	11 dBA Shielding	12 dBA Shielding	13 dBA Shielding	14 dBA Shielding	15 dBA Shielding
Feet	Meters	Ground Effect	Leq dBA	Leq dBA	Leq dBA	Leq dBA	Leq dBA	Leq dBA	Leq dBA	Leq dBA	Leq dBA	Leq dBA	Leq dBA	LeqdBA	Leq dBA	Leq dBA	Leq dBA	Leq dBA
50	15.2	0.5	78	77	76	75	74	73	72	71	70	69	68	67	66	65	64	63
60	18.3	0.5	76	75	74	73	72	71	70	69	68	67	66	65	64	63	62	61
70	21.3	0.5	74	73	72	71	70	69	68	67	66	65	64	63	62	61	60	59
80	24.4	0.5	72	71	70	69	68	67	66	65	64	63	62	61	60	59	58	57
90	27.4	0.5	71	70	69	68	67	66	65	64	63	62	61	60	59	58	57	56
100	30.5	0.5	70	69	68	67	66	65	64	63	62	61	60	59	58	57	56	55
110	33.5	0.5	69	68	67	66	65	64	63	62	61	60	59	58	57	56	55	54
120	36.6	0.5	68	67	66	65	64	63	62	61	60	59	58	57	56	55	54	53
130	39.6	0.5	67	66	65	64	63	62	61	60	59	58	57	56	55	54	53	52
140	42.7	0.5	66	65	64	63	62	61	60	59	58	57	56	55	54	53	52	51
150	45.7	0.5	66	65	64	63	62	61	60	59	58	57	56	55	54	53	52	51
160	48.8	0.5	65	64	63	62	61	60	59	58	57	56	55	54	53	52	51	50
170	51.8	0.5	64	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49
180	54.9	0.5	64	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49
190	57.9	0.5	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48
200	61.0	0.5	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48	47
210	64.0	0.5	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48	47
220	67.1	0.5	61	60	59	58	57	56	55	54	53	52	51	50	49	48	47	46
230	70.1	0.5	61	60	59	58	57	56	55	54	53	52	51	50	49	48	47	46
240	73.1	0.5	60	59	58	57	56	55	54	53	52	51	50	49	48	47	46	45
250	76.2	0.5	60	59	58	57	56	55	54	53	52	51	50	49	48	47	46	45
260	79.2	0.5	60	59	58	57	56	55	54	53	52	51	50	49	48	47	46	45
270	82.3	0.5	59	58	57	56	55	54	53	52	51	50	49	48	47	46	45	44
280	85.3	0.5	59	58	57	56	55	54	53	52	51	50	49	48	47	46	45	44
290	88.4	0.5	58	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43
300	91.4	0.5	58	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43
310	94.5	0.5	58	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43
320	97.5	0.5	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43	42
330	100.6	0.5	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43	42
340	103.6	0.5	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43	42
350	106.7	0.5	56	55	54	53	52	51	50	49	48	47	46	45	44	43	42	41
360	109.7	0.5	56	55	54	53	52	51	50	49	48	47	46	45	44	43	42	41
370	112.8	0.5	56	55	54	53	52	51	50	49	48	47	46	45	44	43	42	41

Paving

Noise Level Calculation Prior to Implementation of Noise Attenuation Requirements											
					Distance to						
		Reference (dBA)	Reference (dBA)			Ground	Shielding	Calculat	Calculated (dBA)		
No.	Equipment Description	50 ft Lmax	Quantity	Factor ¹	(ft)	Effect	(dBA)	Lmax	Leq	Energy	
1	Pavers	86	1	40	80	0.5	0	80.9	76.9	49176773.9	
2	Rollers	80	1	40	80	0.5	0	74.9	70.9	12352647.1	
3	Paving Equipment	80	1	40	80	0.5	0	74.9	70.9	12352647.1	
4	Tractor/Backhoe	80	1	40	80	0.5	0	74.9	70.9	12352647.1	
Source: MD	Acoustics, May 2021.		Lmax*	82	Leq	79					
1- Percentage	e of time that a piece of equipment	Lw	114	Lw	111						

1- Percentage of time that a piece of equipment is operating at full power.

dBA – A-weighted Decibels Lmax- Maximum Level

Leq- Equivalent Level

Leg Lgarra																		
			No Shielding	1 dBA Shielding	2 dBA Shielding	3 dBA Shielding	4 dBA Shielding	5 dBA Shielding	6 dBA Shielding	7 dBA Shielding	8 dBA Shielding	9 dBA Shielding	10 dBA Shielding	11 dBA Shielding	12 dBA Shielding	13 dBA Shielding	14 dBA Shielding	15 dBA Shielding
Feet	Meters	Ground Effect	Leq dBA	Leq dBA	Leq dBA	Leq dBA	Leq dBA	Leq dBA	Leq dBA	Leq dBA	Leq dBA	Leq dBA	Leq dBA	LeqdBA	Leq dBA	Leq dBA	Leq dBA	Leq dBA
50	15.2	0.5	79	78	77	76	75	74	73	72	71	70	69	68	67	66	65	64
60	18.3	0.5	77	76	75	74	73	72	71	70	69	68	67	66	65	64	63	62
70	21.3	0.5	76	75	74	73	72	71	70	69	68	67	66	65	64	63	62	61
80	24.4	0.5	74	73	72	71	70	69	68	67	66	65	64	63	62	61	60	59
90	27.4	0.5	73	72	71	70	69	68	67	66	65	64	63	62	61	60	59	58
100	30.5	0.5	72	71	70	69	68	67	66	65	64	63	62	61	60	59	58	57
110	33.5	0.5	71	70	69	68	67	66	65	64	63	62	61	60	59	58	57	56
120	36.6	0.5	70	69	68	67	66	65	64	63	62	61	60	59	58	57	56	55
130	39.6	0.5	69	68	67	66	65	64	63	62	61	60	59	58	57	56	55	54
140	42.7	0.5	68	67	66	65	64	63	62	61	60	59	58	57	56	55	54	53
150	45.7	0.5	67	66	65	64	63	62	61	60	59	58	57	56	55	54	53	52
160	48.8	0.5	67	66	65	64	63	62	61	60	59	58	57	56	55	54	53	52
170	51.8	0.5	66	65	64	63	62	61	60	59	58	57	56	55	54	53	52	51
180	54.9	0.5	65	64	63	62	61	60	59	58	57	56	55	54	53	52	51	50
190	57.9	0.5	65	64	63	62	61	60	59	58	57	56	55	54	53	52	51	50
200	61.0	0.5	64	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49
210	64.0	0.5	64	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49
220	67.1	0.5	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48
230	70.1	0.5	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48
240	73.1	0.5	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48	47
250	76.2	0.5	62	61	60 7 0	59	58	57	56	55	54	53	52	51	50	49	48	47
260	79.2	0.5	61	60	59	58	57	56	55	54	53	52	51	50	49	48	47	46
270	82.3	0.5	61	60	59	58	57	56	55	54	53	52	51	50	49	48	47	46
280	85.3	0.5	61	60 50	59	58	57	56	55	54	53	52	51	50	49	48	47	46
290	88.4	0.5	60	59	58 59	57	56	55 55	54	53	52	51	50	49	48	47	46	45
300	91.4	0.5	60	59	58	57	56	55	54	53	52	51	50	49	48	47	46	45
310	94.5	0.5	60 50	59	58	57	56	55	54	53	52	51	50	49	48	47	46 45	45
320	97.5	0.5	59	58 59	57	50	33 55	54	55 52	52	51	50	49	48	47	40 46	45 45	44
330	100.6	0.5	59	58 59	57	56)) 55	54	53	52 52	51	50	49	48	47	46 46	45 45	44
340	103.6	0.5	59	58	57	56	55 54	54	53	52	51	50	49	48	47	46	45	44
350	106.7	0.5	58	5/	56 56	55	54	53	52	51	50	49	48	47	46	45 45	44	43
300 370	109.7	0.5	58	57	56 56	55	54	53	52	51	50	49	48	47	40	45	44	43
570	112.0	0.5	30	57	30		54		52	31	50	49	40	4/	40	43	44	43

		VIBRATIC	ON LEVEL IMPACT
Project:	Los Coches Road/Express	Car Wash	Date: 5/13/21
Source:	Large Bulldozer		
Scenario:	Unmitigated		
Location:	Project Site		
Address:			
PPV = PPVref	(25/D)^n (in/sec)		
		D	
Equipment =	2	Large Bulldozer	INPUT SECTION IN BLUE
Туре	2		
PPVref =	0.089	Reference PPV (in/sec) at 25 ft.
D =	80.00	Distance from Equipm	ent to Receiver (ft)
n =	1.10	Vibration attenuation	rate through the ground
Note: Based on	reference equations from Vibration	on Guidance Manual, Califor	nia Department of Transportation, 2006, pgs 38-43.

	DATA OUT RESULTS									
PPV =	0.025	IN/SEC	OUTPUT IN RED							