Appendix D Drainage Report

CEQA-LEVEL HYDROLOGY REPORT FOR THE OTAY HILLS QUARRY

(Log No. 93-19-006J, P04-004, RP04-001)

February 19, 2015

Wayne W. Chang, MS, PE 46548

Civil Engineering • Hydrology • Hydraulics • Sedimentation

P.O. Box 9496 Rancho Santa Fe, CA 92067 (858) 692-0760

FOR REVIEW ONLY

TABLE OF CONTENTS

Introduction	1
Hydrologic Analyses	1
Hydraulic Analyses	3
Conclusion	4
Declaration of Responsible Charge	4
Normal Depth Analyses	5

APPENDIX

- A. 100-Year Rational Method Analyses
- B. 100-Year Detention Analysis

MAP POCKET

Rational Method Work Maps

INTRODUCTION

The Otay Hills Quarry is a proposed mineral resource recovery project located beyond the westerly terminus of Otay Mesa Road in southern San Diego County (see Vicinity Map). A plot plan and reclamation plan have been prepared for the proposed recovery activities by Chang Consultants. This CEQA-level drainage report analyzes the existing and proposed (ultimate) condition hydrology at the site. The existing condition reflects the site prior to the proposed project initiation. Recent grading and improvements have been performed and constructed immediately west of the site. These grading and improvements are included on the existing and proposed condition work maps in this report. During the extraction phases of the project, borrow areas will be created that act as retention basins. There will not be an increase in off-site runoff or associated impacts during extraction and backfill due to the retention. Therefore, the interim extraction and backfill phases are not analyzed. The proposed condition reflects the ultimate, post-reclamation condition.

HYDROLOGIC ANALYSES

Hydrologic analyses were performed to determine the 100-year existing and ultimate condition flow rates associated with the footprint of the resource recovery area. The existing and ultimate conditions are shown on the work maps at the back of this report. The County of San Diego's 2003 *Hydrology Manual* rational method procedure was used for the analyses. The rational method input parameters are summarized as follows:

- Precipitation: The 100-year, 6- and 24-hour precipitation values from the *Hydrology Manual* are 3.4 and 8.0 inches, respectively.
- Drainage areas: Surface runoff patterns from the site are generally towards the west and south. There are several locations where surface runoff exits the site. The overall drainage area has been grouped into three major drainage basins, or outflow areas, for the existing

and ultimate conditions (Basins 100, 200, and 300 for the existing conditions and Basins 10, 20, and 30 for the ultimate conditions). Existing Basin 100 generally corresponds to ultimate Basin 10, etc. The reclamation and plot plan were developed such that the project would generally maintain the existing off-site runoff directions.

The existing condition drainage basins were delineated using 5-foot contour topographic mapping prepared for the project as well as USGS data for off-site areas. The ultimate condition drainage basins were based on the project plans and the existing topographic mapping. A field visit was performed to verify the drainage basin delineations. The Rational Method Work Maps (see map pocket) contain the drainage basin boundaries as well as flow paths and rational method node numbers.

- Hydrologic soil groups: The hydrologic soil groups were determined from the Soil Conservation Service's *Soil Survey* for San Diego County. The soil group in the study area is entirely "D".
- Runoff coefficients: The runoff coefficients were selected based on the land use and Soil Group "D". The existing condition study area consists of relatively steep, entirely undeveloped hillsides. Since the project involves mineral recovery, the proposed condition land use will also be essentially undeveloped. According to Table 3 from the *Hydrology Manual*, undeveloped land under Soil Group "D" has a runoff coefficient of 0.35.
- Flow lengths and elevations: The flow lengths and elevations were obtained from the Rational Method Work Maps.

The 100-year rational method results are included in Appendix A. The analyses were performed for the existing and ultimate conditions using the CivilDesign Rational Method Hydrology Program, which is based on the County of San Diego criteria. There are five primary discharge locations from the site under existing conditions. These are labeled A through E on the Existing Condition Rational Method Work Map. Two are near the northwest corner, the third is approximately midway along the westerly boundary, and the final two are along the southerly boundary. Under existing conditions, the northwest-most discharge location, A, enters a natural watercourse that flows away from the site in a southwest direction. The additional two westerly discharge locations, B and C, enter a storm drain system constructed by the adjacent project. The storm drain ultimately conveys the runoff in a southwesterly direction away from the site. The southerly two overland discharge locations, D and E, enter natural drainage courses that confluence a short distance south of the site.

Under proposed conditions, the project runoff will continue to exit the site at discharge locations A, C, D, and E. Flow will not exit the site at discharge location B. The 100-year existing and proposed condition 100-year flow rate at each of the discharge locations from the site are summarized in Table 1.

Table 1 shows that the project will not increase the 100-year flow rate from discharge locations B through E. On the other hand, the flow rate from discharge location A will increase slightly. A detention analysis was performed to determine the required detention volume to attenuate the 100-year flow rate from 574 to 559 cfs. The County of San Diego's rational method to hydrograph routine was used to convert the 100-year peak flow rate results to a hydrograph. The results are included in Appendix B and show that a storage volume of at least 0.6 acre-feet is required. A basin is shown on the work map with this volume.

Disabarga	Existing Condition			Proposed Condition			
Discharge	Tributary	100-Year	100-Year	Tributary	100-Year	100-Year	
Location	Area, ac	Flow, cfs	Velocity, fps	Area, ac	Flow, cfs	Velocity, fps	
А	368.65	559	14.2	375.08	574	12.3	
В	13.79	28	2.4				
С	46.98	94	3.4	50.46	87	4.8	
D	25.60	58	2.2	29.07	57	4.3	
E	38.27	80	3.5	38.68	65	9.4	

Table 1. Summary 100-Year Rational Method Results

HYDRAULIC ANALYSES

The flow velocities are provided in Table 1 from the rational method results. Under existing conditions, the flow velocities at each discharge location were determined using one of two methods. First, where the rational method routine tributary to the discharge location models an initial area (discharge locations B through E), the flow velocity was approximated by dividing the initial subarea flow distance by the total travel time. Second, where the rational method routine tributary to the discharge location A), the flow velocity was obtained from the improved channel results from the rational method output.

Under proposed conditions, normal depth analyses were performed to more accurately approximate the flow velocity at each of the four site discharge locations. The normal depth analyses were based on the proposed condition 100-year flow rates and the drainage conveyance at each discharge location. The analyses were performed using the FlowMaster program and the results are included after this report text. The results show that the flow velocities at discharge locations C and D are below the erosive threshold of 5 to 6 feet per second. Therefore, energy dissipation is not required at these locations. On the other hand, the flow velocities at discharge locations A and E are erosive. Discharge location A will consist of three 54-inch HDPE pipes. Riprap shall be installed at the pipe outlets in accordance with the County of San Diego's September 2014, *Hydraulic Design Manual* and *San Diego Regional Standard Drawing* D-40. For the outlet velocity of 12.3 feet per second, the rock size is required to be ½-ton with a 2.7 foot thickness over 1-inch gravel with a 1 foot thickness. Discharge Location E will consist of a drainage ditch per D-75. For the outlet velocity of 9.4 feet per second, the rock size is required to be No. 2 backing with a 1 foot thickness over ¼-inch gravel with a 1-foot thickness.

CONCLUSION

The CEQA-level hydrologic analyses show that the project will decrease the 100-year surface runoff at four of the five outflow locations (discharge locations B through E). At discharge location A, a detention basin can be installed near the outflow to mitigate for the 100-year flow increase. Based on this, the project will not adversely impact the off-site drainage conditions. Additional drainage design details will be included in the final drainage report for the project.

The northerly-most proposed pad has a tributary area exceeding 200 acres. The pad will convey the storm runoff through the site in accordance with the State Mining and Reclamation Act requirements. The mine operator shall ensure that the pad will not be adversely impacted by runoff from the watershed. Since the runoff will flow through the site within the pad and the project will not increase the runoff exiting the site, the pad will not adversely impact flow from the watershed.

DECLARATION OF RESPONSIBLE CHARGE

I hereby declare that I am the civil engineer of work for this project, that I have exercised responsible charge over the design of the project as defined in Section 6703 of the Business and Professions Code, and that the design is consistent with current design.

I understand that the check of project drawings and specifications by the County of San Diego is confined to a review only and does not relieve me, as engineer of work, of my responsibilities for project design.

FOR REVIEW ONLY

Wayne W. Chang RCE 46548 Exp. June 30, 2015 Date

Worksheet for Discharge Location A - 191.3 cfs per pipe (3 pipes total)

Project Description				
Friction Method	Manning Formula			
Solve For	Full Flow Diameter			
Input Data				
		0.040		
Roughness Coefficient		0.013	£1./£1.	
Channel Slope		0.01000	п/п 4	
Normal Depth		4.45	π #	
Discharge		191.30	ft ³ /s	
		101100	1175	
Results				
Diameter		4.45	ft	
Normal Depth		4.45	ft	
Flow Area		15.58	ft²	
Wetted Perimeter		13.99	ft	
Hydraulic Radius		1.11	ft	
Top Width		0.00	ft	
Critical Depth		3.97	ft	
Percent Full		100.0	%	
Critical Slope		0.00888	ft/ft	
Velocity		12.28	ft/s	
Velocity Head		2.34	ft	
Specific Energy		6.80	ft	
Froude Number		0.00		
Maximum Discharge		205.76	ft³/s	
Discharge Full		191.28	ft³/s	
Slope Full		0.01000	ft/ft	
Flow Type	SubCritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Average End Depth Over Rise		0.00	%	

Bentley Systems, Inc. Haestad Methods ScBeetideryCEFucterMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

2/20/2015 11:07:29 AM

Worksheet for Discharge Location C

Project Description		
Friction Method Solve For	Manning Formula Normal Depth	
Input Data		
Roughness Coefficient Channel Slope Left Side Slope Right Side Slope Discharge	0.030 0.01000 5.00 5.00 87.00	ft/ft ft/ft (H:V) ft/ft (H:V) ft³/s
Results		
Normal Depth Flow Area Wetted Perimeter Hydraulic Radius Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow Type	1.91 18.32 19.52 0.94 19.14 1.80 0.01395 4.75 0.35 2.26 0.86 Subcritical	ft ft ² ft ft ft ft/ft ft/s ft ft
GVF Input Data		
Downstream Depth Length Number Of Steps	0.00 0.00 0	ft ft
GVF Output Data		
Upstream Depth Profile Description	0.00	ft
Profile Headloss Downstream Velocity Upstream Velocity	0.00 Infinity Infinity	ft ft/s ft/s
Normal Depth Critical Depth Channel Slope	1.91 1.80 0.01000	ft ft ft/ft
Critical Slope	0.01395	ft/ft

Bentley Systems, Inc. Haestad Methods SoBainle CEnterMaster V8i (SELECTseries 1) [08.11.01.03]

2/20/2015 11:07:53 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1

Worksheet for Discharge Location D

Project Description		
Friction Method Solve For	Manning Formula Normal Depth	
Input Data		
Roughness Coefficient Channel Slope Left Side Slope Right Side Slope Discharge	0.030 0.01000 5.00 5.00 57.00	ft/ft ft/ft (H:V) ft/ft (H:V) ft³/s
Results		
Normal Depth Flow Area Wetted Perimeter Hydraulic Radius Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow Type	1.63 13.34 16.66 0.80 16.33 1.52 0.01476 4.27 0.28 1.92 0.83 Subcritical	ft ft ² ft ft ft ft/ft ft/fs ft ft
GVF Input Data		
Downstream Depth Length Number Of Steps	0.00 0.00 0	ft ft
GVF Output Data		
Upstream Depth Profile Description	0.00	ft
Profile Headloss Downstream Velocity Upstream Velocity	0.00 Infinity Infinity 1.63	ft ft/s ft/s
Critical Depth Channel Slope Critical Slope	1.52 0.01000 0.01476	ft ft/ft ft/ft

Bentley Systems, Inc. Haestad Methods Soldariate CEnterMaster V8i (SELECTseries 1) [08.11.01.03]

2/20/2015 11:08:14 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1

Worksheet for Discharge Location E - D-75 Ditch

Project Description		
Friction Method Solve For	Manning Formula Normal Depth	
Input Data		
Roughness Coefficient Channel Slope Constructed Depth Constructed Top Width Discharge	0.016 0.01000 3.00 5.00 65.00	ft/ft ft ft ft ³ /s
Results		
Normal Depth Flow Area Wetted Perimeter Hydraulic Radius Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow Type	2.34 6.89 6.73 1.02 4.42 2.70 0.00564 9.43 1.38 3.72 1.33 Supercritical	ft ft ² ft ft ft ft/ft ft/s ft ft
GVF Input Data		
Downstream Depth Length Number Of Steps	0.00 0.00 0	ft ft
GVF Output Data		
Upstream Depth Profile Description	0.00	ft
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream velocity	2 34	17/S
Critical Depth	2.70	n ft
Channel Slope	0.01000	ft/ft
Critical Slope	0.00564	ft/ft

Bentley Systems, Inc. Haestad Methods SoBditute CEnterMaster V8i (SELECTseries 1) [08.11.01.03]

2/20/2015 11:08:39 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1

APPENDIX A

100-YEAR RATIONAL METHOD ANALYSES

Rational Formula - Overland Time of Flow Nomograph

FIGURE

San Diego County Hydrology Manual Date: June 2003

Section: 3 6 of 26 Page:

Lan	d Use		Ru	noff Coefficient "	'C"	
			Soil Type			
NRCS Elements	County Elements	% IMPER.	А	В	С	D
Undisturbed Natural Terrain (Natural)	Permanent Open Space	0*	0.20	0.25	0.30	0.35
Low Density Residential (LDR)	Residential, 1.0 DU/A or less	10	0.27	0.32	0.36	0.41
Low Density Residential (LDR)	Residential, 2.0 DU/A or less	20	0.34	0.38	0.42	0.46
Low Density Residential (LDR)	Residential, 2.9 DU/A or less	25	0.38	0.41	0.45	0.49
Medium Density Residential (MDR)	Residential, 4.3 DU/A or less	30	0.41	0.45	0.48	0.52
Medium Density Residential (MDR)	Residential, 7.3 DU/A or less	40	0.48	0.51	0.54	0.57
Medium Density Residential (MDR)	Residential, 10.9 DU/A or less	45	0.52	0.54	0.57	0.60
Medium Density Residential (MDR)	Residential, 14.5 DU/A or less	50	0.55	0.58	0.60	0.63
High Density Residential (HDR)	Residential, 24.0 DU/A or less	65	0.66	0.67	0.69	0.71
High Density Residential (HDR)	Residential, 43.0 DU/A or less	80	0.76	0.77	0.78	0.79
Commercial/Industrial (N. Com)	Neighborhood Commercial	80	0.76	0.77	0.78	0.79
Commercial/Industrial (G. Com)	General Commercial	85	0.80	0.80	0.81	0.82
Commercial/Industrial (O.P. Com)	Office Professional/Commercial	90	0.83	0.84	0.84	0.85
Commercial/Industrial (Limited I.)	Limited Industrial	90	0.83	0.84	0.84	0.85
Commercial/Industrial (General I)	General Industrial	95	0.87	0.87	0.87	0.87

Table 3-1 **RUNOFF COEFFICIENTS FOR URBAN AREAS**

*The values associated with 0% impervious may be used for direct calculation of the runoff coefficient as described in Section 3.1.2 (representing the pervious runoff coefficient, Cp, for the soil type), or for areas that will remain undisturbed in perpetuity. Justification must be given that the area will remain natural forever (e.g., the area is located in Cleveland National Forest).

DU/A = dwelling units per acre NRCS = National Resources Conservation Service

San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2009 Version 7.8 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 02/16/15 _____ Otay Hills Quarry Existing Conditions 100-Year Storm Event _____ ******** Hydrology Study Control Information ********* Program License Serial Number 4028 _____ Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 3.40024 hour precipitation(inches) = 8.000 42.5% P6/P24 = Adjusted 6 hour precipitation (inches) = 3.600 Adjusted P6/P24 = 45.0% San Diego hydrology manual 'C' values used Process from Point/Station 100.000 to Point/Station 101.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN] (Permanent Open Space) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350Initial subarea total flow distance = 2615.000(Ft.) Highest elevation = 1585.000(Ft.) Lowest elevation = 895.000(Ft.) Elevation difference = 690.000(Ft.) Slope = 26.386 % Top of Initial Area Slope adjusted by User to 13.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 13.00 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 5.74 minutes

```
TC = [1.8*(1.1-C)*distance(Ft.)^{.5})/(% slope^{(1/3)}]
TC = [1.8*(1.1-0.3500)*(100.000^{-1.5})/(13.000^{-1.5})] =
                                                   5.74
The initial area total distance of 2615.00 (Ft.) entered leaves a
remaining distance of 2515.00 (Ft.)
Using Figure 3-4, the travel time for this distance is 5.42 minutes
for a distance of 2515.00 (Ft.) and a slope of 26.39 %
with an elevation difference of 663.61(Ft.) from the end of the top area
Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr)
     5.417 Minutes
=
Tt=[(11.9*0.4763^3)/(663.61)]^.385= 5.42
Total initial area Ti = 5.74 minutes from Figure 3-3 formula plus
 5.42 minutes from the Figure 3-4 formula = 11.16 minutes
Rainfall intensity (I) = 5.652(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.350
Subarea runoff = 81.574(CFS)
Total initial stream area =
                               41.240(Ac.)
Process from Point/Station
                             101.000 to Point/Station
                                                         102.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 895.000(Ft.)
Downstream point elevation = 651.000(Ft.)
Channel length thru subarea = 4193.000(Ft.)
Channel base width = 3.000(Ft.)
Slope or 'Z' of left channel bank = 2.000
Slope or 'Z' of right channel bank = 2.000
Estimated mean flow rate at midpoint of channel = 320.556(CFS)
Manning's 'N'
              = 0.040
Maximum depth of channel =
                             5.000(Ft.)
Flow(q) thru subarea = 320.556(CFS)
Depth of flow = 2.933(Ft.), Average velocity = 12.328(Ft/s)
Channel flow top width = 14.732(Ft.)
Flow Velocity = 12.33(Ft/s)
Travel time = 5.67 min.
Time of concentration = 16.83 min.
Critical depth =
                 3.688(Ft.)
Adding area flow to channel
Rainfall intensity (I) =
                            4.336(In/Hr) for a 100.0 year storm
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[UNDISTURBED NATURAL TERRAIN
                                          1
(Permanent Open Space )
Impervious value, Ai = 0.000
Sub-Area C Value = 0.350
Rainfall intensity =
                       4.336(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.350 CA = 129.028
Subarea runoff = 477.896(CFS) for
                                     327.410(Ac.)
Total runoff = 559.470(CFS)
                                 Total area =
                                                 368.650(Ac.)
Depth of flow = 3.753(Ft.), Average velocity = 14.192(Ft/s)
Critical depth = 4.781(Ft.)
```

```
2
```

Process from Point/Station 101.000 to Point/Station 102.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 368.650(Ac.) Runoff from this stream = 559.470(CFS) Time of concentration = 16.83 min. Rainfall intensity = 4.336(In/Hr) Program is now starting with Main Stream No. 2 Process from Point/Station 200.000 to Point/Station 201,000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000] [UNDISTURBED NATURAL TERRAIN (Permanent Open Space) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 1559.000(Ft.) Highest elevation = 828.000(Ft.) Lowest elevation = 652.000(Ft.) Elevation difference = 176.000(Ft.) Slope = 11.289 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 11.29 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.02 minutes $TC = [1.8*(1.1-C)*distance(Ft.)^{.5})/(% slope^{(1/3)}]$ $TC = [1.8*(1.1-0.3500)*(100.000^{-5})/(11.289^{-1})] =$ 6.02 The initial area total distance of 1559.00 (Ft.) entered leaves a remaining distance of 1459.00 (Ft.) Using Figure 3-4, the travel time for this distance is 4.94 minutes for a distance of 1459.00 (Ft.) and a slope of 11.29 % with an elevation difference of 164.71(Ft.) from the end of the top area Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr) = 4.939 Minutes Tt=[(11.9*0.2763^3)/(164.71)]^.385= 4.94 Total initial area Ti = 6.02 minutes from Figure 3-3 formula plus 4.94 minutes from the Figure 3-4 formula = 10.96 minutes 5.718(In/Hr) for a 100.0 year storm Rainfall intensity (I) = Effective runoff coefficient used for area (Q=KCIA) is C = 0.350Subarea runoff = 27.600(CFS) Total initial stream area = 13.790(Ac.) Process from Point/Station 200.000 to Point/Station 201.000

**** CONFLUENCE OF MINOR STREAMS ****

```
Along Main Stream number: 2 in normal stream number 1
Stream flow area = 13.790(Ac.)
Runoff from this stream =
                           27.600(CFS)
Time of concentration = 10.96 min.
Rainfall intensity = 5.718(In/Hr)
Process from Point/Station
                            210.000 to Point/Station
                                                         211,000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[UNDISTURBED NATURAL TERRAIN
                                         ]
(Permanent Open Space )
Impervious value, Ai = 0.000
Sub-Area C Value = 0.350
Initial subarea total flow distance = 2258.000(Ft.)
Highest elevation = 997.000(Ft.)
Lowest elevation = 622.000(Ft.)
Elevation difference = 375.000(Ft.) Slope = 16.608 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 16.61 %, in a development type of
Permanent Open Space
In Accordance With Figure 3-3
Initial Area Time of Concentration = 5.29 minutes
TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)]
TC = [1.8*(1.1-0.3500)*(100.000^{.5})/(16.608^{(1/3)}] =
                                                   5.29
The initial area total distance of 2258.00 (Ft.) entered leaves a
remaining distance of 2158.00 (Ft.)
Using Figure 3-4, the travel time for this distance is 5.75 minutes
for a distance of 2158.00 (Ft.) and a slope of 16.61 %
with an elevation difference of 358.40(Ft.) from the end of the top area
Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^{.385} *60(min/hr)
     5.754 Minutes
=
Tt=[(11.9*0.4087^3)/(358.40)]^.385= 5.75
Total initial area Ti = 5.29 minutes from Figure 3-3 formula plus
  5.75 minutes from the Figure 3-4 formula = 11.05 minutes
Rainfall intensity (I) =
                          5.689(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.350
Subarea runoff =
                  93.541(CFS)
Total initial stream area =
                             46.980(Ac.)
Process from Point/Station 210.000 to Point/Station
                                                        211.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 2 in normal stream number 2
Stream flow area = 46.980(Ac.)
Runoff from this stream =
                           93.541(CFS)
Time of concentration = 11.05 min.
Rainfall intensity =
                       5.689(In/Hr)
```

```
Summary of stream data:
```

Stream TC Flow rate Rainfall Intensity No. (CFS) (min) (In/Hr) 27.600 1 10.96 5.718 2 93.541 11.05 5.689 Qmax(1) =1.000 * 1.000 * 27.600) +1.000 * 0.992 * 93.541) + = 120.390 Qmax(2) =0.995 * 1.000 * 27.600) + 1.000 * 1.000 * 93.541) + = 120.997 Total of 2 streams to confluence: Flow rates before confluence point: 27.600 93.541 Maximum flow rates at confluence using above data: 120.390 120.997 Area of streams before confluence: 13.790 46.980 Results of confluence: Total flow rate = 120.997(CFS) Time of concentration = 11.046 min. Effective stream area after confluence = 60.770(Ac.) Process from Point/Station 201.000 to Point/Station 211.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 60.770(Ac.) Runoff from this stream = 120.997(CFS) Time of concentration = 11.05 min. Rainfall intensity = 5.689(In/Hr) Program is now starting with Main Stream No. 3 Process from Point/Station 300.000 to Point/Station 301.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000[UNDISTURBED NATURAL TERRAIN] (Permanent Open Space) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 2127.000(Ft.) Highest elevation = 1015.000(Ft.) Lowest elevation = 605.000(Ft.) Elevation difference = 410.000(Ft.) Slope = 19.276 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:

```
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 19.28 %, in a development type of
Permanent Open Space
In Accordance With Figure 3-3
Initial Area Time of Concentration =
                                    5.03 minutes
TC = [1.8*(1.1-C)*distance(Ft.)^{.5})/(% slope^{(1/3)}]
TC = [1.8*(1.1-0.3500)*(100.000^{.5})/(19.276^{(1/3)}] =
                                                     5.03
The initial area total distance of 2127.00 (Ft.) entered leaves a
remaining distance of 2027.00 (Ft.)
Using Figure 3-4, the travel time for this distance is
                                                    5.18 minutes
for a distance of 2027.00 (Ft.) and a slope of 19.28 %
with an elevation difference of 390.72(Ft.) from the end of the top area
Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr)
     5.178 Minutes
=
Tt=[(11.9*0.3839^3)/(390.72)]^.385= 5.18
Total initial area Ti = 5.03 minutes from Figure 3-3 formula plus
  5.18 minutes from the Figure 3-4 formula = 10.21 minutes
Rainfall intensity (I) =
                           5.984(In/Hr) for a
                                              100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.350
Subarea runoff =
                  80.151(CFS)
Total initial stream area =
                               38.270(Ac.)
300.000 to Point/Station
Process from Point/Station
                                                          301.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 3 in normal stream number 1
Stream flow area = 38.270(Ac.)
Runoff from this stream =
                            80.151(CFS)
Time of concentration = 10.21 min.
Rainfall intensity = 5.984(In/Hr)
310.000 to Point/Station
Process from Point/Station
                                                          311.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[UNDISTURBED NATURAL TERRAIN
                                          ]
(Permanent Open Space )
Impervious value, Ai = 0.000
Sub-Area C Value = 0.350
Initial subarea total flow distance = 1196.000(Ft.)
Highest elevation = 758.000(Ft.)
Lowest elevation = 576.000(Ft.)
Elevation difference = 182.000(Ft.) Slope = 15.217 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 15.22 %, in a development type of
Permanent Open Space
In Accordance With Figure 3-3
Initial Area Time of Concentration = 5.45 minutes
TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)]
```

```
TC = [1.8*(1.1-0.3500)*(100.000^{.5})/(15.220^{(1/3)}] = 5.45
The initial area total distance of 1196.00 (Ft.) entered leaves a
remaining distance of 1096.00 (Ft.)
Using Figure 3-4, the travel time for this distance is 3.53 minutes
for a distance of 1096.00 (Ft.) and a slope of 15.22 %
with an elevation difference of 166.81(Ft.) from the end of the top area
Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr)
=
    3.532 Minutes
Tt=[(11.9*0.2076^3)/(166.81)]^.385= 3.53
Total initial area Ti = 5.45 minutes from Figure 3-3 formula plus
 3.53 minutes from the Figure 3-4 formula = 8.98 minutes
Rainfall intensity (I) = 6.502(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.350
Subarea runoff =
                  58.255(CFS)
Total initial stream area = 25.600(Ac.)
Process from Point/Station 310.000 to Point/Station 311.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 3 in normal stream number 2
Stream flow area = 25.600(Ac.)
Runoff from this stream = 58.255(CFS)
Time of concentration = 8.98 min.
Rainfall intensity = 6.502(In/Hr)
Summary of stream data:
Stream Flow rate
                    TC
                                 Rainfall Intensity
                   (min)
No.
        (CFS)
                                        (In/Hr)
1
      80.151 10.21
                                  5.984
2
      58.255
                8.98
                                  6.502
Qmax(1) =
       1.000 * 1.000 * 80.151) +
0.920 * 1.000 * 58.255) +
                           58.255) + =
                                        133.766
Qmax(2) =
       1.000 *
               0.879 *
                         80.151) +
        1.000 * 1.000 *
                           58.255) + = 128.728
Total of 2 streams to confluence:
Flow rates before confluence point:
     80.151
               58.255
Maximum flow rates at confluence using above data:
     133.766
            128.728
Area of streams before confluence:
      38.270
                 25.600
Results of confluence:
Total flow rate = 133.766(CFS)
Time of concentration = 10.213 min.
Effective stream area after confluence =
                                      63.870(Ac.)
Process from Point/Station 301.000 to Point/Station 311.000
**** CONFLUENCE OF MAIN STREAMS ****
```

The following data inside Main Stream is listed: In Main Stream number: 3 63.870(Ac.) Stream flow area = Runoff from this stream = 133.766(CFS) Time of concentration = 10.21 min. Rainfall intensity = 5.984(In/Hr) Summary of stream data: Stream Flow rate Rainfall Intensity TC No. (CFS) (min) (In/Hr) 559.47016.83120.99711.05133.76610.21 1 4.336 2 5.689 3 5.984 Qmax(1) =1.000 * 1.000 * 559.470) + 0.762 * 1.000 * 120.997) + 0.725 * 1.000 * 133.766) + = 748.626 Qmax(2) =1.000 * 0.656 * 559.470) + 1.000 * 0.951 * 1.000 * 120.997) +1.000 * 133.766) + =615.406 Qmax(3) =0.607 * 1.000 * 559.470) + 1.000 * 0.925 * 120.997) + 1.000 * 1.000 * 133.766) + = 585.187Total of 3 main streams to confluence: Flow rates before confluence point: 133.766 559.470 120.997 Maximum flow rates at confluence using above data: 748.626 615.406 585.187 Area of streams before confluence: 368.650 60.770 63.870 Results of confluence:

Total flow rate = 748.626(CFS) Time of concentration = 16.827 min. Effective stream area after confluence = 493.290(Ac.) End of computations, total study area = 493.290 (Ac.)

San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2009 Version 7.8 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 02/19/15 _____ Otay Hills Quarry Proposed Conditions 100-Year Storm Event _____ ******* Hydrology Study Control Information ********* _____ Program License Serial Number 4028 _____ Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 3.40024 hour precipitation(inches) = 8.000 P6/P24 = 42.5% Adjusted 6 hour precipitation (inches) = 3.600 Adjusted P6/P24 = 45.0% San Diego hydrology manual 'C' values used Process from Point/Station 10.000 to Point/Station 11.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN 1 (Permanent Open Space) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350Initial subarea total flow distance = 2998.000(Ft.) Highest elevation = 1350.000(Ft.) Lowest elevation = 683.000(Ft.) Elevation difference = 667.000(Ft.) Slope = 22.248 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 22.25 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 4.80 minutes $TC = [1.8*(1.1-C)*distance(Ft.)^{.5})/(% slope^{(1/3)}]$ $TC = [1.8*(1.1-0.3500)*(100.000^{.5})/(22.248^{(1/3)}] = 4.80$

```
The initial area total distance of 2998.00 (Ft.) entered leaves a
remaining distance of 2898.00 (Ft.)
Using Figure 3-4, the travel time for this distance is
                                                 6.45 minutes
for a distance of 2898.00 (Ft.) and a slope of 22.25 %
with an elevation difference of 644.75(Ft.) from the end of the top area
Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^{.385} *60(min/hr)
=
     6.452 Minutes
Tt=[(11.9*0.5489^3)/(644.75)]^.385= 6.45
Total initial area Ti = 4.80 minutes from Figure 3-3 formula plus
 6.45 minutes from the Figure 3-4 formula = 11.25 minutes
Rainfall intensity (I) = 5.621(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.350
Subarea runoff = 111.199(CFS)
Total initial stream area =
                             56.520(Ac.)
Process from Point/Station
                            11.000 to Point/Station
                                                     12,000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 683.000(Ft.)
Downstream point elevation = 680.300(Ft.)
Channel length thru subarea = 234.000(Ft.)
Channel base width =
                       0.000(Ft.)
Slope or 'Z' of left channel bank = 20.000
Slope or 'Z' of right channel bank = 20.000
Manning's 'N'
             = 0.030
Maximum depth of channel = 5.000(Ft.)
Flow(q) thru subarea = 111.199(CFS)
Depth of flow = 1.209(Ft.), Average velocity = 3.802(Ft/s)
Channel flow top width = 48.374(Ft.)
Flow Velocity = 3.80(Ft/s)
Travel time =
               1.03 min.
Time of concentration = 12.28 min.
Critical depth = 1.141(Ft.)
Process from Point/Station 11.000 to Point/Station 12.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 56.520(Ac.)
Runoff from this stream = 111.199(CFS)
Time of concentration = 12.28 min.
Rainfall intensity = 5.314(In/Hr)
Process from Point/Station 13.000 to Point/Station
                                                      14.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[UNDISTURBED NATURAL TERRAIN
                                       1
```

```
(Permanent Open Space
                     )
Impervious value, Ai = 0.000
Sub-Area C Value = 0.350
Initial subarea total flow distance = 2615.000(Ft.)
Highest elevation = 1585.000(Ft.)
Lowest elevation = 895.000(Ft.)
Elevation difference = 690.000(Ft.) Slope = 26.386 %
Top of Initial Area Slope adjusted by User to 13.000 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 13.00 %, in a development type of
Permanent Open Space
In Accordance With Figure 3-3
Initial Area Time of Concentration =
                                     5.74 minutes
TC = [1.8*(1.1-C)*distance(Ft.)^{.5})/(% slope^{(1/3)}]
TC = [1.8*(1.1-0.3500)*( 100.000^.5)/( 13.000^(1/3)]=
                                                     5.74
The initial area total distance of 2615.00 (Ft.) entered leaves a
remaining distance of 2515.00 (Ft.)
Using Figure 3-4, the travel time for this distance is 5.42 minutes
for a distance of 2515.00 (Ft.) and a slope of 26.39 %
with an elevation difference of 663.61(Ft.) from the end of the top area
Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr)
     5.417 Minutes
=
Tt=[(11.9*0.4763^3)/(663.61)]^.385= 5.42
Total initial area Ti = 5.74 minutes from Figure 3-3 formula plus
  5.42 minutes from the Figure 3-4 formula = 11.16 minutes
Rainfall intensity (I) =
                           5.652(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.350
Subarea runoff =
                   81.574(CFS)
Total initial stream area =
                                41.240(Ac.)
Process from Point/Station 14.000 to Point/Station
                                                          15,000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 895.000(Ft.)
Downstream point elevation = 683.000(Ft.)
Channel length thru subarea = 3369.000(Ft.)
Channel base width
                           3.000(Ft.)
                      =
Slope or 'Z' of left channel bank = 2.000
Slope or 'Z' of right channel bank = 2.000
Estimated mean flow rate at midpoint of channel = 250.990(CFS)
Manning's 'N'
                = 0.040
Maximum depth of channel =
                             5.000(Ft.)
Flow(q) thru subarea = 250.990(CFS)
Depth of flow = 2.579(Ft.), Average velocity = 11.927(Ft/s)
Channel flow top width = 13.317(Ft.)
Flow Velocity = 11.93(Ft/s)
Travel time = 4.71 min.
Time of concentration = 15.87 min.
                 3.313(Ft.)
Critical depth =
Adding area flow to channel
Rainfall intensity (I) = 4.504(In/Hr) for a 100.0 year storm
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
```

```
Decimal fraction soil group D = 1.000
                                        ]
[UNDISTURBED NATURAL TERRAIN
(Permanent Open Space )
Impervious value, Ai = 0.000
Sub-Area C Value = 0.350
Rainfall intensity =
                       4.504(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.350 CA = 93.331
Subarea runoff =
                338.754(CFS) for
                                   225.420(Ac.)
Total runoff =
               420.328(CFS)
                             Total area =
                                               266.660(Ac.)
Depth of flow = 3.253(Ft.), Average velocity = 13.595(Ft/s)
Critical depth =
                   4.188(Ft.)
Process from Point/Station
                             15.000 to Point/Station
                                                       12,000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 683.000(Ft.)
Downstream point elevation = 680.300(Ft.)
Channel length thru subarea = 238.000(Ft.)
                  =
                         0.000(Ft.)
Channel base width
Slope or 'Z' of left channel bank = 20.000
Slope or 'Z' of right channel bank = 20.000
Manning's 'N'
             = 0.030
Maximum depth of channel =
                           5.000(Ft.)
Flow(q) thru subarea = 420.328(CFS)
Depth of flow = 1.998(Ft.), Average velocity = 5.267(Ft/s)
Channel flow top width = 79.901(Ft.)
                5.27(Ft/s)
Flow Velocity =
Travel time =
                0.75 min.
Time of concentration = 16.62 min.
Critical depth = 1.938(Ft.)
Process from Point/Station 15.000 to Point/Station
                                                       12.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area =
                  266.660(Ac.)
                         420.328(CFS)
Runoff from this stream =
Time of concentration = 16.62 min.
Rainfall intensity =
                      4.371(In/Hr)
Summary of stream data:
                     TC
                                Rainfall Intensity
Stream Flow rate
No.
         (CFS)
                    (min)
                                       (In/Hr)
1
      111.199
                12.28
                                  5.314
      420.328
                16.62
2
                                  4.371
Qmax(1) =
        1.000 *
                1.000 *
                          111.199) +
        1.000 *
               0.739 *
                         420.328) + =
                                        421.721
Qmax(2) =
        0.823 * 1.000 * 111.199) +
```

1.000 * 1.000 * 420.328) + = 511.800 Total of 2 streams to confluence: Flow rates before confluence point: 111.199 420.328 Maximum flow rates at confluence using above data: 421.721 511.800 Area of streams before confluence: 56.520 266.660 Results of confluence: Total flow rate = 511.800(CFS) Time of concentration = 16.620 min. Effective stream area after confluence = 323.180(Ac.) Process from Point/Station 12.000 to Point/Station 16.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 680.300(Ft.) Downstream point elevation = 675.500(Ft.) Channel length thru subarea = 497.000(Ft.) Channel base width = 0.000(Ft.)Slope or 'Z' of left channel bank = 20.000 Slope or 'Z' of right channel bank = 20.000 Estimated mean flow rate at midpoint of channel = 511.847(CFS) Manning's 'N' = 0.030 Maximum depth of channel = 5.000(Ft.) Flow(q) thru subarea = 511.847(CFS) Depth of flow = 2.217(Ft.), Average velocity = 5.209(Ft/s) Channel flow top width = 88.663(Ft.) Flow Velocity = 5.21(Ft/s) 1.59 min. Travel time = Time of concentration = 18.21 min. Critical depth = 2.094(Ft.) Adding area flow to channel Rainfall intensity (I) = 4.121(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN 1 (Permanent Open Space) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350The area added to the existing stream causes a a lower flow rate of Q = 488.191(CFS)therefore the upstream flow rate of Q = 511.800(CFS) is being used Rainfall intensity = 4.121(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 118.471 Subarea runoff = 0.000(CFS) for 15.310(Ac.) Total runoff = 511.800(CFS) Total area = 338.490(Ac.) Depth of flow = 2.216(Ft.), Average velocity = 5.209(Ft/s) Critical depth = 2.094(Ft.)

Process from Point/Station 12.000 to Point/Station 16.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 338.490(Ac.) Runoff from this stream = 511.800(CFS) Time of concentration = 18.21 min. 4.121(In/Hr) Rainfall intensity = Process from Point/Station 17.000 to Point/Station 18.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN] (Permanent Open Space) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350Initial subarea total flow distance = 2362.000(Ft.) Highest elevation = 1020.300(Ft.) Lowest elevation = 684.000(Ft.) Elevation difference = 336.300(Ft.) Slope = 14.238 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 14.24 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 5.57 minutes $TC = [1.8*(1.1-C)*distance(Ft.)^{.5})/(% slope^{(1/3)}]$ $TC = [1.8*(1.1-0.3500)*(100.000^{.5})/(14.238^{(1/3)}] =$ 5.57 The initial area total distance of 2362.00 (Ft.) entered leaves a remaining distance of 2262.00 (Ft.) Using Figure 3-4, the travel time for this distance is 6.33 minutes for a distance of 2262.00 (Ft.) and a slope of 14.24 % with an elevation difference of 322.06(Ft.) from the end of the top area Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr) 6.331 Minutes = Tt=[(11.9*0.4284^3)/(322.06)]^.385= 6.33 Total initial area Ti = 5.57 minutes from Figure 3-3 formula plus 6.33 minutes from the Figure 3-4 formula = 11.90 minutes Rainfall intensity (I) = 5.422(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350Subarea runoff = 69.431(CFS) Total initial stream area = 36.590(Ac.) Process from Point/Station 18.000 to Point/Station 16.000 **** IMPROVED CHANNEL TRAVEL TIME ****

Upstream point elevation = 684.000(Ft.)
Downstream point elevation = 675.500(Ft.)

```
Channel length thru subarea = 694.000(Ft.)
Channel base width = 0.000(Ft.)
Slope or 'Z' of left channel bank = 20.000
Slope or 'Z' of right channel bank = 20.000
Manning's 'N'
             = 0.030
Maximum depth of channel = 5.000(Ft.)
Flow(q) thru subarea = 69.431(CFS)
Depth of flow = 1.002(Ft.), Average velocity = 3.456(Ft/s)
Channel flow top width = 40.091(Ft.)
Flow Velocity = 3.46(Ft/s)
Travel time = 3.35 min.
Time of concentration = 15.25 min.
Critical depth = 0.945(Ft.)
Process from Point/Station 18.000 to Point/Station
                                                     16,000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 36.590(Ac.)
Runoff from this stream = 69.431(CFS)
Time of concentration = 15.25 min.
Rainfall intensity = 4.621(In/Hr)
Summary of stream data:
Stream Flow rate
                   TC
                               Rainfall Intensity
                  (min)
         (CFS)
No.
                                      (In/Hr)
     511.800 18.21
1
                                 4.121
2
     69.431
               15.25
                                4.621
Qmax(1) =
       1.000 * 1.000 * 511.800) +
       0.892 * 1.000 * 69.431) + =
                                      573.720
Qmax(2) =
                0.837 * 511.800) +
       1.000 *
       1.000 *
                1.000 *
                         69.431) + = 497.986
Total of 2 streams to confluence:
Flow rates before confluence point:
    511.800
              69.431
Maximum flow rates at confluence using above data:
     573.720 497.986
Area of streams before confluence:
     338.490
                36.590
Results of confluence:
Total flow rate = 573.720(CFS)
Time of concentration = 18.210 min.
Effective stream area after confluence = 375.080(Ac.)
Process from Point/Station 18.000 to Point/Station 16.000
**** CONFLUENCE OF MAIN STREAMS ****
```

The following data inside Main Stream is listed:

```
In Main Stream number: 1
Stream flow area = 375.080(Ac.)
Runoff from this stream = 573.720(CFS)
Time of concentration = 18.21 min.
Rainfall intensity = 4.121(In/Hr)
Program is now starting with Main Stream No. 2
Process from Point/Station 20.000 to Point/Station
                                                          21.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[UNDISTURBED NATURAL TERRAIN
                                         1
(Permanent Open Space )
Impervious value, Ai = 0.000
Sub-Area C Value = 0.350
Initial subarea total flow distance = 1411.000(Ft.)
Highest elevation = 1020.300(Ft.)
Lowest elevation = 787.000(Ft.)
Elevation difference = 233.300(Ft.) Slope = 16.534 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 16.53 %, in a development type of
Permanent Open Space
In Accordance With Figure 3-3
Initial Area Time of Concentration = 5.30 minutes
TC = [1.8*(1.1-C)*distance(Ft.)^{.5})/(% slope^{(1/3)}]
TC = [1.8*(1.1-0.3500)*(100.000^{.5})/(16.534^{(1/3)}] =
                                                   5.30
The initial area total distance of 1411.00 (Ft.) entered leaves a
remaining distance of 1311.00 (Ft.)
Using Figure 3-4, the travel time for this distance is 3.93 minutes
for a distance of 1311.00 (Ft.) and a slope of 16.53 %
with an elevation difference of 216.76(Ft.) from the end of the top area
Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr)
    3.927 Minutes
=
Tt=[(11.9*0.2483^3)/(216.76)]^.385= 3.93
Total initial area Ti = 5.30 minutes from Figure 3-3 formula plus
  3.93 minutes from the Figure 3-4 formula = 9.23 minutes
Rainfall intensity (I) = 6.389(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.350
Subarea runoff = 13.730(CFS)
Total initial stream area =
                              6.140(Ac.)
Process from Point/Station 21.000 to Point/Station
                                                          22.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 787.000(Ft.)
Downstream point elevation = 650.500(Ft.)
Channel length thru subarea = 166.000(Ft.)
Channel base width = 0.500(Ft.)
Slope or 'Z' of left channel bank = 2.000
```

```
8
```

```
Slope or 'Z' of right channel bank = 2.000
Manning's 'N' = 0.016
Maximum depth of channel = 1.000(Ft.)
Flow(q) thru subarea = 13.730(CFS)
Depth of flow = 0.369(Ft.), Average velocity = 30.004(Ft/s)
Channel flow top width = 1.978(Ft.)
Flow Velocity = 30.00(Ft/s)
Travel time = 0.09 min.
Time of concentration = 9.32 min.
Critical depth = 1.109(Ft.)
Process from Point/Station
                            22.000 to Point/Station
                                                       23.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 650.500(Ft.)
Downstream point elevation = 624.000(Ft.)
Channel length thru subarea = 1116.000(Ft.)
Channel base width
                  = 0.000(Ft.)
Slope or 'Z' of left channel bank = 20.000
Slope or 'Z' of right channel bank = 20.000
Estimated mean flow rate at midpoint of channel = 50.273(CFS)
Manning's 'N' = 0.030
Maximum depth of channel = 1.000(Ft.)
Flow(q) thru subarea = 50.273(CFS)
Depth of flow = 0.784(Ft.), Average velocity = 4.086(Ft/s)
Channel flow top width = 31.373(Ft.)
               4.09(Ft/s)
Flow Velocity =
Travel time = 4.55 min.
Time of concentration = 13.87 min.
Critical depth = 0.828(Ft.)
Adding area flow to channel
Rainfall intensity (I) =
                         4.912(In/Hr) for a 100.0 year storm
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[UNDISTURBED NATURAL TERRAIN
                                       ]
(Permanent Open Space )
Impervious value, Ai = 0.000
Sub-Area C Value = 0.350
Rainfall intensity = 4.912(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.350 CA = 17.661
                 73.014(CFS) for
Subarea runoff =
                                  44.320(Ac.)
Total runoff =
               86.744(CFS) Total area =
                                               50.460(Ac.)
Depth of flow = 0.962(Ft.), Average velocity = 4.683(Ft/s)
Critical depth =
                  1.023(Ft.)
Process from Point/Station
                            22.000 to Point/Station
                                                       23,000
**** CONFLUENCE OF MAIN STREAMS ****
```

```
The following data inside Main Stream is listed:
In Main Stream number: 2
```

```
Stream flow area = 50.460(Ac.)
Runoff from this stream =
                           86.744(CFS)
Time of concentration = 13.87 min.
Rainfall intensity = 4.912(In/Hr)
Program is now starting with Main Stream No. 3
Process from Point/Station
                             30.000 to Point/Station
                                                         31,000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[UNDISTURBED NATURAL TERRAIN
                                         ]
(Permanent Open Space )
Impervious value, Ai = 0.000
Sub-Area C Value = 0.350
Initial subarea total flow distance = 1131.000(Ft.)
Highest elevation = 1015.000(Ft.)
Lowest elevation = 700.000(Ft.)
Elevation difference = 315.000(Ft.) Slope = 27.851 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 27.85 %, in a development type of
Permanent Open Space
In Accordance With Table 3-2
Initial Area Time of Concentration = 6.90 minutes
 (for slope value of 10.00 %)
The initial area total distance of 1131.00 (Ft.) entered leaves a
remaining distance of 1031.00 (Ft.)
Using Figure 3-4, the travel time for this distance is
                                                    2.67 minutes
for a distance of 1031.00 (Ft.) and a slope of 27.85 %
with an elevation difference of 287.14(Ft.) from the end of the top area
Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr)
     2.670 Minutes
 =
Tt=[(11.9*0.1953^3)/(287.14)]^.385= 2.67
Total initial area Ti = 6.90 minutes from Table 3-2 plus
  2.67 minutes from the Figure 3-4 formula = 9.57 minutes
Rainfall intensity (I) = 6.240(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.350
Subarea runoff = 56.915(CFS)
Total initial stream area =
                               26.060(Ac.)
Process from Point/Station 31.000 to Point/Station
                                                         32.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 700.000(Ft.)
Downstream point elevation = 605.000(Ft.)
Channel length thru subarea = 1399.000(Ft.)
Channel base width = 3.000(Ft.)
Slope or 'Z' of left channel bank = 2.000
Slope or 'Z' of right channel bank = 2.000
Estimated mean flow rate at midpoint of channel = 56.940(CFS)
```

```
Manning's 'N' = 0.030
Maximum depth of channel = 3.000(Ft.)
Flow(q) thru subarea = 56.940(CFS)
Depth of flow = 1.076(Ft.), Average velocity = 10.270(Ft/s)
Channel flow top width = 7.305(Ft.)
Flow Velocity = 10.27(Ft/s)
Travel time = 2.27 min.
Time of concentration = 11.84 min.
Critical depth =
                  1.594(Ft.)
 Adding area flow to channel
Rainfall intensity (I) =
                       5.439(In/Hr) for a 100.0 year storm
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[UNDISTURBED NATURAL TERRAIN
                                        ]
(Permanent Open Space )
Impervious value, Ai = 0.000
Sub-Area C Value = 0.350
The area added to the existing stream causes a
a lower flow rate of 0 = 55.343(CFS)
therefore the upstream flow rate of Q =
                                      56.915(CFS) is being used
Rainfall intensity = 5.439(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.350 CA = 10.174
Subarea runoff = 0.000(CFS) for
                                     3.010(Ac.)
Total runoff = 56.915(CFS)
                             Total area =
                                                29.070(Ac.)
Depth of flow = 1.076(Ft.), Average velocity = 10.269(Ft/s)
Critical depth =
                   1.594(Ft.)
Process from Point/Station
                             31.000 to Point/Station
                                                        32.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 3 in normal stream number 1
Stream flow area = 29.070(Ac.)
Runoff from this stream = 56.915(CFS)
Time of concentration = 11.84 min.
Rainfall intensity = 5.439(In/Hr)
Process from Point/Station
                         33.000 to Point/Station
                                                        34,000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[UNDISTURBED NATURAL TERRAIN
                                        ]
(Permanent Open Space
                    )
Impervious value, Ai = 0.000
Sub-Area C Value = 0.350
Initial subarea total flow distance = 1383.000(Ft.)
Highest elevation = 653.000(Ft.)
Lowest elevation = 572.000(Ft.)
```
```
Elevation difference = 81.000(Ft.) Slope = 5.857 %
Top of Initial Area Slope adjusted by User to 26.570 %
Bottom of Initial Area Slope adjusted by User to 1.400 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 26.57 %, in a development type of
Permanent Open Space
In Accordance With Figure 3-3
Initial Area Time of Concentration =
                                     4.52 minutes
TC = [1.8*(1.1-C)*distance(Ft.)^{.5})/(% slope^{(1/3)}]
TC = [1.8*(1.1-0.3500)*(100.000^{-1.5})/(26.570^{-1.5})] =
                                                      4 52
The initial area total distance of 1383.00 (Ft.) entered leaves a
remaining distance of 1283.00 (Ft.)
Using Figure 3-4, the travel time for this distance is
                                                       9.99 minutes
for a distance of 1283.00 (Ft.) and a slope of 1.40 %
with an elevation difference of 17.96(Ft.) from the end of the top area
Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr)
     9.992 Minutes
=
Tt=[(11.9*0.2430^3)/(17.96)]^.385= 9.99
Total initial area Ti = 4.52 minutes from Figure 3-3 formula plus
  9.99 minutes from the Figure 3-4 formula = 14.52 minutes
Rainfall intensity (I) = 4.770(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.350
Subarea runoff =
                64.570(CFS)
Total initial stream area =
                                38.680(Ac.)
Process from Point/Station
                               33.000 to Point/Station
                                                            34.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 3 in normal stream number 2
Stream flow area =
                     38.680(Ac.)
Runoff from this stream =
                             64.570(CFS)
Time of concentration =
                       14.52 min.
Rainfall intensity =
                       4.770(In/Hr)
Summary of stream data:
Stream Flow rate
                       TC
                                    Rainfall Intensity
No.
          (CFS)
                      (min)
                                           (In/Hr)
1
       56.915
                  11.84
                                     5.439
2
       64.570
                  14.52
                                     4.770
Qmax(1) =
        1.000 *
                   1.000 *
                             56.915) +
        1.000 *
                   0.816 *
                             64.570) + =
                                             109.582
Qmax(2) =
        0.877 *
                   1.000 *
                             56.915) +
                             64.570) + =
        1.000 *
                   1.000 *
                                           114.475
Total of 2 streams to confluence:
Flow rates before confluence point:
      56.915
                64.570
Maximum flow rates at confluence using above data:
     109.582
                  114.475
Area of streams before confluence:
```

29.070 38.680 Results of confluence: Total flow rate = 114.475(CFS) Time of concentration = 14.517 min. Effective stream area after confluence = 67.750(Ac.) 34.000 to Point/Station Process from Point/Station 34.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 67.750(Ac.)Runoff from this stream = 114.475(CFS) Time of concentration = 14.52 min. Rainfall intensity = 4.770(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 573.72018.2186.74413.87114.47514.52 1 4.121 2 4.912 4.770 3 Qmax(1) =1.000 * 1.000 * 573.720) + 0.839 * 1.000 * 86.744) + 0.864 * 1.000 * 114.475) + = 745.400 Qmax(2) =1.000 * 0.762 * 573.720) + 1.000 * 1.000 * 86.744) + 1.000 * 0.955 * 114.475) + = 633.128 Qmax(3) =1.000 * 0.797 * 573.720) + 0.971 * 1.000 * 1.000 * 86.744) + 1.000 * 114.475) + = 656.065Total of 3 main streams to confluence: Flow rates before confluence point: 573.720 86.744 114.475 Maximum flow rates at confluence using above data: 745.400 633.128 656.065 Area of streams before confluence: 50.460 67.750 375.080 Results of confluence: Total flow rate = 745.400(CFS) Time of concentration = 18.210 min. Effective stream area after confluence = 493.290(Ac.) End of computations, total study area = 493.290 (Ac.)

APPENDIX B 100-YEAR DETENTION ANALYSIS

**	******	***	****	*****	**
*		*	*		*
*	FLOOD HYDROGRAPH PACKAGE (HEC-1)	*	*	U.S. ARMY CORPS OF ENGINEERS	*
*	JUN 1998	*	*	HYDROLOGIC ENGINEERING CENTER	*
*	VERSION 4.1	*	*	609 SECOND STREET	*
*		*	*	DAVIS, CALIFORNIA 95616	*
*	RUN DATE 20JAN12 TIME 15:19:54	*	*	(916) 756-1104	*
*		*	*		*
**	***************************************	***	****	******	**

Х	Х	XXXXXXX	XX	XXX		Х
Х	Х	Х	Х	Х		XX
Х	Х	Х	Х			Х
XXXXXXX		XXXX	Х		XXXXX	Х
Х	Х	Х	Х			Х
Х	Х	Х	Х	Х		Х
Х	X X XXX		XX	XXX		XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HECLGS, HECLDB, AND HECLKW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILITATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM HEC-1 INPUT

	LINE	ID.	1	2	3	4.		б	7	8	9	10
		*DI/	AGRAM									
*** FREE	***											
	1	ID	OTAY HI	LLS QUAF	RY							
	2	ID	100-YEA	R DETENI	TON ANAL	YSIS						
	3	ID	NORTHWE	ST OUIFI	OW LOCAT	TON						
	4	IT	1 0	1JAN90	1200	400						
	5	KK	BASIN									
	6	KM	RATIONA	L METHOD	HYDROGE	APH PROC	1RAM					
	7	КM	6-HOUR I	RAINFALI	IS 3.4	INCHES						
	8	KM	RATIONA	L METHOD	RUNOFF	COEFFICI	ENT IS (0.35				
	9	KM	RATIONA	L METHOD	TIME OF	CONCEN	RATION I	IS 18.21	MINUTES			
	10	BA	0.5861									
	11	IN	18 0	1JAN90	1157							
	12	QI	0	26.9	28.8	30	32.6	34.1	37.8	40.1	46	49.9
	13	QI	60.9	69.4	101.9	84.7	573.7	81.7	54.7	42.8	35.8	31.2
	14	QI	27.8	0	0	0	0	0	0	0	0	0
	15	QI	0	0								
	16	ĸĸ	DETATN									
	17	DC	1	erno	_1							
	18	077		0 6	_T							
	19	50	0	559								
	20	SE	100	101								
	20	77	100	101								
	21	22										

SCHEMATIC DIAGRAM OF SIREAM NETWORK

INPUT LINE	(V) ROUTING	(>) DIVERSION OR PUMP FLOW
NO.	(.) CONNECTOR	(<) RETURN OF DIVERIED OR PUMPED FLOW
5	BASIN V V	
16	DETAIN	

(***) RUNOFF ALSO COMPUTED AT THIS LOCATION

***** ********* * * * * FLOOD HYDROGRAPH PACKAGE (HEC-1) U.S. ARMY CORPS OF ENGINEERS * * * JUN 1998 * HYDROLOGIC ENGINEERING CENIER * * VERSION 4.1 * * * 609 SECOND STREET * * DAVIS, CALIFORNIA 95616 * * RUN DATE 20JAN12 TIME 15:19:54 * * (916) 756-1104 * 4 * ***** ******

> OTAY HILLS QUARRY 100-YEAR DETENTION ANALYSIS NORTHWEST OUTFLOW LOCATION

IT HYDROGRAPH TIME DATA 1 MINUTES IN COMPUTATION INTERVAL NMIN IDATE 1JAN90 STARTING DATE 1200 STARTING TIME ITIME 400 NUMBER OF HYDROGRAPH ORDINATES NQ NDDATE 1JAN90 ENDING DATE 1839 ENDING TIME NDTIME ICENT 19 CENIURY MARK

COMPUTATION INTERVAL	.02 HOURS
TOTAL TIME BASE	6.65 HOURS

ENGLISH UNITS

DRAINAGE AREA	SQUARE MILES
PRECIPITATION DEPTH	INCHES
LENGIH, ELEVATION	FEET
FLOW	CUBIC FEET PER SECOND
STORAGE VOLUME	ACRE-FEET
SURFACE AREA	ACRES
TEMPERATURE	DEGREES FAHRENHEIT

***** * 5 KK * BASIN * + ****** RATIONAL METHOD HYDROGRAPH PROGRAM 6-HOUR RAINFALL IS 3.4 INCHES RATIONAL METHOD RUNOFF COEFFICIENT IS 0.35 RATIONAL METHOD TIME OF CONCENTRATION IS 18.21 MINUTES 11 IN TIME DATA FOR INPUT TIME SERIES JXMIN 18 TIME INTERVAL IN MINUTES 1JAN90 STARTING DATE JXDATE 1157 STARTING TIME JXTIME SUBBASIN RUNOFF DATA 10 BA SUBBASIN CHARACTERISTICS TAREA .59 SUBBASIN AREA *** HYDROGRAPH AT STATION BASIN

*** ***

				*				*				*			
DA MON	I HRMN	ORD	FLOW	*	DA MON HRMN	ORD	FLOW	*	DA MON HRMN	ORD	FLOW	*	DA MON HRMN	ORD	FLOW
1 JAN	1200	1	4.	*	1 JAN 1340	101	37.	*	1 JAN 1520	201	78.	*	1 JAN 1700	301	45.
1 JAN	1201	2	б.	*	1 JAN 1341	102	37.	*	1 JAN 1521	202	80.	*	1 JAN 1701	302	44.
1 JAN	1 1202	3	7.	*	1 JAN 1342	103	37.	*	1 JAN 1522	203	82.	*	1 JAN 1702	303	43.
1 JAN	1 1203	4	9.	*	1 JAN 1343	104	37.	*	1 JAN 1523	204	84.	*	1 JAN 1703	304	43.
1 JAN	1 1204	5	10.	*	1 JAN 1344	105	38.	*	1 JAN 1524	205	86.	*	1 JAN 1704	305	42.
1 JAN	1 1205	б	12.	*	1 JAN 1345	106	38.	*	1 JAN 1525	206	87.	*	1 JAN 1705	306	42.
1 JAN	1 1206	7	13.	*	1 JAN 1346	107	38.	*	1 JAN 1526	207	89.	*	1 JAN 1706	307	42.
1 JAN	1 1207	8	15.	*	1 JAN 1347	108	38.	*	1 JAN 1527	208	91.	*	1 JAN 1707	308	41.
I JAN	1 1208	10	16.	*	1 JAN 1348	110	38.	*	1 JAN 1528	209	93.	*	1 JAN 1708	309	41.
	I 1209	10 11	18.	^ +	1 JAN 1349	111	38.	^ +	1 JAN 1529	210	95.	^ +	1 JAN 1709	310 211	40.
1 JAN	1 1210 T 1211	10	19.	*	1 JAN 1350	110	38.	*	1 JAN 1530	211	96.	*	L JAIN 1710 1 TAN 1711	311 212	40.
1 JAN	T 1212	12	21. 22	*	1 JAN 1351	112	39.	*	1 JAN 1531	212	90. 100	*	1 JAIN 1711	312 313	40. 20
1 .TAN	1 1212	14	22.	*	1 JAN 1352	114	39.	*	1 JAN 1532	213	102	*	1 JAN 1712	313	39.
	1213	15	2 1 . 25	*	1 JAN 1355	115	39	*	1 JAN 1535	215	102.	*	1 JAN 1713	315	39
	1215	16	23.	*	1 JTAN 1355	116	39	*	1 JAN 1535	216	100.	*	1 JAN 1715	316	38.
1,721	1 1216	17	27.	*	1 JAN 1356	117	39	*	1 JTAN 1536	217	99	*	1 JIAN 1716	317	38
	1217	18	27.	*	1 JAN 1357	118	39	*	1 JAN 1537	218	98.	*	1 JAN 1717	318	37.
1 JAN	1218	19	27.	*	1 JAN 1358	119	39.	*	1 JAN 1538	219	97.	*	1 JAN 1718	319	37.
1 JAN	1 1219	20	27.	*	1 JAN 1359	120	40.	*	1 JAN 1539	220	96.	*	1 JAN 1719	320	37.
1 JAN	1220	21	27.	*	1 JAN 1400	121	40.	*	1 JAN 1540	221	95.	*	1 JAN 1720	321	36.
1 JAN	1221	22	28.	*	1 JAN 1401	122	40.	*	1 JAN 1541	222	94.	*	1 JAN 1721	322	36.
1 JAN	1222	23	28.	*	1 JAN 1402	123	40.	*	1 JAN 1542	223	93.	*	1 JAN 1722	323	36.
1 JAN	1223	24	28.	*	1 JAN 1403	124	40.	*	1 JAN 1543	224	92.	*	1 JAN 1723	324	35.
1 JAN	1224	25	28.	*	1 JAN 1404	125	40.	*	1 JAN 1544	225	91.	*	1 JAN 1724	325	35.
1 JAN	1 1225	26	28.	*	1 JAN 1405	126	41.	*	1 JAN 1545	226	90.	*	1 JAN 1725	326	35.
1 JAN	1 1226	27	28.	*	1 JAN 1406	127	41.	*	1 JAN 1546	227	89.	*	1 JAN 1726	327	35.
1 JAN	1227	28	28.	*	1 JAN 1407	128	41.	*	1 JAN 1547	228	89.	*	1 JAN 1727	328	34.
1 JAN	1228	29	28.	*	1 JAN 1408	129	42.	*	1 JAN 1548	229	88.	*	1 JAN 1728	329	34.
1 JAN	1229	30	28.	*	1 JAN 1409	130	42.	*	1 JAN 1549	230	87.	*	1 JAN 1729	330	34.
1 JAN	1230	31	28.	*	1 JAN 1410	131	42.	*	1 JAN 1550	231	86.	*	1 JAN 1730	331	34.
1 JAN	1 1231	32	29.	*	1 JAN 1411	132	43.	*	1 JAN 1551	232	85.	*	1 JAN 1731	332	33.
1 JAN	1232	33	29.	*	1 JAN 1412	133	43.	*	1 JAN 1552	233	112.	*	1 JAN 1732	333	33.
1 JAN	1233	34	29.	*	1 JAN 1413	134	43.	*	1 JAN 1553	234	139.	*	1 JAN 1733	334	33.
1 JAN	1 1234	35	29.	*	1 JAN 1414	135	44.	*	1 JAN 1554	235	166.	*	1 JAN 1734	335	32.
1 JAN	1 1235	36	29.	*	1 JAN 1415	136	44.	*	1 JAN 1555	236	193.	*	1 JAN 1735	336	32.
1 JAN	1 1236	37	29.	*	1 JAN 1416	137	44.	*	1 JAN 1556	237	221.	*	1 JAN 1736	337	32.
1 JAN	1 1237	38	29.	*	1 JAN 1417	138	45.	*	1 JAN 1557	238	248.	*	1 JAN 1737	338	32.
1 JAN	1 1238	39	29.	*	1 JAN 1418	139	45.	*	1 JAN 1558	239	275.	*	1 JAN 1738	339	31.
1 JAN	1 1239	40	29.	*	1 JAN 1419	140	45.	*	1 JAN 1559	240	302.	*	1 JAN 1739	340	31.
I JAN	1 1240	41	29.	*	1 JAN 1420	141	46.	*	1 JAN 1600	241	329.	*	1 JAN 1740	341	31.
	1 1241	42	29.	^ +	1 JAN 1421	142	46.	^ +	1 JAN 1601	242	356.	^ +	1 JAN 1741	342	31. 21
1 JAN	1 1242 T 1242	43	29.	*	1 JAN 1422	143	40.	*	1 JAN 1602	243	384. 411	*	L JAIN 1742	343	31. 20
1 UAP	T 1044	44	29.	*	1 JAN 1423	1/15	40.	*	1 JAN 1603	244	411.	*	1 JAIN 1743	244	20.
1 TAN	1 1 2 4 4	45	30.	*	1 TAN 1424	145	47.	*	1 JAN 1605	245	450.	*	1 UAIN 1744	245	20.
1 .TAN	1 1245	40	30.	*	1 JAN 1425	147	47.	*	1 JAN 1605	240	405.	*	1 JAN 1745	247	30.
	1210	48	30.	*	1 JAN 1427	148	47	*	1 JTAN 1607	248	519	*	1 JTAN 1747	348	30.
	1217	49	30.	*	1 JAN 1428	149	48	*	1 JTAN 1608	249	547	*	1 JTAN 1748	349	30.
	1249	50	30.	*	1 JTAN 1429	150	48	*	1 JTAN 1609	250	574	*	1 JAN 1749	350	29
1 JAN	1250	51	30.	*	1 JAN 1430	151	48.	*	1 JAN 1610	251	546.	*	1 JAN 1750	351	29.
1 JAN	1 1251	52	30.	*	1 JAN 1431	152	48.	*	1 JAN 1611	252	519.	*	1 JAN 1751	352	29.
1 JAN	1252	53	30.	*	1 JAN 1432	153	48.	*	1 JAN 1612	253	492.	*	1 JAN 1752	353	29.
1 JAN	1 1253	54	30.	*	1 JAN 1433	154	49.	*	1 JAN 1613	254	464.	*	1 JAN 1753	354	29.
1 JAN	1 1254	55	30.	*	1 JAN 1434	155	49.	*	1 JAN 1614	255	437.	*	1 JAN 1754	355	28.
1 JAN	1 1255	56	31.	*	1 JAN 1435	156	49.	*	1 JAN 1615	256	410.	*	1 JAN 1755	356	28.
1 JAN	1 1256	57	31.	*	1 JAN 1436	157	49.	*	1 JAN 1616	257	382.	*	1 JAN 1756	357	28.
1 JAN	1 1257	58	31.	*	1 JAN 1437	158	49.	*	1 JAN 1617	258	355.	*	1 JAN 1757	358	28.
1 JAN	1 1258	59	31.	*	1 JAN 1438	159	50.	*	1 JAN 1618	259	328.	*	1 JAN 1758	359	26.
1 JAN	1259	60	31.	*	1 JAN 1439	160	50.	*	1 JAN 1619	260	300.	*	1 JAN 1759	360	25.
1 JAN	1300	61	31.	*	1 JAN 1440	161	51.	*	1 JAN 1620	261	273.	*	1 JAN 1800	361	23.
1 JAN	1301	62	31.	*	1 JAN 1441	162	51.	*	1 JAN 1621	262	246.	*	1 JAN 1801	362	22.
1 JAN	1302	63	32.	*	1 JAN 1442	163	52.	*	1 JAN 1622	263	218.	*	1 JAN 1802	363	20.
1 JAN	1 1303	64	32.	*	1 JAN 1443	164	52.	*	1 JAN 1623	264	191.	*	1 JAN 1803	364	19.
1 JAN	1 1304	65	32.	*	1 JAN 1444	165	53.	*	1 JAN 1624	265	164.	*	1 JAN 1804	365	17.
1 JAN	1 1305	66	32.	*	1 JAN 1445	166	54.	*	1 JAN 1625	266	136.	*	1 JAN 1805	366	15.
1 JAN	1 1306	67	32.	*	1 JAN 1446	167	54.	*	1 JAN 1626	267	109.	*	1 JAN 1806	367	14.
1 JAN	1 1307	68	32.	*	1 JAN 1447	168	55.	*	1 JAN 1627	268	82.	*	1 JAN 1807	368	12.

1 JAN 1308	69	32.	*	1 JAN 1448	169	55.	*	1 JAN 1628	269	80.	*	1 JAN 1808	369	11.
1 JAN 1309	70	33.	*	1 JAN 1449	170	56.	*	1 JAN 1629	270	79.	*	1 JAN 1809	370	9.
1 JAN 1310	71	33.	*	1 JAN 1450	171	57.	*	1 JAN 1630	271	77.	*	1 JAN 1810	371	8.
1 JAN 1311	72	33.	*	1 JAN 1451	172	57.	*	1 JAN 1631	272	76.	*	1 JAN 1811	372	б.
1 JAN 1312	73	33.	*	1 JAN 1452	173	58.	*	1 JAN 1632	273	74.	*	1 JAN 1812	373	5.
1 JAN 1313	74	33.	*	1 JAN 1453	174	58.	*	1 JAN 1633	274	73.	*	1 JAN 1813	374	3.
1 JAN 1314	75	33.	*	1 JAN 1454	175	59.	*	1 JAN 1634	275	71.	*	1 JAN 1814	375	2.
1 JAN 1315	76	33.	*	1 JAN 1455	176	60.	*	1 JAN 1635	276	70.	*	1 JAN 1815	376	0.
1 JAN 1316	77	33.	*	1 JAN 1456	177	60.	*	1 JAN 1636	277	68.	*	1 JAN 1816	377	0.
1 JAN 1317	78	33.	*	1 JAN 1457	178	61.	*	1 JAN 1637	278	67.	*	1 JAN 1817	378	0.
1 JAN 1318	79	33.	*	1 JAN 1458	179	61.	*	1 JAN 1638	279	65.	*	1 JAN 1818	379	0.
1 JAN 1319	80	33.	*	1 JAN 1459	180	62.	*	1 JAN 1639	280	64.	*	1 JAN 1819	380	0.
1 JAN 1320	81	34.	*	1 JAN 1500	181	62.	*	1 JAN 1640	281	62.	*	1 JAN 1820	381	0.
1 JAN 1321	82	34.	*	1 JAN 1501	182	63.	*	1 JAN 1641	282	61.	*	1 JAN 1821	382	0.
1 JAN 1322	83	34.	*	1 JAN 1502	183	63.	*	1 JAN 1642	283	59.	*	1 JAN 1822	383	0.
1 JAN 1323	84	34.	*	1 JAN 1503	184	64.	*	1 JAN 1643	284	58.	*	1 JAN 1823	384	0.
1 JAN 1324	85	34.	*	1 JAN 1504	185	64.	*	1 JAN 1644	285	56.	*	1 JAN 1824	385	0.
1 JAN 1325	86	34.	*	1 JAN 1505	186	65.	*	1 JAN 1645	286	55.	*	1 JAN 1825	386	0.
1 JAN 1326	87	34.	*	1 JAN 1506	187	65.	*	1 JAN 1646	287	54.	*	1 JAN 1826	387	0.
1 JAN 1327	88	34.	*	1 JAN 1507	188	66.	*	1 JAN 1647	288	53.	*	1 JAN 1827	388	0.
1 JAN 1328	89	34.	*	1 JAN 1508	189	66.	*	1 JAN 1648	289	53.	*	1 JAN 1828	389	0.
1 JAN 1329	90	35.	*	1 JAN 1509	190	67.	*	1 JAN 1649	290	52.	*	1 JAN 1829	390	0.
1 JAN 1330	91	35.	*	1 JAN 1510	191	67.	*	1 JAN 1650	291	51.	*	1 JAN 1830	391	0.
1 JAN 1331	92	35.	*	1 JAN 1511	192	68.	*	1 JAN 1651	292	51.	*	1 JAN 1831	392	0.
1 JAN 1332	93	35.	*	1 JAN 1512	193	68.	*	1 JAN 1652	293	50.	*	1 JAN 1832	393	0.
1 JAN 1333	94	35.	*	1 JAN 1513	194	68.	*	1 JAN 1653	294	49.	*	1 JAN 1833	394	0.
1 JAN 1334	95	36.	*	1 JAN 1514	195	69.	*	1 JAN 1654	295	49.	*	1 JAN 1834	395	0.
1 JAN 1335	96	36.	*	1 JAN 1515	196	69.	*	1 JAN 1655	296	48.	*	1 JAN 1835	396	0.
1 JAN 1336	97	36.	*	1 JAN 1516	197	71.	*	1 JAN 1656	297	47.	*	1 JAN 1836	397	0.
1 JAN 1337	98	36.	*	1 JAN 1517	198	73.	*	1 JAN 1657	298	47.	*	1 JAN 1837	398	0.
1 JAN 1338	99	36.	*	1 JAN 1518	199	75.	*	1 JAN 1658	299	46.	*	1 JAN 1838	399	0.
1 JAN 1339	100	37.	*	1 JAN 1519	200	77.	*	1 JAN 1659	300	45.	*	1 JAN 1839	400	0.
			*				*				*			

]	PEAK FLOW	TIME			MAXIMUM AVERAGE FLOW									
				6–HR	24-HR	72-HR	6.65-HR							
+	(CFS)	(HR)												
			(CFS)											
+	574.	4.15		74.	67.	67.	67.							
			(INCHES)	1.177	1.182	1.182	1.182							
			(AC-FT)	37.	37.	37.	37.							

CUMULATIVE AREA = .59 SQ MI

*** ***

16 KK * DETAIN * * *

HYDROGRAPH ROUTING DATA

17 RS	STORAGE ROUTING	F		
	NSTPS	1	NUMBER OF S	UBREACHES
	ITYP	STOR	TYPE OF INI	TIAL CONDITION
	RSVRIC	-1.00	INITIAL CON	DITION
	Х	.00	WORKING R AN	D D COEFFICIENT
18 SV	STORAGE	.0	.6	
19 SQ	DISCHARGE	0.	559.	
20 SE	ELEVATION	100.00	101.00	

HYDROGRAPH AT STATION DETAIN

**********	****	*******	*******	*******	***	*******	****	*******	*******	******	***	***	***	****	***	****	*******	*******	*******
					ł						*								
DA MON HRMN	ORD	OUIFLOW	STORAGE	STAGE	* E	A MON HRMN	ORD	OUIFLOW	STORAGE	STAGE	*	DA	MC	NHR	MN	ORD	OUIFLOW	STORAGE	STAGE
1 .TAN 1200	1	4	0	100 0	*	1 .TAN 1414	125	43	0	100 1	*	1	.та	N 16	28	269	86	1	100.2
1 JAN 1200	2	ч. 5.	.0	100.0	ł	1 JAN 1415	136	44.	.0	100.1	*	1	JA	N 16	20	209	81.	.1	100.2
1 JAN 1202	3	6.	.0	100.0	ł	1 JAN 1416	137	44.	.0	100.1	*	1	JA	N 16	30	271	79.	.1	100.1
1 JAN 1203	4	8.	.0	100.0	ł	1 JAN 1417	138	44.	.0	100.1	*	1	JA	N 16	31	272	77.	.1	100.1
1 JAN 1204	5	9.	.0	100.0	ł	1 JAN 1418	139	45.	.0	100.1	*	1	JA	N 16	32	273	75.	.1	100.1
1 JAN 1205	6	11.	.0	100.0	ł	1 JAN 1419	140	45.	.0	100.1	*	1	JA	N 16	33	274	74.	.1	100.1
1 JAN 1206	7	12.	.0	100.0	ł	1 JAN 1420	141	45.	.0	100.1	*	1	JA	N 16	34	275	72.	.1	100.1
1 JAN 1207	8	14.	.0	100.0	ł	1 JAN 1421	142	46.	.0	100.1	*	1	JA	N 16	35	276	71.	.1	100.1
1 JAN 1208	9	15.	.0	100.0	ł	1 JAN 1422	143	46.	.0	100.1	*	1	JA	N 16	36	277	69.	.1	100.1
1 JAN 1209	10	17.	.0	100.0	ł	1 JAN 1423	144	46.	.0	100.1	*	1	JA	N 16	37	278	68.	.1	100.1
1 JAN 1210	11	18.	.0	100.0	*	1 JAN 1424	145	46.	.0	100.1	*	1	JA	N 16	38	279	66.	.1	100.1
1 JAN 1211	12	20.	.0	100.0	۲ ۲	1 JAN 1425	146	47.	.1	100.1	*	1	JA.	N 16	39	280	65.	.⊥	100.1
1 JAN 1212	13 14	21.	.0	100.0	•	1 JAN 1426	14/ 1/0	47.	.1	100.1	*	1	AU.	N 16 N 16	40 41	281 202	63.	.1	100.1
1 UAN 1213	15	23.	.0	100.0		1 JAN 1427	140	47.	.1	100.1	*	1	. UP	IN 10 NT 16	41 40	202 202	60	.⊥ 1	100.1
1 JAN 1214	15	24.	.0	100.0	t	1 JAN 1420	149	47. 49	.1	100.1	*	1	. UP	N 16	42 42	203 284	50. 59	.⊥ 1	100.1
1 JAN 1215	17	20.	.0	100.0	ł	1 JTAN 1430	151	48	.1	100.1	*	1	בדי. בדי	N 16	44	285	57	.1	100.1
1 JAN 1210	18	27.	.0	100.0	ł	1 JAN 1431	152	48.	.1	100.1	*	1	ΔT.	N 16	45	286	56.	.1	100.1
1 JAN 1218	19	27.	.0	100.0	ł	1 JAN 1432	153	48.	.1	100.1	*	1	JA	N 16	46	287	55.	.1	100.1
1 JAN 1219	20	27.	.0	100.0	ł	1 JAN 1433	154	48.	.1	100.1	*	1	JA	N 16	47	288	54.	.1	100.1
1 JAN 1220	21	27.	.0	100.0	ł	1 JAN 1434	155	49.	.1	100.1	*	1	JA	N 16	48	289	53.	.1	100.1
1 JAN 1221	22	27.	.0	100.0	ł	1 JAN 1435	156	49.	.1	100.1	*	1	JA	N 16	49	290	53.	.1	100.1
1 JAN 1222	23	28.	.0	100.0	ł	1 JAN 1436	157	49.	.1	100.1	*	1	JA	N 16	50	291	52.	.1	100.1
1 JAN 1223	24	28.	.0	100.0	ł	1 JAN 1437	158	49.	.1	100.1	*	1	JA	N 16	51	292	51.	.1	100.1
1 JAN 1224	25	28.	.0	100.0	ł	1 JAN 1438	159	50.	.1	100.1	*	1	JA	N 16	52	293	51.	.1	100.1
1 JAN 1225	26	28.	.0	100.0	ł	1 JAN 1439	160	50.	.1	100.1	*	1	JA	N 16	53	294	50.	.1	100.1
1 JAN 1226	27	28.	.0	100.1	ł	1 JAN 1440	161	50.	.1	100.1	*	1	JA	N 16	54	295	49.	.1	100.1
1 JAN 1227	28	28.	.0	100.1	ł	1 JAN 1441	162	51.	.1	100.1	*	1	JA	N 16	55	296	49.	.1	100.1
1 JAN 1228	29	28.	.0	100.1	*	1 JAN 1442	163	51.	.1	100.1	*	1	JA	N 16	56	297	48.	.1	100.1
1 JAN 1229	30	28.	.0	100.1	-	1 JAN 1443	164	52.	.1	100.1	*	1	AU.	N 16	57	298	47.	.1	100.1
1 JAN 1230	3⊥ 20	28. 20	.0	100.1	•	1 JAN 1444	165	52. E2	.1	100.1	*	1	אַט. מד	N 16 N 16	58	299	47.	.1	100.1
1 JAN 1231	22 22	29. 20	.0	100.1		1 JAN 1445	167	55.	.1	100.1	*	1	. UP ТЛ	IN 10 NT 17	00	201	40.	.0	100.1
1 JAN 1232	32	29. 20	.0	100.1		1 JAN 1440	168	54.	.1	100.1	*	1	. 02	IN 17	00	307 201	45.	.0	100.1
1 JAN 1233	35	29	.0	100.1	ł	1 JAN 1448	169	55.	.1	100.1	*	1	ΔT.	N 17	02	302	44	.0	100.1
1 JAN 1235	36	29.	.0	100.1	ł	1 JAN 1449	170	56.	.1	100.1	*	1	JA	N 17	03	304	43.	.0	100.1
1 JAN 1236	37	29.	.0	100.1	ł	1 JAN 1450	171	56.	.1	100.1	*	1	JA	N 17	04	305	43.	.0	100.1
1 JAN 1237	38	29.	.0	100.1	ł	1 JAN 1451	172	57.	.1	100.1	*	1	JA	N 17	05	306	42.	.0	100.1
1 JAN 1238	39	29.	.0	100.1	ł	1 JAN 1452	173	57.	.1	100.1	*	1	JA	N 17	06	307	42.	.0	100.1
1 JAN 1239	40	29.	.0	100.1	ł	1 JAN 1453	174	58.	.1	100.1	*	1	JA	N 17	07	308	42.	.0	100.1
1 JAN 1240	41	29.	.0	100.1	ł	1 JAN 1454	175	59.	.1	100.1	*	1	JA	N 17	80	309	41.	.0	100.1
1 JAN 1241	42	29.	.0	100.1	ł	1 JAN 1455	176	59.	.1	100.1	*	1	JA	N 17	09	310	41.	.0	100.1
1 JAN 1242	43	29.	.0	100.1	ł	1 JAN 1456	177	60.	.1	100.1	*	1	JA	N 17	10	311	40.	.0	100.1
1 JAN 1243	44	29.	.0	100.1	*	1 JAN 1457	178	60.	.1	100.1	*	1	JA	N 17	11	312	40.	.0	100.1
1 JAN 1244	45	29.	.0	100.1	*	1 JAN 1458	179	61.	.1	100.1	*	1	JA	N 17	12	313	40.	.0	100.1
1 JAN 1245	46	30.	.0	100.1	-	1 JAN 1459	101	61.	.1	100.1	*	1	AU.	N 17	13 14	314	39.	.0	100.1
1 JAN 1246	4/	30.	.0	100.1	•	1 JAN 1500	102	62.	.1	100.1	*	1	AU.	N 17	14 15	315 216	39.	.0	100.1
1 JAN 1247	40 49	30.	.0	100.1	ł	1 JAN 1501	183	63	.1	100.1	*	1	. UP дт.	N 17	16	317	30.	.0	100.1
1 JAN 1248	-19 50	30.	.0	100.1	ł	1 JAN 1502	184	63	.1	100.1	*	1	. UP дт.	N 17	17	318	30.	.0	100.1
1 JTAN 1250	51	30.	.0	100 1	ł	1 JAN 1504	185	63. 64		100.1	*	1	ביני. מדו	N 17	18	319	30.	.0	100 1
1 JAN 1251	52	30.	.0	100.1	ł	1 JAN 1505	186	64	.1	100.1	*	1	, JA	N 17	19	320	37	.0	100.1
1 JAN 1252	53	30.	.0	100.1	ł	1 JAN 1506	187	65.	.1	100.1	*	1	JA	N 17	20	321	36.	.0	100.1
1 JAN 1253	54	30.	.0	100.1	ł	1 JAN 1507	188	65.	.1	100.1	*	1	JA	N 17	21	322	36.	.0	100.1
1 JAN 1254	55	30.	.0	100.1	ł	1 JAN 1508	189	66.	.1	100.1	*	1	JA	N 17	22	323	36.	.0	100.1
1 JAN 1255	56	30.	.0	100.1	ł	1 JAN 1509	190	66.	.1	100.1	*	1	JA	N 17	23	324	35.	.0	100.1
1 JAN 1256	57	31.	.0	100.1	ł	1 JAN 1510	191	67.	.1	100.1	*	1	JA	N 17	24	325	35.	.0	100.1
1 JAN 1257	58	31.	.0	100.1	ł	1 JAN 1511	192	67.	.1	100.1	*	1	JA	N 17	25	326	35.	.0	100.1
1 JAN 1258	59	31.	.0	100.1	ł	1 JAN 1512	193	68.	.1	100.1	*	1	JA	N 17	26	327	35.	.0	100.1
1 JAN 1259	60	31.	.0	100.1	*	1 JAN 1513	194	68.	.1	100.1	*	1	JA	N 17	27	328	34.	.0	100.1
1 JAN 1300	юΤ	31.	.0	100.1	¢.	⊥ JAN 1514	195	69.	.1	100.1	*	1	JA.	IN 17	28	329	34.	.0	100.1

1 JAN 1301	62	31.	.0	100.1 *	1 JAN	1515 196	69.	.1	100.1	*	1 JAN	1729	330	34.	.0	100.1
1 JAN 1302	63	31.	.0	100.1 *	1 JAN	1516 197	70.	.1	100.1	*	1 JAN	1730	331	34.	.0	100.1
1 JAN 1303	64	32.	.0	100.1 *	1 JAN	1517 198	72.	.1	100.1	*	1 JAN	1731	332	33.	.0	100.1
1 JAN 1304	65	32.	.0	100.1 *	1 JAN	1518 199	73.	.1	100.1	*	1 JAN	1732	333	33.	.0	100.1
1 JAN 1305	66	32.	.0	100.1 *	1 JAN	1519 200	75.	.1	100.1	*	1 JAN	1733	334	33.	.0	100.1
1 JAN 1306	67	32.	.0	100.1 *	1 JAN	1520 201	77.	.1	100.1	*	1 JAN	1734	335	33.	.0	100.1
1 JAN 1307	68	32.	.0	100.1 *	1 JAN	1521 202	79.	.1	100.1	*	1 JAN	1735	336	32.	.0	100.1
1 JAN 1308	69	32.	.0	100.1 *	1 JAN	1522 203	81.	.1	100.1	*	1 JAN	1736	337	32.	.0	100.1
1 JAN 1309	70	32.	.0	100.1 *	1 JAN	1523 204	82.	.1	100.1	*	1 JAN	1737	338	32.	.0	100.1
1 JAN 1310	71	33.	.0	100.1 *	1 JAN	1524 205	84.	.1	100.2	*	1 JAN	1738	339	32.	.0	100.1
1 JAN 1311	72	33.	.0	100.1 *	1 JAN	1525 206	86.	.1	100.2	*	1 JAN	1739	340	31.	.0	100.1
1 JAN 1312	73	33.	.0	100.1 *	1 JAN	1526 207	88.	.1	100.2	*	1 JAN	1740	341	31.	.0	100.1
1 JAN 1313	74	33.	.0	100.1 *	1 JAN	1527 208	90.	.1	100.2	*	1 JAN	1741	342	31.	.0	100.1
1 JAN 1314	75	33.	.0	100.1 *	1 JAN	1528 209	91.	.1	100.2	*	1 JAN	1742	343	31.	.0	100.1
1 JAN 1315	76	33.	.0	100.1 *	1 JAN	1529 210	93.	.1	100.2	*	1 JAN	1743	344	31.	.0	100.1
1 JAN 1316	.1.1	33.	.0	100.1 *	1 JAN	1530 211	95.	.1	100.2	*	I JAN	1744	345	30.	.0	100.1
1 JAN 1317	.78	33.	.0	100.1 *	1 JAN	1531 212	97.	.1	100.2	*	I JAN	1745	346	30.	.0	100.1
1 JAN 1318	79	33.	.0	100.1 *	I JAN	1532 213	99.	.⊥	100.2	*	I JAN	1746	347	30.	.0	100.1
1 JAN 1319	80	33.	.0	100.1 *	1 JAN	1533 214	100.	.1	100.2	^ .L	I JAN	1747	348	30.	.0	100.1
1 JAN 1320	81	33.	.0	100.1 *	I JAN	1534 215	101.	.⊥	100.2	*	I JAN	1748	349	30.	.0	100.1
1 JAN 1321	82	34.	.0	100.1 *	1 JAN	1535 216	101.	.1	100.2	Ţ	I JAN	1750	350	29.	.0	100.1
1 JAN 1322	83	34.	.0	100.1 *	1 JAN	1536 217	100.	.1	100.2	Ţ	I JAN	1750	351	29.	.0	100.1
1 JAN 1323	84 05	34.	.0	100.1 *	1 JAN	153/ 218	99.	.1	100.2	* *	L UAN	1751	352	29.	.0	100.1
1 JAN 1324	85	34.	.0	100.1 *	1 JAN	1538 219	98.	.1	100.2	* *	L UAN	1752	353	29.	.0	100.1
1 JAN 1325	86	34.	.0	100.1 *	1 JAN	1539 220	97.	.1	100.2	^ +	L JAN	1753	354	29.	.0	100.1
1 JAN 1320	8/	34.	.0	100.1 *	1 JAN	1540 221	96.	.1	100.2	* *	L UAN	1754	300	29.	.0	100.1
1 JAN 1327	88	34. 24	.0	100.1 *	1 JAN	1541 222	95.	.1	100.2	*	LUAN 1 TAN	1756	350	28. 29	.0	100.1
1 JAN 1320	09 00	24.	.0	100.1 *	1 UAN	1542 223	94.	.⊥ 1	100.2	*	LUAIN 1 TAN	1757	220	20.	.0	100.1
1 JAN 1329	90 01	25	.0	100.1 *	1 UAN	1543 224	93. 02	.⊥ 1	100.2	*	LUAIN 1 TAN	1750	220	20.	.0	100.0
1 JAN 1330	92	35	.0	100.1 *		1545 225	92.	.1	100.2	*	1.TAN	1750	360	27.	.0	100.0
1 JAN 1331	03	35	.0	100.1 *		1546 227	90	.1	100.2	*	1.TAN	1800	361	20.	.0	100.0
1 JAN 1332	94	35	.0	100.1 *		1547 228	90. 89	.1	100.2	*	1.TAN	1801	362	24.	.0	100.0
1 .TAN 1334	95	35.	.0	100.1 *		1548 229	88	.1	100.2	*	1.TAN	1802	362	23.	.0	100.0
1 JAN 1335	96	36	.0	100.1 *		1549 230	87	.1	100.2	*	1 JAN	1803	364	20	.0	100.0
1 JAN 1336	97	36	.0	100.1 *		1550 231	86.	.1	100.2	*	1 JTAN	1804	365	18.	.0	100.0
1 JAN 1337	98	36.	.0	100.1 *	1 JAN	1551 232	85.	.1	100.2	*	1 JAN	1805	366	17.	.0	100.0
1 JAN 1338	99	36.	.0	100.1 *	1 JAN	1552 233	95.	.1	100.2	*	1 JAN	1806	367	15.	.0	100.0
1 JAN 1339	100	36.	.0	100.1 *	1 JAN	1553 234	119.	.1	100.2	*	1 JAN	1807	368	14.	.0	100.0
1 JAN 1340	101	37.	.0	100.1 *	1 JAN	1554 235	145.	.2	100.3	*	1 JAN	1808	369	12.	.0	100.0
1 JAN 1341	102	37.	.0	100.1 *	1 JAN	1555 236	172.	.2	100.3	*	1 JAN	1809	370	10.	.0	100.0
1 JAN 1342	103	37.	.0	100.1 *	1 JAN	1556 237	199.	.2	100.4	*	1 JAN	1810	371	9.	.0	100.0
1 JAN 1343	104	37.	.0	100.1 *	1 JAN	1557 238	227.	.2	100.4	*	1 JAN	1811	372	7.	.0	100.0
1 JAN 1344	105	37.	.0	100.1 *	1 JAN	1558 239	254.	.3	100.5	*	1 JAN	1812	373	6.	.0	100.0
1 JAN 1345	106	38.	.0	100.1 *	1 JAN	1559 240	281.	.3	100.5	*	1 JAN	1813	374	4.	.0	100.0
1 JAN 1346	107	38.	.0	100.1 *	1 JAN	1600 241	308.	.3	100.6	*	1 JAN	1814	375	3.	.0	100.0
1 JAN 1347	108	38.	.0	100.1 *	1 JAN	1601 242	335.	.4	100.6	*	1 JAN	1815	376	1.	.0	100.0
1 JAN 1348	109	38.	.0	100.1 *	1 JAN	1602 243	362.	.4	100.6	*	1 JAN	1816	377	0.	.0	100.0
1 JAN 1349	110	38.	.0	100.1 *	1 JAN	1603 244	390.	.4	100.7	*	1 JAN	1817	378	0.	.0	100.0
1 JAN 1350	111	38.	.0	100.1 *	1 JAN	1604 245	417.	.4	100.7	*	1 JAN	1818	379	0.	.0	100.0
1 JAN 1351	112	38.	.0	100.1 *	1 JAN	1605 246	444.	.5	100.8	*	1 JAN	1819	380	0.	.0	100.0
1 JAN 1352	113	39.	.0	100.1 *	1 JAN	1606 247	471.	.5	100.8	*	1 JAN	1820	381	0.	.0	100.0
1 JAN 1353	114	39.	.0	100.1 *	1 JAN	1607 248	498.	.5	100.9	*	1 JAN	1821	382	0.	.0	100.0
1 JAN 1354	115	39.	.0	100.1 *	1 JAN	1608 249	525.	.6	100.9	*	1 JAN	1822	383	0.	.0	100.0
1 JAN 1355	116	39.	.0	100.1 *	1 JAN	1609 250	553.	.6	101.0	*	1 JAN	1823	384	0.	.0	100.0
1 JAN 1356	117	39.	.0	100.1 *	1 JAN	1610 251	558.	.6	101.0	*	1 JAN	1824	385	0.	.0	100.0
1 JAN 1357	118	39.	.0	100.1 *	1 JAN	1611 252	538.	.6	101.0	*	1 JAN	1825	386	0.	.0	100.0
1 JAN 1358	119	39.	.0	100.1 *	1 JAN	1612 253	513.	.6	100.9	*	1 JAN	1826	387	0.	.0	100.0
1 JAN 1359	120	39.	.0	100.1 *	1 JAN	1613 254	486.	.5	100.9	*	1 JAN	1827	388	0.	.0	100.0
1 JAN 1400	121	40.	.0	100.1 *	1 JAN	1614 255	458.	.5	100.8	*	I JAN	1828	389	0.	.0	100.0
1 JAN 1401	122	40.	.0	100.1 *	⊥ JAN	1615 256	431.	.5	100.8	* +	⊥ JAN 1	1829	390	0.	.0	100.0
1 JAN 1402	123	40.	.0	100.1 *	1 JAN	1616 257	404.	.4	100.7	* +	⊥ JAN 1	T830	39T	υ.	.0	100.0
L JAN 1403	124 125	40.	.0	100.1 *	⊥ JAN	1610 258	3/6.	.4	100.7	^ +	L JAN	1000	392	υ.	.0	100.0
1 TAN 1404	125 126	4U. 11	.0	100.1 *	UAN בייד 1	1610 259	349.	.4	100.0	*	⊥ UAN 1 יייגד	1032 1077	373	υ.	.0	100.0
1 TAN 1405	⊥∠0 1.27	4⊥. /1	.0	100.1 *	UAN באגד 1 דאגד	1620 261	344.	.3	100.5	*	⊥ UAN 1 ייגרד	1033	394 205	υ.	.0	100.0
ב UAIN 1400 1 דארד 1400	120	±⊥. /1	.0	100.1 *	עבע L UAIN 1 דארד	1601 201	494. 067	.3	100.5	*	⊥ UANN 1 ייגרד	1034	2000	0.	.0	100.0
1 UAIN 140/	120 120	41. 41	.0	100.1 *	ע AIN בער ב 1 דיזיגד	1600 060	207. 240	.3	100.5	*	⊥ UAN 1 ייזרד	1035	סצנ דמנ	0.	.0	100.0
1 JAN 1408	130	42.	.0	100.1 *	1 JAN	1622 203	∠ 4 0. 010	.3	100.4	*	⊥ UAN 1.,т∧м	1827	205	0.	.0	100.0
1 JTAN 1410	131	42.	.0	100.1 *	1 .TAN	1624 265	212. 125	.4	100.4	*	אצאט ב ואמד, 1	1838	200	0.	.0	100.0
1 JAN 1411	132	42	.0	100.1 *		1625 266	158	.2	100.3	*	1 ,TAN	1839	400	0.	.0	100.0
			••		- 0.14		2001								••	

	1 JAN 1412	133	43.	.0	100.1 *	1 JAN 1626	267	130.	.1	100.2 *	
	1 JAN 1413	134	43.	.0	100.1 *	1 JAN 1627	268	103.	.1	100.2 *	
					*					*	
**	********	*******	********	*****	*******	*******	****	*******	******	***************************************	******
Ε	EAK FLOW	TIME				MAXIMUM AVE	RAGE	FLOW			
					6-HR	24-HR	7	2-HR	6.65-HR		
+	(CFS)	(HR)									
			(CFS)								
+	558.	4.17			74.	67.		67.	67.		
			(INCHES)	1	.177	1.182	1	.182	1.182		
			(AC-FT)		37.	37.		37.	37.		
PF	AK STORAGE	TIME			Ν	1AXIMUM AVER	AGE S	IORAGE			
					6–HR	24-HR	7	2-HR	6.65-HR		
+	(AC-FT)	(HR)									
	1.	4.17			0.	0.		0.	0.		
F	EAK STAGE	TIME			_	MAXIMUM AVE	RAGE	STAGE			
	·>	<i></i> .			6-HR	24-HR	7	2-HR	6.65-HR		
+	(FEET)	(HR)									
	TOT.00	4.17		10	10.13	100.12	10	0.12	100.12		
			CUMULAT	IVE AF	EA =	.59 SQ MI					

RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES

	OPERATION	STATION	PEAK FLOW	TIME OF PEAK	AVERAGE FLO	W FOR MAXIMU	M PERIOD	BASIN AREA	MAXIMUM STAGE	TIME OF MAX STAGE
+					6-HOUR	24-HOUR	72-HOUR			
+	HYDROGRAPH AT	BASIN	574.	4.15	74.	67.	67.	.59		
+ +	ROUIED TO	DETAIN	558.	4.17	74.	67.	67.	.59	101.00	4.17

*** NORMAL END OF HEC-1 ***

EXISTING CONDITION RATIONAL METHOD WORK MAP

LEGEND:	
	PARCEL BOUNDARIES
	DRAINAGE BASIN BOUNDARY
	OVERLAND FLOW PATH
3.62 AC	DRAINAGE BASIN AREA
100	RATIONAL METHOD NODE NUMBER
A	SITE DISCHARGE LOCATION

)ischarge Location	Tributary Area	100-Year Flow, cfs
А	368.65	559
В	13.79	28
С	46.98	94
D	25.60	58
E	38.27	80

PROPOSED CONDITION RATIONAL METHOD WORK MAP

LEGEND:	
	PARCEL BOUNDARIES
	DRAINAGE BASIN BOUNDARY
	OVERLAND FLOW PATH
3.62 AC	DRAINAGE BASIN AREA
100	RATIONAL METHOD NODE NUMBER
A	SITE DISCHARGE LOCATION

Discharge Location	Tributary Area	100-Yea Flow, cf
А	375.08	574
В		
С	50.46	87
D	29.07	57
Е	38.68	65

Appendix E

Geologic Reconnaissance & Slope Stability Analysis

CHRISTIAN WHEELER ENGINEERING

December 4, 2014

Superior Ready Mix Concrete, L.P. 1508 West Mission Road Escondido, California 92029 CWE 2110171.02R

Subject: Revised Report of Supplemental Slope Stability Analyses and Reclamation Fill Settlement, Proposed Otay Hills Quarry, Alta Road and Otay Mesa Road, San Diego County, California.

Dear Ladies and Gentlemen,

In accordance with your request and our Proposal dated March 17, 2011, Christian Wheeler Engineering has prepared this revised report to provide the results of our supplemental slope stability analyses for the subject project. Our supplemental analyses addressed the proposed Phase 2A, 2B, and 2C cut (extraction) slopes, the proposed Phases 3A, 3B, 3C, and 3D cut (extraction) slopes, the proposed Phases 4B, 4C, and 4D fill (reclamation) slopes, and the final (post reclamation) project cut and fill slopes. Full descriptions of the site's physical and geologic conditions as well as the scope of the proposed quarry project have been provided in our referenced Report of Geologic Reconnaissance (CWE, 2011).

SUPPLEMETNAL STABILITY ANALYSES: As described in our referenced report (CWE, 2011), "Global stability of steep rock slopes, such as those proposed for the quarry operation, depends on several factors such as type of rock, rock strength, orientation of fractures or other planes of weakness, and slope angles. In quarry operations with steep, high slopes, factors of safety typically range from approximately 1.2 to greater than 1.5. The previous slope stability analysis of the site performed by Testing Engineers in 2005 indicated that the proposed cut slopes should be adequately stable to the proposed heights for slopes as steep as 1:1 (horizontal to vertical), and possibly as steep as 0.5:1. Based on our review of those calculations, as well as our review of other available data pertaining to the stability of rock slopes in quarry operations, it is our opinion that the previous slope stability analysis by Testing Engineers adequately addresses the stability of the proposed cut slopes."

December 4, 2014

Our initial supplemental analyses performed in the preparation of this report included rock slope stability analyses (modelling planar and wedge failures) of the steepest of the proposed extraction (cut) slopes during Phases 2A, 2B, 2C, 3A, 3B, 3C, and 3D of the project utilizing the referenced Rockpack III [®] software prepared by C.F. Watts & Associates. Analyses of the extraction slopes that will remain as part of the project after the completion of the Phase 4E reclamation phase were also conducted. The findings presented herein are based on the assumption that the geologic conditions at the site, including rock type, rock strength, and degree and pattern of fracturing, are similar to those described in the Geotechnical Evaluation Report, Proposed Otay Hills Quarry prepared by Testing Engineers in September 2005.

The following Table I presents the results (factors-of-safety against failure) of our static and pseudostatic rock slope analyses for the extraction slopes proposed for this project as well as the final cut slopes to remain upon completion of Phase 4E (completion of reclamation). It should be noted that within Phase 2 of the project the interim and side quarry slopes will be approximately 1:1 (H:V) and during Phase 3 the interim extraction slopes will be approximately 1:1 (H:V) while the side quarry slopes will be cut at inclinations of 0.5:1 (H:V). Our analyses of the Phase 3 slopes focused on the steeper, side quarry slopes.

Dlass			Pseudo-Static
Phase	Description of Extraction Slope	Static F.O.S.	F.O.S.
2A	175' high @ 1:1 (H:V) inclination	4.1	3.2
2B	175' high @ 1:1 (H:V) inclination	4.1	3.2
2C	165' high @ 1:1 (H:V) inclination	4.3	3.4
3A	260' high @ 0.5:1 (H:V) inclination with 1:1 cut above	2.4	2.1
3B	525' high @ 0.5:1 (H:V) inclination with 1:1 cut above	1.4	1.2
3C	525' high @ 0.5:1 (H:V) inclination with 1:1 cut above	1.4	1.2
3D	500' high @ 0.5:1 (H:V) inclination with 1:1 cut above	1.5	1.2
Final Cut Slopes	200' high @ 1:1 (H:V) inclination	4.7	3.7

TABLE I -	EXTRACTION	& FINAL	CUT SLOPES
-----------	-------------------	---------	------------

December 4, 2014

The results of our rock slope stability analyses indicate that the steepest of the proposed extraction slopes will demonstrate minimum factors-of-safety against static and pseudo-static failure in excess of the minimum County requirements for temporary slopes of 1.3 and 1.1, respectively. Based on these results along with the nature of the material at the site, it is our opinion that the risk of significant, deep-seated slope instability in the native materials at the site can be considered to be low. It should be noted localized areas of potentially unstable slopes might be present where intersecting fractures or other planes of weakness are exposed in steep cut slopes. The potential for such unforeseen areas of potentially unstable conditions could be mitigated during site extraction with recommendations presented by a qualified engineer that would be based on site observations by a qualified geologist.

Furthermore, the final cut slopes will demonstrate minimum factors-of-safety against static and pseudo-static failure in excess of the minimum County requirements for final or permanent slopes of 1.5 and 1.1, respectively. The final cut slopes are anticipated to be stable and should not endanger public or private property or result in the deposition of debris on any public way or interfere with any existing drainage courses. The need for rock fall or debris barriers or fences along final cut slopes should be addressed by a qualified engineer at the completion of site reclamation.

We have also performed supplemental slope stability analyses of the proposed fill slopes associated with the Phase 4 reclamation operations at the site. As described in our previous report, the site will be used as an Inert Debris Engineered Fill (landfill). The material placed in the Inert Debris Engineered Fill will be imported to the site over a space of approximately 90 to 95 years and will consist of a variety of materials (CWE, 2011). The results of the reclamation slope stability analyses herein are based on the assumption that the fill materials will have strength parameters similar to those described in our previous report (CWE, 2011). The following Table II presents the results of our analyses for the proposed fill slopes (reclamation and final) proposed for this project. As necessary, the inclinations of the temporary reclamation slopes were adjusted in our analyses in order to allow the proposed fill slopes to demonstrate minimum factors-of-safety against failure under static and pseudo-static conditions of 1.3 and 1.1, respectively, which are the minimums required by the County.

Dhace	Slone Description	Static	Pseudo-Static	Required Slope
Phase	Slope Description	F.O.S.	F.O.S.	Inclination (max)
1.0	285' high @ 2 1.1 (U.V)	1 2	1.0	
4/	285 nign @ 2.1:1 (F1:V)	1.5	(inadequate)	2.25:1
4A	285' high @ 2.25:1 (H:V)	-	1.1	
4B 87 4C	550' high @ 2 5.1 (H.V)	1 /	1.0	
4D & 4C	550 mgn @ 2.5.1 (11.V)	1.4	(inadequate)	2.6:1
4B & 4c	550' high @ 2.6:1 (H:V)	-	1.1	
4D	150' high @ 2 2.1 (H.V)	13	1.0	
	450 mgn @ 2.2.1 (11. V)	1.5	(inadequate)	2.5:1
4D	450' high @ 2.5:1 (H:V)	-	1.1	
Final 4D/E	70' high @ 2.0:1	1.5	1.1	As steep as 2:1

TABLE II -FILL SLOPES (RECLAMATION & FINAL) Image: Comparison of the state o

As demonstrated by the results of our reclamation slope stability analyses (included in Appendix A at the rear of this report), in order to demonstrate minimum factors-of-safety of 1.1 against pseudo-static, temporary slope failure, the temporary Phase 4A reclamation slope will need to be flattened to an inclination of 2.25:1 (H:V), the Phase 4B and 4C slopes will need to be flattened to inclinations of 2.6:1 (H:V), and the Phase 4D reclamation slope will need to be constructed at a 2.5:1 (H:V) inclination.

It should be noted that although the results of our pseudo-static analyses demonstrate that the proposed 450-foot-high 4D reclamation slope will need to constructed at a maximum inclination of 2.5:1 (H:V) in order to demonstrate adequate temporary stability, upon completion of Phase 4E, the proposed 70-foot-high fill slope that will remain could be steepened to 2.0:1 (H:V) and still demonstrate adequate stability.

Included in Appendix B of this report are the results of our surficial stability analysis of the final fill slope (following Phase 4E) that could be constructed as steeply as 2:1 (H:V). This analysis demonstrates that the proposed final fill slope will demonstrate a factor-of-safety against surficial failures of 1.5, which is the minimum that is generally considered to be stable.

From a geotechnical standpoint, the inclusion of drainage terraces on the final cut and fill slopes is not considered necessary as such terraces will not adversely affect or significantly improve the stabilities of the proposed slopes.

RECLAMATION FILL SETTLEMENT: As described on page 6 of our referenced report, "some settlement of the fill will occur. The amount of settlement is expected to range from approximately two percent to approximately five percent. The amount of settlement will depend on a variety of factors such as the type of material used in the fill, the degree of compaction of the fill, and the thickness of the fill. The deeper portions of the fill will probably experience greater settlement than the upper portions of the fill, due in part to the increased weight of the overlying fill. It is recommended that settlement monuments be installed and the potential fill settlement be evaluated by qualified personnel as the backfilling operations approach proposed finish grade elevations" (CWE, 2011). Although difficult to quantitatively predict given the potential variability in the factors described above, for planning purposes we expect that primary settlement of the deeper fill areas will occur from the beginning of reclamation and likely continue over several years. Secondary settlement of the fills may likely continue for a few decades after the completion of reclamation. As such, the placement and periodic monitoring of settlement monuments will be necessary to assist in future development of the site.

If you have any questions after reviewing this report, please do not hesitate to contact this office. This opportunity to be of professional service is sincerely appreciated.

Respectfully submitted,

CHRISTIAN WHEELER ENGINEERING

David R. Russell, CEG 2215

- cc: (2) Submitted
 - (4) EnviroMine Inc., 3511 Camino del Rio South, Suite 403, San Diego, CA 92108
 (1) via email: travisj@enviromineinc.com

Daniel B. Adler, RCE 36037

REFERENCES

California Division of Mines and Geology, 1997, Guidelines for Evaluating and Mitigating Seismic Hazards in California, Special Publication 117.

C.F. Watts & Associates, 2003, Rockpack III [®] for Windows.

Christian Wheeler Engineering, 2011, Report of Geologic Reconnaissance and Slope Stability Analysis, Proposed Otay Hills Quarry, Alta Road and Otay Mesa Road, San Diego County, California, CWE Report No. 2110171.01, dated October 6, 2011.

Eberhardt, Erik, 2003, Rock Slope Stability Analysis, Utilization of Advanced Numerical Techniques.

EnviroMine, Inc., 2010, Project Description for the Otay Hills Project, dated October 2010.

Geotechnics Incorporated, 2010, Feasibility of Restoration Backfill, Proposed Otay Hills Quarry, San Diego County, California Project No. 0695-006-00, Document No. 10-0387R, dated July 2, 2010.

Hoek, E. and Bray, J.W., 1974, Rock Slope Engineering.

Jennings, C.W., 1975, Fault Map of California, California Division of Mines and Geology, Map No. 1; Scale 1:750,000.

Testing Engineers, 2005, Geotechnical Evaluation Report, Proposed Otay Hills Quarry, Contract No. 85012, dated September 28, 2005.

United States Geological Survey 2004, Geologic Map of the El Cajon 30' X 60' Quadrangle, California, Open-File Report 2004-1361; compiled by Victoria R. Todd.

PLANS AND TOPOGRAPHIC MAPS

Chang Consultants, 2011, Plot Plan for Otay Hills, 2 Sheets; Scale: 1 inch = 200 feet, print date May 5, 2013.

Chang Consultants, 2011, Reclamation Plan for Otay Hills, 3 Sheets; Scale: 1 inch = 200 feet, print date May 5, 2013.

County of San Diego, 1963, Topographic Map Sheet 242-1791; Scale: 1 inch = 200 feet

County of San Diego, 1963, Topographic Map Sheet 242-1797; Scale: 1 inch = 200 feet

County of San Diego, 1963, Topographic Map Sheet 246-1791; Scale: 1 inch = 200 feet

County of San Diego, 1963, Topographic Map Sheet 246-1797; Scale: 1 inch = 200 feet

County of San Diego, 1983, Ortho-Topographic Map Sheet 242-1791; Scale: 1 inch = 200 feet

County of San Diego, 1983, Ortho-Topographic Map Sheet 242-1797; Scale: 1 inch = 200 feet

County of San Diego, 1983, Ortho-Topographic Map Sheet 246-1791; Scale: 1 inch = 200 feet

County of San Diego, 1983, Ortho-Topographic Map Sheet 246-1797; Scale: 1 inch = 200 feet

United States Geological Survey, 1975, Otay Mesa Quadrangle; Scale 1 inch = 2000 feet

PHOTOGRAPHS

San Diego County, 1928, Flight 78A and 78B; Scale: 1 inch = 1000 feet (approximate)

San Diego County, 1953, Flight 3M, Photographs 23, 24, and 25, Scale: 1 inch = 1700 feet (approximate)

San Diego County, 1953, Flight 3M, Photographs 23, 24, and 25, Scale: 1 inch = 1700 feet (approximate)

San Diego County, 1960, Flight 14, Photographs 24 and 25; Scale: 1 inch = 1000 feet (approximate)

San Diego County, 1968, Flight 3JJ, Photographs 41 and 42; Scale: 1 inch= 1000 feet (approximate)

San Diego County, 1970, Flight 13, Photographs 1, 2, and 3; Scale: 1 inch= 2000 feet (approximate)

San Diego County, 1973, Flight 14, Photographs 1, 2, and 3; Scale: 1 inch= 1000 feet (approximate)

San Diego County, 1978, Flight 34D, Photographs 32, 33, and 34; Scale: 1 inch= 1000 feet (approximate)

San Diego County, 1983, Photographs 133 and 134; Scale: 1 inch = 2000 feet (approximate)

San Diego County, 1989, Photograph 18-45; Scale: 1 inch = 2640 feet (approximate)

Appendix A

Plots of Global Fill Slope (Reclamation and Final) Stability Analyses

Otay Hills Quarry - RECLAMATION Phase 4A - 285 High (2.1:1)

CHRISTIAN WHEELER ENGINEERING

Otay Hills Quarry - RECLAMATION Phases 4B & 4C - 550' High (2.5:1)

CHRISTIAN WHEELER

Otay Hills Quarry - RECLAMATION Phase 4D - 450' High (2.2:1 UNIFORM)

c:\users\dave russell\desktop\otay quarry stability\gross stability\drr bishops global\static\static4d reclamation slope - 450' total - uniform slope.pl2 Run By: DRR-CWE 7/18/2014 08:39PM

CHRISTIAN WHEELER

Otay Hills Quarry - RECLAMATION Phase 4A - 285 High (2.1:1)

CHRISTIAN WHEELER

Otay Hills Quarry - RECLAMATION Phase 4A - 285 High (2.25:1) PS

Safety Factors Are Calculated By The Modified Bishop Method

Otay Hills Quarry - RECLAMATION Phases 4B & 4C - 550' High (2.5:1)

CHRISTIAN WHEELER

Otay Hills Quarry - RECLAMATION Phase 4D - 450' High (2.2:1 UNIFORM)

c:\users\dave russell\desktop\otay quarry stability\gross stability\drr bishops global\pseudo static\initialpstatic4d reclamation slope - 450' total - uniform slope.pl2 Run By: DRR-CWE 7/24/2014 12:20P

Safety Factors Are Calculated By The Modified Bishop Method

c:\users\dave russell\desktop\otay quarry stability\gross stability\drr bishops global\pseudo static\ps 4d reclamation slope - 450' total - uniform slope.pl2 Run By: DRR-CWE 7/18/2014 08:34PM # FS a 1.1 Total Saturated Cohesion Friction Piez. Soil Soil Load Value Peak(A) kh Coef. 0.250(g) 0.125(g)< Desc. Type Unit Wt. Unit Wt. Intercept Angle Surface b 1.1 Ńo. (pcf) (pcf) (psf) (deg) No. Qaf 1 120.0 135.0 200.0 28.0 0 c 1.1 d 1.1 e 1.1 f 1.1 g 1.1 h 1.1 i 1.1 i 1.1 1200 800 а ġ 6 1 400 0 800 1200 1600 400 2000 0 GSTABL7 v.2 FSmin=1.1 Safety Factors Are Calculated By The Modified Bishop Method

CHRISTIAN WHEELER ENGINEERING

Otay Hills Quarry - FINAL FILL SLOPE FINAL 4D/E Fill Slope 70' (2:1) PS

Safety Factors Are Calculated By The Modified Bishop Method

Appendix B

Plot of Surficial Stability Analysis Final Phase 4D/E Fill Slope

SURFICIAL SLOPE STABILITY - 2:1 (H:V) FILL SLOPE

SEEPAGE PARALLEL TO SLOPE

ASSUMED PARAMETERS

Z	Depth of Saturation (ft)	4
a	Slope Angle (H:1)	2
$\gamma_{ m W}$	Unit Weight of Water (pcf)	62.4
$\gamma_{\rm T}$	Saturated Unit Weight of Soil (pcf)	125
φ	Angle of Internal Friction Along Plane of Failure (degrees)	28
с	Cohesion Along Plane of Failure (psf)	200

FACTOR OF SAFETY

$$FS = \frac{c + T (\tan \phi)}{T} \qquad \longrightarrow \qquad FS = \frac{c + (\gamma_T - \gamma_W)(z)(\cos^2 a)(\tan \phi)}{(\gamma_T)(z)(\sin a)(\cos a)}$$

158	OTAY HILLS QUARRY					
15		Final Fill Slope				
CHRISTIAN WHEELER	BY:	DRR	DATE:	Jul-14		
ENGINEERING	JOB NO.	.: 2110171.02	Appe	ndix B		
Appendix C

Landscape Architect Slope Certification

HELIX Environmental Planning, Inc. 7578 El Cajon Boulevard Suite 200 La Mesa, CA 91942 619.462.1515 tel 619.462.0552 fax www.helixepi.com

December 10, 2014

Mr. Travis Jokerst EnviroMINE, Inc. 3511 Camino de Rio South, Suite 403 San Diego, CA

Subject: Otay Hills Quarry Steep Slope Certification

Dear Mr. Jokerst:

As per your request, I have reviewed the Landscape Concept Plan (prepared by HELIX) and the Revegetation Plan for Superior Ready Mix, LP, Otay Hills Quarry Project (prepared by others) and evaluated these documents as they relate to Section 87.401 (a) of the County of San Diego Grading Ordinance related to maximum cut-slopes.

As stated in the Revegetation Plan, slopes steeper than 2:1 are proposed as the final condition for much of the mineral extraction areas on site. These final cut slopes will be as steep as 1:1, graded to create a roughened surface with small benches carved into the cut slope. Revegetation operations will consist of spreading salvaged topsoil over these slopes and the small benches then hydroseeding these areas with a native seed mix. Hydroseeding is to be done between November 15 and January 15, when climatic conditions are expected to be most favorable. Rock outcrops and/or exposed bedrock areas that are not subject to excessive potential erosion and unlikely to support revegetation may be chemically stained to reduce visual contrast with surrounding areas.

I can certify that in my opinion, adherence to the approved Revegetation Plan for Superior Ready Mix, LP, Otay Hills Quarry Project, will support the proposed planting on slopes greater that 2:1 without significant or excessive erosion. If you have any questions or need any additional information please don't hesitate to contact me at (619) 462-1515.

Sincerely,

R. Brad Lewis, ASLA, LEED AP BD+C, CA QSD/QSP Landscape Architecture Group Manager CA Landscape Architect RLA #2657